
Simple multiplicative proof nets with units

DOMINIC J. D. HUGHES∗

Stanford University

Abstract. This paper presents a simple notion of proof net for multiplicative linear logic with
units. Cut elimination is direct and strongly normalising,in contrast to previous approaches
which resorted to moving jumps (attachments) of par units during normalisation. Composition
in the resulting category of proof nets is simply path composition: all of the dynamics happens
in GoI(Setp), the geometry-of-interaction construction applied to thecategory of sets and
partial functions.
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1 Introduction

Here is a passage from Girard’sProof Nets: the Parallel Syntax for Proof Theory[Gir96, §A.2]1:

There are two multiplicative neutrals,1 and⊥, and two rules, the axiom⊢ 1 and the weak-
ening rule: from⊢ Γ, deduce⊢ Γ,⊥. Both rules are handled by means of links with one
conclusion and no premise; however,⊥-links are treated like0-ary?-links, i.e., they must be
given a default jump. Sequentialisation is immediate.

At first sight, cut elimination is unproblematic: replace a cut between conclusions1 and⊥
of zero-ary links with. . . nothing. But we notice a new problem, namely that a cut formulaA
can be the default jump of a⊥-link L, and we must therefore propose another jump forL.
Usually one of the premises of the link with conclusionA works (or the jump ofL′ if A is the
conclusion of a⊥-link) works. Worse, this new jump is by no means natural (ifA is B ⊗ C,
the new jump can either beB or C), which is quite unpleasant. As far as we know, the only
solution consists in declaring that jumps are not part of theproof-net, but rather some control
structure. It is then enough to show that at least one choice of default jump is possible. This
is not a very elegant solution: we are indeed working with equivalence classes of proof nets
and if we want to be rigorous we shall have to endlessly check that such and such operation
does not depend on the choice of default jumps.

This paper presents a very simple solution: define a multiplicative proof net with units (neu-
trals) as a function from negative to positive formula leaves, satisfying the usual correctness
criterion [Gir87, DR89]. Cut elimination on binary connectives is then trivial (as usual in the
unit-free setting), and we have a direct strong normalisation by standard path composition: all
of the dynamics happens inGoI(Setp), the geometry-of-interaction or feedback construction
[Gir89, JSV96, Abr96] applied to the category of sets and partial functions.

The novelty here is not the directed edges between negative and positive leaves, an idea which
goes back to the origins of linear logic [Gir87] and Kelly-MacLane graphs [KM71]. The key
contribution is the simply defined, strongly normalising cut elimination, overGoI(Setp).

∗Computer Science Department, Stanford University, CA 94305. Emaildominic@theory.stanford.edu, Tel.
+1 415 242-1858, Fax +1 650 725-4671.

1Similar remarks are in the earlierLinear Logic: A Survey[Gir93, §3.6].
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The nets. Here is a simple example of a cut-free proof net on a four-formula sequent:

⊥ P

&

(P⊥ ⊗ 1 ) ⊥ ⊥

&

⊥

The graph of the function from negative to positive leaves isshown by the directed edges. Note
that all four switchings are trees. This is easier to see if weshow the parse trees:

⊥ P P⊥ 1 ⊥ ⊥ ⊥

⊗

&

&

As with the unit-free case [Gue99, MO00], correctness can bechecked in linear time (see Sec-
tion 6).

GoI dynamics. MLL formulas and proof nets form a category with a morphismA → B a
cut-free proof net on⊢ A⊥, B. For example,

(
( 1 ⊗ 1 ) ⊗ (P ⊗ P⊥)

)
⊗ ( 1 ⊗⊥)

(P ⊗ P ⊥) ⊗
(
(Q
&

Q⊥ ) ⊗⊥
)

is a morphism from the upper formula to the lower formula. (Wesuppress the negation on the
input/upper formula, flipping polarity, so tensors are switched in the input.) The underlying
GoI(Setp) morphism is:

An object ofGoI(Setp) is a signed setS, whose elements we shall callleaves, and a morphism
S → T is a partial function from negative leaves to positive leaves (polarity flipped on the input
side). Composition is standard path composition,e.g.

7→

which provides composition (turbo cut elimination) in the category of proof nets,e.g.
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(
( 1 ⊗ 1 ) ⊗ (P ⊗ P⊥)

)
⊗ (1 ⊗⊥)

(
( 1 ⊗ 1 ) ⊗ (P ⊗ P⊥)

)
⊗ ( 1 ⊗⊥)

(P ⊗ P ⊥) ⊗
(
(Q

&

Q⊥ ) ⊗⊥
)

7→

(
(⊥⊗ Q )

&

Q⊥
)
⊗ (⊥

&

⊥)
(
(⊥ ⊗ Q )⊥ ⊗ Q

)⊥
⊗ ( 1 ⊗ 1)⊥

is the path composition of the previousGoI diagram. This provides a simple solution to the
problems articulated by Girard above.

Sliced-GoI composition for MALL nets. Section 7 continues theGoI theme, and shows how
composition (turbo cut elimination) of MALL proof nets [HG03, HG05] can be viewed as occur-
ring in a sliced variant ofGoI(Setp): it presents a faithful functor from the category of MALL
proof nets toMatr(GoI(Setp)), whereMatr is a standard categorical biproduct construction.

Related work. Proof nets with units are in [BCST96] and [LS04]. Neither solves the problems
in Girard’s quote: each suffers from the need to move⊥-jumps during elimination, so one is lum-
bered once again with equivalence classes. The cut-free one-sided MLL proof nets in [BCST96]
are the cut-free proof nets described in Girard’s quote in a circuit/wire notation, with an additional
ordering on⊥-jumps: see Section 8.1. The paper [LS04] defines a cut-free proof net on a sequent
⊢ Γ as a separate MLL formulaΘ whose leaves from left-to-right are a permutation of those of
Γ. The⊥-jumps and axiom links are thus enveloped in an additional syntactic layerΘ: see Sec-
tion 8.2. The proof nets of [MO03] for intuitionistic multiplicative linear logic with units (based
on essential nets [Lam94]) involve directed edges.

Work in progress quotients the nets presented in this paper by Trimble’s empire rewiring
[Tri94], which permits a⊥-jump target to move so long as correctness is not broken, to construct
free star-autonomous categories for full coherence (cf. [BCST96, KO99, MO03, LS04]).

Acknowledgement. Thanks to Robin Houston for feedback.

2 Notation

By MLL we mean multiplicative linear logic with units [Gir87]. Formulas are built from literals
(propositional variablesP,Q, . . . and their dualsP⊥, Q⊥, . . .) and units/constants/neutrals1 and
⊥ by the binary connectivestensor ⊗ andpar

&

. Negation(−)⊥ extends to arbitrary formulas
with P⊥⊥ = P on propositional variables,⊥⊥ = 1 , 1⊥ =⊥ , and de Morgan duality(A⊗B)⊥ =
A⊥ &

B⊥ and(A

&

B)⊥ = A⊥ ⊗ B⊥. An atom is a literal or unit. We identify a formula with its
parse tree: a tree labelled with atoms at the leaves and connectives at internal vertices. Asequent
is a non-empty disjoint union of formulas. Thus a sequent is aparticular kind of labelled forest.
We write comma for disjoint union. Sequents are proved usingthe following rules:

ax
P,P⊥

Γ, A A⊥,∆
cut

Γ,∆
1

1

Γ
⊥

Γ, ⊥

Γ, A B,∆
⊗

Γ, A ⊗ B,∆

Γ, A, B &

Γ, A

&

B
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Here, and throughout this document,P,Q, . . . range over propositional variables,A,B, . . . over
formulas, andΓ,∆, . . . over (possibly empty) disjoint unions of formulas. Withoutloss of gen-
erality we restrict the axiom rule to literals [Gir87]. The propositional variablesP,Q, . . . and
the unit1 arepositive, and their dualsP⊥, Q⊥, . . . and⊥ arenegative. A leaf of a formula is
positive/negative according to its label. Acut pair A A⊥ is a disjoint union of complementary
formulasA andA⊥ together with an undirected edge, acut, between their roots. Acut sequent
is a disjoint union of a sequent and zero or more cut pairs. Aswitching of a cut sequent is any
subgraph obtained by deleting one of the two argument edges of each

&

(see [DR89]). By anold
proof net we mean a proof net for MLL with units as in Girard’s quote in the Introduction; see
[Dan90, Reg92, GSS92, Gir93, Gir96] for history and development. (An example of an old proof
net is drawn in the next section.)

3 Proof nets

A leaf function on a cut sequent is a function from its negative leaves to its positive leaves. A
proof net on a cut sequentΓ is a leaf functionf onΓ satisfying:

• MATCHING. For any propositional variableP , the restriction off to P -labelled leaves is a
bijection between theP -labelled leaves ofΓ and theP⊥-labelled leaves ofΓ.

• SWITCHING. For any switchingΓ′ of Γ, the undirected graph obtained by adding the edges
of f to Γ′ is a tree (acyclic and connected).

See page 2 for an example. This definition amounts to a restricted case of an old proof net: restrict
⊥-jumps to target positive leaves and reject unit axiom links(use⊥ → 1 jumps instead). In
addition, we orient all axiom links from negative to positive. Stating this the other way round, the
above definition relaxes to the old definition thus: (a) on⊥-labelled leaves allowf to target any
vertex (equivalently subformula) ofΓ, not just a positive leaf, (b) distinguish between two kinds
of edges from⊥ to 1 (jump versusaxiom link), and (c) draw axiom links unoriented. Here is an
example of an old proof net:

⊥ P P⊥ 1 ⊥ ⊥ ⊥

⊗

&

&

which in original proof net notation is:

⊥
P

P⊥ 1
⊗

P⊥ ⊗ 1 &

P

&

(P⊥ ⊗ 1)
⊥

⊥ ⊥ &

⊥

&

⊥

Axiom links are shown as three-segment straight edges, and jumps from⊥-links ⊥ are shown
curved and directed.

Translation from a proof to a proof net is as usual, with a⊥-jump added at each⊥-rule, but
now with choice of target restricted to positive atoms only.Note that well-definedness relies on the
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observation that every provable MLL sequent contains a positive atom. The translation becomes
deterministic upon marking a positive leaf in the conclusion of every⊥-rule. For example, each
of the following marked proofs translates (deterministically) into the proof net on page 2:

ax
P , P⊥

⊥
⊥, P , P⊥

ax
1 , ⊥

⊗
⊥, P , P⊥⊗1 , ⊥

⊥
⊥, P , P⊥⊗1 , ⊥, ⊥ &

⊥, P

&

(P⊥⊗1), ⊥, ⊥
⊥

⊥, P

&

(P⊥⊗1), ⊥, ⊥ , ⊥ &

⊥, P

&

(P⊥⊗1), ⊥, ⊥

&

⊥

ax
P , P⊥

1
1

⊥
1 , ⊥

⊥
1 , ⊥ , ⊥

⊗
P , P⊥⊗1 , ⊥, ⊥

⊥
P , P⊥⊗1 , ⊥, ⊥ , ⊥ &

P , P⊥⊗1 , ⊥, ⊥

&

⊥ &

P

&

(P⊥⊗1), ⊥, ⊥

&

⊥
⊥

⊥, P

&

(P⊥⊗1), ⊥, ⊥

&

⊥

Marks are shown by underlining; when a sequent has just one positive atom, we leave the mark
implicit. (Downward tracking of⊥’s is vertical, except through the tensor rule.)

THEOREM 1 (SEQUENTIALISATION) Every proof net is a translation of a proof.

This is simply a restriction of the theorem for old proof nets. Correctness is verifiable in linear
time (a simple corollary of the unit-free case [Gue99, MO00]): see Section 6.

4 Cut elimination

Let f be a proof net on the cut sequentΓ, A A⊥. The resultf ′ of eliminating the cut inA A⊥ is:

• Atom. SupposeA is an atom. Without loss of generality,A is positive. DeleteA A⊥ and
reset anyf -edge toA to targetf(A⊥) instead.

• Compound.SupposeA is a compound formula. Without loss of generalityA = B ⊗C and
A⊥ = B⊥ &

C⊥. ReplaceA A⊥ by B B⊥, C C⊥. The leaves, andf , remain unchanged.

Schematically:

A A⊥ ⊗

B C

&

B⊥ C⊥

7→

A atomic 7→

B C B⊥ C⊥
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THEOREM 2 Cut elimination is well-defined: eliminating a cut from a proof net yields a proof
net.

Proof. The atomic case is trivial, since switchings and cycles correspond before and after the
elimination. The compound case is the same as the usual unit-free elimination [Gir87, DR89,
Gir93]. �

PROPOSITION1 Cut elimination is locally confluent.

Proof. The only non-trivial case is a pair of atomic eliminations. This case is clear from the
following schematic involving two interacting atomic cut redexesA A⊥ andB B⊥.

A A⊥ B B⊥

A A⊥ B B⊥

7→ 7→

7→7→

�

THEOREM 3 Cut elimination is strongly normalising.

Proof. It is locally confluent, and eliminating a cut reduces the number of vertices of the cut
sequent. �

Turbo cut elimination. As with standard unit-free MLL proof nets, normalisation can be com-
pleted in a single step. Forl the ith leaf of a formulaA in a cut pairA A⊥, let l⊥ denote theith

leaf of A⊥. Thenormal form of a cut sequentΓ is the sequent|Γ| obtained by deleting all cut
pairs. Given a proof netf on Γ, its normal form |f | is the proof net on|Γ| obtained by replacing
every set of edges〈l0, l1〉, 〈l⊥1 , l2〉, 〈l

⊥
2 , l3〉, . . . , 〈l

⊥
n−1, ln〉 in f in which onlyl0 andln occur in|Γ|

by the single edge〈l0, ln〉. By a simple induction on the number of vertices of cut sequents, |f |
is precisely the normal form off under one-step cut elimination. (In particular, this implies|f | is
indeed a proof net.)
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5 GoI dynamics

Cut elimination yields a categoryN of MLL proof nets. Objects are MLL formulas, and a mor-
phismA → B is a proof net on the (cut-free) sequentA⊥, B (cf. [HG03, HG05], for example).
The composite off : A → B andg : B → C is the normal form of the proof netf ∪ g on
A⊥, B B⊥, C. Composition is associative because cut elimination is strongly normalising. The
identity A → A, a leaf function onA⊥, A, has an edge between theith leaf ofA⊥ and theith leaf
of A for eachi, oriented from negative to positive.

We generally drawf : A → B with A aboveB, and suppress the negation onA. For example,
the identity⊥⊗ P → ⊥⊗ P

1

&

P⊥ ⊥⊗ P becomes

⊥⊗ P

⊥⊗ P

Similarly, a composition such as

(P⊥ &

Q)

&

Q⊥ ⊥⊗P 1

&

P⊥ ⊥⊗ P
7→

(P⊥ &

Q)

&

Q⊥ ⊥⊗ P

(involving the aforementioned identity⊥⊗ P → ⊥⊗ P ) becomes:

(P ⊗ Q⊥) ⊗ Q (P ⊗ Q⊥) ⊗ Q

⊥⊗ P 7→

⊥ ⊗ P ⊥⊗ P

A more interesting example of composition is on page 3 of the Introduction.

Underlying GoI category. The categoryGoI(Setp), the result of applying the geometry-of-
interaction or feedback constructionGoI [Gir89, JSV96, Abr96] to the categorySetp of sets and
partial functions, has the following structure. An object is a signed setS, whose elements we
shall callleaves(each signed eitherpositiveor negative), and a morphismS → T is apartial leaf
function: a partial function fromS+ + T− to S− + T+, where(−)+ (resp.(−)−) restricts to
positive (resp. negative) leaves. For example,

7



is a (total) morphism from the upper signed set (4 positive• and 2 negative◦ leaves) to the lower
one (2 positive and 3 negative leaves). Composition is simply (finite) path composition: for an
example, see page 2 of the Introduction. Turbo cut elimination is the very same path composition,
hence there is a forgetful (faithful) functor from the category N of MLL proof nets toGoI(Setp),
extracting the leaves from a formula. Again, see the Introduction for examples.

6 Linear complexity of proof net correctness

THEOREM 4 (LINEAR COMPLEXITY) Verification of proof net correctness is linear in the num-
ber of leaves: iff is a leaf function on a cut sequentΓ, then determining whetherf is a proof net
can be done in linear time in the number of leaves ofΓ.

Proof. Verifying the MATCHING condition is clearly linear time. The SWITCHING condition is a
simple corollary of the unit-free theorem [Gue99, MO00]: the functionf determines a standard
unit-free proof structurêf on Γ̂, as follows. First, replace every cut pairA A⊥ by A ⊗ A⊥. We
may assume every positive leaf has an incomingf -edge: every literal does, by MATCHING; if
the1 of a subformulaA ⊗ 1 doesn’t, replaceA ⊗ 1 by A; if the 1 of A

&

1 doesn’t, SWITCHING

fails. Re-label each positive literal to1 and each negative literal to⊥. Replace each1 by 1n where
n ≥ 1 is the number off -edges targetting the1, and1n denotes the tensor product ofn copies of
1 (bracketed arbitrarily); re-target then edges to the old1 to each target a distinct new1 of 1n.
Finally, view the symbols⊥ and1 as complementary literals, so we have formed a standard proof
structuref̂ on a cut-free, unit-free MLL sequent̂Γ. To clarify, here isf̂ for f the proof net on
page 2:

⊥ (1 ⊗ 1 ⊗ 1)

&

(⊥ ⊗ (1 ⊗ 1) ) ⊥ ⊥

&

⊥

By construction the originalf onΓ is correct ifff̂ on Γ̂ is correct in the usual unit-free sense. The
construction off̂ is linear time in the number of leaves. �

COROLLARY 1 The theorem above extends to old proof nets (i.e., whenf is a function from
negative leaves to vertices ofΓ, optionally with a differentiation between axiom links⊥ 1 and
jumps⊥ 1 ).

Proof. First, if differentiating, replace every axiom link⊥ 1 by a jump ⊥ 1 . Rewrite every
compound subformula or negative leafA targeted by a⊥-jump toA ⊗ 1, and shift any⊥-jumps
which targetedA to target the new1 instead. This yields a functioñf from negative leaves to
positive leaves which is correct ifff is correct; apply the above theorem tof̃ . To clarify, here isf̃
for the old proof netf drawn on page 4:

⊥ P P⊥ 1 1 ⊥ ⊥ 1 ⊥

⊗

&

⊗

⊗

&

The constructionf 7→ f̃ is linear time in the number of leaves. �
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7 Sliced GoI composition for MALL nets

Continuing theGoI theme, in this section we observe that composition (turbo cut elimination) of
MALL proof nets [HG03, HG05] can be viewed as occurring in a ‘sliced’ variant ofGoI(Setp).
Specifically, we define a faithful functor

| − | : MALL −→ Matr(GoI(Setp))

whereMALL is the category of MALL proof nets defined in [HG03, HG05] andMatr is a stan-
dard biproduct construction.2

A bag (or multiset) over a set or classX is a formal sumΣi∈I xi of membersxi of X for
some finite indexing setI.3 Write Bag(C) for the free commutative monoid enrichment of a
categoryC: objects are those ofC, a morphismX → Y in Bag(C) is a bag of morphisms
X → Y in C (i.e., a bag over the homsetC(X,Y )), and the composite ofΣi∈I fi : X → Y and
Σj∈J gj : Y → Z is pointwise, indexed byI × J :

(Σi∈I fi) ; (Σj∈J gj) = Σi∈I,j∈J (fi; gj) : X → Z

Recall the biproduct completionMatr(C) of a categoryC enriched over commutative monoids
(cf. [Mac71, VIII Ex. 2.6]). An object ofMatr(C) is a bag of objects ofC (i.e., a bag over the
collection of objects ofC) and a morphismΣi∈I Ai → Σj∈J Bj is an(I × J)-indexed bag of
morphismsΣi∈I,j∈J fij such thatfij : Ai → Bj in C, called amatrix. Composition is by matrix
multiplication with respect to the commutative monoid operation ⋆ in C: the 〈i, k〉th element of
the composite ofΣi∈I,j∈J fij andΣj∈J,k∈K gjk is ⋆j∈J (fij; gjk) where⋆ denotes iterated⋆.

If C does not come equipped with a commutative monoid enrichment, defineMatr(C) as
Matr(Bag(C)), interposing free commutative monoid enrichment. ThusMatr(GoI(Setp))
has the following compact closed structure with biproducts:

• Objects. An object is a bag (formal sum)A = Σi∈I Ai of signed setsAi, theslices of A.

• Morphisms. A morphismΣi∈I Ai → Σj∈J Bj is anI × J-indexed matrix whose〈i, j〉th

element is a bag of partial leaf functionsAi → Bj .

• Pointwise tensor:Σi∈I Ai ⊗ Σj∈J Bj = Σi∈I,j∈J Ai ⊗ Bj .

• Pointwise duality:(Σi∈I Ai)
⊥ = Σi∈I (A⊥

i ) .

• Biproduct: Σi∈I Ai ⊕ Σj∈J Bj is the formal sumΣi∈I Ai + Σj∈J Bj (indexed by the
disjoint union ofI andJ).

The faithful functor. Recall that an object of the categoryMALL of MALL proof nets is a
MALL formula, generated from literals by the binary connectives⊗ (tensor),

&

(par),⊕ (plus)
and& (with) [HG03, HG05]. Henceforth identify a formula with itsparse tree (a labelled binary
tree with literals on leaves and connectives on internal nodes). Recall [ibid.] that anadditive

2One could just as well take in place ofSetp either the categoryRel of sets and binary relations or (since we do not
consider units in this section) the categoryPInj of sets and partial injective functions.

3Formal sums are defined modulo index renaming,i.e., Σi∈I xi andΣj∈J yj denote the same bag iff there exists a

bijection(b−) : I → J with ybi = xi ∈ X.
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resolution of a formulaA is any subtree (labelled subgraph) obtained by deleting oneargument
subtree of each additive connective (⊕ or &) of A. Define the faithful functor

| − | : MALL −→ Matr(GoI(Setp))

on an object (MALL formula)A as follows:|A| comprises the signed sets underlying the additive
resolutions ofA. Formally, |A| = Σr∈R r whereR is the set of additive resolutions ofA and
r denotes the underlying signed set of leaves ofr. For example, ifA = P ⊕ ((Q ⊗ Q⊥)

&

P )
with leavesa+

1
, a+

2
, a−

3
, a+

4
from left to right, then|A| = {a+

1
} + {a+

2
, a−

3
, a+

4
} , the formal sum

of two signed sets, obtained from the two additive resolutions ofA.
Recall that a morphismf : A → B in MALL is a (cut-free) MALL proof net on the formula

A ⊸ B = A⊥ &

B. A proof net on a formulaC is a set of leaf functions, each taking the leaves of
an additive resolution ofC, satisfying three correctness conditions.4 Let R andS denote the sets
of additive resolutions ofA (equiv. ofA⊥) andB, respectively. Thus the set of additive resolutions
of A ⊸ B is in bijection withR × S, since⊸ is multiplicative; writer ⊸ s for the additive
resolution ofA ⊸ B corresponding to the additive resolutionsr of A ands of B. Define the
(R × S)-indexed matrix|f | : |A| → |B| of a morphism (proof net)f : A → B as follows: the
〈r, s〉th element is the bag comprising every leaf function in the setf whose underlying additive
resolution isr ⊸ s. By the first proof net correctness condition, each leaf function in f has a
distinct underlying additive resolution, so each such bag will be at most a singleton.

For example, letA = P ⊕ ((Q ⊗ Q⊥)

&

P ) andB = (P ⊕ Q⊥) ⊕ (P&P ), and let the
morphismf : A → B in MALL be the proof netf = {x, y, z} with:

P ⊕ ((Q ⊗ Q⊥)

&

P ) P ⊕ ((Q ⊗ Q⊥)

&

P ) P ⊕ ((Q ⊗ Q⊥)

&

P )

x y z

(P ⊕ Q⊥) ⊕ (P&P ) (P ⊕ Q⊥) ⊕ (P&P ) (P ⊕ Q⊥) ⊕ (P&P )

Let a+
1
, a+

2
, a−

3
, a+

4
andb+

1
, b−

2
, b+

3
, b+

4
be the leaves ofA andB, respectively, ordered left to right.

Then |A| = {a+

1
} + {a+

2
, a−

3
, a+

4
} (the formal sum of two signed sets, obtained from the two

additive resolutions ofA, as we saw earlier) and|B| = {b+

1
} + {b−

2
} + {b+

3
} + {b+

4
} (the formal

sum of four singleton signed sets), and|f | is the2 × 4 matrix

(
{a+

1
}

{b+
1
}

x

{b−
2
}

0

{b+
3
}

0

{b+
4
}

0
{a+

2 , a
−

3 , a
+

4 } 0 0 y z

)

where0 denotes the empty bag, and rows and columns are labelled withthe signed sets of the
additive resolutions ofA andB, respectively.

This faithful functorMALL → Matr(GoI(Setp)) suggests a relationship with the geometry
of interaction for additives [Gir95, AJ94]. Since MLL unitsare the main focus of the present
paper, exploring this relationship is best left for anotheroccasion.

4The first condition requires that just one leaf function fits on any given&-resolution (definition analogous to
additive resolution); the second requires that each leaf function constitutes an MLL proof net (upon identifying the
underlying additive resolutionr with an MLL formula, by collapsing the single-argument branches of the treer); the
third restricts how the leaf functions vary between&-resolutions. We shall only require the first condition here.
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8 Previous approaches

Girard’s passage quoted on the first page of the Introductiongives a convenient summary of old
proof nets. Normalisation is hampered by having to move targets of⊥-jumps.

Proof nets for MLL with units are given in [BCST96] and [LS04]. Neither solves the problems
in Girard’s quote: each suffers from the need to move⊥-jumps during elimination, so one is
lumbered once again with equivalence classes.

8.1 Circuit nets

The cut-free one-sided MLL proof nets in [BCST96] are5 cut-free old proof nets (as described
in Girard’s quote, page 1) in circuit/wire notation, with anadditional ordering on⊥-jumps. For
example, the old proof net on page 4 is drawn thus:

¬

⊥

⊥

¬

⊥

& &

⊗

P

P⊥

1

⊥

⊥ P

&

(P⊥ ⊗ 1) ⊥ ⊥

&

⊥

P⊥ ⊗ 1
⊥

Links are drawn as circular nodes, formulas are drawn as (labelled) wires, and⊥-jumps are drawn
dotted. By anMLL proof net in the [BCST96] setting we mean the special case when the base
is a set of propositional variables, and(−)⊥ is restricted to propositional variables (as usual with
MLL formulas). The primary net definition in [BCST96] is two-sided; a one-sided net is simply
a two-sided net with the tensor unit1 on the input side (see the paragraph following Corollary 5.3
of [BCST96]). In drawing the one-sided net above, we omittedthis input unit and its jump. The
minor difference with old proof nets is that when multiple⊥-jumps target the same wire, they are
ordered along the wire; in an old proof net there is no such ordering on⊥-jumps targetting the
same subformula.

The problem with normalisation (see Girard’s passage on page 1) remains. For example, if we
cut against theP

&

(P⊥ ⊗ 1) wire above, we do not have a cut redex: first we must re-wire the
incoming⊥-jump to elsewhere in the empire of the⊥; we’re once again resorting to equivalence
classes for normalisation.

A key feature of the approach in [BCST96] is the modularity over negation and planarity.
Circuit nets modulo equivalence describe the free linearlydistributive and star-autonomous cate-
gories over a polygraph (e.g., over a category), yielding full coherence. For an internallanguage
presentation of free star-autonomous categories, with full coherence, see [KO99] (again modulo
an equivalence/congruence).

8.2 Syntactic nets

The paper [LS04] defines a proof net on a cut sequentΓ as a separate MLL formulaΘ whose
leaves from left-to-right are a permutation of those ofΓ. The formulaΘ is shown upside down

5See the introduction to Section 2 of [BCST96].
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above the sequent, and the permutation is represented by permitting argument edges to cross in the
upper half. The⊥-attachments and axiom links are thus enveloped in an additional syntactic layer
Θ, with ⊥-attachments as ⊗

⊥ and axiom links asA
⊗

A⊥. Here is an example of a proof net

on the three-formula sequent⊥, 1 ⊗ P, ⊥⊗ ((P⊥ ⊗ P⊥)

&

P ), essentially Figure 2 of [LS04]:

⊥ 1 P ⊥ P⊥ P⊥ P

&

⊗

&

⊗

⊗ ⊗ ⊗

&
&⊗

As with [BCST96] nets, the problem with normalisation (see Girard’s passage on page 1) remains.
For example6, if Γ is the cut sequentP⊥, P P⊥, P ⊗ Q,Q⊥,⊥ andΘ is the proof net given by
the MLL formula(P⊥⊗P )

&(
((P⊥⊗P )

&

(Q⊗Q⊥))⊗⊥
)

(with identity permutation on leaves)
then the cut cannot be reduced immediately. First one must apply invertible linear distributivity /
commutativity / associativity toΘ, subject to the constraint of not breaking the correctness crite-
rion (i.e., a form of empire-rewiring [Tri94, BCST96]). Thus one is again resorting to equivalence
classes for normalisation (see Theorem 4.3 of [LS04]). Syntactic nets modulo equivalence de-
scribe the free star-autonomous category with strict double involutionA = A⊥⊥ generated by a
set.
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