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Abstract. This paper presents a simple notion of proof net for muttative linear logic with
units. Cut elimination is direct and strongly normalisiingcontrast to previous approaches
which resorted to moving jumps (attachments) of par unitxdwnormalisation. Composition
in the resulting category of proof nets is simply path conitgms all of the dynamics happens
in Gol(Setp), the geometry-of-interaction construction applied to ¢hgegory of sets and
partial functions.
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1 Introduction
Here is a passage from GirardPsoof Nets: the Parallel Syntax for Proof Thed(gir96, §A.2]%:

There are two multiplicative neutrals,and_L, and two rules, the axioma 1 and the weak-
ening rule: from- T, deduce- T', L. Both rules are handled by means of links with one
conclusion and no premise; howeverlinks are treated lik@-ary ?-links, i.e., they must be
given a default jump. Sequentialisation is immediate.

At first sight, cut elimination is unproblematic: replacewd between conclusionsand L

of zero-ary links with. .. nothing. But we notice a new prahlemamely that a cut formuld
can be the default jump of &-link L, and we must therefore propose another jumpifor
Usually one of the premises of the link with conclusiénvorks (or the jump of.’ if A is the
conclusion of al -link) works. Worse, this new jump is by no means natural{(is B ® C,
the new jump can either b8 or C), which is quite unpleasant. As far as we know, the only
solution consists in declaring that jumps are not part ofttef-net, but rather some control
structure. It is then enough to show that at least one chdidefault jump is possible. This
is not a very elegant solution: we are indeed working withiemjance classes of proof nets
and if we want to be rigorous we shall have to endlessly chieakguch and such operation
does not depend on the choice of default jumps.

This paper presents a very simple solution: define a muéplie proof net with units (neu-
trals) as a function from negative to positive formula legvsatisfying the usual correctness
criterion [Gir87, DR89]. Cut elimination on binary connies is then trivial (as usual in the
unit-free setting), and we have a direct strong normaéisaby standard path composition: all
of the dynamics happens BolI(Setp), the geometry-of-interaction or feedback construction
[Gir89, JSV96, Abr96] applied to the category of sets andigldunctions.

The novelty here is not the directed edges between negati/pasitive leaves, an idea which
goes back to the origins of linear logic [Gir87] and Kelly-blaane graphs [KM71]. The key
contribution is the simply defined, strongly normalising elimination, overGolI(Setp).
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Similar remarks are in the earlieimear Logic: A SurveyGir93, §3.6].




The nets. Here is a simple example of a cut-free proof net on a four-tdansequent:
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The graph of the function from negative to positive leaveshiswn by the directed edges. Note
that all four switchings are trees. This is easier to see ifkav the parse trees:

1 P Pt o1 1 1 1
\ / \ /
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/
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As with the unit-free case [Gue99, MOO0O], correctness canheeked in linear time (see Sec-
tion 6).

Gol dynamics. MLL formulas and proof nets form a category with a morphigim— B a
cut-free proof net o AL, B. For example,

191 (PeP)o(1e L
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is a morphism from the upper formula to the lower formula. (SUppress the negation on the
input/upper formula, flipping polarity, so tensors are stviid in the input.) The underlying

GolI(Setp) morphism is: M \7

An object of GoI(Setp) is a signed se$, whose elements we shall cédlaves and a morphism
S — T'is a partial function from negative leaves to positive lesafolarity flipped on the input
side). Composition is standard path compositiex,

L X

which provides composition (turbo cut elimination) in tregegory of proof nets.g.
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is the path composition of the previo&sol diagram. This provides a simple solution to the
problems articulated by Girard above.

Sliced-Gol composition for MALL nets. Section 7 continues th&ol theme, and shows how
composition (turbo cut elimination) of MALL proof nets [HGPHGO5] can be viewed as occur-
ring in a sliced variant ofzolI(Setp): it presents a faithful functor from the category of MALL
proof nets taVIatr(Gol(Setp)), whereMatr is a standard categorical biproduct construction.

Related work. Proof nets with units are in [BCST96] and [LS04]. Neithernvsal the problems
in Girard’s quote: each suffers from the need to mavgimps during elimination, so one is lum-
bered once again with equivalence classes. The cut-fresidad MLL proof nets in [BCST96]
are the cut-free proof nets described in Girard’s quote iincai¢/wire notation, with an additional
ordering onl-jumps: see Section 8.1. The paper [LS04] defines a cut-heaf pet on a sequent
F T' as a separate MLL formul@ whose leaves from left-to-right are a permutation of those o
I". The L-jumps and axiom links are thus enveloped in an additionalesyic layerO: see Sec-
tion 8.2. The proof nets of [MOO03] for intuitionistic muliipative linear logic with units (based
on essential nets [Lam94]) involve directed edges.

Work in progress quotients the nets presented in this papérrimble’s empire rewiring
[Tri94], which permits al-jump target to move so long as correctness is not brokergristauct
free star-autonomous categories for full coherertdBCST96, KO99, MOO03, LS04]).

Acknowledgement. Thanks to Robin Houston for feedback.

2 Notation

By MLL we mean multiplicative linear logic with units [Gir§7 Formulas are built from literals
(propositional variable®, , . .. and their duals?, Q-+, . ..) and units/constants/neutralsand
L by the binary connectivetensor @ andpar . Negation(—)+ extends to arbitrary formulas
with P++ = P on propositional variables,.* =1, 1+ = L, and de Morgan dualityA® B)* =
AL Bt and(A®B)t = A ® Bt. Anatom s a literal or unit. We identify a formula with its
parse tree: a tree labelled with atoms at the leaves and ciivegeat internal vertices. gequent
is a non-empty disjoint union of formulas. Thus a sequentparéicular kind of labelled forest.
We write comma for disjoint union. Sequents are proved usiegollowing rules:

r,A At A r A B,A I, A B
ax - cut —1 D X Y
P, Pt A 1 r, L I'A® B,A I, A®B




Here, and throughout this documeit,(Q, . .. range over propositional variableg, B, ... over
formulas, and’, A, ... over (possibly empty) disjoint unions of formulas. Withdoss of gen-
erality we restrict the axiom rule to literals [Gir87]. Theopositional variables®, @, ... and
the unit1 are positive, and their dualsP+, @+, ... and L arenegative. A leaf of a formula is
positive/negative according to its label. ot pair AVAl is a disjoint union of complementary
formulas A and A together with an undirected edgeca, between their roots. Aut sequent
is a disjoint union of a sequent and zero or more cut pairswi#ching of a cut sequent is any
subgraph obtained by deleting one of the two argument edgescb? (see [DR89]). By arold
proof net we mean a proof net for MLL with units as in Girard’s quote ie fimtroduction; see
[Dan90, Reg92, GSS92, Gir93, Gir96] for history and develept. (An example of an old proof
net is drawn in the next section.)

3 Proof nets

A leaf function on a cut sequent is a function from its negative leaves todsitige leaves. A
proof net on a cut sequerdt is a leaf functionf onI" satisfying:

e MATCHING. For any propositional variabl®, the restriction off to P-labelled leaves is a
bijection between thé@-labelled leaves of and theP-labelled leaves of.

e SWITCHING. For any switchind” of T, the undirected graph obtained by adding the edges
of ftoI" is a tree (acyclic and connected).

See page 2 for an example. This definition amounts to a restrgase of an old proof net: restrict
L -jumps to target positive leaves and reject unit axiom liflkse | — 1 jumps instead). In
addition, we orient all axiom links from negative to positivStating this the other way round, the
above definition relaxes to the old definition thus: (a)lofabelled leaves allovf to target any
vertex (equivalently subformula) df, not just a positive leaf, (b) distinguish between two kinds
of edges fromlL to 1 (jump versusaxiom link), and (c) draw axiom links unoriented. Here is an
example of an old proof net:

yaeN 1~
1 P L L
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which in original proof net notation is:

| [
Pt 1 ‘
Do\l Vo
1 P P-®1 M. x
% 1
PR (Pt ®1) 1oL
Axiom links are shown as three-segment straight edges, tangg from_L-links L are shown
curved and directed.

Translation from a proof to a proof net is as usual, withgump added at each-rule, but
now with choice of target restricted to positive atoms ohlgte that well-definedness relies on the




observation that every provable MLL sequent contains aigesaitom. The translation becomes
deterministic upon marking a positive leaf in the conclusid every | -rule. For example, each
of the following marked proofs translates (determinigijganto the proof net on page 2:

—1
P —
—’LJ_ ax 1,1
1, P, P 1, L T ax
P, P 1,1, 1

1,P, Pteol, L B
1,P, Pteol, 1,1 .
1, PB(Pte1), 1, L .
1, PR(Pt®1), L, L, L N
1, PR(Pt®1), L, 1%L

P, Ptol, 1, 1
P, Ptel, 1, 1, 1
P, Pteol, 1,181
PR(Pt®1), L, 1%L
1, PR(Pt®1), L, 131

N

Marks are shown by underlining; when a sequent has just ogiéygoatom, we leave the mark
implicit. (Downward tracking ofL’s is vertical, except through the tensor rule.)

THEOREM 1 (SEQUENTIALISATION) Every proof net is a translation of a proof.
This is simply a restriction of the theorem for old proof ne@orrectness is verifiable in linear
time (a simple corollary of the unit-free case [Gue99, MQO8ge Section 6.

4 Cut elimination

Let f be a proof net on the cut sequéhtAvAL. The resultf’ of iminating the cut inAVAL is:

e Atom. SupposeA is an atom. Without loss of generality, is positive. DeleteélvAL and
reset anyf-edge toA to targetf (A=) instead.

e CompoundSupposed is a compound formula. Without loss of generalty= B @ C and
At = B13C*. Replaced_A*+ by B_B+,C_C~. The leaves, and, remain unchanged.

Schematically:

of;i\ Al/*\ N Ny

A

N/ ~_ 7

1 A atomic 1



THEOREM 2 Cut elimination is well-defined: eliminating a cut from a pfmet yields a proof
net.

Proof. The atomic case is trivial, since switchings and cyclesespond before and after the
elimination. The compound case is the same as the usuafreeielimination [Gir87, DR89,
Gir93]. O

PrRoPOSITION1 Cut elimination is locally confluent.

Proof. The only non-trivial case is a pair of atomic eliminationshis case is clear from the
following schematic involving two interacting atomic ClmexesxélvAl andBVBL.

SR N N
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-

THEOREM 3 Cut elimination is strongly normalising.

Proof. It is locally confluent, and eliminating a cut reduces the hamof vertices of the cut
sequent. O

Turbo cut elimination.  As with standard unit-free MLL proof nets, normalisatiomdze com-
pleted in a single step. Forthe " leaf of a formulad in a cut pairA_A~*, leti* denote the™
leaf of A-. Thenormal form of a cut sequenf is the sequen{l’| obtained by deleting all cut
pairs. Given a proof nef onT', itsnormal form | f| is the proof net onI'| obtained by replacing
every set of edgelo, I ), (1, l2), (I3, 13), ..., (I-_|,1,) in f inwhich onlyly andl,, occur in|T|
by the single edgély, [,,). By a simple induction on the number of vertices of cut setgjefi|
is precisely the normal form of under one-step cut elimination. (In particular, this ireplif| is
indeed a proof net.)



5 Gol dynamics

Cut elimination yields a category” of MLL proof nets. Objects are MLL formulas, and a mor-
phism A — B is a proof net on the (cut-free) sequett, B (cf. [HG03, HGO05], for example).
The composite off : A — B andg : B — C' is the normal form of the proof net U g on
AL B_J B, C. Composition is associative because cut elimination @ngly normalising. The
|dent|tyA — A, aleaf function otdL, A, has an edge between tileaf of A and thei" leaf
of A for eachi, oriented from negative to positive.
We generally drawf : A — B with A aboveB, and suppress the negation.anFor example,

the identity L @ P - L ® P

]{?

P

®

1
129 pt 1oP becomes +

1®
Similarly, a composition such as
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(involving the aforementioned identity ® P — | ® P) becomes:
(PoQY)®Q (PeQHeQ
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¥ ® ]{?
1l®P 1l®P

A more interesting example of composition is on page 3 of thduction.

Underlying Gol category. The categoryGolI(Setp), the result of applying the geometry-of-
interaction or feedback constructi@ol [Gir89, JSV96, Abr96] to the categoBetp of sets and
partial functions, has the following structure. An objegtai sighed sef, whose elements we
shall callleaves(each signed eithgrositiveor negative, and a morphisny — T is apartial leaf
function: a partial function fromS* + 7'~ to S— + T, where(—)" (resp.(—)™) restricts to
positive (resp. negative) leaves. For example,



is a (total) morphism from the upper signed set (4 poskiead 2 negative leaves) to the lower
one (2 positive and 3 negative leaves). Composition is sir(fplite) path composition: for an
example, see page 2 of the Introduction. Turbo cut elinomas the very same path composition,
hence there is a forgetful (faithful) functor from the caigg\ of MLL proof nets toGolI(Setp),
extracting the leaves from a formula. Again, see the Intctidn for examples.

6 Linear complexity of proof net correctness

THEOREM4 (LINEAR COMPLEXITY) Verification of proof net correctness is linear in the num-
ber of leaves: iff is a leaf function on a cut sequerit then determining whethgris a proof net
can be done in linear time in the number of leave§ of

Proof. Verifying the MATCHING condition is clearly linear time. TheV@TCHING condition is a
simple corollary of the unit-free theorem [Gue99, MOOO]e fanction f determines a standard
unit-free proof structurg’ on T, as follows. First, replace every cut padr Al by A® A+ We
may assume every positive leaf has an incomfagdge: every literal does, by MCHING; if
the 1 of a subformulad ® 1 doesn't, replaced ® 1 by A; if the 1 of A%¥'1 doesn't, SVITCHING
fails. Re-label each positive literal icand each negative literal tb. Replace each by 1™ where
n > 1is the number off-edges targetting the and1™ denotes the tensor productmofcopies of

1 (bracketed arbitrarily); re-target theedges to the old to each target a distinct newof 1.
Finally, view the symbols. and1 as complementary literals, so we have formed a standard proo
structuref on a cut-free, unit-free MLL sequeﬂi’t To clarify, here |sf for f the proof net on
page 2:

L (Ielel)®(Le(lel)) L 131

By construction the originagf onT" is correct ifffonf is correct in the usual unit-free sense. The
construction off is linear time in the number of leaves. O

COROLLARY 1 The theorem above extends to old proof nets.(when f is a function from
negative leaves to vertices ©f optionally with a differentiation between axiom links { and
jumps 1”1).

Proof. First, if differentiating, replace every axiom link { by a jump 1”1, Rewrite every
compound subformula or negative ledftargeted by al -jump to A ® 1, and shift anyl-jumps
which targetedA to target the newl instead. This yields a functiofi from negative leaves to
positive leaves which is correct iff is correct; apply the above theoremftoTo clarify, here isf
for the old proof netf drawn on page 4:

/’\ /‘\ /<\
P L
\ \ /
\
x
The constructiorf — f is linear tlme in the number of leaves. g



7 Sliced Gol composition for MALL nets

Continuing theGol theme, in this section we observe that composition (turli@lmination) of
MALL proof nets [HG03, HGO5] can be viewed as occurring in leced’ variant of GoI(Setp).
Specifically, we define a faithful functor

|—| : MALL — Matr(Gol(Setp))

whereMALL is the category of MALL proof nets defined in [HG03, HGO5] aMthtr is a stan-
dard biproduct constructioh.

A bag (or multiset) over a set or clask is a formal sum>;c; z; of memberse; of X for
some finite indexing sef.> Write Bag(C) for the free commutative monoid enrichment of a
categoryC: objects are those df, a morphismX — Y in Bag(C) is a bag of morphisms
X — Y inC (i.e, a bag over the homsét(X,Y")), and the composite df;c; f; : X — Y and
Yies9; 1 Y — Zis pointwise, indexed by x J:

(Zier fi); Cjesgj) = Sierjes(fizg) + X —Z

Recall the biproduct completioMatr(C) of a categoryC enriched over commutative monoids
(cf. [Mac71, VIII Ex. 2.6]). An object ofMatr(C) is a bag of objects of (i.e., a bag over the
collection of objects ofC) and a morphisnt;c; A; — ¥je; Bjis an(I x J)-indexed bag of
morphisms¥;cr jes fi; such thatf;; : A; — Bj in C, called amatrix. Composition is by matrix
multiplication with respect to the commutative monoid agiEm « in C: the (i, k)" element of
the composite 0E;c;s je s fij andXjc ke gk IS K jcs (fij; gjx) Wheresk denotes iterated.

If C does not come equipped with a commutative monoid enrichnuiine Matr(C) as
Matr(Bag(C)), interposing free commutative monoid enrichment. Thdatr(GoI(Setp))
has the following compact closed structure with biproducts

e Objects. An object is a bag (formal su) = X, A; of signed sets;, theslices of A.

Morphisms. A morphisnt;c; A; — Xjcs Bjis anl x J-indexed matrix whoséi, ;)
element is a bag of partial leaf functiods — B; .

Pointwise tensor¥;cr A; ® Yjes B = Yierjes 4i ® B; .

Pointwise duality: (X;er A;))t = Sier (AF).

Biproduct: X,c; A; @ Xjcs Bj is the formal sumX;c; A; + X,c; B; (indexed by the
disjoint union ofl and/J).

The faithful functor. Recall that an object of the categobALL of MALL proof nets is a
MALL formula, generated from literals by the binary connees ® (tensor),% (par), ® (plus)
and& (with) [HGO03, HGO5]. Henceforth identify a formula with ifgarse tree (a labelled binary
tree with literals on leaves and connectives on internaleabd Recall ipid.] that anadditive

20One could just as well take in place $étp either the categoriRel of sets and binary relations or (since we do not
consider units in this section) the categ®iy of sets and partial injective functions.
3Formal sums are defined modulo index renamireg, ;<7 z; and;c s y; denote the same bag iff there exists a

bijection(—) : I — J withy; = z; € X.



resolution of a formula A is any subtree (labelled subgraph) obtained by deletingaogegment
subtree of each additive connective ¢r &) of A. Define the faithful functor

|—| : MALL — Matr(GoI(Setp))

on an object (MALL formula)A as follows:| A| comprises the signed sets underlying the additive
resolutions ofA. Formally, |A| = X,crr whereR is the set of additive resolutions df and
r denotes the underlying signed set of leaves.oFor example, ifA = P @ ((Q ® Q)X P)
with leavesa], a3 , a3, af from left to right, thenA| = {a]} + {a3,a3,a]}, the formal sum
of two signed sets, obtained from the two additive resohgtiof A.

Recall that a morphisnf : A — B in MALL is a (cut-free) MALL proof net on the formula
A —o B=A+%B. A proof net on a formula is a set of leaf functions, each taking the leaves of
an additive resolution of’, satisfying three correctness conditidnket R and.S denote the sets
of additive resolutions afl (equiv. of A1) andB, respectively. Thus the set of additive resolutions
of A — B is in bijection with R x S, since—o is multiplicative; writer — s for the additive
resolution of A — B corresponding to the additive resolution®f A ands of B. Define the
(R x S)-indexed matrix f| : |A| — |B| of a morphism (proof netf : A — B as follows: the
(r,s)" element is the bag comprising every leaf function in thefsethose underlying additive
resolution isr — s. By the first proof net correctness condition, each leaf tioncin f has a
distinct underlying additive resolution, so each such balgos at most a singleton.

For example, led = P @ ((Q ® QLH)®P) andB = (P @ Q+) @ (P&P), and let the
morphismf : A — B in MALL be the proof nef = {z,y, z} with:

P& ((Q®Q+H)3P) P o ((Q®QH)3P) P& ((Q®QH)3P)
L/
x Yy Z
(P®Qt) @ (P&P) (P®Qt) @ (P&P) (P®Qt) @ (P&P)

Leta], a3 ,az,a; andb], by, bs,b) be the leaves afl and B, respectively, ordered left to right.
Then|A| = {a]} + {a3,a;,af} (the formal sum of two signed sets, obtained from the two
additive resolutions ofl, as we saw earlier) arid| = {b; } + {b; } + {b5} + {b] } (the formal
sum of four singleton signed sets), drfd is the2 x 4 matrix

) 5} o3} (07}
{af} z 0 0 0
{a3 a3, a7} < 0 0 vy =z >
where( denotes the empty bag, and rows and columns are labellecthvéthigned sets of the
additive resolutions off and B, respectively.
This faithful functorMALL — Matr(Gol(Setp)) suggests a relationship with the geometry

of interaction for additives [Gir95, AJ94]. Since MLL unitse the main focus of the present
paper, exploring this relationship is best left for anotbhecasion.

“The first condition requires that just one leaf function fits any given&-resolution (definition analogous to
additive resolution); the second requires that each leaftion constitutes an MLL proof net (upon identifying the
underlying additive resolution with an MLL formula, by collapsing the single-argument kohes of the tree); the
third restricts how the leaf functions vary betweferresolutions. We shall only require the first condition here
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8 Previous approaches

Girard’'s passage quoted on the first page of the Introdugiiees a convenient summary of old
proof nets. Normalisation is hampered by having to movestargf L -jumps.

Proof nets for MLL with units are given in [BCST96] and [LSONeither solves the problems
in Girard's quote: each suffers from the need to mavgumps during elimination, so one is
lumbered once again with equivalence classes.

8.1 Circuit nets

The cut-free one-sided MLL proof nets in [BCST96] amit-free old proof nets (as described
in Girard’s quote, page 1) in circuit/wire notation, with additional ordering onL-jumps. For
example, the old proof net on page 4 is drawn thus:

Links are drawn as circular nodes, formulas are drawn asl{tah) wires, andL-jumps are drawn
dotted. By anMLL proof netin the [BCST96] setting we mean the special case when the base
is a set of propositional variables, afid)~ is restricted to propositional variables (as usual with
MLL formulas). The primary net definition in [BCST96] is twaded; a one-sided net is simply

a two-sided net with the tensor urdibn the input side (see the paragraph following Corollary 5.3
of [BCST96]). In drawing the one-sided net above, we omittes input unit and its jump. The
minor difference with old proof nets is that when multiplejumps target the same wire, they are
ordered along the wire; in an old proof net there is no suclerimd on_L-jumps targetting the
same subformula.

The problem with normalisation (see Girard’s passage or fiagemains. For example, if we
cut against theP? (P+ ® 1) wire above, we do not have a cut redex: first we must re-wire the
incoming L-jump to elsewhere in the empire of the we’re once again resorting to equivalence
classes for normalisation.

A key feature of the approach in [BCST96] is the modularityomnegation and planarity.
Circuit nets modulo equivalence describe the free linedidjributive and star-autonomous cate-
gories over a polygraple(g, over a category), yielding full coherence. For an intetaafuage
presentation of free star-autonomous categories, wittctillerence, see [KO99] (again modulo
an equivalence/congruence).

8.2 Syntactic nets

The paper [LS04] defines a proof net on a cut seqlieas a separate MLL formul® whose
leaves from left-to-right are a permutation of thosd ofThe formula® is shown upside down

®See the introduction to Section 2 of [BCST96].
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above the sequent, and the permutation is represented ijt{ireg argument edges to cross in the
upper half. Thel-attachments and axiom links are thus enveloped in an additsyntactic layer
O, with L -attachments as®~ | and axiom links as;~®~ 4. Here is an example of a proof net

on the three-formula sequent 1 ® P, L ® ((P+ ® P+)®P), essentially Figure 2 of [LS04]:

As with [BCST96] nets, the problem with normalisation (séeaf@l’s passage on page 1) remains.
For examplé, if I is the cut sequenP+, P_P+, P ® Q,Q*, L and® is the proof net given by
the MLL formula(P+® P)% (((P+ o P)B(Q®Q1))® L) (with identity permutation on leaves)
then the cut cannot be reduced immediately. First one myy &pvertible linear distributivity /
commutativity / associativity t@, subject to the constraint of not breaking the correctnegs-c
rion (i.e., a form of empire-rewiring [Tri94, BCST96]). Thus one is agaesorting to equivalence
classes for normalisation (see Theorem 4.3 of [LS04]). &titt nets modulo equivalence de-
scribe the free star-autonomous category with strict doirblolution A = A+ generated by a
set.
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