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Abstract. This paper studies nested simulation and nested trace semantics over
the language BCCSP, a basic formalism to express finite process behaviour. It is
shown that none of these semantics affords finite (in)equational axiomatizations

over BCCSP. In particular, for each of the nested semantics studied in this paper,
the collection of sound, closed (in)equations over a singleton action set is not

finitely based.
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1 Introduction

Labelled transition systems (LTSs)J are a fundamental model of concurrent com-
putation, which is widely used in light of its flexibility and applicability. In particular,
they are the prime model underlying Plotkin’s Structural Operational Semaftits [
and, following Milner’s pioneering work on CC&f], are by now the standard seman-
tic model for various process description languages.

LTSs model processes by explicitly describing their states and their transitions
from state to state, together with the actions that produced them. Since this view of
process behaviours is very detailed, several notions of behavioural equivalence and
preorder have been proposed for LTSs. The aim of such behavioural semantics is to
identify those (states of) LTSs that afford the same “observations”, in some appropri-
ate technical sense. The lack of consensus on what constitutes an appropriate notion
of observable behaviour for reactive systems has led to a large number of proposals
for behavioural equivalences for concurrent processes. (See the stijdwiiere van
Glabbeek presents the linear time-branching time spectrum—a lattice of known be-
havioural equivalences and preorders over LTSs, ordered by inclusion.)



One of the criteria that has been put forward for studying the mathematical tractabil-
ity of the behavioural equivalences in the linear time-branching time spectrum is that
they afford elegant, finite equational axiomatizations over fragments of process alge-
braic languages. Equationally based proof systems play an important role in both the
practice and the theory of process algebras. From the point of view of practice, these
proof systems can be used to perform system verifications in a purely syntactic way,
and form the basis of axiomatic verification tools like, e.g., PAM]] From the theo-
retical point of view, complete axiomatizations of behavioural equivalences capture the
essence of different notions of semantics for processes in terms of a basic collection
of identities, and this often allows one to compare semantics which may have been de-
fined in very different styles and frameworks. A review of existing complete equational
axiomatizations for many of the behavioural semantics in van Glabbeek’s spectrum is
offered in [L4]. The equational axiomatizations offerd@ldemare over the language
BCCSP, a common fragment of Milner's CCS5] and Hoare’s CSPZ)] suitable for
describing finite synchronization trees, and characterize the differences between be-
havioural semantics in terms of a few revealing axioms.

The main omissions in this menagerie of equational axiomatizations for the be-
havioural semantics in van Glabbeek’s spectrum are axiomatizations for 2-nested sim-
ulation semantics and possible futures semantics. The relation of 2-nested simulation
was introduced by Groote and Vaandradei [as the coarsest equivalence included in
completed trace equivalence for which the tyft/tyxt format is a congruence format. It
thus characterizes the distinctions amongst processes that can be made by observing
their termination behaviour in program contexts that can be built using a wide array
of operators. (The interested reader is referredgocit for motivation and the basic
theory of 2-nested simulation.) 2-nested simulation can be decided over finite LTSs in
time that is quadratic in their number of transitiofig]] and can be characterized by a
single parameterized modal logic formulz]. However, no equational axiomatization
for it has ever been proposed, even for the language BCCSP. Possible futures seman-
tics, on the other hand, was proposed by Rounds and Brookégim$ far back as
1981, and it affords an elegant modal characterization in terms of a subset of Hennessy-
Milner logic—in fact, the modal characterization of possible futures equivalence is a
consequence of a more general, classic result due to Hennessy and Milnersee [
Theorem 2.2 and page 148]) that will find application in the technical developments
of this paper. As shown by Kannellakis and SmolkaZif]] the problem of deciding
possible futures equivalence and all of the othevested trace equivalences & 1)
from [18] over finite state processes is PSPACE-complete. However, possible futures
equivalence still lacks a purely equational axiomatization over BCCSP.

In this paper, we offer, amongst other results, a mathematical justification for the
lack of an equational axiomatization for the 2-nested simulation and possible futures
equivalence and preorder even for the language of finite synchronization trees. More
precisely, we show that none of these behavioural relations admits a finite (in)equational
axiomatization over the language BCCSP. These negative results hold in a very strong
form. Indeed, we prove that no finite collection of inequations that are sound with re-
spect to the 2-nested simulation preorder can prove all of the inequalities of the form

a®™ C a®™ + a™ (m>0) ,



which are sound with respect to the 2-nested simulation preorder. Similarly, we establish
a result to the effect that no finite collection of (in)equations that are sound with respect

to the possible futures preorder or equivalence can be used to derive all of the sound
inequalities of the form

a(anb +a2'rn) =+ aa?)’m C aa2m +a(am +a3m) (m > O) .

We then generalize these negative results to show that none ofribsted simulation
or trace preorders and equivalences fram,[8] (for n > 2) afford finite equational
axiomatizations over the language BCCSP.

The import of these results is that not only the equational theory of:thested
simulation and trace semantics is not finitely equationally axiomatizable; for 2,
but neither is the collection of (in)equivalences that hold between BCCSP terms over
one action and without occurrences of variables. This state of affairs should be con-
trasted with the elegant equational axiomatizations over BCCSP for most of the other
behavioural equivalences in the linear time-branching time spectrum that are reviewed
by van Glabbeek inl1l4]. Only in the case of additional, more complex operators,
such as iteration or parallel composition, or in the presence of infinite sets of ac-
tions, are these equivalences known to lack a finite equational axiomatization; see, e.g.,
[3,8,11,13,31,33]. Of special relevance for concurrency theory are Moller’s results to
the effect that the process algebras CCS and ACP without the auxiliary left merge oper-
ator from [5] do not have a finite equational axiomatization modulo bisimulation equiv-
alence P7,28]. Fokkink and Luttik have shown inlLP] that the process algebra PA |
which contains a parallel composition operator based on pure interleaving without com-
munication and the left merge operator, affordscanomplete axiomatization that is
finite if so is the underlying set of actions. Acefgsik and In@lfsdottir [2] proved that
there is no finite equational axiomatization thabvi€omplete for the max-plus algebra
of the natural numbers, a result whose process algebraic implications are discussed in
[1].

As shown in [L7,18], the intersection of all of the:-nested simulation or trace
equivalences or preorders over image-finite labelled transition systems, and therefore
over the language BCCSP, is bisimulation equivalence. Hennessy and Milner proved
in [18] that bisimulation equivalence is axiomatized over the language BCCSP by the
four equations in Tabl@. Thus, in light of the aforementioned negative results, this
fundamental behavioural equivalence, albeit finitely based over BCCSP, is the inter-
section of sequences of relations that do not afford finite equational axiomatizations
themselves. This observation begs the question of whether bisimulation equivalence
over BCCSP is the limit of some sequence of finitely based behavioural equivalences
that have been presented in the literaturepncit Hennessy and Milner introduced an
alternative sequence of relations that approximate bisimulation equivalence. These rela-
tions are based on a “bisimulation-like” matching of Hiegle stepshat processes may
perform, whereas the-nested trace equivalences require matchings of arbitrarily long
sequences of stepd/e prove in this study that, unlike thenested trace equivalences,
these single-step based approximations of bisimulation equivalence are all finitely ax-
iomatizable over the language BCCSP, provided that the set of actions is finite.

The paper is organized as follows. We begin by presenting preliminaries on the
language BCCSP, (in)equational logic, and the notions of behavioural equivalence and



preorder studied in this paper (Sez}t. Our main results on the non-existence of finite
(in)equational axiomatizations for thenested simulation and trace equivalence and
preorder (forn > 2) are the topic of Sect8-5. In Sect.3 we prove that the 2-nested
simulation preorder has no finite inequational axiomatization over the language BCCSP.
Sect.4 presents a non-finite axiomatizability result for the possible futures preorder and
equivalence. We then offer a general result to the effect that all of the nthested
semantics considered in this study have no finite inequational axiomatizationfsect.
The paper concludes with our proof of finite axiomatizability for the alternative ap-
proximations of bisimulation equivalence introduced by Hennessy and Milnérdn [
(Sect.6).

The work reported in this paper extends and improves upon the results presented
in [4], where it was shown that 2-nested simulation semantics and the 3-nested simula-
tion preorder are not finitely based over the language BCCSP. The aforementioned pa-
per also offered conditional axiomatizations for the nested simulation semantics. Since
we have been unable to obtain similar results for the nested trace semantics, we have
decided to omit those conditional axiomatizations from this presentation.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical devel-
opments to follow are based.

2.1 The language BCCSP

The process algebra BCCSP is a basic formalism to express finite process behaviour.
Its syntax consists of (process) terms that are constructed from a countably infinite set
of (process) variables (with typical elements, z), a constan®, a binary operato#-
called alternative compositionand unaryprefixing operatorse, wherea ranges over
some non-empty sed of atomic actions We shall use the meta-variables:, v to
range over process terms, and write-(¢) for the collection of variables occurring in
the termt.

A process term iglosedif it does not contain any variables. Closed terms will
be typically denoted by, g, r. Intuitively, closed terms represent completely specified
finite process behaviours, whedaloes not exhibit any behavioyr.+ ¢ combines the
behaviours op andq by offering an initial choice as to whether to behave like either
of these two terms, angp can execute actiom to transform intop. This intuition for
the operators of BCCSP is captured, in the style of Plotkii, by the transition rules
in Table 1. These transition rules give rise to transitions between process terms. The
operational semantics for BCCSP is thus given by the labelled transition systm [
whose states are terms, and whoséabelled transitions are those that are provable
using the rules in Tablé. Based on this labelled transition system, we shall consider
BCCSP terms modulo a range of behavioural equivalences that will be introduced in
Sect.2.4

A (closed) substitution is a mapping from process variables to (closed) BCCSP
terms. For every term and (closed) substitution, the (closed) term obtained by re-



Table 1. Transition rules for BCCSP

a / a /
r — y—1UY a
ar — X

sty rty-——y

placing every occurrence of a variahlén ¢ with the (closed) terma(z) will be written
o(t).

In the remainder of this paper, we t€t denote0, anda™*! denotea(a™). Follow-
ing standard practice in the literature on CCS and related languages, tGslingl
often be omitted from terms. Aerm over actioru is a BCCSP term that may only
contain occurrences of the prefixing operato(We shall restrict our attention to these
terms in the technical developments presented in Sebt)dfor example, the terma™
is over actiom, for eachm > 0.

2.2 Inequational Logic

An axiom systenis a collection of inequations C « over the language BCCSP. An
inequatiornp C q is derivable fromF, notationE + p C ¢, if it can be proven from the
axioms inE using the rules of inequational logic (viz. reflexivity, transitivity, substitu-
tion and closure under BCCSP contexts):

tCuulow tCu tCu

tCt —
- tCwv ot)Co(u) atCau

(a € A)

tCu tCu
t+rCu+r r+tCr+u
Without loss of generality one may assume that substitutions happen first in inequa-
tional proofs, i.e., that the third rule may only be used whelt u) € E. In this case
o(t) C o(u) is called asubstitution instancef an axiom inE.
Equational logicis like inequational logic, but with the extra rule of symmetry:

tCu
wulCt

In equational logic, the formula C w is normally writtent ~ w«. Without loss of
generality, one may assume that applications of symmetry happen first in equational
proofs. Therefore we can see equational logic as a special case of inequational logic,
namely by postulating that for each axiomAhalso its symmetric counterpart is present

in E. In the remainder of this paper, we shall always tacitly assume this property of
equational axiom systems.

An example of an (equational) axiom system over the language BCCSP is given in
Table2. As shown by Hennessy and Milner ing], that axiom system is sound and
complete for bisimulation equivalence over the language BCCSP.

In the remainder of this paper, process terms are considered modulo associativity
and commutativity of +, and modulo absorptionOcfummands. In other words, we do



Table 2. Axioms for BCCSP

Al rt+yxy+zx

A2 (z4+y) +zxz+ (y+2)
A3 rt+tr Rz

A4 r+0~zx

not distinguisht + « andw + t, nor (¢t + u) + v andt + (u + v), nort + 0 andt. This is
justified because all of the behavioural equivalences we consider satisfy axioms Al, A2
and A4 in Table2. In what follows, the symbok will denote syntactic equality modulo
axioms Al, A2 and A4. We usesummation) ;. (;  ,¢; to denotety + --- + ¢,

where the empty sum represefitdt is easy to see that, modulo the equations A1, A2
and A4, every BCCSP termhas the fornd _,; z; + >, ; a;t;, for some finite index
setsl, J, termsa;t; (j € J) and variables; (¢ € I). The termsa;t; (j € J) and
variablesz; (i € I) will be referred to as theummandsf ¢.

It is well-known (cf., e.g., Sect. 2 in.f]) that if an (in)equation relating two closed
terms can be proven from an axiom systéithen there is a closed proof for it.

In the proofs of some of our main results, it will be convenient to use a different
formulation of the notion of provability of an (in)equation from a set of axioms. This
we now proceed to define for the sake of clarity.

A contextC] ] is a closed BCCSP term with exactly one occurrence of a hple
in it. For every contexC| | and closed ternp, we write C[p] for the closed term that
results by placing in the hole inC| ]. It is not hard to see that an inequatipiic ¢ is
provable from an inequational axiom systéiriff there is a sequencg, C --- C py
(k > 1) such that

- P=D,

— ¢ = px and

— p; = Clo(t)] C Clo(u)] = pi+1 for some closed substitution contextC|[ | and
pair of termst, v with ¢ C «w an axiom inE (1 <i < k).

In what follows, we shall refer to sequences of the fgrriC - - - C p, asinequational
derivations

For later use, note that, using axioms Al, A2 and A4 in Tablevery context can
be proven equal either to one of the foiifb([ | 4+ p)] or to one of the fornj | + p, for
some actiorb and closed BCCSP term

2.3 Traces of BCCSP Terms

The transition relations™ (a € A) naturally compose to determine the possible effects
that performing a sequence of actions may have on a BCCSP term.

Definition 1. For a sequence = a; ---ay € A* (k > 0), and BCCSP termg t’, we
write t — t' iff there exists a sequence of transitions

t=tyg S t; ... =t



If t = ¢’ holds for some BCCSP terth) thens is atraceof t. We writetraces(t) for
the set of traces of a term

The following lemma, whose proof is standard, relates the transitions of a term of the
form o (t) to those oft and those of the terms(x), with = a variable occurring in.

Lemma 1. For every BCCSP term, substitutiono, and sequence of actions the
following statements hold:

1. if t > u for some termy, theno (t) - o (u);
2. if o(t) —> u for some termu, then
(a) eithert —> ¢’ for somet’ withu = o (t'),
(b) or there are sequences of actiogs so with so non-empty and = s;ss, a
term¢’ and a variabler such that * 2 + ¢ ando(z) 2 w.

2.4 Behavioural Semantics

Labelled transition systems describe the operational behaviour of processes in great
detail. In order to abstract from irrelevant information on the way processes compute, a
wealth of notions of behavioural equivalence or approximation have been studied in the
literature on process theory. A systematic investigation of these notions is presented in
[14], where van Glabbeek presents the so-called linear time-branching time spectrum,
a lattice of known behavioural equivalences over labelled transition systems ordered by
inclusion. In this study, we shall investigate a fragment of the notions of equivalence
and preorder fronop. cit, together with the family of the nested trace equivalences and
preorders (see Definitio). These we now proceed to present.

Definition 2. A binary relation R between closed terms issimulationiff p R ¢ to-
gether withp - p’ imply that there is a transitiop — ¢’ withp’ R ¢'.

Groote and Vaandrager introduced inT a hierarchy ofn-nested simulation preorders
and equivalences for > 2. These are defined thus:

Definition 3. For n > 0, we define the relatior=,, inductively over closed BCCSP
terms thus:

— p So gforallp,q,
— p Snq1 ¢iff p R g for some simulatiorR with R~ included inS,,.

The kernel of>,, (i.e., the equivalencé:,, N (5,,)~!) is denoted by=,,.

The relationS; is the well-knownsimulation preordef29). The relationsS, and
5, are the2-nested simulation preordemnd the2-nested simulation equivalenae-
spectively. Groote and Vaandrager have characterized 2-nested semantics as the largest
congruence with respect to the tyft/tyxt format of transition rules which is included in
completed trace semantics—seée€][for details.

In the remainder of this paper we shall sometimes use, instead of Defigjtthe
following more descriptive, fixed-point characterization of thaested simulation pre-
order @ > 1).



Proposition 1. Letp, ¢ be closed BCCSP terms, and> 0. Thenp S, 11 ¢ iff

(1) forall p % p/ thereis ag - ¢’ withp’ S,,41 ¢/, and
() ¢ Snp.

Proof. We prove the two implications separately.

— (=) Assume thap 5,1 ¢. By definition,p R ¢ with R a simulation andr !
included inS,,. Soifp - p/, theng —— ¢’ with p’ R ¢/, which implies

/1 C /
D —n+14q -

Moreover, sinceR~! is included inS,,, it follows thatg S, p.

— («) We definep R q iff
(1) forallp - p’ there is ag - ¢/ with p’ S,,.1 ¢/, and
) q Snp
Suppose now that R ¢. If p — p/, then by the definition oR we havey —— ¢’
with p’ 5,1 ¢’. Since we have already proven the ‘only if’ implication, we may
conclude thap’ R ¢'. So R is a simulation. Furthermore, by (2) abo& ! is
included inS,,. Hence, we have that S, ¢, which was to be shown. O

Example 1. Letm > 1. Define, for eacln € N, the closed BCCSP terms, andg,,
thus:

Do — a2m710 % — amflo

Pn+1 = apn + adn dn+1 = aPp -

By induction onn € N and using Propositiofi, it is not hard to check that, S, gy,
and thus that,, S,.,1 py.

The termsp,, andg,, (n € IN) defined above will play a crucial role in the proof of
Theoremt to follow.

Possible futures semantics was introduced by Rounds and Brooked,imfd is
defined thus:

Definition 4. Letp be a closed BCCSP term. gossible futureof p is a pair (s, X),
wheres is a sequence of actions add C A*, such thap —— p’ and X = traces(p’),
for somey’.

Two closed termp andq are related by thgossible futures preordérespectively,
possible futures equivalengevrittenp <pr ¢ (resp.,p =pr q), if each possible future
of p is also a possible future @f (resp., ifp andq have the same possible futures).

The last notions of semantics we shall consider in this paper are the families of the
n-nested trace equivalences and preorders.7I-hested trace equivalences were in-
troduced by Hennessy and Milner ing, p. 147] as a a tool to define bisimulation
equivalencef5,29).

Definition 5. For everyn > 0, the relations of.-nested trace equivalenadenoted by
=I'"andn-nested trace preordesienoted by<’, are defined inductively over closed
BCCSP terms thus:



— p = gandp <¥ ¢ for everyp, g;

-p :ZH q iff for every sequence of actionse A*:
e if p = p’ then there is &' such thaiy — ¢’ andp’ =7 ¢/, and
o if ¢ = ¢ then there is @’ such thaty - p’ andp’ =7 ¢/;

— p =L, qiff for every sequence of actionse A*:
e if p = p’ then there is &' such thaiy —— ¢’ andp’ =7 ¢'.

Note that the relations=7 and =1 are just trace equivalence (the equivalence that
equates two terms having the same traces—5&é9]) and possible futures equiva-
lence, respectively, wherea$ is the possible futures preorder. Moreover, it is easy to
see that, for every > 0, the equivalence relatioa? is the kernel of the preordet? .

The following result is well-known—see, e.g., the referendesif].

Proposition 2. For everyn > 0, the relationsS,,, <,,, =1 and <’ are preserved by
the operators of BCCSP.

The relations we have previously defined over closed BCCSP terms are extended to
arbitrary BCCSP terms thus:

Definition 6. Lett,u be BCCSP terms, and let be any ofS,,, 5, =I"and =T
(n > 0). The inequation C « is soundwith respect to<, writtent =< w, iff o(t) < o(u)
for every closed substitution

For instance, the inequatianC y is sound with respect to all of tienested semantics
defined above. Examples of (in)equations that are sound with respést toe those
in Table2 and

alz+y) Calz+y) +ax .

The following result collects some basic properties of nested simulation and nested
trace semantics that will be useful in the technical developments to follow.

Proposition 3. For all BCCSP termg, » andn > 0, the following statements hold:

1. ift S,.1 u, thent =, u;
2. ift =T u, thent =1 u;
3.ift S, u, thent =Ty,

Proof. StatementX) is due to Groote and Vaandrager in], and statemen®j follows
immediately from the definitions of the relations!,; and=X. We therefore limit
ourselves to presenting a proof of statemé&t To this end, observe, first of all, that in
light of Definition 6, it is sufficient to prove the claim for closed BCCSP terms. Assume
now thatp <.,, ¢, wherep, ¢ are closed BCCSP terms. We prove<? ¢ by induction
onn. This is trivial if » = 0. Suppose therefore thatS,, .| ¢. Let s be a sequence of
actions inA, and assume that —— p’ for somep’. We aim at showing thai —— ¢’
for someq’ with p’ =7 ¢'.

Sincep S,41 g andp — p/, using Propositior. and a simple induction on the
length of s, we have thaty — ¢’ for someq’ with p’ S,,.1 ¢'. By statement) of
the proposition, we may infer that <=, ¢’. The inductive hypothesis now yields that
p =T ¢ <T p'. Since the relation=_ is the kernel of<%, we may conclude that

n n —n?

P =T ¢, which was to be shown. .



2.5 A Modal Characterization of Nested Trace Equivalence

In the proof of our main result in Seci, we shall make use of the modal character-
ization of then-nested trace equivalences proposed by Hennessy and Milnég,in [
p. 148]. This we now introduce for the sake of completeness.

Definition 7. The setl of Hennessy-Milner formulaever alphabetA is defined by
the following grammar:

pu=T|pAp|-p|{a)p(acA) .

The satisfaction relatiori= is the binary relation relating closed BCCSP terms and
Hennessy-Milner formulae defined by structural induction on formulae thus:

— p =T, for every closed BCCSP term
—pE 1 Ap2iff p = @1 andp = o,

— p | g iffitis not the case thap = ¢, and

— p = {a)ypiff p =% p’ for somey’ such thaty’ |= ¢.

As an immediate consequence of the characterization theorem for bisimulation equiva-
lence over image-finite labelled transitions systems shown by Hennessy and Miiner [
Theorem 2.2], two closed BCCSP terms are bisimulation equivalent if, and only if, they
satisfy the same formulae ih. We now introduce a family of sub-languages/that

yield modal characterizations of thenested trace equivalences for every 0.

Definition 8. For everyn > 0, we define the sef,, of n-nested Hennessy-Milner
formulaeinductively thus:

— L, contains only the formula& and—T, and
— L,,+1 is given by the following grammar

pu=T oA |=p]|{ar) - (ar)y (k 20, ar---a, € A" andy € Ly,) .
The following result is due to Hennessy and Miln&g][

Theorem 1. Letp, g be closed BCCSP terms, and tet> 0. Thenp =7 ¢ iff p andq
satisfy the same formulae in the language

Remark 1. Note that, for everyn > 0 and closed termsg, ¢, if each formula inz,,
satisfied byp is also satisfied by, thenp andq satisfy the same formulae in the lan-
guageL,,. Indeed, assume that each formulalin satisfied byp is also satisfied by,
and thaty satisfiesp € £,,. Using the closure of,, with respect to negation, we have
thatq [~ —¢, and therefore that = —. It follows thatp satisfiesp, which was to be
shown.

Although tempting, it would therefore be incorrect to assume that, for every0
and closed termg, ¢, it holds thatp <7 ¢ iff each formula inZ,, satisfied byp is also
satisfied byy.

To obtain a modal characterization of thenested trace preorders, consider the
sub-languages,, of £,, defined inductively thus:

10



— M contains only the formulag and—T, and
— M, 41 is given by the following grammar

pu=TlpANg|{a) - (ag)p (k>0, ar---ar € A" andy € Ly,) .

Following the lines of the proof of Theorem 2.2 ing], the interested reader will have
little trouble in establishing that

For everyn > 0 and closed termg, ¢, it holds thatp <7 ¢ iff each formula in
M., satisfied byp is also satisfied by.

2.6 Lengths, Norm and Depth of Terms

We now present some results on the relationships between the lengths of the completed
traces, the depth and the norm of BCCSP terms that are related by the notions of se-
mantics considered in this paper. These will find important applications in the proofs of
our main results, and shed light on the nature of the identifications made by the nested
simulation and trace semantics.

Definition 9. A sequence € A* is acompleted tracef a termt iff t —— ¢’ holds for
some ternt’ without outgoing transitions. We writengths(t) for the set of lengths of
the completed traces of a BCCSP term

Note thatlengths(t) is non-empty for each BCCSP temMoreover, the only closed
BCCSP term that has a completed trace of length@ {Recall that we consider terms
modulo absorption od-summands.)

Definition 10. Thedepthand thenorm of a BCCSP ternt, denoted bylepth(t) and
norm(t), are the lengths of the longest and of the shortest completed traceespec-
tively.

The following lemma states the basic relations between the behavioural semantics stud-
ied in this paper and the lengths, depth and norm of terms that will be needed in the
technical developments to follow.

Lemma 2. Let=< be any of<”, =T = andS,, forn > 2.1f t < u, then

(@) lengths(t) C lengths(u),
(b) depth(t) = depth(u),

(c) norm(t) > norm(u) and
(d) wvar(t) = var(u).

Proof. In light of Proposition3, it is sufficient to prove that the claims hold for the
possible futures preorder, viz. the relatigi .

We argue, first of all, that claims (a)—(c) hold wher?' «. To this end, note that,
by substituting0 for the variables int and u, we obtain closed termg and ¢ with
lengths(t) = lengths(p) andlengths(u) = lengths(q). So it suffices to prove claims
(a)—(c) withp andgq in place oft andu, respectively. By Definitior, we have that

p=%q.
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Assume now that € lengths(p). Then there are a sequence A* of lengthn
and a closed termy’ with no outgoing transitions such that—"- p’. Asp <1 ¢, there
is a closed terng’ such thay —— ¢’ andp’ =7 ¢'. Recall thap’ =7 ¢ if, and only if,
p’ andq’ have the same traces. It therefore follows #fiatas no outgoing transitions,
and thatu € lengths(q), which was to be shown.

Claim (c) follows immediately from (a). To see that claim (b) holds, observe that if
p =¥ ¢ for closed BCCSP termg andg, then, by Propositio(2), p andq have the
same non-empty finite sets of traces, and thus the same longest traces.

To prove claim (d), let,u be BCCSP terms such that<Z «. Assume, towards
a contradiction, that there is a variableghat occurs in only one of andu. We shall
exhibit a closed substitutioa such thatdepth(o(t)) # depth(o(u)), contradicting
statement (b) of the lemma.

To this end, observe, first of all, that without loss of generality, we may assume that
x occurs int, say. Letm be a positive integer larger thafepth(t). By claim (b) of the
lemma, we have thatepth(t) = depth(u) < m also holds.

Consider now the closed substitutiethat maps: to o™, and all the other variables
to 0. Using structural induction, it is a simple matter to prove that

depth(c(t)) > m and
depth(o(u)) = depth(u) < m .

By statement (b) of the lemma, it follows thatt) <" o(u) does not hold, contradict-
ing our assumption that=<1" v. |

Remark 2. Note thatlengths(t) = lengths(u) andnorm(t) = norm(u) both hold, if
t =1 .

The restriction thatr > 2 is necessary in the statement of Lem#&ga) and (c). In
fact,aa + a =1 aa, but

lengths(aa + a) = {1,2} € {2} = lengths(aa) and
norm(aa + a) < norm(aa) .

Statements (b) and (d) in Lemn2aalso hold for=7". In fact, it is not hard to see that,
for everyt, u, if t <T wthendepth(t) < depth(u) andvar(t) C var(u).

3 Non-finite Axiomatizability of the 2-nested Simulation Preorder

In this section we prove that the 2-nested simulation preorder is not finitely inequa-
tionally axiomatizable. The following lemma will play a key role in the proof of this
statement.

Lemma 3. If p S5 a®™ + o™, then eithep S, a?™ of p Sy a®™ + a™.
Proof. The casen = 0 is trivial; we therefore focus on the case> 0. We note, first

of all, that if g S5 o for somek > 0, then, by Lemma&(a), ¢ has only the completed

tracea”; clearly, this impliesi* S, ¢, and hence* < q.
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Consider now a transitiopn — p’. Sincep Sy a?™ + o™, eitherp’ Sq a2 1
orp —>2 am~t By Lemma2(b), p has deptl2m. So there is at least one transition
p — p/ with p’ Sq a2,

If for all transitionsp —— p’ we havep’ S, a2~ 1, then it follows thap S, a?™,
and hence =, a?™. On the other hand, if there exists a transitipn-—— p’ with

p’ So a™ ! (and soa™ ! S, p'), then it follows that®™ + a™ S, p, and hence
p o a?™ +a™. O

The idea behind our proof that the 2-nested simulation preorder is not finitely inequa-
tionally axiomatizable is as follows. Assume a finite inequational axiomatiztitor
BCCSP that is sound modulo,. We show that, ifn is sufficiently large, then, for all
closed inequational derivationd™ C p; C --- C py, from E with p,, So a®™ + o™,
we have thap;, <4 a®™. Sincea®” + a™ %o a®™, it follows thata®™ C a?™ + o™
cannot be derived front. However,a®™ S, a®™ + o™

The following lemma is the crux in the implementation of the aforementioned proof

idea.

Lemmad4. Lett C u be sound modulds,. Let m be greater than the depth of
Assume tha®'[o(u)] So a2m + a™, for some closed substitution ThenC[o ()] =2
a®™ impliesC[o(u)] Sq a®

Proof. LetClo(t)] S2 a®™; we proveC|o(u )] _>2 a?™. SinceClo(u)] Sq a®™+a™,

it is sufficient to show that>™ + a™ %, C Infact, if Clo(u)] S a®™ + a™
anda®™ 4 a™ £ Clo(u)], by Lemma3 it follows thatC[o(u)] SS9 a®™, which is to
be shown. We prove®” +a™ £, Clo(u)] by distinguishing two cases, depending on
the form of the contex€'[ ].

— Case 1 Suppose”| ] is of the formC’[b([ | + r)}.
In this case, we shall prowe™ + a™ 7%2 [o(u)] by arguing thau™~! £, ¢
holds for eachy’ such thatC[o(u)] - ¢'. To thls end, consider a transition
Clo(u)] = ¢
Theng’ = D[o(u)] for some contexD] |, and, because of the form of the context
C|], we may infer that
Clo(t)] = ' = Dlo(t)] .

As o(t) Sy o(u) by the soundness af C u with respect t0S.,, andp’ S ¢
by Proposition2, Lemma2(b) yields thatp’ and ¢’ have the same depth. Since
C[o(t)] 52 a®™, itfollows by Propositiori thatp’ S, o™~ 1. So by Lemma(b),
we have that

depth(p’) = depth(¢’) =2m —1 .

As depth(a™~1t) # 2m — 1, another application of Lemnib) yields that

amfl 7(&)2 q/

Since this holds for all transitiorG[o (u)] — ¢/, anda®™ +a™ —* a™~!, using
Propositionl we may therefore conclude that™ + a™ %, Clo(u))].
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— Case 2 Suppose&’| | is of the form[ ] + r.

In this case, we shall prové™ +a™ £, C[o(u)] by arguing thatorm (Clo(u)))

is larger thamn.

To this end, observe, first of all, that, asS, « by our assumptions, statements

(b) and (d) in Lemm& imply that depth(t) = depth(u), and moreover thatand

u contain exactly the same variables. We proceed with the proof by distinguishing

two cases, depending on whetherm (o (t)) = 0 or not.

e Casenorm(o(t)) = 0.

In this caset has the form)_,_; 2; for some finite index sef, and variables
x; (i € I) with norm(o(z;)) = 0 for eachi € I.
Sincet C w is sound with respect t&s,, statements (c)—(d) in Lemn2ayield
thatt = u modulo axiom A3. Since axiom A3 is sound with respecttg,
using Propositior2 we may therefore conclude that

a2m + am %2 a2m ‘:>2 C[O’(t)] (:>2 C[O’(U)] ?

which was to be shown.

e Casenorm(a(t)) > 0.
Sinceo (t) +r Sa a®™, Lemma2(c) yields thatrorm (o (t)) > 2m, and either
norm(r) > 2m or norm(r) = 0. By the soundness ofC « with respect to
S5, and the assumption thabrm (o (t)) > 0, it follows that depth (o (t)) =
depth(o(u)) > 0. Hencer (u) # 0, and therefore we have thebrm (o (u)) >

0.Asco(u) +r Sy a®™ + a™, again using Lemma(c), we infer that
norm(o(u)) > m .

Sincedepth(t) < m andnorm(o(t)) = 2m, for each variable: € var(t) =
var(u) we havenorm(o(x)) > m.
By the fact thatdepth(u) = depth(t) < m and norm(o(u)) > m, each
completed trace of(u) must become, after less tham transitions, a com-
pleted trace of ar(x) with = € var(u). Since for allz € var(u) = var(t)
we havenorm(o(x)) > m, it follows thatnorm(c(u)) > m. Since moreover
norm(r) > 2mor norm(r) = 0, we havenorm(o(u)+7) > m. Asa®™+a™
has normm, by Lemma2(a) we may conclude thaf™ + a™ %o o(u) + 7,
which was to be shown. O
Remark 3. The inequatioruz C ax + o' is sound moduloS,. However,a* 5,
a* + a'. So the proviso in the statement of Lemrahat C[o(u)] So a®™ + a™

cannot be omitted. (Note that + a' % a* + a?.)

Theorem 2. BCCSP modulo the 2-nested simulation preorder is not finitely inequa-
tionally axiomatizable.

Proof. Let E' be a finite inequational axiomatization for BCCSP that is sound modulo
So. Letm > max{depth(t) |t Cu € E}.

By Lemmad4, and using induction on the length of derivations, it follows that if the
closed inequation®™ C r can be derived fronk andr S, a®™+a™, thenr S, ™.
As Lemma2(c) yields that>™ + a™ %4 a®™, it follows thata®™ C a®™ + o™ cannot
be derived fromE. Sincea®™ S, o™ + o™, we may conclude thaf is not complete
moduloS.,. O
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4 Possible Future Semantics is not Finitely Based

Throughout this section, we let be either the possible futures preorder, or possible
futures equivalence. Our order of business in this section will be to prove<tinas

no finite (in)equational axiomatization over BCCSP. The idea behind the proof of this
claim is as follows. Assume thd is a finite inequational axiomatization for BCCSP
that is sound module. We show that, ifm is sufficiently large, then, for all closed
inequationg C ¢ that can be derived frorfv the following invariant property holds:

If lengths(q) C {m+1,2m+1,3m+ 1}, and there is @ such thap — p/,
norm(p’) = m anddepth(p’) < 2m, then there is @' such thaty - ¢,
norm(q') = m anddepth(q’) < 2m.

However, we shall exhibit a pair of closed terms that are relatesl,land do not satisfy
the above property. This will allow us to conclude tltais not complete with respect
to <.

The following lemma characterizes some properties of the inequations that are
sound with respect t& that will be useful in the proof of the main result of this section
(Theorem3 to follow).

Lemma 5. Let the axiont T u be sound modul&x. Lett = Xcrx; + Xjca;t; and
u = Xrperyr + Zecrboug, and letz be a variable. Then

@) {z;|iel} C{yx | ke K}, and
(b) for eachj € J with z € var(t;) thereis and € L such thatu; = by, x € var(ue)
andvar(ug) C var(t;).

Proof. Lett C « be sound modulex, and letz be a variable. We prove the two state-
ments of the lemma separately.

— Proof of Claim (a) Assume, towards a contradiction, that the variabkecontained
in{z; | i € I}, butnotin{y, | k € K}. We shall exhibit a closed substitution
such thatr(t) £ o(u), contradicting our assumption thatc « is sound modulo
<.

To this end, pick a positive integet > depth(t). Sincet C u is sound modulex,

by Lemma2(b) we have thatn > depth(u) also holds. Consider the closed substi-
tution o that mapse to «™, and all the other variables @ Sincex = x; for some

i € I, we have thain € lengths(c(t)). On the other handn ¢ lengths(o(u))
because, as is not contained i{yy | kK € K}, every completed trace of(u) is
either one of, itself (and is thus shorter than) or hasa™ has a proper suffix (and
is thus longer tham). By Lemma2(a), it follows thato () < o(u) does not hold,
contradicting our assumption thatt « is sound modules.

— Proof of Claim (b) Assume, towards a contradiction, that there i @ J with
x € var(t;) such that, for eacli € L with a; = b, eitherz ¢ wvar(ug) or
var(ug) € wvar(t;). We shall exhibit a closed substitutiensuch thato(t) A7
o(u), contradicting our assumption that- « is sound modulex.

Let m be a positive integer larger thafepth(t). Sincet T « is sound modulo
=, by Lemma2(b) we have thain > depth(u) also holds. Consider the closed
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substitution mapping: to ™, all of the variables not occurring i} to a*™, and
all the other variables t0. Note thatr (t) —- o(t;), by Lemmal. Moreover, since
x € var(t;) and

depth(t;) < depth(t) —1 <m —2 ,

it is easy to see that
m < depth(o(t;)) <2m—2 . (1)

We claim that ifo(u) —% p, then depth(o(t;)) # depth(p). This shows that
o(t) 27 o(u) because ng with o(u) —- p can have the same traces&s,;)
(see RemarR), contradicting our assumption thatt u is sound module<.

To prove our claim, we consider the possible origins of a transitiar) 2, .

e Case 1o(u) —% p becauser(y;) —- p, for somek € K. In this case, by
the definition ofo, we have thatlepth(p) € {m —1,2m — 1}. By (1), we may
infer thatdepth(o(t;)) # depth(p), as claimed.

e Case 20(u) —5 p becausey = o(uy,) for somel € L such thata; = by
and eitherr ¢ var(ug) or var(ue) € var(t;). In this case, by the definition
of ¢ and using thatepth(u) < m, we have thadepth(p) is either smaller
thanm — 1 (if = & var(u) andwar(ug) C var(t;)) or larger tharem — 1
(if var(ue) € war(t;)). Again, by (), we may infer thatdepth(o(t;)) #
depth(p), as claimed.

This completes the proof. O

We are now in a position to prove the promised result to the effect that possible futures
semantics is not finitely based over the language BCCSP.

Theorem 3. BCCSP modulex is not finitely inequationally axiomatizable.

Proof. Let E be a finite equational axiomatization for BCCSP that is sound mogulo
Letm > max{depth(t), depth(u) | (¢t C u) € E}.
We have that

a(a™ + a®™) 4+ aa®™ < aa®™ + a(a™ + a®™)
because both processes have the same possible futures. Nevertheless,
E ¥ a(a™ + a*™) + aa®™ C aa®™ + a(a™ + a®™) .
This follows immediately from the following

Claim. Assume tha® - p C ¢, lengths(q) C {m + 1,2m + 1,3m + 1}, and there is
ap’ such thap —% p’, norm(p’) = m anddepth(p') < 2m. Then there is @ such
thatg % ¢/, norm(q’) = m anddepth(q') < 2m.

Proof of the claimUsing induction on the length of inequational derivations, the sound-

ness of £ with respect to< and Lemma2(a), it suffices to consider the case that
= Clo(t)] andg = Clo(u)] for a BCCSP context|[ |, a closed substitution,

and an axion{t C u) € E. We proceed by distinguishing two sub-cases, depending on

the form of the contex€'[ ].
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— Case 1:Suppose&’| ] is of the formC’[b([ ] + r)].
Letp’ be as in the statement of the claim. Thér= D[o(¢)] for some contexD| |,
and, because of the form of the contéXt], we may infer that

q=Clo(u)] = ¢ = Dlo(u)] .

By the soundness df and the fact thak is preserved by the operators of BCCSP
(Proposition2), we have thap’ < ¢'. Thereforenorm(q') < norm(p’) = m and
depth(q’) = depth(p’) < 2m both hold by statements (b) and (c) in LemgaAs
norm(q) > m + 1 it follows thatnorm(q’) = m, and we are done.
— Case 2:Suppose’| ] is of the form[ ] + r.
Lett = Yicra; + Yjegast; andu = Xie gy + Leerbeue. Consider a transition
o(t) +r - p’ as in the statement of the claim. We distinguish three possible
cases, depending on the origin of this transition.
e Case 2.1Assume that — p'. Theng — p’ and we are done.
e Case 2.2Assume that (z;) —— p’ for somei € I. By Lemma5(a) and the
soundness of C « with respect to<, we have that; = y, for somek € K.
It follows thatqg — p’, and we are done.
o Case 2.3Assume thap’ = o(t;) for somej € J. As norm(o(t;)) = m and

depth(t;) < depth(t) <m ,

there must be a variable € var(t;) such thatl < norm(o(z)) < m. By
statement (b) in Lemm?#, there is arf € L such thatt = b, « € var(u,) and
var(ug) C var(t;). Takeq' = o(us). Theng —= ¢'. Sincex € var(uy), we
have that

norm(q’) < depth(ug) + norm(o(x)) < 2m .

Considering that
lengths(q) C {m+1,2m+1,3m+1} ,

and thudengths(q’) C {m, 2m, 3m}, it must be the case thabrm(q’) = m.
As depth(o(t;)) < 2m by assumption, it follows thatiepth(o(y)) < 2m
for eachy € wvar(t;). Sincevar(us) C war(t;), this also holds for each
var(ug). As depth(ue) < depth(u) < m, this implies thatdepth(o(us)) <
3m. Considering thafengths(¢’) C {m,2m,3m}, we may conclude that
depth(q") < 2m.

To sum up, we have proven that, also in this casel~ ¢/, norm(q') =
anddepth(q’) < 2m, which was to be shown.

o3

5 No Nested Semantics is Finitely Based

We now proceed to offer results to the effect that the language BCCSP meguto

S, forn > 2,0r<T or S, forn > 3, is not finitely equationally axiomatizable.
Rather than considering each of these behavioural relations in turn, we offer a general
proof of non-finite axiomatizability that applies to all of them at once. The general
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strategy underlying such a proof is as follows. We prove that, for each 2, no
finite collection of (in)equations that is sound with respectfp (the coarsest relation
amongst=?, =, jfﬂ andS,,,1) can prove all of the closed inequations of the form
p C ¢, with p andg BCCSP terms over action, that are sound with respect fo,, |
(the finest relation amongst?, <,,, <" and S, 41).

In the proof of this result, we shall make use of the modal characterization of the
relation="" given in Theoreni. More specifically, we shall show that, for each> 2
and finite axiom systent that is sound with respect te!, there is a formulab,, in the
language’,, .1 (see Definitior8) such that whenevdr proves a closed inequatign—

q, with p andg BCCSP terms over actiofy then, subject to some technical conditions
on the lengths of the completed traces;pft holds thatp satisfiesy,, if, and only if,

so doeg;. We shall, however, show that this property does not hold for the inequation
Gn 5n+1 pn, Where the termg,, andg,, have been defined in Example This will
allow us to conclude that the sound inequatiQric p,, cannot be derived from, and

thus thatt is incomplete for=?, =, <7, and S, 4.

The technical implementation of the above idea will be based upon an induction
on the length of the proof of closed inequations from the finite axiom sy#teithe
crucial step in this proof will be to show that, subject to technical conditions, the afore-
mentioned formulap,, is satisfied either by both terms in a substitution instance of an
axiom in E or by neither of them. This case will be tackled by Lemiido follow. We
now introduce some technical notions, and preliminary results, that will be used in the
proof of this crucial lemma.

Definition 11. We call a substitutiom substantiaif depth(o(x)) > 0 for all variables
Z.

For reasons of technical convenience, in the proofs of our non-finite axiomatizability
results presented in this section we will only allow for the use of closed substantial sub-
stitutions in the rule of substitution. This does not limit the generality of those results
because every finite inequational axiomatizatibocan be converted into a finite inequa-
tional axiomatization®’ such that the closed substitution instances of the axion#$ of
are the same as the closed substantial substitution instances of the axiBfr(svbin
equating any closed subterm of depth 0 with This is done by including &’ any
inequation that can be obtained from an inequatiof loy replacing all occurrences of
any number of variables k.

Definition 12. Define thedepthsat which a subterm occurs in a BCCSP term as fol-
lows:

e toccurs int at deptho,
e if v occurs int or u at depthd, thenv occurs int + u at depthd,
o if v occurs int at depthd thenv occurs inat (with a € A) at depthd + 1.

A BCCSP term has aunique depth allocatioifino variable occurs irt at two different
depths.

For example, the termz + 2 does not have a unique depth allocation, as the variable
x occurs both at depth 0 and at depth 1 in it, faut+ y does.
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The following lemma describes the interplay between the depths at which variables
occur in a ternt, and the lengths of terms of the fomn{t), for some substantial substi-
tutiono.

Lemma 6. For every BCCSP termhandd > 0, the following statements hold:

1. The termwv occurs int at depthd if, and only if, there are a terma and a sequence
of actionss of lengthd such that —— v + w.

2. Letz be a variable, and letr be a substitution. For eveny > 0, if « occurs int at
depthd andn € lengths(o(x)) thend + n € lengths(o(t)).

Proof. We prove the two statements separately. Recall that we consider equality of
terms modulo axioms Al, A2 and A4 in Talite

— Proof of statement. We show the two implications separately.
e (=) By induction on the definition of the depths at whigloccurs int.
+x Assume that occurs int at depthd becausey = ¢t andd = 0. Then,
letting e denote the empty string, we have that

tiw):v+0,

and we are done.
x Assume that occurs int + ¢ at depthd because» occurs int or ¢’ at
depthd. Suppose, without loss of generality, thadccurs int at depthd.
By induction, we have that there are a tetmrand a sequence of actions
of lengthd such thatt —~ v + . If d is positive, we may immediately
conclude that + ' - v + u. If d = 0, thent = v + w. It follows that
t+t —v+4u+t', and we are done.
x Assume that occurs inat (with a € A) at depthd + 1 because occurs in
t at depthd. By induction we have that there are a terrand a sequence
of actionss of lengthd such that —— v + . It follows thatat = v +u,
and we are done.
e («) Assume that there are a temmand a sequence of actionf lengthd
such that —— v 4+ u. We prove that occurs int at depthd by induction on
d. Throughout the proof, we lét= 3", z; + >, ; a;t;.

x Base Cased = 0. Sincet —— v + u, we have that
t:in—i-Zajtj =v+u .
icl jed

Thismeansthat =, ;. z; +3_,c ;s a;t; forsomel” C T'andJ’ C J.
Sincev occurs inv at depthd by the first clause of Definitioh2, using the
second clause of Definitioh? we may conclude that occurs int at depth
0.

+ Inductive Stepd > 0. Since

t:in—i—Zajtj iw;—i—u,

iel jEJ
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ands is non-empty, we have that= a;s’ andt; —— v + u, for some
j € J. By induction,v occurs int; at depthd — 1, and therefore im;¢; at
depthd. Using the second clause of Definiti@@ we may conclude that
occurs int at depthd.

— Proof of statemeri. Assume that: occurs int at depthd, n € lengths(o(z)) for
some substitution, andn is positive. Since: occurs int at depthd, by statement
of the lemma, we have that— z + u for some sequence of actionsf lengthd
and termu. By Lemmal, we have that

o(t) > o(x+u) =o(x) +o(u) .

As n € lengths(o(z)) by our assumptionsr(z) =", v for some sequence of
actionss’ of lengthn and termw with no outgoing transitions. Since the length of
s’ is positive, it follows that(t) > v holds, and thus that+n € lengths (o (t)),
which was to be shown. d

Lemma 7. Lett be a BCCSP term witlepth(t) < m, and leto be a closed substantial
substitution such thakengths(o(t)) C {n + m,n + 2m}, for somen > 0. Thent has
a unique depth allocation.

Proof. Suppose a variable occurs at depthd; andd, in t. Let depth(o(z)) = d.
Sinceo is a substantial substitutiodis positive. Then, by Lemm@&(2) and the proviso
of Lemma7, we have that

{d1 +d,ds + d} C lengths(o(t)) C {n+m,n+2m} .

(The proof of the first inclusion uses thét> 0.) As |d; — d2| < m holds by our
assumption thadepth(t) < m and Lemmab(1), this impliesd; = ds. O

The proof above is the only one where we use that the substitutions are substantial.

Definition 13. For m, ¢ > 0, define the operatar;,,a’ on closed BCCSP terms recur-
sively by

hd (Z‘zk:laipi);m+1aZ = Ef:1ai(pi§ma£),
o (bp+q)ioa’ =bp+yq,
° O;Oaf = d'0.

Recall that we consider terms modulo associativity and commutativity of +, and modulo
absorption oD summands. Hence any closed BCCSP term with depth O can be written
as0. Thus, the operatay,a’ adds a sequence 6f-transitions to every state at depth

m from which no transitions are possible.

In the remainder of this section, we shall tacitly assume, without loss of generality,
thata is the only action occurring in terms. This is justified because the closed terms
that we shall use in our proof of Theoretto follow are over actiom, and it is easy to
see that every closed inequational derivation from an axiom system that is sound with
respect to<? proving an inequatiop C ¢, with p andq terms over actiom, only uses
terms over action.
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Lemma 8. Letp be a closed BCCSP term, and fetn, n > 0. If depth(p) < n+m—+4£
then

p E ((@)2)" ()" =) T & pinrma’ = ({a)=)" (@)™ T .

Proof. Note, first of all, that the following holds, for eaéhe N and closed BCCSP
termgq’:

(p—qNd =qra’) & ppya’ 4. )
We prove the lemma by induction en+ m.
— Casen+m =0.Then

pE—-(a)T<p=0 (asp is over actionz)
& poal = (a)fT (becauselepth(p) < £) .

— Casen =0,m > 0. Then
pE(@)"~(a)T & 3¢(p > gk (@)™ '=(a)T)

& 3¢ (pma’ - ¢ = (@™
< Dim CL[ ': <a>m+é—|— 5

where the second equivalence follows 2y &nd the inductive hypothesis, using
thatq’ = ¢;,,_1 a anddepth(q) < m + £ — 1.
— Casen > 0. Then,

p ': (<a>_')”<a>mﬁ<a>—|— < dg (p LN q b,g (<a>_‘)n71<a>mﬁ<a>—|—)
&3¢ (Pinma’ < ¢ ¥ ((@)=)" " (@)™ T)
& Pnema E ((@)2)"a)™ T

where the second equivalence follows 1y &nd the inductive hypothesis, using
thatq’ = ¢;nm_1 a’ anddepth(q) <n+m+£ — 1. O

The following example shows that in Lemrdhe hypothesiglepth(p) < n +m + ¢
cannot be omitted.

Example 2. If £ > 0, thena™** }£ (a)™—(a)T. On the other hand,
am+l;m al _ am+£ ': <a>m+£—|— )

Lemma 9. Let o be a closed substitution, and lebe a BCCSP term with a unique
depth allocation anddepth(t) < k. Letc’ be a closed substitution with’(z) =
o(x);,_q a® whenever: occurs at depthal in t. Then

o'(t) =o(t);pat .
Proof. We apply induction ork.

— Base Casek = 0. This base case is vacuous, since there is no term whose depth is
smaller tharo.
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— Inductive Stepk > 0. We begin by proving that’(v) = o(v);;, a* for each sum-
mandv of t.
e Consider a summandof ¢. Sincex occurs at depth 0 iry the definition ofs’
yields thato’ () = o(z);;, a’.
o Consider a summang: of t. Sinces’ (y) = o(y);x_._1 a* for variablesy that
occur at deptle in w, anddepth(u) < k — 1, by induction we may infer that
o' (u) = o(u);,_1 a’. Henceo' (au) = a(o(u);p_1 a®) = o(au);; a’.
Sinced’(v) = o(v);;, a* holds for all summands of ¢, it follows thato’(t) =
o(t);r a*, which was to be shown. i

Remark 4. The assumption thadepth(t) be smaller thark in the statement of the
above lemma is necessary. Take, for instakce, 1, t = a + x ando(z) = a?. Then,
if £is positive,

ot)iat =at+a? #a+a®=0'(t) .

Note thatdepth(t) = 1.

Lemma 10. Leto be a closed substitution, and lebe a BCCSP term with a unique
depth allocationdepth(t) < n+m anddepth(o(t)) < n+m+£, for somel, m,n > 0.
Leto’ be a closed substitution with (z) = o();,+m—a a’ Wwhenever: occurs at depth
dint. Then

o(t) £ ((a)=)"(@)"~{a)T & o'(t) E ((a)2)" (@)™ T .

Proof. Sincedepth(t) < n + m, Lemmag yields thato’(t) = o(t);,1m a’. Since
depth(o(t)) < n+ m + ¢, LemmalOnow follows directly from Lemma. O

Note that the formuld(a)—)"(a)™**T is contained in the languagg, , ; that gives a
modal characterization of the equivaleneg, ;. (See Definitior8 and Theoreni.)

The following lemma will be a key ingredient in the proof of Theoréio follow.
As mentioned previously, it will be used to show that, subject to technical conditions,
terms related by closed substantial substitution instances of axioms in a finite axiom
system that is sound fdr. + 1)-nested trace equivalence, for> 1, either both satisfy
an appropriately chosen formula in the langu&ge > or none of them does.

Lemma 11. Letty, ¢, be a pair of BCCSP terms witllepth(t;) < m, fori = 1,2,
such that the equation ~ ¢- is sound for(n 4 1)-nested trace equivalence, for some
n > 0. Furthermore, letr be a closed substantial substitution withgths(o(t;)) C
{n+m, n+2m}fori=1,2. Then

o(t1) = ((@)=)"(@)"~{a) T & o(ta) = ((@)2)" (@)™ ~(a)T .
Proof. Sincelengths(o(t;)) C {n+ m, n + 2m}, fori = 1,2, we have that
lengths(o(t1 + t2)) € {n+m, n+ 2m}

also holds. Thus, by Lemma the term¢; + ¢, has a unique depth allocation. Le&tbe
a closed substitution with’(z) = o (2);+m—a a™ ! whenever: occurs at depth in
t1 + t2. Using LemmalO (with £ = m + 1) for the vertical arrows, and the soundness
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of t; ~ t, for =I',, and the modal characterization ef!, ; (Theorem1l) for the
horizontal one, we obtain

o(t) E ((@)=)"@)"~(a) T o(tz) E ((a)=)"(a)" ~(a) T
o'(t1) | ((a)=)™(@)*™ T & o'(t2) E ((a)=)(a)* 1T
This completes the proof of the lemma. O

After this sequence of preparatory lemmas, we are now ready to prove the promised
result to the effect that none of thenested simulation and trace equivalences (for

n > 2), and none of the-nested simulation and trace preorders {for 3) are finitely

based over BCCSP.

Theorem 4. BCCSP module=2 or <, forn > 2, or <7 or S,,, forn > 3, is not
finitely equationally axiomatizable.

Proof. Let E be a finite inequational axiomatization for BCCSP. Pick a positive integer
m such that
m > max{depth(t), depth(u) | (t C u) € E} .

Let p, andg, be defined, for each € IN, as in Examplel. For ease of reference, we
recall that:
po  =a*™"'o @ =amto

Pn+1 = app + aqyn Gn+1 = QPn

As argued in Examplé, for everyn > 1, we have thap,, S., ¢., and thus

dn £>(n+1) Pn -

Let ¢y = (a)™—(a)T andyy,+1 = {(a)—),. Note that the formulay,, is contained
in £,41, for eachn > 1, and thaty,,; is the formula mentioned in the statement of
Lemmall. By induction onn > 1 one checks that, | v, butg, = —,.

We now proceed to use the fact that = ¢, butgq, E -, to argue that the
inequatiory,, C p,, cannot be proven from any finite set of equations that is sound for
=T". To this end, suppose thatis sound for=L" (which, by Propositiors, is certainly
the case ifE is sound fors,,, <2, or S,.1), wheren > 2. We show thatf is
incomplete forS,, ;1 (and thus certainly fo=?, <,, and 5&1 by Proposition3),
becausd’ ) ¢, C p,. This follows immediately from the following:

Claim. Assume that + p C g andlengths(q) C {n +m — 1, n+ 2m — 1}. Then

p|=¢n <~ Q|:'L/)n .

In fact, using this claim, we can show th&t ) ¢, C p,, as follows. Observe, first of
all, thatlengths(py,) is included in{n +m — 1, n+2m — 1}, for eachn € N. (In fact,
lengths(p,) equals{n+m—1, n+2m—1}, for eachn > 1.) We have already observed
thatp,, = v, butg, = —,,. Thus, by the above claim, the inequatignC p,, cannot
be derived from¥.
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Proof of the claim We use induction on the length of the derivationpof= ¢ from

E. The cases of reflexivity and transitivity are trivial, using the soundneds with
respect to=2" and that, by Lemma&(a), p =L ¢ implies lengths(p) = lengths(q),

for eachn > 2. The case thap C ¢ is a closed substantial substitution instance of
an axiom inE has been dealt with by Lemnid. What remains to consider is closure
under contexts: if the claim holds fprC ¢ it needs to be shown far+ » C ¢ + r, for
every closed BCCSP termover actiona, and forap C agq. The first of these follows
trivially by the observation that

p+r':eriﬁp):w7Lorr':¢n .

For the second, the soundnesgbyieldsp = ¢. Using the modal characterization of
=T and that),,_, is contained in,,, we have that

p|: '(bnfl < q )=¢n71 .

Sincey,, = (a)—,_1, it follows that

ap':@[}n@aLI':U)n s
which was to be shown. O

Remark 5. If E contains the axiomz C az + a, which is sound forS,, we have that
EF a® C a™ (a™ +a). Asa™ Ha™ ! + a) | 1y buta®™ = 1y, the proof
above, and the claim in particular, does not applyoand S..

Indeed, three different proofs appear to be needed to establish all of our non-finite ax-
iomatizability results. In particular, the proofs of non-finite axiomatizability for the pos-
sible futures and 2-nested simulation preorders are necessarily distinct, because if the
set of actions is a singleton, then there is a finite axiom system that is sound for the
possible futures preorder and complete for the 2-nested simulation preorder. This we
now proceed to show.

Assume that is the only action, and consider the axiom systep)- that contains
the equations in Tabl2, and the inequation

a(z+y) Caz+ay . 3

It is not too hard to see thdipr is sound for the possible futures preorder. In fact, for
all closed BCCSP terms ¢,

— the termsu(p 4 ¢) andap + aq have the same traces, and
— if a is the only action, thep + ¢ has the same set of traces as either q.

It follows that equation) is sound with respect to the possible futures preorderisf
the only action.

We shall now show thak'pr is complete for the 2-nested simulation preorder over
the collection of closed BCCSP terms over actioMhe following lemma will play a
key role in the proof of this result.
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Lemma 12. Let p, g be closed BCCSP terms over actionAssume thatlepth(p) <
depth(q). Then
EprFqCq+p .

Proof. By induction on the sum of the “sizes” of the closed BCCSP tepmgs We
proceed by a case analysis on the formay take.

— Casep = 0. Inthis caseFpr F ¢ = ¢ + p follows immediately from axiom A4 in
Table?2.

— Casep = ap/, for somep’. Assume thay = . ; ag;, for some finite index set
J and closed termg; over actiona (j € J). Sincedepth(p) < depth(q) by our
assumptions, there is an indgxe J such thatdepth(p’) < depth(g;). By the
inductive hypothesis, we have that

EpptqEqi+p .
Hence,
Epr - aq; Ca(q; + ')
C ag; +ap’”  (By(3)) .
The claim now follows using closure with respect to BCCSP contexts.
— Casep = p; + po, for somepy, po different from0. Sincedepth(p) < depth(q)

by our assumptions, we hadepth(p;) < depth(q) for i = 1,2. By the inductive
hypothesis, we may infer that

EprtFqEq+p; ,
fori =1,2. Thus,
EprtqCq+p2Eq+pr+p2,
which was to be shown. O

We are now ready to prove that the axiom systEmy is complete for the 2-nested
simulation preorder over closed BCCSP terms over action

Theorem 5. Letp, ¢ be closed BCCSP terms over actieanrAssume that S ¢. Then
EprtEpCEaq .

Proof. We prove the claim by induction on the depthofLetp = >, ; ap; and
q = EjeJ ag;, for some finite index seté and J and closed termp; (i € I) and

g; (j € J) over actiona. Note that, agp S, ¢, the depth ofg is equal to that op
(Lemma2(b)).

Leti € I. Then, sincep S, g, there is an indey; such thaty; S» g;, (Propo-
sition 1). Since the depth gf; is smaller than that g, by our inductive hypothesis it
follows that the inequatiop; T ¢;, can be proven fronf . Since this holds for each
1 € I, we have that

EprkFpC Zaq]y, -
i€l
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To conclude the proof, it suffices only to show that

Epp = Za% Cg.
il

To this end, note that, sindépr is sound with respect to the possible futures preorder,
and the inequatiop C ), _; ag;, is derivable from it, the termgand} _, _; aq;, have
the same depth (Lemm&Db)). As previously observeds and ¢ also have the same

depth. Write now
q=> ag, +r

el
wherer is the sum of all the summandsghot occurring ind _, . ; ag;, . By the previous
observations, we have that

depth(r) < depth(q) = depth(>_ ag;,) -
el

Lemmal2 now yields that

Eprp + Zaqﬁ C Zaqji +r=q,
il il

completing the proof. O

6 Finitely Based Approximations of Bisimulation Equivalence

The results presented in the previous sections show that none of the nested simula-
tion and trace equivalences afford finite equational axiomatizations over the language
BCCSP, even in the presence of a singleton action set. The only exceptions to this
rule are the0-nested and-nested simulation and trace equivalences, which happen
to be the universal relation, simulation and trace equivalence. Interestingly, however,
as shown in 17,18], the intersection of all of the-nested simulation or trace equiva-
lences or preorders over image-finite labelled transition systems, and therefore over the
language BCCSP, is bisimulation equivalence. Hennessy and Milner proved that
bisimulation equivalence is axiomatized over the language BCCSP by the equations in
Table2. It follows that this fundamental behavioural equivalence, albeit finitely based
over BCCSP, is the limit of sequences of relations that do not afford finite equational
axiomatizations themselves. This is by no means the only example from process the-
ory of a “discontinuous” property of a behavioural equivalence—i.e., of a property that
“appears at the limit”, but is not afforded by its finite approximations. Other examples
of this phenomenon may be found in, e.g., the study of decidability properties of be-
havioural equivalences over classes of infinite state processes. For instance, as shown
in [5,9,10], bisimulation equivalence is decidable over the languages BPA and BPP, but
none of the other notions of behavioural equivalence in the linear time-branching time
spectrum is—see, e.g., the referencesq]].

It is a natural question to ask at this point whether bisimulation equivalence over
BCCSP is the limit of some sequence of finitely based behavioural equivalences that
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have been presented in the literature. We shall now argue that this does hold, provided
that the set of actions is finite.

As stated in Sect2.4, the n-nested trace equivalences were introducedlif) [
p. 147] as a a tool to define bisimulation equivalencgi9]. In op. cit Hennessy and
Milner introduced another sequence of relations that approximate bisimulation equiva-
lence. These were defined thus:

Definition 14. For everyn > 0, the relations=2 are defined inductively over closed
BCCSP terms thus:

— p=¢ qforeveryp,q;

— p =4, qiff for every action € A:
e if p % p’ then there is &' such thaiy - ¢’ andp’ =2 ¢/, and
o if ¢ % ¢ then there is @' such thap —~ p’ andp’ =2 ¢'.

Note that, unlike ther-nested trace equivalenceg, the relations=/ explore the be-
haviour of BCCSP terms only up to “deptti. As shown by Hennessy and Milner,
over image-finite labelled transition systems, bisimulation equivalence is the intersec-
tion of all of the relations=". Moreover, each of the-2! is preserved by the operators
of Milner's CCS, anda fortiori by those of BCCSP.

Our order of business will now be to offer a complete axiomatization of the relations
=4 over closed BCCSP terms. Ldtr denote the axiom system in TalileWe shalll
now show how to inductively construct a family of axiom systefis for n > 0, with
the following property:

Theorem 6. Letp, g be closed BCCSP terms. Ther=/ ¢ if, and only if, Az U E,, I
p=aq.

The axiom system#&,,, for n > 0, will be finite, if so is the set of actiond. In what
follows we assume that the set of variablesis, -, . . .}.

Definition 15. For eachn > 0, we define the axiom systdfi thus:

Ey = {.’El ~ ZL’Q} and
Enp1 ={alt +anys) ®alu+zags) [a € A, (t=u) € En} .

Note that, if A is a finite set set containing, sdyactions, then the axiom systeh),
containsk™ equations, for each > 0. Moreover, observe for later use that, for each
n > 0, the axioms in%,, only use variables, ..., z,1o.

We shall now show that Theorefdoes hold for the previously defined axiom
systemsE,,. Since the soundness of each of the axiom&'jncan easily be shown by
induction onn, using the aforementioned congruence properties of the relatigns
we shall limit ourselves to presenting a proof of the completenesszaf) E,, with
respect to=" over closed BCCSP terms. The following lemma will be useful in such a
proof.

Lemma 13. Letn > 0, and letp, ¢ be closed BCCSP terms. Assume thatu E,, +
p=~q. Thendz U E, 1 F ap = aq, for each actioru € A.
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Proof. Assume thatdz U E,, - p = ¢, for some closed BCCSP termsg. Recall that
this means that there is a sequepge- - - - = p; (k > 1) such that

- pP=D1

- ¢ =prand

— p; = Clo(t)] = Clo(u)] = p;41 for some closed substitution, contextC[ ] and
pair of termst, u with ¢t =~ v oru =~ t an axiom indz U E,, (1 <1 < k).

We prove thatdz U E,, 1 F ap = agq, for each actiom € A, by induction onk.

— Base Casek = 1. In this case we have that= ¢. Thus the equatiop ~ ¢ is
provable fromAz, and so isip = aq.

— Inductive Stepk > 1. By the inductive hypothesis, the equatiop ~ ap;_1 is
provable from the axiom systetdz U F, ;. Sinceapr, = aq, to complete the
proof, we are therefore left to prove that

Az UE,11 F apg—1 ~ apy . (4)

To this end, recall that

o pp_1 = Clo(t)] and

o pr = Clo(u)],
for some closed substitution, contextC| | and pair of terms, u with ¢t ~ w or
u ~ t anaxiomindz U E,. In case an axiom from z or its symmetric counterpart
was used,4) follows immediately from the rule of closure under BCCSP contexts.
The proof for the case when= u is an axiom inE,, proceeds by a case analysis
on the form of the contex@ ].

e Case 1Suppose’] ] is of the formC’[b(] ] + r)], for some actior and closed
termr.
In this case, it is sufficient to show that

Az U FEpy1 F b(o(t) +r) = blo(u) +7)

as @) will then follow by applying the rule of closure under BCCSP contexts
repeatedly.

To this end, let’ be the closed substitution that maps variable ; to r, and
acts likeo on all of the other variables. Using the axiomsdn U F,, 1, we
have that

Q

b(o(t)+r) =o' (b(t+ Tnys)) (BSTpis & var(t))
o' (b(u+ xny3)) (@Sb(t+ xpi3) ~b
~b(o(u)+r) (8Szpys & var(u)) ,

('LL + ZCnJrg) S En+1)

which was to be shown.
e Case 2 Suppose&’|] is of the form[ ] + r, for some closed term.
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In this case, letting’ be defined as above, and using the axioméit £, 1,
we have that
apr—1 = a(o(t) +r)
~o'(a(t +xnt3)) (ASTnts & var(t))
~o'(a(u+ xp43)) (@Sa(t+ zpi3) ~a
~a(o(u)+r) (asepis & var(u))

~ apg

(u+ 2ny3) € Enyr)

which was to be shown.
The remaining case, viz. when~ t an axiom inE,,, is similar. O

We are now ready to establish the completenesgof) E,, with respect to=- over
closed BCCSP terms, for eagh> 0.

The proof is by induction om. The base case is trivial since the equation~ z-
can be used to prove every (closed) equation.

For the inductive step, assume that U E,, is complete with respect te* over
closed BCCSP terms, and that:ﬁr1 q holds for closed termg, . We shall now
argue that the equatign~ ¢ can be derived from the axiom systetn U E,, ;. Let
p =2 crapiandg =3 . ;b;q;, for some finite index setsand.J and closed terms
a;p; (i € I) andb;q; (j € J). Our order of business will now be to show that

AzUFE, 1 Fp=p+qrq .

By symmetry, it is sufficient to show that the equatipr- ¢ = ¢ is derivable from
Az U E, ;1. Tothis end, let € I. Then, since :;*H q, there is an indey; such that
a; = b;, andp; =2 ¢;,. Since the axiom systemz UE,, is complete with respect to:!
by our inductive hypothesis, it follows that the equatjgn~ g;, can be proven from
AzUE,. By Lemmal3, the equatiom;p; ~ b;,q;, can be derived fromlz UE,, ;. As
this holds for each indeke 1, it follows thatp + ¢ ~ ¢ is derivable fromAz U E,, 41,
which was to be shown.
The proof of Theoren® is now complete.
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