The Difference between Splitting in n and n+1

Rob van Glabbeek

Computer Science Department
Stanford University
Stanford, California 94305-9045, USA
rvg@cs.stanford.edu

Frits Vaandrager

Computing Science Institute
University of Nijmegen
P.O.Box 9010, 6500 GL Nijmegen, The Netherlands
fvaan@cs.kun.nl

It is established that durational and structural aspects of actions can in general not be modeled in standard
interleaving semantics, even when a time-consuming action is represented by a pair of instantaneous
actions denoting its start and finish. By means of a series of counterexamples it is shown that, for any n, it
makes a difference whether actions are split in nor in n+1 parts.

AMS Subject Classification (1991): 68Q10, 68Q55.

CR Subject Classification (1991): F.1.2, F.3.2, D.3.1.

Key Words & Phrases: concurrency, interleaving vs. partial orders, split trace equivalences, split bisimula-
tion equivalences, ST-trace equivalence, ST-bisimulation equivalence, action refinement, real-time con-
sistency, pomset processes, prime event structures, process graphs.

Note: Work on this paper was initiated at the time both authors were employed at CWI, Amsterdam, contin-
ued during a visit of the second author to the Technical University of Munich, at the time the first author
was employed there, and finalized while the authors were employed at Stanford resp. CWI and the Univer-
sity of Nijmegen. The work of the first author at the TU Munich was supported by Sonderforschungs-
bereich 342, and the work at Stanford University by the National Science Foundation under grant number
CCR-8814921 and by ONR under grant number N0O0014-92-J-1974; the work of the second author at CWI
received partial support from ESPRIT BRA 7166 CONCUR2. An abstract of this paper appeared before as
[13].

1. INTRODUCTION
In event based models of concurrency which interleave concurrent actions, and thus reduce parallel-
ism to nondeterminism, some rather strong assumptions have to be made about the nature of events.
The following formulation of these assumptions is taken from HOARE [17]:
“The actual occurrence of each event in the life of an object should be regarded as an instantaneous
or an atomic action without duration. Extended or time-consuming actions should be represented by
a pair of events, the first denoting its start and the second denoting its finish.” (p. 24)
In interleaving semantics the behavior of a system that performs two actions @ and b in parallel is
considered the same as the behavior of a system that either does an a followed by a b, or a b followed
by an a. Algebraically this leads to equations like

allb = ab+b-a

Such identifications are reasonable under the assumption that the actions a and b are instantaneous,
but become highly problematic if @ and b are durational or time consuming. Any intuition that in
allb the a and the b are causally independent and can occur simultaneously, or that «l|b is faster than
a-b +b-a, cannot be captured in interleaving semantics in terms of primitive notions. The postulate of
interleaving forces one to consider instantaneous actions only. Hoare however, and with him many

2

other advocates of interleaving semantics, argues that this is not really a restriction because one can
still deal with durational actions, by splitting such actions into a beginning and an end. In interleaving
semantics

atca” bt b #£atam bt b + BT b a0,

because the process on the left has a trace a"b*a~b~ which the process on the right has not.
Observations like this make many people believe that at least in theory the idea of splitting offers a
viable approach to the concept of durational actions.

In this paper we show that the representation, in interleaving models, of durational actions by pairs
of actions is impossible in a general setting of concurrent and nondeterministic systems. Basically, the
problem is that in the presence of a sufficient amount of nondeterminism and concurrency, it is not
always clear how start actions match up with finish actions. This confusion leads to the identification
of certain processes that should be distinguished by any semantic equivalence which claims to capture
the notion of actions with duration. Our counterexamples that illustrate these phenomena are rather
complex and don’t leap out at the casual observer. PRATT [24] compared this situation with the 19th
century engineers who did not notice discrepancies in their day-to-day work due to relativity and
quantum mechanics. Indeed, splitting works in all practical situations that we know of. However,
when applications become more complex, this situation may change because splitting is unable to cap-
ture the notion of durational actions in general.

Given the widespread belief in the universal power of splitting, we proceed in a very careful
manner, with the aim to eradicate this misconception in all its possible forms. However, we would
like to stress in advance that our results apply to a general setting of concurrent and nondeterministic
systems only. By no means they imply that in any setting with durational actions the use of causal or
ST-semantics is superior to a semantics based on interleaving of split actions. In fact we think that in
many specific areas of application interleaving + splitting can lead to simpler and more satisfactory
solutions. A typical example here is the area of wait-free atomic registers, where apparently the use of
interleaving based models in combination with splitting of the durational read and write operations
(see for instance [3]), is more successful than the use of the partial order based model of [18].

As it is more general and much simpler, the discussion of this paper will take place at the level of
semantic models and not at the level of the languages that are interpreted in those models. We use
semantic models which are based on partial orders of events, because in these models we can easily
express that actions have duration or structure. In order to argue that a combination of interleaving
and splitting cannot capture these features, we need a model which can! A simple way to capture the
notion of durational actions in a partial order model has been formalized in [12] in the context of
Petri nets. The basic idea is to introduce a mapping which associates a duration to each action. For
instance, one can assume that action a takes one hour and action b two hours. Then in «||b the two
actions can be completed in two hours; this is not possible in a-b +b-a. Given an execution sequence,
one can construct a real-time execution sequence by labeling each event with a start time and a finish
time, in such a way that (1) the starting times of consecutive events in the sequence are nondecreas-
ing, (2) for each individual event the difference between finish and start time equals the duration of
the action which is associated to the event, and (3) the start time of each event is greater than or
equal to the finish time of all its predecessors in the partial order.! We postulate that a treatment of
concurrency that claims to capture durational aspects of actions should distinguish between processes
with different real-time execution sequences. Recently, VOGLER [28] has made a study of this postu-
late and developed a testing scenario that relates to it. Partial order models can also capture the con-
cept of actions having structure, via action refinement: the operation of refining actions into more
complicated processes. Based on arguments from [5, 18, 23], refinement of actions is advocated in [11]
as a natural operation on processes, allowing to decrease the level of abstraction at which systems are

1. So unlike in [12] we do not assume maximal parallelism in the definition of a real-time execution sequence; our counterex-
amples hold already without this requirement.

3

described. Splitting of actions can be viewed as a simple form of action refinement in which each
action a is refined into a process which first does a * and then a ~. We postulate that a treatment of
concurrency that claims to capture structural aspects of actions should distinguish between processes
such as allb and a-b +b-a that turn out to be different after refinement of actions. Both requirements
are met by suitable causality based equivalences on partial order models [10], but not by those based
on interleaving.

Given the complexity of our counterexamples, we decided to split the technical part of this paper
into two parts. In Sections 2 and 3 we discuss the issue in the linear time model of pomset processes,
and in Sections 4 and 5 we discuss it again in the branching time model of labeled prime event struc-
tures. We establish that labeled prime event structures can without loss of information be represented
by process graphs. This representation turns out to be helpful in the analysis of our counterexamples.
The results of the latter sections are more general, but also more difficult to understand because the
counterexamples have to preserve branching structure too. Each counterexample consists of two sys-
tems (represented either as pomset processes or as event structures) which are clearly different if we
assume that actions have duration or structure, but which are identified if we first split the events in
each system and then compare the interleaving behaviors of the resulting systems.

The first counterexample that we found (the owl example) consists of two such systems which are
identified in interleaving semantics after splitting each action into two parts, but which have different
real-time execution sequences and can be distinguished by splitting each action into three parts. It
settles the open problem ‘whether digram languages of unit cardinality suffice’ posed in GISCHER [6]
(p- 11). This may lead a fervent splitter to speculate that although durational and structural proper-
ties of actions cannot be modeled in interleaving semantics by simply splitting actions into a begin-
ning and an end, it might still be possible to do so by splitting actions in three or more parts. There-
fore we also consider n-splitting, where a sequence a;- - - - - a, is substituted for each action g, and
show that for any n=2 there are processes with the same interleaving behavior after splitting each
action in n parts, but with different real-time execution sequences and different interleaving behavior
after each action is split into n +1 parts. These examples show that it is impossible to capture dura-
tional or structural properties of actions by splitting them into sequences of any finite number of
parts.

A possible alternative to splitting actions into sequences is the refinement of actions by processes
with a more complicated internal structure, possibly involving conflicts (+). We review an example
due to VOGLER [29] (a variant of which appears already in K.S. LARSEN [19]) involving two processes
that are interleaving equivalent after splitting actions in sequences of arbitrary length, but can be dis-
tinguished by refining actions into processes of the form ai-a,+as3as. We show that this example
works in linear time semantics but does not generalize to branching time semantics. GORRIERI &
LANEVE [15] furthermore establish that in bisimulation semantics no such example exists.

The auxiliary power of conflict refinements (at least in linear time semantics) may be taken as an
incentive to propose extensions of the splitting doctrine beyond the level of sequence refinement. In
fact, GISCHER [6] shows, in essence, that any systems that can be distinguished in linear time inter-
leaving semantics after arbitrary refinements, can already be distinguished by refinements of the form
2;ca;b;, involving an infinite choice. However, our counterexamples show that applying interleaving
semantics after any given refinement of actions into processes with a finite number of internal states
leads to the identification of systems with a different real-time behavior and a different interleaving
semantics after splitting actions in sequences with a greater number of internal states (Section 5.10).

Even though we will not discuss this issue in any detail, we claim that our counterexamples can be
recreated on the language level in all major process algebras. In the language Rec of [22] for instance,
any finite prime event structure can be denoted up to history preserving bisimulation equivalence [14],
which is one of the finest equivalences found in the literature. Since all our counterexamples involve
finite structures only, this observation immediately implies that they can be translated to Rec. ACETO
& HENNEssY [2] discuss in detail the translation of our owl example into Milner’s CCS. In [1] they
investigated the largest congruence contained in (interleaved) bisimulation equivalence for a subset of

4

CCS without communication and restriction, but with a general refinement operator. They character-
ized this congruence as the equivalence which declares two processes equal iff after splitting actions
into begin and end, the results are (interleaved) bisimilar. That equivalence was originally proposed
on a slightly different subset of CCS in HENNEsSY [16]; we call it split bisimulation equivalence. 1t fol-
lows that our counterexamples do not carry over to the subset of CCS considered by Aceto and Hen-
nessy, and that their characterization does not carry over to full CCS with refinement. In fact, on the
domain of processes that can be expressed in Aceto and Hennessy’s language, split bisimulation
equivalence coincides with history preserving bisimulation equivalence.

In VAANDRAGER [25] it is proved that for deterministic systems, the ability to observe the beginning
and end of events is sufficient for retrieving the causal structure of the systems. Therefore our coun-
terexamples have to be nondeterministic. All counterexamples necessarily involve autoconcurrency as
well, the possibility that two instances of the same action occur simultaneously. If there is no auto-
concurrency, then there can be no confusion about how finish actions match up with start actions,
and splitting becomes a consistent way of dealing with durational actions. This is done in [19,20] on a
simple subset of CCS were autoconcurrency is explicitly excluded. The subset of the language Rec of
[22] which contains injective morphisms only, is a nontrivial example of a language without autocon-
currency. Although we do not exclude that such a restricted language can be useful in practice, our
feeling is that autoconcurrency, just like nondeterminism, is a feature which arises naturally if one
tries to give abstract descriptions of concurrent systems. Therefore we think that a theory of dura-
tional actions will be more useful if it allows for autoconcurrency.

For each interleaving equivalence one can define a split-n equivalence, identifying two processes
exactly when they are interleaving equivalent after splitting each action into n parts. Our counterex-
amples show that the split-n equivalences are too coarse to capture durational and structural aspects
of actions. This means that the interleaving equivalences are too coarse for this purpose even if
occurrences of actions are represented by a sequence of two or more events. In a previous paper [12]
we introduced a type of equivalence that is very similar to split-2 equivalence, but which in addition
requires that the way start actions match up with finish actions is the same for equivalent processes.
These so-called ST-equivalences are finer than the split-n equivalences but coarser than the main
causality based equivalences (studied e.g. in [10]). VOGLER [26] gave an alternative characterization of
ST-equivalences in terms of the partial order based notion of interval semiwords. In [8,12,26] and [28]
it was established that these equivalences do not suffer from the problems we here encounter with
split equivalences, and are as suitable for modeling durational actions as are the main causality based
equivalences. In ST-semantics as well as in causal semantics no additional discriminatory power is
obtained when actions are split into a beginning and an end (or in more than two parts) before their
behaviors are compared. So whereas in interleaving semantics splitting is insufficient, splitting on top
of ST- and causal semantics is unnecessary. In order to capture durational and structural properties
of actions one needs to make the distinctions of ST-semantics [8,26-28]. The additional distinctions
made by causality based equivalences do not harm, but are inessential for this purpose.

2. POMSET PROCESSES

2.1. DEFINITION. A labeled partial order or Ipo over an alphabet A of actions is a structure
p = (E,<<,l) where
- Eis a set of events;
- < is a partial ordering on E, sometimes referred to as the causality relation;
- [:E—A is a labeling function which assigns an action to each element of E.
Sometimes we will refer to the components of an lpo p as E,, <, and /,.
Two lpo’s p and q are isomorphic if there exists an isomorphism from p to g, i.e. a bijective mapping
f from E, to E, which preserves ordering and labels (so e <,¢ < f(e) <, f(¢) and

h(e) = L,(f ()

5

A partially ordered multiset or pomset is the isomorphism class [p] of an Ipo p. We call a pomset
finite if the Ipo’s contained in it have a finite number of events.

Let p be an lpo. A set E CE, of events is lefi-closed in p if for all e€E and ¢'€E,, ¢ <, e implies
¢’€E. Anlpo p is a prefix of an Ipo g if E, is a subset of E, which is left-closed in g, and moreover
<, and [, are the restrictions of <, resp. [, to E,. A pomset P is a prefix of a pomset Q if some Ipo
in P is a prefix of some Ipo in Q.

The prefix-closure PREF(X) of a set of pomsets X is the set consisting of all prefixes of elements of
X. We say X is prefix-closed if PREF(X)=X (note that, since any pomset is a prefix of itself, it is
always the case that X C PREF (X)).

A pomset process is a non-empty, prefix-closed set of finite pomsets.

If S is a set of Ipo’s, then POMPROC(S) denotes the pomset process obtained by taking the
prefix-closure of {[p]lpeS}.

Pomset processes were introduced by PrarT [23]. However, his processes were not required to be
nonempty and prefix-closed, and the underlying pomsets did not have to be finite. A pomset process
can be used to record the causal relationships between occurrences of actions in a concurrent system.
The identity of events is not preserved. Also, due to the prefix-closure property, a pomset process pro-
vides no information about the presence or absence of deadlock and infinite behaviors.

2.2. DerFINITION. Let p be an Ipo over an alphabet 4. A sequence e; - - - e,€(E,)" is an event
sequence of p if all events in the sequence are different and for all i=1 the set {e}, ... ,e;} is left-
closed.

A sequence a; - - - a,€A” is a (sequential) trace of p if there exists an event sequence e, - - - ¢, of p
with for all 7, /,(¢;)=a;. A sequence o is a (sequential) trace of a pomset P if, for some Ipo p in P, o is
a trace of p. Similarly, o is a (sequential) trace of a pomset process X if, for some pomset P of X, ¢ is
a trace of P.

Two pomset processes X and Y are interleaving trace equivalent, notation X =~ Y, if they have the
same sequential traces.

Notice that if o is a trace of some Ipo in a pomset, it is a trace of all Ipo’s in that pomset. Also, if o is
a trace of a pomset P which is a prefix of a pomset Q, then o is a trace of Q. Thus, if S is a set of
Ipo’s, the traces of the associated pomset process POMPROC(S) are exactly the traces of the lpo’s in
S.

2.3. DerINITION. Let p be an Ipo over 4 and let n=1 be a positive natural number. Then
g = split,(p) is the Ipo over alphabet 4, = {g;lacA and 1<<i<n} given by

E, = {e/le€E, and I<i<n]},

e <, f; Ml e<,for(e= fandi <),

ly(e;) = (p(e));-

We say that an event e of p has started in an event sequence p of split,(p), if e; occurs in the
sequence. The event e has finished if e, occurs in the sequence. If e has started but not finished, then
we say that e is active in p.

The operation split, generalizes in the obvious way to pomsets [p] and pomset processes X:

split,(p1) = [split,(p)],
split,(X) = PREF ({split,(P)|PeX}).

Two pomset processes X and Y are split-n trace equivalent, notation X ~7 Y, if split,(X) and split,(Y)
are trace equivalent. We call X and Y split-w trace equivalent, notation X ~j; Y, if they are split-n
trace equivalent for all n.

6
It is immediate from the definitions that ~;, = ~).

2.4. DEFINITION. An ST-configuration of an lpo p is a pair (S,T) with TCS CE,, and for all ecS
and e'€E,, ¢’ <, e implies e’eT.

Intuitively, in an ST-configuration (S, T), the events in S are the ones that have started and the events
in T are those that are terminated. Since an event always starts before it terminates, 7'C S. Moreover
an event cannot start before all its causal predecessors are terminated.

2.5. DEFINITION. Let p be an Ipo over 4. An ST-sequence of p is a sequence e - - - e,€(E,)" in
which each event occurs at most twice, and for all ;=0 the pair

({e1, - --,€¢},{ele occurs twicein ey - - - ¢})

is an ST-configuration of p.

A sequence (ay,u;) - - - (a,,u,) (A XIN)" is an ST-trace of p if p has an ST-sequence e; - - - e, such
that for all it [,(¢;) = @; and y;=max({0} U {j <ile;=e;}). A sequence o is an ST-trace of a pomset
process X if, for some Ipo p in a pomset of X, o is an ST-trace of p.

Two pomset processes X and Y are ST-trace equivalent, notation X ~gz, Y, if they have the same
sets of ST-traces.

In an ST-sequence e; - - - ¢,, the first occurrence of an event e denotes that e starts, and the second
occurrence denotes that e terminates. If we would only consider the labels of the events in an ST-
sequence then, since the identity of the events is not preserved, too much information would get lost.
Therefore the actions in an ST-trace are labeled with an additional number. If this number is 0, then
the action corresponds to the start of an event. If the number is nonzero, say j, then this means that
the action corresponds with the termination of the event whose start is referred to by the j-th action
in the sequence.

ST-trace equivalence is the linear time version of the ST-bisimulation equivalence which we intro-
duced in [12] on the domain of Petri nets. The name ST-bisimulation originally referred to the fact
that this equivalence was defined in terms of markings which incorporate both places (Stellen) and
transitions (Transitionen) of a Petri net. The definition of ST-trace equivalence on pomset processes
as we present it here is similar to the definition given in [15] on stable event structures.

3. CLASSIFICATION OF LINEAR TIME EQUIVALENCES
In this section we establish the relationships between the various notions of equivalence on pomset
processes that were introduced in the previous section.

3.1. THEOREM. For alln=1, ~2%! C ~=%.

PROOF. Suppose X and Y are pomset processes with X ~%*! Y. We prove X ~% Y. For reasons of
symmetry it is sufficient to show that any trace of split,(X) is also a trace of split,(Y). So let o be a
trace of split,(X). Then o is a trace of some Ipo split,(p), where p is an Ipo in a pomset of X. Let p be
an event sequence of split,(p) which has ¢ as associated trace. Consider the sequence p’ which is
obtained from p by replacing each e, in p (where e E,) by the sequence e,e, +1. One can check that
p’ is an event sequence of split, 1(p) and that its associated trace ¢’ can be obtained from ¢ by
replacing each occurrence of an action g, by the sequence a,a, ;. Next observe that o’ is a trace of
split, +1(X) and thus also of split, +1(Y). This means that o’ is a trace of some lpo split, +1(g), where g
is an Ipo in a pomset of Y. Let 6 be an event sequence of split, ,1(g) which has ¢’ as associated trace.
Since in o’ each g, is followed immediately by a label a, ;, it must be that in 6’ each event e, is fol-
lowed immediately by the event e, ,,: after e,, e, is the only possible event with label a, ;. The
sequence § which is obtained from 6" by replacing each subsequence e,e,;; by e, is an event

7
sequence of split,(¢) and its associated trace is o. Thus o is a trace of split,(Y). O
3.2, Our next aim is to show that all the inclusions of Theorem 3.1 are strict. Figure 1 shows the
obvious, trivial and well-known counterexample that illustrates the difference between (split-1) trace

equivalence and split-2 trace equivalence.

PREF({ a b) ~L PREF({ a , b })
Fir

FIGURE 1: The difference between splitting in 1 and 2

Less trivial is the claim that the pomset processes X§" and X3%, which are displayed in Figure 2, are
split-2 trace equivalent but not split-3 trace equivalent.

1
X§ = PREF({ (J))
J

5
|

N O —
—————————— O-— N
N O —
——— - N

Xg“ = PREF({ })

N O —
———— Q- N
———————————— O - —
Ne— O=——"—" 1N
———— O-————————— —
N O N

FIGURE 2: The difference between splitting in 2 and 3

In fact, we we will show that this example generalizes to a counterexample which distinguishes split-n
trace equivalence from split-n +1 trace equivalence for all n=2. In Definition 3.3 we will define
pomset processes X" and X2, and in Proposition 3.5 and Theorem 3.6 we will prove that for any
n=2, X9 and X% are split-n trace equivalent but not split-n +1 trace equivalent.

In order to see that the pomset processes X§" and X3 are different in a setting where actions
have duration, assume that action 1 takes 1 time unit, action 2 takes 2 time units, and action O takes
3 time units. By choosing the leftmost pomset, process X5% can complete the execution of 6 actions in

6 time units. One can easily check that the pomset process X5 has no possibility to obtain a similar

8
performance.

3.3. DEFINITION. Let n=2 and let (sq, . . . ,s,) be a permutation of (1, . . . ,n). The Ipo p(sy, - . . ,5,)
is defined as follows. Its set of events is

{@G, 0), (0,), (s;,i)1<i<n},

its causality relation << is the least partial ordering relation satisfying for 1<<i<n:
(0) < (0,0) < (s151)s

and its labeling function associates label j to event (j,k).

For j,ke{l, ..., ,n} with with j=k, the Ipo p;(sy, . . . ,s,) is defined in exactly the same way as
p(sy, ... ,s,), only now there is one additional causal link:

©,7) < (0,k).

Recall that a permutation of (1,...,n) is called even (resp. odd) if it can be obtained from
(1, . . .,n) by means of an even (resp. odd) number of transpositions, performed in sequence. It is a
well known fact from algebra that every permutation is either odd or even, but not both. We define
the pomset process X;""* by

X7 = POMPROC({p(s1, - -.,8,)1(s1, - - .,8,) is an even permutation} U
Pjr(s1, - - - »82) (51, - - - ,5,) Is an odd permutation and j7#k}).

Symmetrically, the pomset process X% is defined by

Xodd — POMPROC({p(s1, - . -,8)1(s1, . . .,5,) is an odd permutation} U

{Pjk(s1 - - - »82) (51, - - - ,5,) is an even permutation and j7k }).

3.4. PROPOSITION. For all n=2, there is an allocation of durations to actions such that the pomset
processes X2 and X2 have different real-time execution sequences.

ProoOF. For i =1, ... ,n let action i take ; time units and let action 0 take n +1 time units. As the
permutation (n, . . ., 1) is either even or odd, only one of the pomset processes X" and X2 con-
tains the pomset

1 2 n
b
Vo
Hence, only that pomset process can complete all 3n actions in time 2(n + 1). O

3.5. PROPOSITION. For all n=2, the pomset processes X" and X™ are not splitn+1 trace
equivalent.

Proor. Since (1,...,n) is an even permutation, the following sequence is a trace of
split, +1(p(1, . . . ,n)), and hence also of split, ;1 (X;'*"). Here, as in the rest of this paper, we abbrevi-
ate a sequence a; - - - @, + by g, for a an action.

101 (),,201 0,,71 301 Onfz Tt n 01 0n+1 10,, 0n+1 20,,71 On On+13"' 02 On+1 n.

In the sequence both occurrences of the action i (for i =1, . . . ,n) must stem from the same (i) com-
ponent. Therefore the sequence is not a trace of split, 4 (X0ddy. O

3.6. THEOREM. For all n=2, the pomset processes X5 and X2 are split-n trace equivalent.

ProOF. For reasons of symmetry it is sufficient to show that each trace of split,(X;*") is also a trace
of splitn(Xde). So suppose o is a trace of split,(X;"). If o is a trace of an lpo split,(py(si, - - - ,5,))
for some odd permutation (s, . . .,s,) and indices j and k, then o will also be a trace of the lpo
split,(p(sy, - . . ,8,)) and thus of X%% Otherwise, o is a trace of an Ipo split,(p(sy, - - . ,s,)) for some
even permutation (si,...,s,). Let p be an event sequence of split,(p(sy, . . .,s,)) which has ¢ as
associated trace. If, in p, an event (0,;) ends before another event (0,k) starts, then p is also an event
sequence of the Ipo split,(pj(s1, - . . ,5,)) and consequently o is a trace of splitn(Xde), and we are
done. Also, if p is a ‘short’ event sequence on which not even parts of maximal events (i.e. events (7,])
with both i and j nonzero) occur, then we can easily prove that o is a trace of split,(X2%), by observ-
ing that p is also an event sequence of split,(p (s,,52, - - . ,5,—1,51)); and since swapping two elements
of an even permutation leads to an odd permutation this Ipo underlies a pomset of split,(X2%). The
above observations leave as the remaining case one in which p is of the form 6y and after @ all events
(0,i) (for 1<<i<n) are active. Since each event is split into » parts, and since, after 6, the n events
0,1), . . . ,(0,n) have all started but not yet finished, it must be that two of these events, say (0,/) and
(0,k) with j <k, are in the same stage of development. Now let 7" be the sequence obtained from 1 by
replacing each sub-event (7,7), by (i,k), and vice versa. We observe that ' is an event sequence of
the Ipo

SPUL (P (S1s -+« 58 —1sSksSj 415« « 5 Sk — 1S5Sk 415+« - 550))s

which has an associated trace o. Using again that swapping two elements in an even permutation

leads to an odd permutation gives that this Ipo underlies a pomset of split,(X2%). Thus ¢ is a trace of
: odd

split, (X7°). O

3.7. It follows that, for all n=1, split-n trace equivalence identifies processes that are different after
refinement of actions, and, for some allocation of durations to actions, have different real-time execu-
tion sequences. Hence it does not capture structural and durational aspects of actions.

3.8. Note that similar examples, also validating Propositions 3.4 and 3.5 and Theorem 3.6, are
obtained using the pomset processes Y2" and Y%, given by:

Y = POMPROC({p(s1,--.,8)I(s1,...,5,) is an even permutation} U

{Pix(s1, - - - 58)(s1, - - - ,5,) 1s any permutation and j7k }),
Y24 = POMPROC({p(s1, . . -,5.)|(51, - . . ,5,) is an odd permutation} U

Pix(s1s - 58515+ - -, 5,) is any permutation and j7k });
or Z, and Z’,, given by:
Z, = POMPROC({p(s1, .- -,8)!(s1, ... ,8,) is any permutation},
Z'y = POMPROC({p(s1> - - - »S) (515 - - - »80) (L, . - . ,m)} U{pp(l, ... ,n)ljF#k}).

3.9. THEOREM. For alln=1, ~g;y C =1,

Proor. Using Theorem 3.1, we can assume w.l.o.g. that n=2. Suppose X and Y are pomset processes
with X ~g5, Y. We prove X ~; Y. For reasons of symmetry it is sufficient to show that any trace of
split,(X) is also a trace of split,(Y). So let ¢ be a trace of split,(X). Then o is a trace of some Ipo
split,(p), where p is an lpo in a pomset of X. Let p be a corresponding event sequence of split,(p).
Consider the sequence p’ which is obtained from p by replacing events e; and e, in p (where e€E,)
by e, and removing all events e; for 1<<i<<n. Then p’ is an ST-sequence of p. Let ¢’ be its associated
ST-trace. Then o’ is an ST-trace of X and, consequently, also of Y and of some lpo g in a pomset of
Y. Let ¢ be an ST-sequence of ¢ which has ¢’ as associated trace. Then there exists a unique bijective

10

mapping f from the events occurring in p’ to the events occurring in ¢ with the property that the
homomorphic extension of this mapping to sequences maps p’ to 6. Now let 6§ be the sequence
obtained from p by replacing each event e, by f(e),. Then 8 will be an event sequence of split,(q).
Since f preserves labels, the associated trace of ¢ is just the associated trace of p, i.e. 6. Thus o is a
trace of split,(¢) and hence also of spliz,(Y). O

As =~y is the limit of the split-n equivalences, it follows immediately from Theorem 3.9 that
~gsr, C ~ 5. That also this inclusion is strict follows from the following example, due to VOGLER
[29]. A similar example was described earlier by K.S. LARSEN [19].

3.10. DEFINITION. Let p be the Ipo with events {e,f,g,h}, ordering relation {(e,g), (e,h), (g,h)}, and
labeling {(e,a), (f,b), (g.,b), (h,c)}. Let g be the lpo which is identical to p except that (g,h) is
replaced by (f,h) in the ordering. Both Ipo’s p and ¢ are depicted in Figure 3. Here the labels occur
as subscripts of the events.

P = Jo €a q = Jo €a
8b hc 8b
he

FIGURE 3: The difference between ST-trace semantics and arbitrary splitting

The pomset processes X and Y are defined by
X = POMPROC({p,q}) Y = POMPROC({q}).

3.11. PROPOSITION. The pomset processes X and Y are not ST-trace equivalent.
Proor. The following sequence is an ST-trace of p but not of ¢, and hence of X but not of Y:

(a,0) (,0) (a, 1) (b,0) (b, 4) (c, 0). O

3.12. THEOREM. For all n=1, the pomset processes X and Y are split-n trace equivalent.

Proor. It is sufficient to show that any trace of split,(p) is also a trace of split,(q). So let ¢ be a trace
of split,(p) and let p be a corresponding event sequence. If it is not the case that in p event & starts
before event f terminates, then p is also an event sequence of split,(g) and consequently o is a trace of
split,(q) and we are done. Otherwise, there is a point in p where h has started and f is not yet
finished. The key observation we can make in this case is that when /4 starts it must be that g has
already finished. Thus, somewhere in p the event g ‘overtakes’ f; in the sense that p is of the form 6y
and there is a 0<<k <<n such that 6 contains e,, f; and g; for all 1<<i<<k but not f; ;, or g, +1. There-
fore, if we swap in p, for k<<u<n, the subevents f, and g,, we obtain a valid event sequence of 1Ipo
split,(g) which, since f and g both have the same label, corresponds with a trace o of split,(g). O

An extensive study of the limit equivalence ~; has recently been made by VOGLER [29], who charac-
terizes ~;; by a newly defined swap-equivalence.

11

3.13. In order to complete our classification of the equivalences on pomset processes, we recall the
counterexample which shows that ST-trace equivalence is different from pomset process equality. Let
Po be the Ipo with two events with labels a resp. b, which are causally unrelated. Let p; be identical
to pg, except for the presence of a causal link between the a-event and the b-event. The reader can
easily check that POMPROC ({py}) and POMPROC ({p,, p1}) have the same ST-traces, even though
they are different as pomset processes.

The final theorem of this section summarizes the relationships between the equivalences on pomset
processes.

3.14. THEOREM.
~, = Aol ~2 ~3 B ~ R ~ ~ =
ProOF. By combination of the results of this section. O

4. EVENT STRUCTURES

In order to present the branching time version of our counterexamples we use the model of labeled
prime event structures to represent concurrent systems. Prime event structures are introduced in
WINSKEL [30] and generalize the better known prime event structures with a binary conflict relation,
introduced earlier under the name ‘event structures’ in NIELSEN, PLOTKIN & WINSKEL [21]. The
definition of a prime event structure given below is consistent with the one in [30] apart from the fact
that in [30] instead of the conflict relation # its complement Con (the consistency relation) is used.

4.1. DEFINITION. A labeled prime event structure (over an alphabet A4) is a 4-tuple E=(E, <, §,),
where

- E s a set of events;

- < CEXE is a partial order (the causality relation) satisfying the principle of finite causes:

{e’eE|e’'<e} is finite for ecE;

- RCP(E) is a set of finite, nonempty, nonsingleton subsets of E (the conflict relation) satisfying the
principles of extension:

Xett N\ YCE finite = XUYef
and conflict heredity:
XU{elett N e<e = XU{e}et;
- I: E—>A is a labeling function.

A labeled prime event structure represents a concurrent system in the following way: action names
a €A represent actions the system may perform, an event e € E labeled with a represents an occurrence
of a during a possible run of the system, e’<<e means that e’ is a prerequisite for e, and X e} means
that the events from X cannot happen together in the same run.

A prime event structure is said to have binary conflict if every set X €ff has a subset Y e} containing
only two events. In this case the conflict relation is completely determined by the binary relation #
given by e#e'<{e, ¢’} €.

From here onwards we leave out the adjectives ‘labeled’ and ‘prime’ of our event structures. One
usually writes e’<<e for e’<<e \V e’=e, > for < ! and = for <~!. Xef is also denoted as #X, and
in the special case that X={e,¢’} also as effe’. The components of an event structure E will be
denoted by respectively Eg, <g, #g and /g. The derived relations will be denoted <g, > and =p.

12

Two event structures E and F are isomorphic, E = F, iff there exists a bijection between their sets of
events preserving <X, # and labeling. Generally, we will not distinguish between isomorphic event
structures.

In graphical representations of event structures, following [25], the conflict relation is denoted by
means of dotted lines between pairs of conflicting events — we only picture event structures with
binary conflict — and the causality relation by arrows. We omit causal links derivable by transitivity
and conflicts derivable by conflict heredity and extension. Instead of events only their labels are
displayed; hence these pictures determine event structures merely up to isomorphism.

4.2. DErFINITION. Let E be an event structure over some alphabet 4. A sequence e - - - ¢,€(Eg)" is
an event sequence of E if all events in the sequence are different, {e, . .. ,e,} ¢4g, and whenever e
occurs in the sequence and e¢’<<ge then the occurrence of e is preceded by an occurrence of ¢’. In
that case {e;, . . . ,e,} is called a configuration of E.

An event sequence e; - - - e, of an event structure E is interleaving equivalent with an event
sequence f7 - - - f,, of an event structure F if n =m and for 1<<i<<n: Ig(e;)=I/§(f;). They are pomset
equivalent if moreover, for 1<<i,j<n: ¢;<ge; < f;<gf}-

Two event structures E and F are interleaving trace equivalent (pomset trace equivalent), notation
E~; F (E~,F), if for any event sequence of E there is an interleaving equivalent (pomset
equivalent) event sequence of F, and vice versa.

Two event structures E and F are interleaving bisimulation equivalent (history preserving bisimulation
equivalent), notation E ~;, F (E ~, F), if there exists a binary relation between the event sequences
of E and F (a bisimulation), only relating interleaving equivalent (pomset equivalent) event sequences,
such that the empty event sequences of E and F are related and if two event sequences are related
then each extension of one of them must be related to an extension of the other.

4.3. The equivalences of Definition 4.2 are four extremes in a 2-dimensional classification of semantic
equivalences. By definition =~; D =~y D ~, and ~; D =~, D =,. The two bisimulation
equivalences are known as branching time equivalences. They distinguish between systems such as the
first two event structures of Figure 4, that only differ in the branching point between two different
courses of action. The trace equivalences, that do not make such distinctions, are known as linear time
equivalences. In between there are several decorated trace equivalences [9], where part of the branching
structure is taken into account.

Pomset trace equivalence and history preserving bisimulation equivalence are causality based
equivalences. They distinguish between systems such as the last two event structures of Figure 4, that
have the same traces but differ in the causal relationships between action occurrences in the
corresponding runs. These distinctions are not made by the interleaving equivalences. Again there are
various equivalences in between, such as the ST-equivalences [8,12] and the split equivalences that are
the subject of this paper.

Directly below each of the four event structures in Figure 4 we have given their representations as
process expressions. As the relation between process expressions and event structures is not treated in
this paper, these serve merely as illustration. Besides, they form a compact notation to refer to these
event structures. At the bottom of the figure the four event structures are represented as process
graphs. As such representations are useful in understanding our forthcoming examples we will define
the translation to process graphs formally.

4.4. DEFINITION. A process graph (over an alphabet A) is a triple g=(S,7,/) where

- Sis a set of states or nodes,

- T CSXAXS is a set of transitions or edges,

- 1S is the initial state or root.

The process graph S(E) associated to an event structure E is (Cg,Tg, @) where Cyg is the set of
configurations of E and (X,a,Y)eTy iff X CY and a is the label of the unique event in ¥ — X.

13

a N a----- a ~, T b

o 1 « by
b/\c Fib p ¢ Fro a
a(b+c) ab +ac allb ab +ba

FIGURE 4: Linear time versus branching time and interleaving versus causal semantics

Two process graphs are isomorphic iff there exists a bijection between their sets of states preserving
transitions and the initial state. Again, we will not distinguish between isomorphic process graphs.

Process graphs are mostly used in the context of interleaving semantics, where the rightmost two
processes of Figure 4 are identified. However, as pointed out in [7], there is no need for this restric-
tion. Process graphs have enough structure to express causality and all other features expressible by
event structures. This is illustrated by the last two process graphs of Figure 4: a square, as in «llb,
denotes concurrency, whereas branching, as in ab +ba, denotes conflict. That this feature makes pro-
cess graphs at least as expressive as event structures follows from the following theorem.!

4.5. THEOREM. The mapping S from event structures to process graphs is injective.
PRroOOF. In order to show injectivity we construct a map & from process graphs to event structures,
such that every event structure E is isomorphic to &(8(E)).

Let g be a process graph. If (p,a,q) is a transition in g we write p —> ¢. Let ~ be the smallest
equivalence relation on the transitions of g satisfying

p5qDs pBr 5By gkt = Gag~Eas).

Note that the transitions (p,a,q) and (r,a,s) above are ‘opposites in a square’. As squares denote con-
currency, these edges must be understood to represent the same action occurrence. Therefore we call
the equivalence classes w.r.t. ~ events. A transition in such an equivalence class is said to represent
that event and [p,a,q] denotes the event represented by transition (p,a,q). A path in g is a connected

sequence of transitions p = j2 N pn starting in the root of g. We define &(g) to be the
event structure (E, <<,,/) where FE is the set of events of g, / is the function associating to each event
the (unique) label of its representatives, ¢'<<e for e,¢’cE iff es%¢’ and all paths that contain a
representative of e also contain a representative of e, and for X a finite, nonempty, nonsingleton sub-
set of E, #X iff g does not have a path containing representatives of all events in X.

Now let E be an event structure. We construct an isomorphism between F=6&(S(E)) and E. Note
that if (X,a,Y)~(X,a,Y’) then Y —X=Y—X and the unique event in Y —X has label a. Let
f:Ex—Eyg be the function that associates to [X,a, Y] the unique event in ¥ —X. In order to establish

1. The process graphs associated to event structures can be regarded as the labeled versions of the finitary prime algebraic
domains studied in WINSKEL [30]. In this light the special case of Theorem 4.5 applying to event structures with a binary
conflict relation can be regarded as a reformulation of Theorem 9 in NIELSEN, PLOTKIN & WINSKEL [21]. The generalization to
(prime) event structures with arbitrary conflict relations has not appeared explicitly before, but can be deduced from Theorem
1.3.5 in [30]. Here we give a direct proof, making heavy use of insights from [30].

14
that fis an isomorphism we need the following lemma.

DEerFINITION. Let X be a finite set of events of an event structure E. The left-closure of X is the set
\X={¢'€eEgl|le<gecX}. For eeEg we abbreviate |{e} by le. X is left-closed if | X=X. X is
conflict-free if X ¢fg.

LEmMA. Let E be an event structure and let Y be a finite subset of Eg. Then

1. If Yefg, then |Y is a configuration of E.

2. Every event in E'g occurs in an event sequence of E.

PrROOF. Suppose Y e¢fy. Note that a finite set of events is a configuration iff it is left-closed and
conflict-free. As |Y is left-closed by definition, we only have to check conflict-freeness. Suppose that
LY etg. Take e Y —Y. As Y contains an event ¢’ with e<<ge’ the principle of conflict heredity (with
X=|Y—{e}) implies | Y —{e} effg. Repeating this argument yields Y effg, contradicting the assump-
tions. The second statement follows from the first because singleton sets cannot be in conflict. O

We now check that fis an isomorphism:

- fis surjective by part 2 of the lemma.

- Suppose f(e)=f(€) for e,e’cEy. Let e=[X,a,Y] and ¢'=[X',a,Y’]. Note that X=Y —{f (e)}.
Suppose that Y contains an event de|f(e) that is maximal in ¥ wr.t. <g. Then E has
configurations X —{d} and Y —{d} and (X —{d},a,Y —{d})~(X,a,Y). Repeating this argument
yields

X.a, Y)~(f(@—{f(@}alf)=(f()—{f()}.alf (N~X.aT).
This implies that f'is injective.
- By construction we have /g(f (e))=Ig(e), f (¢)<gf (e)=¢ <ge and fx(f (X))=Fr(X).
- f(X)etg implies X ¢}y by part 1 of the lemma.
- Suppose that not f (¢')<<gf (e). Then |f (e)e Cg by the lemma, contradicting e’ <ge. O

Modeling concurrency by means of squares (or cubes, hypercubes etc. in case of three or more con-
current actions) is particularly useful when actions are thought to have a duration or structure. A con-
current execution of a and b in the process allb can now be thought of as a continuous path through
the surface of the square, starting at the top and terminating at the bottom node, while being nonde-
creasing when projected on any edge. This makes splitting of actions an easy to visualize operation on
the graph representations of event structures, as will be illustrated below.

4.6. DErFINITION. Let E be an event structure over alphabet 4 and let n=1. The event structure
F = split,(E) over alphabet 4, = {a;lacA and 1<<i<<n} is defined by

Eg = {e;lecEg and 1<i<n},

e <pf; iff e<gfor(e= fandi <)),

X e fg iff origin(X) € #g, where origin(e;) = e and origin(X) = {origin(f)|feX},
Iv(e) = (e(@)):

As before, we say that an event e of E has started in an event sequence or configuration X of split,(E)
if e occurs in X. The event e has finished if e, occurs in X. If e has started but not finished, then we
say that e is active in X.

Two event structures E and F are split-n trace equivalent, notation E ~}; F, if split,(E) ~,, split,(F).
They are split-n bisimulation equivalent, E ~7, F, if split,(E) ~;, split,(F). Split-w trace (resp. bisimula-
tion) equivalence is again defined to be the intersection of ~} (resp. ~},) for all n.

15

In the same way one could define split-n pomset trace equivalence and split-n history preserving bisimu-
lation equivalence, but as pomset trace and history preserving bisimulation equivalence are preserved
under refinement of actions [10] these notions would coincide with =, and =, respectively.

4.7. ExaMpLE. Below the operation split, is applied to an event structure as well as to its associated
process graph. We do not formally define splitting on graphs; the graph obtained is just the process
graph associated to the split event structure. However, it helps thinking of the operation as filling in
squares with quadrants, etc.

FIGURE 5: Splitting an event structure and its corresponding process graph

4.8 DErFINITION. Let E be an event structure over some alphabet 4. A sequence e; - - - e,€(Eg)" is
an ST-sequence of E if each event occurs at most twice in the sequence, {ey,...,e,}&f, and if e
occurs in the sequence and e¢’<<ge then the first occurrence of e is preceded by two occurrences of e’.

A sequence e; - --¢, of events from an event structure E is ST-equivalent with a sequence
f1 - - fn of events from an event structure F if n =m, for 1<<i<<n: Ig(e;)=1g(f;) and for 1<<i,j<n:
ei=e < fi=f.

Two event structures E and F are ST-trace equivalent, notation E ~g¢r, F, if for any ST-sequence of
E there is an ST-equivalent ST-sequence of F, and vice versa.

Two event structures E and F are ST-bisimulation equivalent, notation E ~g7;, F, if there exists a
binary relation (an S7-bisimulation) between the ST-sequences of E and F, only relating ST-equivalent
ST-sequences, such that the empty ST-sequences of E and F are related and if two ST-sequences are
related then each extension of one of them must be related to an extension of the other.

It is left as an easy exercise for the reader to verify that our Definitions 4.2 and 4.8 agree with the
more configuration oriented ones in [10] and [8].

4.9. Event structures classify as a branching time model of concurrency, because systems like a (b +¢)
and ab +ac in Figure 4 have different representations. This gives us the freedom to divide out either a
linear time or a branching time equivalence. Pomset processes on the other hand constitute a linear
time model of concurrency: systems like a (b +¢) and ab +ac have the same representation, and con-
sequently there is no option to consider branching time equivalences. The relation between event
structures and pomset processes is formalized by the canonical translation POM from event structures
to pomset processes, defined by

POM (E)={[pl|E, is a configuration of E, <,=<g 'E,, [,=Ix [E,}.

Note that POM (a(b +c)) = POM (ab +ac) whereas POM (allb) and POM (ab +ba) are the two
pomset processes of Figure 1. Under this translation the linear time equivalences on event structures
correspond exactly with those on pomset processes:

16

4.10. PROPOSITION. Two event structures E and F are interleaving trace, split-n trace, split-w trace,
respectively ST-trace equivalent, iff the associated pomset processes POM (E) and POM (F) are. They are
pomset trace equivalent iff POM (E)=POM (F).

PROOF. Fairly straightforward. As this result is not crucial for the main contributions of this paper we
leave the elaboration to the reader. g

5. CLASSIFICATION OF BRANCHING TIME EQUIVALENCES
In this section the equivalences introduced in Section 4 will be ordered by inclusion. The results are
summarized in Figure 6:

. _ 1 2 o e ~ ~
~ip = b > Rib 2 2 b 2 A STh 2 R
N N N N N N
~ — ~1 B ~2 ») “ .. ») ~® B ~ ») ~
it = it it ~it ~ STt ~pt

FIGURE 6: Semantic equivalences

Note that the bottom row of this figure is a restatement of Theorem 3.14, thanks to Proposition 4.10.
We will prove these results again however, since, with one exception, they are easy corollaries from
the lemma’s we need to establish for the classification of branching time equivalences in the top row
of Figure 6. The inclusions ~}, D ~§, D ~gsp, and ~} D ~§ D ~gp, follow immediately from
the fact that the operator split, is a special case of action refinement and ST-bisimulation and ST-
trace equivalence are congruences for this operator [8]. The inclusions ~g;, D ~) and ~g7, D ~

pt
were also established in [8], using the fact that also history preserving bisimulation and pomset trace
equivalence are congruences for action refinement [10]. Although the inclusions ~j, D ~1*! and

~L D ~4T! were first claimed by us in [13], their first published proofs appear in [15] and [29]

respectively. Here we present new proofs of all inclusions in Theorems 5.1, 5.2 and 5.3. We think
that our proofs are interesting since they are all structured similarly in terms of ‘edge lemmas’, ‘square
lemmas’ and ‘cube lemmas’, and do not depend on congruence theorems for action refinement. The
main result of this section however, of which no other proof has appeared yet, is that the inclusions
between the split-n equivalences are strict. At the end of this section we will discuss the relationships
between the split-w equivalences and the ST-equivalences.

5.1. THEOREM. Forn=1, ~i%! C ~% and =~ C ~18,.

ProoF. Let n=1. In this proof, for any event structure E, let 7z be the function on sequences of
events of split,(E), replacing each event e, by the sequence e,e, ;;. Before we come to the main argu-
ment of this proof we establish three lemmas.

EDGE LEMMA. o is an event sequence of split,(E) iff mg(0) is an event sequence of split,, 1 (E).
PrOOF. Straightforward. Another edge lemma will be proved in Section 5.2. O

SQUARE LEMMA. Let E and F be event structures, let o and 8 be interleaving equivalent event sequences
of split, +1(E) and split, . 1(F) and let o be an event sequence of split,(E) with wg(c) = a. Then there
exists exactly one event sequence p of split,(F) which is interleaving equivalent with ¢ and for which
mr(p) = B.

PROOF. Leta = e! - - - eF and B = f1 - j* Obtain p as ¢(c), where ¢ is the function on sequences
of events that replaces each occurrence of e by f* (=1, ... ,k). Since in a, and hence in S, each
event with label a, is immediately followed by an event with label a, 1, it follows (by induction on
the length of B) that in B each event e, is immediately followed by e, . (with the same e). Therefore,
7r(p(0)) = ¢(7g(0)). As a consequence 7g(p) = B and hence, by the edge lemma, p is an event
sequence of split,(F). By construction ¢ and p are interleaving equivalent.

17

Since, for any p’, mg(p’) = B implies that p’ can be obtained from 8 by leaving out all events of the
form f, 4, p is the only sequence p’ with 7g(p’) = 8. O

split,, split, 41

FIGURE 7: The cube of the cube lemma

CUBE LEMMA. Let E and F be event structures, let o and o' be event sequences of split, +1(E), B and '
be event sequences of split, +1(F), o and ¢’ be event sequences of split,(E) and p’ be an event sequence of
split,(F). Furthermore let o’ be a prefix of o, B of B and o’ of o; let o be interleaving equivalent with B,
o’ with B’ and o with p'; and let mg(c)=a, mg(c’)=ao’ and wp(p")=p". Then there is an event sequence p
of split,(F) which is interleaving equivalent with o, an extension of p’, and for which wg(p)=p.

ProoF. Note that the aim of this proof is to complete the cube of Figure 7. By the square lemma
there is an event sequence p of split,(F) which is interleaving equivalent with ¢ and for which
7r(p)=p. Let ¢ be as in the proof of the square lemma, then p=4¢(c) is an extension of ¢(¢’). By con-
struction ¢(¢’) is an event sequence of split,(F) which is interleaving equivalent with o’. Moreover, just
as in the proof of the square lemma, 7p(¢(0’))=¢(mg(0’))=0F". Another application of the square
lemma gives ¢(c")=p’. |

For the proof of ~%*! C a/, let E and F be event structures with E ~% ! F, and let ¢ be an event
sequence in split,(E). Then a = wg(o) is an event sequence of split, 1 (E), and hence there must be an
interleaving equivalent event sequence B in split, +1(F). Now the square lemma yields an event
sequence p of split,(F) which is interleaving equivalent with . The ‘vice versa’ follows by symmetry
and therefore E ~/, F. O
For the proof of ~%%! C ~#, let E and F be event structures with E ~%"! F, and let R be a
bisimulation between the event sequences of split, ;. (E) and split, ;(F). Define the relation R’
between the event sequences of split,(E) and split,(F) by

o6R’p < o and p are interleaving equivalent and 7g(c)R7g(p).

The empty event sequences are related by R’ since they are related by R. Now suppose that ¢'R’p’
and o is an extension of o’. Define o’ =mg(0’), B’ =7r(p) and a=ag(c). Then «’'RB’ and « is an
extension of «’. Since R is a bisimulation, there must be an extension 8 of 8 with aRf. According to
the cube lemma there must be an extension p of p” that is interleaving equivalent with ¢ and for which
ap(p)= . By definition 6R’p. The ‘vice versa’ follows by symmetry and therefore R’ is a bisimulation
and E ~}, F. O

By definition we have, for n=1, ~§ C ~] and ~j, C ~},.

18

5.2. THEOREM. For n=2, ~gpy C =~} and ~gp C ~Y,.

ProoFr. Let n=2. A sequence of events in an event structure split,(E) is well-formed if no event
occurs twice in the sequence and each occurrence of an event of the form e; 1 for certain ecEyg and
1<<i<n —1 is preceded by an occurrence of e;. Note that each event sequence of split,(E) is a well-
formed sequence of events. Let in this proof, for any event structure E, g be the function on well-
formed sequences of events of split,(E) that leaves out all events of the form e; for ecEy and
2<<i<n —1 and replaces each event of the form e; or e, by e. We again prove three lemmas.

EDGE LEMMA. A well-formed o is an event sequence of split,(E) iff mg(o) is an ST-sequence of E.

PROOF. ‘=": Suppose ¢ is an event sequence of split,(E). Since all events in ¢ are different, no event
occurs more than twice in 7g(0). An event e occurs in wg(c) only if e; occurs in 6. Hence the set of
events occurring in wg(c) must be conflict-free. Now let e occur in 7g(s) and e’<<ge. The first
occurrence of e in (o) must originate from an occurrence of e in o. Since e’; <<y ge1, this
occurrence of e; is preceded by an occurrence of e’y as well as an occurrence of e’,. Hence in 7g(0)
the first occurrence of e is preceded by two occurrences of e’.

‘<’: Suppose 7g(o) is an ST-sequence of E and assume o is a well-formed sequence of events of
split,(E). Then no event occurs twice in o, and an event e; occurs in ¢ only if e occurs in 7g(o).
Hence the set of events occurring in o must be conflict-free. Now let e; occur in o and e’; <y k) €;-
Then e’<<ge or (¢’=e and i<{j). In the latter case e; occurs in ¢ by the requirement of well-
formedness. In the former case e; occurs in ¢ by well-formedness, so e occurs in 7g(c), e’ occurs twice
in 7g(0), €’, occurs in ¢ and by well-formedness e’; occurs in o. O

DerINITION. Let E and F be event structures. An event sequence e' - - - e¥ of split,(E) is ST-split-
equivalent with an event sequence f' - - - f' of split,(F) if k =1, for 1<h<k: lsp,,-,"(E)(e"):lsp,,»t"(F)(/h)
and for 1<g,h <k: origin (e8)=origin(e") < origin (f¥)=origin ().

SQUARE LEMMA. Let E and F be event structures, let a and B be ST-equivalent ST-sequences of E and F
and let o be an event sequence of split,(E) with mg(c) = a. Then there exists exactly one event sequence
p of split,(F) which is ST-split-equivalent with o and for which mg(p) = B.

PROOF. Leta = e! - --eF and B = f1 < f" Obtain p as ¢(c), where ¢ is the function on sequences
of events that replaces each occurrence of el by f” and of e by ff’ (h=1,..,k; i=1,..,n). Then
7r(p(0)) = ¢(7g(0)). As a consequence 7g(p) = B and hence, by the edge lemma, p is an event
sequence of split,(F). By construction o and p are ST-split-equivalent.

Suppose p’ is another event sequence of split,(F) which is ST-split-equivalent with ¢ and for which
ap(p’) = B. Let d be the first event in p that differs from the corresponding event d’ in p’. If either d
or d’ is of the form f; with i>1, a contradiction is obtained with the observation that p and p’ are
ST-split-equivalent. If both are of the form f; a contradiction is obtained with 7g(p) = 7g(p). O

CUBE LEMMA. Let E and F be event structures, let o« and o' be ST-sequences of E, B and B’ be ST-
sequences of F, o and o’ be event sequences of split,(E) and p’ be an event sequence of split,(F). Further-
more let o be a prefix of o, B’ of B and o’ of o; let a be ST-equivalent with B and o with B'; let o' be
ST-split-equivalent with p’; and let mg(o)=a, mg(0’)=ao and 7g(p’)=p". Then there is an event sequence
p of split,(F) which is ST-split-equivalent with o, an extension of p', and for which mg(p)=p.

ProoOF. Exactly as the one of the previous cube lemma. O

The remainder of the proof of Theorem 5.2 proceeds exactly as the proof of Theorem 5.1. O

COROLLARY. ~g1; C ~§ and ~gp, C ~}. O

19

5.3. THEOREM. =, C ~gp and =, C ~gp.

Proor. Let for any event structure E, 7 be the function on sequences of events, that omits for every
event its second occurrence. Apart from the edge lemma, the proof goes along the same lines as the
previous ones.

WEAK EDGE LEMMA. Let o and p be ST-equivalent sequences of events of event structures E and F
respectively, such that mg(0) and 7g(p) are pomset equivalent event sequences. Then o is an ST-sequence
of E iff p is an ST-sequence of E.

PROOF. Let 0 = e! -+ - ¢" and p = f' - - - f". Clearly each event occurs at most twice in ¢ and in p
and {e',...,e"}et, {f',...,f")& As o and p are ST-equivalent, second occurrences of events
in the one occur at the same position as second occurrences of events in the other. Hence, two events
ecEg and feEy occur in the same position in ¢ and p iff they occur in the same position in 7g(o)
and 7g(p). Thus also for ¢ and p we have that for 1<i,j<n: ¢;<ge; < f;<gf;. Now suppose o is an
ST—sequence of E. Let foccur in p, say its first occurrence is in position k, and f'<<gf. Then f occurs
in mp(p), and since mg(p) is an event sequence also f occurs in it, prior to f. Hence f” occurs in p, say
in position i<k. Tt follows that e’<<ge* and hence e* is preceded by two occurrences of ¢’, say in
positions i,j<<k. As ¢ and p are ST-equivalent, /* and f’ are the two occurrences of f* that precede
the first occurrence of f. O

SQUARE LEMMA. Let E and F be event structures, let a and B be pomset equivalent event sequences of E
and F and let 6 be an ST-sequence of E with mg(6) = o. Then there exists exactly one ST-sequence p of
F which is ST-equivalent with o and for which mg(p) = .

PrOOF. Let a = e! - - - e and B = f1 - - - f*. Obtain p as ¢(c), where ¢ is the function on sequences
of events that replaces each occurrence of e” by /" (h=1, - - - ,k). By construction ¢ and p are ST-
equivalent and 7g(¢(0)) = ¢(7g(0)). As a consequence 7r(p) = B and hence, by the weak edge
lemma, p is an ST-sequence of F.

Suppose p’ is another event sequence of F which is ST-equivalent with ¢ and for which 7g(p’) = B.
Let d be the first event occurrence in p that differs from the corresponding event occurrence d’ in p'.
If either d or d’ is a second occurrence of an event, a contradiction is obtained with the observation
that p and p’ are ST-equivalent. If both are first occurrences, a contradiction is obtained with

7r(p) = 7 (0'). O

The cube lemma and the remainder of the proof of Theorem 5.3 go exactly as in the previous two
cases. g

5.4. Thus we established all horizontal inclusions of Figure 6. The vertical ones follow immediately
from the definitions. It remains to show that all inclusions, with the possible exception of
~gsrp, C =i, are strict, and that there are no further inclusions. In the vertical direction this follows
from the processes a(b +c) and ab +ac of Figure 4, that separate the trace equivalences from the
bisimulation equivalences. Furthermore, the processes allb and ab +ba of Figure 4 are split-2 trace
distinguishable, and therefore separate the interleaving (=split-1) equivalences from the split-n
equivalences (for n=2). The process allb is ST-bisimulation equivalent to

but the two are not pomset trace equivalence. This example separates the causality based equivalences
from the ST-equivalences. Note that applying the operator POM of Section 4.9 to these processes
yields the two pomset processes of Section 3.13. We now come to the main contribution of this paper,
namely a parametrized example separating the split-n equivalences from the split-n +1 equivalences,

20
for n=2.

In Figure 8 two event structures E and F can be found that are split-2 bisimulation equivalent, but
not split-3 trace equivalent (and therefore also not split-3 bisimulation equivalent).

[
ﬂ

= €

RN
ki

B

-—————
E F

FIGURE 8: Event structure representation of the owl example

Although these event structures are esthetically pleasing, they are not as easy to analyze as their asso-
ciated process graphs. Figure 9 displays the process graph of E in the shape we found it; the process
graph of F can be obtained from the graph of E by interchanging all labels 4 and e. As in Proposi-
tion 3.5, after splitting in 3, only the first process has a trace @ ¢; ¢, b ¢y ¢3 d ¢, ¢3 e and allocating
1 time unit to actions a, d and e, 2 units to action b and 3 units to action ¢ shows a difference in their
real-time behavior.

In Figure 10 one sees what happens to these processes when they are split in 2. Any step of the one
process can be matched in a bisimulation by an identical step of the other, until both processes pass
through one of the black nodes in the middle. Suppose both processes arrive at their leftmost black
node. From there on their futures look entirely identical. Any move made in the body of one owl is
mimicked by a move in the wing of the other, and vice versa. The same holds for the black nodes on
the right. Finally, if both processes arrive at the black node in the middle, their futures are identical
too. Any move from the one process is now matched by a move from the other in mirror image. It
follows that the split owls are bisimulation equivalent, and hence the original ones are split-2 bisimi-
lar.

Unfortunately, this example does not generalize straightforwardly to higher dimensions. However, a
variant in which both owls have 4 wings — two at each side, so that both processes have identical
wings — does.

FIGURE 9: Owl example; process graph of E

FIGURE 10: Split owls

22

5.5 Description of the event structure Ej and its behavior. The event structure Ej (n=2,
we{even, odd}) consists of n sequential components C; (i =1,...,n). For i =1,...,n, component C; is as
depicted in Figure 11, where the causality relation is represented by arrows and unordered events are
understood to be in pairwise conflict.

——— o e,

(even wing 1) (even wing n) (kernel) (odd wing 1) (odd wing n)
F1GURE 11: Component C;

The component C; consists of one initial event, n —1 ‘even wings’, numbered from 1 to n but skipping
i, one kernel, and n —1 ‘odd wings’, also numbered from 1 to i —1 and i +1 to n. The kernel and
each of the 2n —2 wings have n +1 events. Component C; first performs an action i, announcing its
serial number; then the action 0 (for which it can choose from 2n —1 events) and finally one action s;
taken from the set {1,...,n}.

In the event structure Ej the components C; are in principle independent. Only the events in the
odd as well as the even wing j of component i are dependent on the 0-event in the kernel of com-
ponent j (for j==i). Furthermore, all wings of different components are pairwise in conflict. Thus at
most one component can execute a wing instead of its kernel and this can only happen if some other
component completed the 0-event in its kernel first. Finally, equal actions s; and s; of different com-

ponents i and j are in pairwise conflict, and there is an n-ary conflict between s, . . . ,s, unless
- (51, ...,8,)1s an even permutation and one s; is in an even wing,

- (S1,...,8,)1s an odd permutation and one s; is in an odd wing, or

- (s1,-..,8,) is a7 permutation and no s; is in a wing.

Thus each component C; should perform a different action s;, and the last (=3n) action of E7 can
only be performed in the three cases listed above.

DEFINITION. For n=2 and we{even,odd}, Ej is the event structure (E, <,f,/) given by:
E= U C; with G;={(G, 0)JU{(hi)I0<h<n}U{(h,i,jp)|0<h<n; 1<j<n, ji; pe{even,odd}}

I<i<n
[(hi)=h O<i,h<n, (i,h)5%(0,0))
[(h,i,j,p)=h O<h<n; 1<i,j<n, j#i; p<{even,odd})
@, 0)<(0,i)<<(h,i) (h,i=1,...,n)
@, 0)<(0,i,j,p)<(h,i,j,p) (h,i,j =1,..,n, i~j; p =even,odd)
0,)H)<(,i,j,p) @,j=1,....n, i%j; p=even,odd)
(h,D)#(g.i,/.p) (gh =0,..,n; i,j=1,...,n, i5=j; p =even,odd)
(h,i,j.p)i(g.k.1,q) if (G, j.p)#(k,lq) (g.h =0,...n; i,j,k,I=1,..,n, i=j, kI; p,qg=even,odd)
(h,i,7.p)8(g.i,/,p) if g£h (g,h,i,j =1,...,n, i5=j; p =even,odd)
(h,))f(g,7) if g£h (g,h,i =1,...,n)
(h,)f(h,k) if ik (h,i,k =1,...,n)
(h,)Rk, j,p) if =%k (h,i,j.k =1,...n, k54j; p =even,odd)
#{(,i),...(m — L,iy — 1), (M0, Jp),(m + 1,iy 1), ..., (0,0,) } if (i1...7,) is a non-p permutation of (12...n)
$£{(1,i1),(2,i3),....,(n,0,)} if (#;...1,) is a non-7 permutation of (12...n).

For fixed i, the events in C; constitute a component; (i, 0) is the initial event of C;, {(h,i)|0<<h<n} is
the kernel of C; and, for fixed j,p, {(h,i,j,p)|0<h<n} is a wing of C;, where j is the wing number and

23
p the parity of the wing.

Note that POM (E7)=Y7 for n=2 and we{even,odd} (cf. Section 3.8).

We find it convenient to distinguish three kinds of configurations in split,,(E}). An upper
configuration is one in which at least one event (0,i) has not started (i.e. for certain 1<<i<n the
configuration does not contain the event (0,i),), a middle configuration is one in which all n events
(0,7) are active, and an under configuration is one in which all events (0,i) have started and at least
one of them has terminated (i.e. for certain 1<<i<<n the configuration contains the event (0,i),,). Note
that all configurations that contain any event from a wing count as upper configurations.

5.6. PROPOSITION. For all n=>2, the event structures E&®" and ES™ are not split-n +1 trace equivalent.
ProoF. Since (1, . . . ,n) is an even permutation, the following sequence is a trace of split, +(E;").

101 (),,201 0,,71 301 Onfz Tt n 01 0n+1 10,, 0n+1 20,,71 On On+13"' 02 On+1 n.

Just before the first 0, ; action the computation passes through a middle configuration. This implies
that all n kernels are executed. Moreover, the second occurrence of the action i (i =1,...,n) must stem
from the i component. It follows that the sequence is not a trace of split, ; ; (E%). O

5.7. Tt remains to be shown that E¢" and E%% are split-n bisimulation equivalent. For this purpose
it will be convenient to use the following notions.

DerFINITION. If E is an event structure with configuration X, then F=E after X is the event structure
given by
- Ep={ecEgleeX/\{e}UXefx},
- d<ygeiff d<ge,
- Yeip iff YUXeSy,
- Ir(e)=lg(e).
If X and Y are two configurations of E with Y —X ={e} and /g(e)=a we write X Sv.
An abbreviated bisimulation between two event structures E and F is a binary relation R between
the configurations of E and F such that
- 9RO,

- if XRY and X —=> X" then Y —> Y’ for a Y’ with either X'RY" or E after X’ = F dafter Y,
- if XRY and Y => Y’ then X —> X’ for an X’ with either X’RY” or E after X’ = F after Y'.

PROPOSITION. If there exists an abbreviated bisimulation between two event structures, then they are
interleaving bisimulation equivalent.
PRrOOF. Trivial. O

TueoREM. For all n>2, the event structures E&*" and E% are split-n bisimulation equivalent.

Proor. Note that the upper configurations of split,(E;"*") are the same as the the upper configurations
of splitn(Ede). The same observation can be made for middle configurations, but not for under
configurations. For instance, split,(E7") has an under configuration in which, for each ie{1,....n},
the kernel event (i,i) has terminated, whereas split,(E5) has no such configuration. We claim that
the identity relation between their upper configurations is an abbreviated bisimulation between
split,(E2") and split, (E5%),

- The empty configuration is an upper configuration of both event structures.

24

- Suppose (X,Y)eR, ie. X=Y and X is an upper configuration, and X —> X’. There are three
possibilities:

1. X is an upper configuration of split,(E¢"), and hence of split,(E2™). In this case the
requirement is trivially satisfied.

2. X is a middle configuration of split,(E;*"), and hence of iplitn(E,‘;dd). Choose Y=X. Now
it suffices to show that split,(ES") after X' = split,(E2*?) after X'. Note that for each
ie{l,..,n} there is an w;e{l,..,n —1} such that (0,i), €X’ but (0,i),+;¢X. By the
pigeonhole principle, there must be i,je{l,..,n}, i7j, with »;=u;. Now the mapping
f :E.split,,(EZ"e") after X' _)Esplit,,(E:'M) after X'» defined bY

S (0))= ()
S (1)) = (i)
S (kD))= (h, k), 1f kil

is an isomorphism. The only non-trivial requirement is the preservation of n-ary conflict.
Here the argument is that an even permutation (i; - - - i,) changes in an odd one (and vice
versa) when i and j are exchanged.

3. X’ is an under configuration of split,(E;*"). Since X was an upper configuration, it must be
the case that X’—X ={(0,7),} for certain i€{1,...,n} and X’ contains an event (0,;), for cer-
tain j=i. Choose Y'=Y U{(0,i,j,even); }. Since all prerequisites of the event (0,i,j,even); are
already in Y, and since Y contains no events (4,i) and no wing events (these are the only

events that can be in conflict with (0,7,j,even);), we have Y —5 Y. Furthermore
split,(E") after X' = split,(E™) after Y’ through the isomorphism f; defined by:

f((h:i)u):(h,i,j,even)u
S (hk),)=(h.k), if ki,

- The remaining requirement follows by symmetry. O

5.8. Exactly as in Proposition 3.4 one shows that for all n=2 there is an allocation of durations to
actions such that the event structures E¢" and E%% have different real-time execution sequences. It
follows that, for all n=1, split-n bisimulation equivalence identifies processes that are different after
refinement of actions, and, for some allocation of durations to actions, have different real-time execu-
tion sequences. Hence it does not capture structural and durational aspects of actions.

5.9 The difference between sequence refinements and conflict refinements. Figures 12 and 13 provide an
event structure and process graph version of the example of Definition 3.10, showing that split-w trace
equivalence differs from ST-trace equivalence. We claim that for any n=2, Ex[F. In order to see
that this is true, first observe that one can obtain the process graph of split,(E) (resp. split,(F)) by
placing an n Xn grid in each square of Figure 13. As an example we have depicted in Figure 14 the
process graphs of split,(E) and split,(F). This reveals that any trace of say split,(E) can be depicted
as a zig-zag line through the graph of E. Any zig-zag of F clearly corresponds to a zig-zag of E. The
only zig-zag’s of E for which it is nontrivial that there is a corresponding zig-zag in F (i.e. one deter-
mining the same action sequence), are the ones which enter the rightmost square of the graph of E.
To deal with these zig-zag’s we consider the line in the graph of E that corresponds to the moments at
which the first ¢ has finished and both b’s are at the same stage of their execution (see Figure 15).
We observe that for any zig-zag in the process graph of E, one can construct a corresponding zig-zag
for F by mirroring anything on the right side of the symmetry line in E and placing the resulting zig-
zag in the process graph of F. This argument does not carry over to ST-traces, as the end of one b
may not be matched by the end of the other.

It is interesting to note that E and F can be distinguished if we consider refinements which

25

(oY
- = Q
[

S

FIGURE 12: The difference between splitting and conflict refinements

FIGURE 13: Graph representations of E and F

introduce conflicts. We will not bother here to state a formal definition of these refinements,! because
we think it is possible to make this point without it: If one refines » in E and F by the event structure
biby+b3-by, then the refined version of E has a trace biab3b,c, which the refined version of F does
not have.

5.10. The observation above may be taken as an incentive to propose extensions of the splitting doc-
trine beyond the level of sequence refinement. Could it be that durational and structural aspects of
actions can be captured in interleaving semantics after refining actions a into ay-a,+ajs-a4, or other
finite processes? The example Ej; of Section 5.5 tells that this is not possible. Let an internal state be
any state in the graph representation of a process that is not initial or final (for this purpose take the
final states to be the ones without outgoing transitions). The process a;-a,- - - - - a, that is substituted
for a in split-n semantics for instance has n —1 internal states, whereas a;-a, +a3-a4 has two. Now a
straightforward generalization of the proof of Theorem 5.7 shows that after splitting each action into
a process with less than 7 internal states, the systems E&" and E5% are interleaving bisimulation

1. Actually, such a definition is nontrivial on the domain of event structures we consider in this paper because one has to du-
plicate events. A much more natural definition has been given in [11] using the flow event structures of [4].

26

FIGURE 14: Graph representations of split,(E) and split(F)

FIGURE 15: Mirroring executions

equivalent. Still, these systems have different real-time execution sequences and can be distinguished
by splitting actions in n +1 parts.

5.11. The example of Section 5.9 does not show that ~§ differs from ~g;,, as the two process

graphs of Figure 13 are not even interleaving bisimulation equivalent. Namely only F can execute ab
in such a way that afterwards no c¢ is possible. In fact, GORRIERI & LANEVE [15] show that at least
for image finite event structures these equivalences coincide. This is the only point in our
classification where the picture for branching time equivalences looks different from the one for the
linear time equivalences. It is therefore natural to ask, at which point exactly in the linear time -
branching time spectrum [9] the limit of the split equivalences collapses with ST-equivalence. We leave

this question as a topic for future research.

27

5.12. Note that omitting the causal link between a and ¢ in both event structures of Figure 12 (yield-
ing an extra square in Figure 13) gives us an equally satisfactory example. Yet another one is given by
the process expressions (bllabc) + (bcllab) and (bellab). This example stems from K.S. LARSEN [19].
It is especially interesting because it fits in the subset of CCS studied by ACETO & HENNESsY [1]. On
this language split-2 bisimulation equivalence coincides with ~ g7, and even with history preserving
bisimulation equivalence (as observed in [8]). The example above shows that on this language split-2
trace equivalence does not coincide with ST-trace equivalence however.

REFERENCES

[1] L. Acero & M. HENNESSY (1993): Towards action-refinement in process algebras. Information and
Computation 103(2), pp. 204-269.

[2] L. Aceto & M. HENNESSY (1994): Adding action refinement to a finite process algebra. Informa-
tion and Computation 115(2), pp. 179-247.

[3] B. BLoom (1988): Constructing two-writer atomic registers. IEEE Transactions on Computers
37(12), pp. 1506-1514.

[4] G. BoupoL (1990): Flow event structures and flow nets. In: Semantics of Systems of Concurrent
Processes (I. Guessarian, ed.), Proceedings of the LITP Spring School on Theoretical Computer
Science, La Roche Posay, France 1990, LNCS 469, Springer-Verlag, pp. 62-95.

[5] L. CasteLLANO, G. DE MICHELIS & L. POMELLO (1987): Concurrency vs Interleaving: an instruc-
tive example. Bulletin of the EATCS 31, pp. 12-15.

[6] J.L. GISCHER (1984): Partial orders and the axiomatic theory of shuffle. Ph.D. Thesis, Report No.
STAN-CS-84-1033, Stanford University.

[71 R.J. vaN GLABBEEK (1988): An operational non-interleaved process graph semantics of CCSP
(abstract). In: Combining compositionality and concurrency, summary of a GMD-workshop,
Konigswinter, March 1988 (E.-R. Olderog, U. Goltz & R.J. van Glabbeek, eds.), Arbeitspapiere
der GMD 320, Sankt Augustin, pp. 18-19.

[8] R.J. VAN GLABBEEK (1990): The refinement theorem for ST-bisimulation semantics. In: Program-
ming Concepts and Methods (M. Broy & C.B. Jones, eds.), Proceedings IFIP Working Group
2.2/2.3 Working Conference, Sea of Galilee, Israel 1990, Elsevier Science Publishers B.V. (North
Holland), pp. 27-52.

[9] RJ. vAN GLABBEEK (1990): The linear time - branching time spectrum. In: Proceedings CON-
CUR 90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), LNCS 458, Springer-Verlag, pp. 278-
297.

[10] RJ. vAN GraBBeek & U. Govrrz (1989): Equivalence notions for concurrent systems and
refinement of actions. Arbeitspapiere der GMD 366, Sankt Augustin, extended abstract appeared
in: Proceedings 14" Symposium on Mathematical Foundations of Computer Science (MFCS),
Porabka-Kozubnik, Poland, August/September 1989 (A. Kreczmar & G. Mirkowska, eds.),
LNCS 379, Springer-Verlag, pp. 237-248.

[11] R.J. vaN GLABBEEK & U. Gorrz (1990): Refinement of actions in causality based models. In:
Proceedings of the REX Workshop on Stepwise Refinement of Distributed Systems: Models,
Formalism, Correctness (J.W. de Bakker, W.-P. de Roever & G. Rozenberg, eds.), Mook, The
Netherlands 1989, LNCS 430, Springer-Verlag, pp. 267-300.

[12] R.J. vAN GLABBEEK & F.W. VAANDRAGER (1987): Petri net models for algebraic theories of con-
currency. In: Proceedings PARLE conference, Eindhoven, Vol. II (Parallel Languages) (J.W. de
Bakker, A.J. Nijman & P.C. Treleaven, eds.), LNCS 259, Springer-Verlag, pp. 224-242.

[13] R.J. vAN GLABBEEK & F.W. VAANDRAGER (1991): The difference between splitting in n and n +1
(abstract). In: Proceedings Third Workshop on Concurrency and Compositionality, Goslar (E.
Best and G. Rozenberg, eds.), GMD-Studien Nr. 191, Universitdt Hildesheim, pp. 117-121.

[14] R.J. vAN GLABBEEK & F.W. VAANDRAGER (1997): Bundle event structures and CCSP, unpub-
lished manuscript, available at ftp://boole.stanford.edu/bundle.ps.gz.

28

[15] R. GorRIERI & C. LANEVE (1995): Split and ST bisimulation semantics. Information and Compu-
tation 118(2), pp. 272-288.

[16] M. HENNESSY (1988): Axiomatising finite concurrent processes. SIAM Journal on Computing
17(5), pp. 997-1017.

[17] C.A.R. HOARE (1985): Communicating sequential processes, Prentice-Hall International.

[18] L. LAMPORT (1986): On interprocess communication. Distributed Computing 1, pp. 77-101.

[19] K.S. LARSEN (1988): A fully abstract model for a process algebra with refinements. Master Thesis,
Aarhus University, Denmark.

[20] M. NIeLsEN, U. ENGBERG & K.S. LARSEN (1989): Fully abstract models for a process language
with refinement. In: Proceedings REX School/Workshop on Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, Noordwijkerhout (J.W. de Bakker, W.-P. de
Roever & G. Rozenberg, eds.), LNCS 354, Springer-Verlag, pp. 523-548.

[21] M. NIELSEN, G.D. PLOTKIN & G. WINSKEL (1981): Petri nets, event structures and domains, part
1. Theoretical Computer Science 13(1), pp. 85-108.

[22] E.-R. OLDEROG (1991): Nets, terms and formulas, Cambridge University Press.

[23] V.R. PrATT (1986): Modelling concurrency with partial orders. International Journal of Parallel
Programming 15(1), pp. 33-71.

[24] V.R. PratT (13 Nov 1990): DO the great debate CONTINUE, message to concurrency
@theory.lcs.mit.edu, available at http://theory.stanford.edu/people/rvg/continue.html # Pratt.

[25] F.W. VAANDRAGER (1991): Determinism — (event structure isomorphism = step sequence
equivalence). Theoretical Computer Science 79, pp. 275-294.

[26] W. VOGLER (1991): Failures semantics based on interval semiwords is a congruence for refinement.
Distributed Computing 4, pp. 139-162.

[27] W. VOGLER (1993): Bisimulation and action refinement. Theoretical Computer Science 114, pp.
173-200.

[28] W. VOGLER (1995): Timed testing of concurrent systems. Information and Computation 121(2),
pp. 149-171.

[29] W. VOGLER (1996): The limit of split,-language equivalence. Information and Computation 127(1),
pp- 41-61.

[30] G. WINSKEL (1987): Event structures. In: Petri Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced
Course, Bad Honnef, September 1986 (W. Brauer, W. Reisig & G. Rozenberg, eds.), LNCS 255,
Springer-Verlag, pp. 325-392.

	Untitled

