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Abstract

This is a thesis in an area of theoretical computer science and mathematical logic known as
game semantics. The idea behind game semantics is to model a program or proof interac-
tively as a strategy in a game, taking the form of a stimulus-response behaviour for Program
against Environment, or for Prover against Refuter. By capturing the meaning of programs
and proofs in an abstract, syntax-free form, the hope is to further our understanding of
programming languages and logics.

The calculus of concern in this thesis is system F, also known as the polymorphic or
second-order lambda calculus. From a computer science perspective, system F embodies
(parametric) polymorphism, the idea that a function is so schematic that it works on all
datatypes. For example, the reversal of a list is independent of the types of its elements.
From a logical point of view, the calculus is (propositional) second-order intuitionistic logic,
which can express second-order quantification. For example, the statement “every non-
empty set of positive integers has a least element” quantifies over sets rather than mere
elements of sets.

This thesis introduces a game semantics of system F' called the hypergame model, the
novelty being the introduction of second-order moves. A type is interpreted as a board on
which to play a game, and a hypergame is an ‘interleaving’ of games on one or more boards.
A second-order move consists in the introduction of of a new board. Computationally, the
introduction of a board models the instantiation of a polymorphic function at a type, and
logically, it models the instantiation of a universally quantified proof at a proposition.

The uniformity of system F' polymorphism is captured by the fact that the boards of
second-order moves by the opposing player are ‘hidden’ from view. The only way to play
on a hidden board is by using a ‘copycat’ strategy. Thus syntactic uniformity, ‘works the
same way whatever the type’, corresponds to game-theoretic uniformity, ‘plays the same way
whatever the hidden board’. Back at the level of the syntax, during interaction of strategies
this copycat can be seen as n-expansion after type variable instantiation.

The main theorem is that the hypergame model is fully complete. Informally, full com-
pleteness means that the model matches up with the syntax ‘perfectly’. Technically, every
strategy in the model is the interpretation of a term of system F'.

The hypergame model first appeared in preliminary form in Logic in Computer Science
1997 [Hug97].
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Chapter 1

Introduction

Denotational semantics is a programme of research in theoretical computer science pioneered
by Scott and Strachey around 1970 [Sco72, Sto79, Gun92]. It is aimed at providing abstract,
syntax-independent characterisations of program behaviour. A long-term goal of the ongoing
research in denotational semantics is to abstract and formalise the basic structures and
concepts of computation—procedures, loops, recursion, objects, sequentiality, concurrency,
and so on—to provide a firm foundation for software engineering and programming language
design and implementation. Analogously, by successfully abstracting and formalising the
basic concepts of mechanics such as velocity, gravity, and momentum, physics provided a
firm foundation for civil and mechanical engineering that has been used for centuries.

The programming concept of concern in this thesis is polymorphism. A function or
program is polymorphic if it can take arguments of a variety of types. An example is the
reversal of a list, which is defined irrespective of whether the elements are integers, characters,
or of any other type. More specifically, we concentrate on parametric polymorphism, as
distinguished from ad hoc polymorphism by Strachey [Str67]. A polymorphic function is
parametric if it behaves uniformly across all types, as with list reversal, which works the
same way regardless of the type of the elements. Other examples include templates in the
programming language C++ and polymorphism in functional languages such as ML. An
ad hoc polymorphic operation works differently at different types, for example, the print
functions of C or method overriding and overloading in object-oriented languages such as
Java.

System F' is a canonical calculus of parametric polymorphic functions. It is an extension
of the simply typed lambda calculus with an abstraction operation on types, and is also
known as the polymorphic or second-order lambda calculus. Abstraction on types is ex-
tremely powerful, and in particular any inductive datatype (natural numbers, lists, etc.) can
be defined in system F'. The system was introduced in the context of proof theory by Girard
[Gir71], but was discovered independently in computer science by Reynolds [Rey74]. The
terms and types of system F' correspond respectively to the proofs and propositions of propo-
sitional second-order intuitionistic logic, via a Curry-Howard isomorphism [How, GLT89b)].
This thesis, therefore, can be placed in either of two fields: theoretical computer science or
mathematical logic.

Models of systemm F. The abstract, syntax-independent characterisations of program-
ming languages and logics sought in denotational semantics are commonly referred to as
models. Models of system F' do not come about easily due to a circularity in the types
known as impredicativity: the type T of a polymorphic function that works ‘for all types
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o’ is semantically some kind of indexed product T' = Ily¢c 7ypes @, and since T' € Types, T' is
in its own indexing collection. In particular, Reynolds proved that no classical set-theoretic
models could exist [Rey84], though Pitts showed how to relax this in constructive set theory
[Pit87].

In nearly three decades of research only two classes of syntax-independent models of sys-
tem F have been found, domain models [McC79, Gir86, CGW89], and realisability models
[LM84, Hyl88]. Domain models adapt Scott’s techniques of approximation and continuity
originally used to model the lambda calculus [Sco72]. Research on realisability dates back
decades, to well before the discovery of system F (see [Hyl88] for a survey). In the light
of impredicativity, these two classes of models represent a substantial achievement in deno-
tational semantics. However, none of the models manage to capture system F' accurately,
because of additional undesirable elements not corresponding to any term of the calculus. In
particular, the domain models contain elements which contradict the spirit of parametricity
[O’H96].

Full completeness. In 1992 Abramsky and Jagadeesan [AJ94] introduced the term fully
complete to describe a model of a logic free from undesirable elements. Full completeness
refines ordinary completeness with respect to provability to a completeness with respect
to proofs: every element (morphism) of the model corresponds to a proof of the logic.
In Lawvere-Lambek categorical logic [Law69, Lam68] a model is a (structure-preserving)
functor, and the terminology “full completeness” comes from requiring the functor to be full.
Fully complete models provide accurate, syntax-independent characterisations of proofs and
normalisation. The related concept in the realm of programming languages is known as full
abstraction. Abramsky and Jagadeesan’s full completeness result for multiplicative linear
logic [AJ94] stimulated the search for full completeness results for a wide variety of calculi,
using a wide variety of techniques. Perhaps the earliest result of this kind, preceding even
the terminology “full completeness”, is for the simply typed A-calculus [P1o80].

Game semantics. Recently a style of denotational semantics known as game semantics
has emerged, with an impressive track-record of fully complete models of logics and fully
abstract models of programming languages [HO93, AJ94, Nic94, AJM94, HO94, AM95,
McC96b, Ong96, AM96, HY97, Lai97, AM98, AHM98, M099, HM99, AM99b]. The idea
is to model a program or proof interactively as a strategy in a game, taking the form of a
stimulus-response behaviour for Program against Environment or for Prover against Refuter.

Game semantics represents a shift in perspective from the static to the dynamic. For
example, in a model based on sets and functions (including domain and realisability models),
a function F': (X — X) — X has instant access to the whole (possibly infinite) input-output
graph of an argument function g : X — X. By contrast, in game semantics, F' can obtain
information about g only by repeatedly testing its input-output behaviour as a ‘black box’.
In fact, game semantics is even more interactive than this example may suggest: strategies
are like processes, and composition is a form of ‘parallel composition with hiding’, in the
sense of concurrency theory [Hoa85].

In 1989, before the emergence of game semantics, Girard [GLT89b] wrote!:

... denotational semantics of programs abound: for this kind of semantics nothing
changes throughout the execution of program. On the other hand, there is hardly
any civilised operational semantics of programs (we exclude ad hoc semantics

In this passage, read denotational as static and operational as dynamic, a pattern which was set up by
the author in the preceding section.



which crudely paraphrase the steps toward normalisation). The establishment
of a truly operational semantics of algorithms is perhaps the most important
problem in computer science.

Game semantics can be seen as a significant step towards such a semantics of algorithms.

A celebrated achievement of game semantics is the furthering of our understanding
of higher-type extensional sequential computation, with the fully abstract PCF models of
Abramsky/Jagadeesan/Malacaria [AJM94], Hyland/Ong [HO94], and Nickau [Nic94]. PCF
is an idealised functional programming language with if-then-else, basic arithmetic, and
recursion.

The first compositional games models appeared in the early 1990s. In computer science,
the origins of ideas can be traced back to the concrete data structures of Kahn and Plotkin
[KP93] (which first appeared in 1978) and the sequential algorithms of Berry and Curien
[BC82]. In logic, ideas can be traced back to Lorenz and Lorenzen [LLT78]. Also influential
were the games of Blass [Bla72, Bla92], Joyal’s categorical presentation of Conway’s games
[Con76], and Gandy’s dialogues [Gan93]. There are links with Girard’s geometry of inter-
action in linear logic [Gir87, Gir89], and the interaction in abstract machines [DHR96]. For
more history, see the introductions of [AJ94, Fel86, Hyl97, HO94, McC96b], and for acces-
sible introductions to game semantics, see [Hyl97, AM99a]. Current research includes the
abstraction of strategies and interaction [AM99b, HS99], addressing the issue that mathe-
matical representations in terms of sequences and parallel composition with hiding can be
complicated and unwieldy.

Contribution: hypergame semantics. This thesis introduces? a fully complete game
semantics of system F' called the hypergame model, a key novelty being the introduction of
a form of second-order move.

A type is interpreted as a board on which to play a game, and a hypergame is an
‘interleaving’ of games on one or more boards. Picture a chess-board, a backgammon-board,
and several others, each with games running on them. A second-order move consists in
the introduction of of a new board into the hypergame, for example, a monopoly board,
upon which play may begin at some point in the future. More precisely, let B be the board
interpreting the type 7. Then the application of a polymorphic term to a type argument 7' is
interpreted by a second-order move introducing B into the hypergame. Thus the hypergames
model is captured by the slogan type arguments are second-order mowves.

The uniformity of system F polymorphism is captured by the fact that the boards of
second-order moves by the opposing player are hidden from view. The only way to play
on a hidden board is by using a ‘copycat’ strategy. Thus syntactic uniformity, ‘works the
same way whatever the type’, corresponds to game-theoretic uniformity, ‘plays the same way
whatever the hidden board’. Back at the level of the syntax, during interaction of strategies
this copycat can be seen as 7-expansion after type variable instantiation. For example,
AXAfXFY =Y) ~ AfY2Y f o XYY AyY fy.

The first-order fragment of the model is based on (the A-calculus fragment of) Hy-
land/Ong [HO94] and Nickau [Nic94] PCF games. The Hyland/Ong and Nickau games
models are widely accepted as being one and the same. However, we highlight a subtle
and hitherto neglected difference between Hyland/Ong interaction and Nickau interaction,
which turned out to be critical for the construction of the hypergames model. In some
sense Hyland/Ong interaction is ‘richer’ than Nickau interaction; we elaborate at the end
of Chapter 3. For technical reasons, we chose Nickau’s approach as the first-order basis of
interaction in the hypergame model.

2The model first appeared in preliminary form as the extended abstract [Hug97].



Contribution: full completeness for system F. We work with system F' with prod-
ucts, and the hypergames model H is presented categorically as a 2Ax-hyperdoctrine. The
main theorem is:

THEOREM (FULL COMPLETENESS) Every morphism (winning strategy) o of H
defines an n-long, -normal term &, whose interpretation is o.

Thus the hypergames model gives a precise, syntax-independent characterisation of (constant-
free) parametric polymorphic functions.

One way of thinking about full completeness is that the model is isomorphic to a quotient
of the syntax. The quotient induced by H on the product- and unit-free fragment system F
includes 87 together with the isomorphism induced on terms (because terms contain types)
by identifying every type with its prenex normal form. So the equational theory of the model
is very close to initial.

By full completeness, H is parametric, in the informal Strachey sense that every function
acts ‘uniformly’. The model is not Reynolds relationally parametric, using a result of [PA93]:
VX .X — X is not terminal. Note that the term model of system F is not relationally
parametric for the same reason, so this is not a symptom of non-uniformity.

As an application of the theorem, we use full completeness to reason about properties
of the system F' encodings of products and sums, and simple inductive datatypes such as
booleans, natural numbers, and lists.

Related work. The hypergames model is not the first games model of a polymorphic
calculus. Abramsky [Abr97] obtained a model of the multiplicative linear cousin of system
F', though unfortunately it was not fully complete. The first-order fragment of the model
is based on Abramsky/Jagadeesan linear logic games [AJ94]. The new idea was to model
polymorphism via the expansion of the ‘playing area’ as a game proceeds. Relative to this,
the novelty of the hypergame approach in this thesis is the method by which the shape of
the playing area changes, namely, by second-order moves.

At second-order Abramsky uses domain-theoretic techniques, in the form of functions
between games that are continuous with respect to an inclusion ordering on the games. With
regard to the static/dynamic discussion in the section earlier on game semantics, because of
the domain-theoretic underpinning one could say that at second order the model is static.
By contrast, the hypergames model, with second-order moves, is dynamic at second order.
Consequently (and informally), in the context of this related work, the essential contribution
of this thesis is as follows:

Full completeness for system F' can be obtained by a semantic shift in perspective
from static to dynamic at second order, with the notion of a second-order move
interpreting type application.

This idea of ‘type arguments as second-order moves’ first appeared in [Hug97]. Nickau
and Ong have adopted the idea and are hoping to develop an alternative model based on it
[NO], aiming to be closer to the original Hyland/Ong and Nickau PCF' games. Upon the
completion of their work, it will be interesting to study of the relationship between the two
models.

Currently, Abramsky and Lenisa are working on fully complete games models for M L
polymorphsism, which may one day turn out to be a stepping stone towards a different fully
complete model for system F'.



1.1. THE IDEAS IN A NUTSHELL )

Hugo Herbelin is working on an abstract machine for system F' [Her]. On the basis of
recent informal discussions, the interaction of his abstract machine may turn out to be the
same as the interaction of the hypergames model presented here (restricted to the product-
free case).

1.1 The ideas in a nutshell

This section covers the key ideas of the hypergames model in an informal and accessible way,
hopefully making the rest of the thesis redundant for casual readers (apart from, perhaps,
the conclusion, Chapter 9).

Due to its second order nature, system F' is rather hard to understand. It was not at
all obvious where to begin the search for a games model. So the thought was this: given
the multitude of existing games models of first-order calculi, can one abstract a methodology
for moving from syntax to game semantics? If so, one could simply ‘plug in’ the syntax of
system F', and a games model of system F' would pop out for free.

In section 1.1.1 below we outline such a methodology, motivated by analysing terms of the
simply typed lambda calculus. This methodology is applied to system F' in section 1.1.2, the
results of which yield two of the key ideas in the hypergame model: the notion of a second-
order move introduced in section 1.1.4, and the copycat rule presented in section 1.1.3.
Another new idea is introduced in section 1.1.5, that of a polymorphic arena, used as the
‘gameboards’ in hypergames. Finally, section 1.1.6 explains copycat between hidden arenas
during the interaction of strategies back at the level of the syntax, as type instantiation
followed by 7-expansion.

1.1.1 The ‘top-down term’ methodology

We set out a methodology for extracting strategies from terms of the simply typed A-calculus.
The strategies so obtained turn out to be Lorenzen E-strategies, which were a precursor of
Hyland/Ong innocent strategies and Nickau sequential strategies. Consequently, this section
also serves as an informal introduction to some of the ideas behind (the A-calculus fragment
of) Hyland/Nickau/Ong PCF games, including their notion of arena as a ‘game-board’. We
assume nothing more than a basic familiarity with the pure simply typed A-calculus.

Let A\] denote the simply typed lambda calculus with types generated by arrow — from
a single base type variable, say X. We shall follow the usual conventions that abstraction
extends as far to the right as possible, application associates to the left, and arrow associates
to the right. For example,

MEXPXX N X NS fay = AEEX 2 X N X ((Fo)y)

Here are the basic properties of simply typed lambda calculus that we shall need, which
are covered by any introductory textbook on the subject, e.g., [Bar84, GLT89b]. A term
is closed if it contains no free variables. A term is f-normal if and only if it is of the
form )\mlTl. e )\a:kT’“ .Yus ... u, where y is a variable and the wu; are also f-normal terms. The
variable y is called the head wvariable. If the term is closed, y is necessarily one of the
x;. Such a term is n-long if and only if the body is of ground type (i.e. X, for A\]’), and
the u; are also n-long. For example, the n-long variant (n-expansion) of AfX?>X=X f is
AfX2X=2X XX My X fay, with ‘all arguments explicit’.

Suppose I ask you to write down a closed, n-long, S-normal term of type T of A\] . How
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do you go about it? Since T = X; = Xy — ... = X — X for some k and types® X;, and
since t is 7-long, t starts with k corresponding abstractions:

t = Azy AL ATk ?

Now you have a choice. Which of the z; do you take as head variable? Suppose you choose

x3. Then ¢ is
— X1 X2 X
t=Azry . Axy % Azt ?

Because x5 is of type X3, say X3 = 41 - As = ... = A; — X, and t is n-long,
t = Az .)\xfz...)\ka’“ 30102 ... a1

for terms a; of type A;. You are not finished yet: the arguments a; are as yet unspecified.
Suppose I ask “what is a5?” Since as is of type A5, say 45 =Y - Yo —» ... =2 Y, - X,
ay starts with m corresponding abstractions:

as = Myy Ays o AyXm?

Now it is your turn again to choose a head variable, this time either one of the fresh y; or
one of the old z;. Suppose you choose y2. Then aj is of the form:

as = Myt Ays 2 dydm s ?
Because y2 is of type Y2,say Yo = By =+ By — ... = B, = X,
as = MY S Ay Y yabiby L by,

for terms b; of type B;. My turn again: “what is by?” Since by is of type By, say By = Z1 —
Zy = ... = Z, =+ X, you know that it starts with p corresponding abstractions:

\.Z1 \ 2o Zp o
by = X272 ...)\zpp..

It is your turn to choose a head variable again: one of the old x; or y;, or one of the newly
abstracted z;. Suppose you choose 5. Then by is of the form

by = Ae{t A2l A2l 27
Because z is of type Xg, say Xo =C; =+ Cy = ... 5 Cy =+ X,
by = /\le1 .Azfz...Asz.:czclcQ ... Cq

for terms c¢; is of type C;. Now I ask “what is ¢5?” ... and so on.
Our dialogue or ‘game’

I choose t t = )\mfl...)\xkx’“.? t @ X1 ... XX
You choose 3 t = )\mfl...)\mkx’“ .r3a1 ...qp z3 : A1 —> ... A4 > X
I choose as as = Myt AyXe? a : Y1—>...0Y,oX
You choose ¥ as = Mo yrmoysb ... by, y2 : B> ... B, =X
I choose by by = )\zlzl...)\zpz”.? by + Zi— ... Z,=X
You choose 4 by = )\zlzl.../\szp.mzcl .. zg : Ci—=...=»C =X
I choose c5 C5 = eeiiininnn. ? Cs

3Do not confuse the X;, which are types, with X, which is a type variable. The intent is to pattern-match
term variables with their capitalised counterparts.
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will continue until you choose a head variable of ground type X, upon which I have no
responses available, because a variable of ground type requires no arguments: “game over.”

The dialogue could have followed a different course. For example, I may have chosen
to ask about the third argument b3 of y, instead of the fourth argument by, or early on I
may have asked about the first argument a; of x3 instead of the fifth. So a closed, n-long,
B-normal term is equivalent to a prepared response to every query (“what is a5?”, “what is
bs?”, etc.) I could have raised, that eventually ‘has the last word’ (‘wins’) by choosing a head-
variable of ground type (denying me a response). In other words, a closed, 5-long, -normal
term is equivalent to the ‘strategy’ for writing it down in ‘top-down’ or ‘demand-driven’
fashion.

Note how the choice of moves available to either of us at any point in the ‘game’ was
completely determined by T'. For example, the k possibilities 1, ...,z for your first move
corresponded to the fact that T decomposes as X; — ... = X — X. The same goes for all
subsequent moves for either of us. You were allowed to go back and choose from an earlier
batch of abstracted variables—for example, in your last move you chose x2 rather than one
of the fresh z;—but nonetheless all your options were determined by the structure of T
So we think of T as some kind of ‘arena’ or ‘game-board’ in which to play, specifying the
available moves at every stage.

Summary of ideas

1. We ‘played a game’ in the ‘arena’ T', by ‘discussing a term’ of type T in ‘top-down’ or
‘demand-driven’ fashion.

2. Each of your ‘moves’ was a choice of head-variable for a sub-term.

3. Each of my ‘moves’ was a request to inspect an argument sub-term of the head variable
you just chose.

4. A ‘winning strategy’ corresponds to a closed, 7-long, S-normal form ¢t.

The ‘strategies’ so-derived were essentially the E-strategies of Lorenzen [LL78], which are a
precursor of Hyland/Ong innocent strategies and Nickau sequential strategies. This takes us
part-way to a game semantics of \;” : Hyland, Nickau and Ong provided a formal definition of
an arena together with rules for playing games along the lines of the intuition above (though
for PCF they were not concerned with any notion of winning). An essential (and highly
non-trivial) contribution of Hyland, Ong and Nickau was to provide a notion of composition
of such strategies, interpreting computation/evaluation as a form of interaction. We shall
cover interaction for ;" in Chapter 3, Simple games.

1.1.2 From ‘top-down’ system F' terms towards hypergames

We apply the ‘top-down term’ methodology to system F. The analysis is informal, but
illustrates how the seeds of ideas for a hypergames model already ‘live in the syntax’, so
long as we look at syntax in the right way. Two ‘rules’ in particular become apparent:
the copycat rule and types as second-order moves. For simplicity, in this section we do not
consider product types.

Let us discuss a closed, n-long, f-normal term of system F' in top-down fashion. To start
with, consider a term* of type Bool = VX.X — X — X, the standard system F encoding

4Following the usual convention, the scope of a quantifier extends far to the right as possible, so
VX.X 5 X X =VX(X =X - X).
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of the Booleans [GLT89b]. The type specifies three ‘inputs’, one type input corresponding
to “VX7, followed by a term input corresponding to the first “X —”, and then a term
input corresponding to the second “X —”. So since t is n-long, we have the associated
abstractions:

t =AX. \zX A yX.?

Just as for \;", the body of a f-normal term of system F begins with a head (term-)variable.
So you can choose between x and y. Suppose you pick z. Then

t = AX. X AyX a?
Since z of of type X, a ground type, it requires no arguments:
t=AX. X Xz

So I have no moves to play (i-e., no arguments to choose from), and the game is already
over. In summary, the dialogue was:

I choose t t = AX. AzX X2 t : VX. XXX
You choosez t = AX. AzX X Xz =2 @ X

and your strategy ‘pick z’ defined the closed, n-long, f-normal term
true = AX. AzX \y¥ 2.
Had you instead adopted the strategy ‘pick y’, the dialogue would have been

I choose t t = AX AzX X2 t : VX. XXX
You choosey t = AXAzX Xy y : X

and you would have defined the closed, n-long, S-normal term
false = AX. AzX\¥y

Since z and y are the only head variables to choose from, these are the only two (winning)
strategies available to you. This corresponds to the fact that Bool has two (closed, 7-
expanded) S-normal inhabitants, true and false.

Now consider the type Nat =VX. (X — X) - X — X. This type specifies three ‘inputs’: a
type input “VX”, a term input “(X — X) —”, and a term input “X —”. Since ¢ is 7-long,
we have corresponding abstractions:

t = AX XX X2

For your first move, you must pick a head variable, either f or x. Suppose you choose f.
Then
t = AXMX2X X f?

Since f is of function type X — X, it requires an argument in order for the body of ¢ to be
of ground type, and hence for ¢ to be n-expanded:

t = AX AN X X fay

For my turn, as was the case for A\]", I have to pick an argument of the head-variable. Since
ay is the only one, I have no choice:

(11:?
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For your turn, you need to pick a head variable for a;. Since a; is of ground type (i.e., of
type X), it introduces no new abstracted variables, so all you can do is choose between f
and z again. Suppose you choose f:

a; = f7
Since f is of function type X — X, it requires an argument, say as:

ap = fa
As with my last move, I have no choice but to pick the one and only argument of f:

CLQZ?

Again your choice of head variable is restricted to f or z, because az introduces no new
abstractions. Suppose you pick f:

a = [f?
Since f is of function type X — X, it requires an argument, say as:
az = fas
I have to pick the only argument ags:
a3 = 7
This time, suppose you pick = as head-variable:
a3 = z?
Since z is of ground type (i.e., of type X), it takes no arguments:
az = 2

The game is over, because I have no moves available (i.e., no arguments to choose from). In
summary, our discussion was:

I choose t t = AXNfX2X X2 t : VX. XXX
You choose f t = AX A X X fay f @ X=X
I choose aq a = 7 ar : X
You choose f a1 = fag f X=X
I choose a» a = 7 a : X
You choose f a3 = fag f X=X
I choose as a3 = 7 a3 : X
You choose z a3 = z z X

so your strategy defined the Church numeral

3=AX XX X f(f(f2)).
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1.1.3 The copycat rule

So far there has been no significant deviation from A] . Following the same pattern as
the Bool and Nat examples above, here is a possible discussion of a term of type T =
VX.VY.X - Y — X. There are four abstractions, corresponding to the inputs “VX”,
(LVY” “X %7’ and MY _>”

) b -

I choose t t = AX.AY. x2xX V.2 t @ VXVY.X—-5Y X
You choosez ¢t = AX.AY. xX X ¥z z : X

Your strategy here, ‘pick z’, defines the closed, n-long, S-normal term
AX.AY. AzX NyY
Of course you could have adopted the strategy ‘pick y’ instead:

I choose t t = AX.AY X \y¥.? t @ VX.VWY. XY - X
Youchoosey t = AX.AY. AxX MYy y : Y

But then, since the body of the term is y, of type Y, the overall type of ¢ is
VXVY. XY Y

rather than the desired
VXVY.X->Y > X

So for ‘type-checking’ reasons, we shall have to ‘disallow’ moves (choices of head-variable)
like this one.
Here is another simple example, with a similar type:

T =VX.VY.X = (X V) = X.

First, a discussion which does not violate any ‘type-checking’, that is essentially the same
as the first discussion of the previous example:

Ichooset t = AX.AYV. X AfX2Y?2 ¢ @ VX.VWW. X5 (X =Y)—= X
You choosez t = AX.AY.\xXAfX7?Y2 =z : X

If you were to choose f, however:

Ichooset t = AX.AY. dxXAfX2Y.2 t : VXVY. X5 (X=2Y)> X
You choose f AX.AY. XeX A fX>Y fa  f : XY

The result is another type mismatch. More specifically, since T' is a type of the form “. .- X7,
the body “?” of t must turn out to be of type X. But in this example the body fa is of type
Y, rather than X.

‘Type-mismatch’ such is in the two examples above suggests the following;:

COPYCAT RULE Whenever I choose a move (argument) whose type is of the form “-- X" for
some type variable X, the body resulting from your next move (after supplying the necessary
dummy arguments in order to reach ground type) must be of type X.

Appendix A gives another example of the copycat rule at work. The example also
illustrates (informally) an application of the full completeness of the model to counting the
inhabitants of system F' types.
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1.1.4 Second-order moves

The examples so far have essentially just been \;" dialogues, with VX, VY, AX, and AY not
playing any real role. The quantified type variables in the examples above were in positive
position®; things get more interesting when type variables occur in negative position.
Recall that Bool = VX.X — X — X. Let us discuss a closed, n-long, f-expanded term
tof type T =VY.Y — Bool — Y. Since T specifies three inputs, a type input “VY”, a term
input “Y —”, and a term input “Bool —”, t starts with the corresponding abstractions:

t = AY. AyY AgBoel? T = VY.Y 5 Bool»Y
For your first move, you can choose between y and x. Suppose you choose z:
t = AY. AyY APl z? T = VY.Y -Bool »Y

Since z is of type Bool = VX.X — X — X, it requires three dummy arguments: one type
argument for “VYX”, one term argument for the first “X —” and another term argument for
the second “X —”:

t = AY. dy¥Y.AzPol zAajan T = VYY.Y - Bool »Y
N—_——

of type A

The body zAa;as is of type A. But since A is as yet unspecified, we have no way of telling
whether or not the body is of ground type, so ¢t may not be n-long. For example, suppose
you were to set A =Y — Y. Then the body zAa;as is of type Y — Y, and requires another
dummy term argument of type Y, say b, in order to reach ground type:

t = AY. \yY. 2Pl zAaias b T = VY.Y -Bool =Y
N—_——

of type T—T
A =YY

Similarly, if you set A =Y = (Y = Y) = Y, then the body zAa;as is of type
Y- (Y-Y)>Y,

and needs two more dummy arguments to reach ground type, say b, corresponding to ‘Y —”
and by corresponding to “(Y = Y) —7:

t = AY. \yY APl zAaias biby T = VY.Y 3Bool =Y
N —
Y= (Y-Y)Y
A =Y>(Y-Y)>Y

So only after you specify A do I know the full range of possibilities for my next move: in
the first case, I choose from {ai,as, b}, and in the second case, from {a;,as,b1,b2}. This is
symptomatic of the fact that in general, in system F', terms depend on types. It motivates
our second ‘rule’:

SECOND-ORDER MOVES Whenever a type argument appears, you have to specify it in full
immediately.

5See [GLT89b] for a definition. Roughly: VX is positive in VX.T} if VX is positive (resp. negative) in T,
then it is negative (resp. positive) in T' — T"; if VX is positive (resp. negative) in T” then it is also positive
(resp. negative) in T — T".
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One second-order move may not be enough. For example, going back to the point just before
you specified A,

t = AY. \y¥ APl zAajas T = VY.Y - Bool —»Y,
N—_——

of type A

suppose you choose
A=Y >VZ.Z - Z

Then the body zAajas is of type Y — VZ.Z — Z, so to reach ground type, it requires a
dummy term argument corresponding to “Y —” (say b;), a dummy type argument corre-
sponding to “VZ” (say B), and another dummy term argument corresponding to “Z —”
(say ba):

t = AY. \y¥Y . Az®°l. zAa;az by Bby T = VY.Y - Bool =Y
N —

YVZ.Z-2Z
A = YNVZ.Z- 7

Following the second-order moves rule, you have to specify B immediately. Suppose you
choose B = VP.P - I —» Y, where I = VQ.Q — (. Then the body of ¢ is of type
VP.P — I — P, and requires a type argument (say C) corresponding to “VP”, a term
argument, (say ¢;) corresponding to “P —”, and a term argument (say ¢2) corresponding to
“I _)77:

t = AY.AyY . AzP°l. xAaqasbBbsy Ceico T = VY.Y 5Bool—»Y
N————’
VYP.P—I—P
A = Y=NZ.Z- 7
B = VPP—>I—>P

By the second-order moves rule, you must specify C' immediately. Suppose you choose
C =Y — Y. Then the body is of type Y — Y, and we need another dummy argument (say
d) corresponding to “Y —7:

t = AY. XY Az zAasash BbyCeicy d T = VY.Y - Bool »Y
Y:Y
A = Y=VZ.Z2-7
B = VPP—-1I->P
C = Y=Y

At last the body is of ground type (namely Y), so t is n-long, and your turn is complete.
The range from which I can choose my next move is {a, az, b1, b2, 1,2, d}.

Recall the Hyland/Nickau/Ong intuition that a type is an ‘arena’ or ‘game-board’. Since
you have played three second-order moves (i.e., types), there are now a total of four ‘arenas’
present in the ‘hypergame’: T, A, B, and C, as displayed next to the term. Observe that each
dummy argument during our discussion arose in correspondence with a particular ‘input’,
for example, b; corresponded to “Y —” in A, ¢ corresponded to “I —” in C, and so on.
Tagging the ‘inputs’ accordingly gives:

AY. AyY AzBo°l .z Aayasby BbyCeycad = VY.V = (VX.X% 5 X2 5 X) »Y
Y 5vZ.2%2 5 2
VP.P¢* 512 5 P

= YisY

QW =N
Il
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So depending on which of the arguments {a1, as, by, b2, 1, ¢, d} T choose to inspect with my
next move, the ‘hypergame’ could ‘continue in’ any of the four ‘arenas’ present. For example,
if T ask

C1 =?

then I am ‘playing in B’. Now since ¢; is of type P, which you instantiated with C =Y — Y,
it has an abstraction corresponding to “Y —”:

= AzY .2

Now you pick a head variable for ¢; ... and so on.

Summary of ideas In this section we have come accross the following ideas, on which
the hypergames model is based:

e The copycat rule. For ‘type-checking’ reasons, some of your moves had to be outlawed.

e Second-order moves. Corresponding to type arguments in the body of a term, you play
‘types as moves’. With the Hyland/Nickau/Ong intuition that ‘types are arenas’, you
are playing ‘arenas as moves’.

e Later moves in the hypergame can be located in any of the arenas brought in by your
second-order moves.

When it comes to interacting strategies (Chapter 6), the various arenas (e.g. T, A, B, C
above) will not be left separate, but will be bundled together in a big ‘expanded’ arena, the
one corresponding to making the obvious substitutions (e.g. in the above, [4/Y], [B/Z],
[C/P)).

1.1.5 From Hyland/Nickau/Ong arenas to polymorphic arenas

In order to implement the programme for a hypergame model, as suggested by our analysis
in the previous section, we require a formal interpretation of a polymorphic type as some
kind of ‘game board’, analogous to the Hyland/Nickau/Ong notion of arena for a PCF type.
Our solution is a polymorphic arena, and we give an informal sketch of the definition. In
the product-free case, polymorphic arenas are Bohm trees of some kind, and turn out to
correspond to prenex types.

Hyland /Nickau/Ong arenas

Towards the end of section 1.1.1, we sketched how a A]" type can be viewed as an ‘arena’ in
which to play a game. Recall that at every stage of the A]" dialogue, the choice for each of
our moves was determined by decompositions of the form T'=T; — ... = T,, — X, in which
the type T ‘branches like a tree’, into an array of n options for moves. A Hyland/Nickau/Ong
PCF arena,when restricted to A , is simply the tree obtained from a type by iterating this
decomposition. For example:

X->2X)o(X->X->X)>X
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(See Chapter 3 for more details.) Hyland, Nickau and Ong then go on to define a run of the
game as a sequence of vertices, with some additional structure, and satisfying appropriate
rules.

Polymorphic arenas (‘Béhm trees for polymorphic types’)

We introduce a ‘second-order’ extension of Hyland /Nickau/Ong arenas, which will play the
role of ‘game-boards’ in our hypergames. In order to obtain the polymorphic arena of a
(product-free) system F type, say

T = VXYY W-oW)5VZW-X->2)>Y

first draw the underlying Hyland/Nickau/Ong arena:
VX VY. (W -o>W) 5> VZW>X—>2) > Y

W/Z/
W/ W{/

Then attach quantified type variables next to the root of the appropriate subtree:
VX.VY. W->W) > VZW->X->2Z)>Y

Y

Each quantified variable YV binds all occurrences of V' in the subtree of the root to which
VV was attached®. Hence a polymorhic arena is a form of Boshm tree [Bar84].
Note that the type

T = VYXVY.(W-oW)> W VZ.X > 2Z)>Y

(only the position of VZ has changed) has the same polymorphic arena, because the root of
the subtree of W — X — Z is the same as the root of the subtree of X — Z. Likewise,

T" = W-oW)aVX.(W-o X VZ.2) 5 VYY

also has the same polymorphic arena.

The prenex normal form” of a (product-free) type of system F is obtained by performing
all possible conversions of the form T' — VX.T' ~» VX.T — T' whenever X is not free in
T. Hence (in the product-free case) polymorphic arenas are in bijection with prenex normal
forms (also known as prenex types).

6 Avoid any unwanted capture by renaming bound variables if necessary.
7A standard notion with respect to quantifiers in first order logic: ‘pull all the quantifiers as far to the
front of the formula as possible’. Refer to any introductory textbook.
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1.1.6 Interaction: the copycat rule corresponds to n-expansion

Games models interpret normalisation as the interaction of strategies. Up to first-order,
interaction in the hypergames model is as in the Nickau games model of PCF [Nic94]8. This
short section gives an informal overview of the crucial role played by the copycat rule in
interaction at second order.

Recall that types are interpreted as polymorphic arenas, and that a type argument T
of a polymorphic term ¢ is interpreted as a second-order move, i.e., the introduction into
the hypergame of the polymorphic arena Ap interpreting 7. During interaction in the
hypergame model the copycat rule will apply to the hidden arena Ar. Back at the level of
the syntax this can be viewed as a form of n-expansion, as suggested by the example below.

Consider the following normalisation:

AXANEHY =)y MY MYy
AFY2Y Az fo) Yy
AzY . (Y )z
Az .z

¢ ¢ ¢

Think of this as the interaction of the ‘strategy’ AX.AfX.f with the arguments ¥ — Y
and AyY.y. The first step in the normalisation instantiates the type variable X to Y — Y.
In the hypergame this instantiation corresponds to a second-order move, the importation
of a hidden ‘polymorphic arena’ Y — Y. The next step is the n-expansion of AfY 7Y . f to
AfY =Y A\zY.fx. This new aspect of the term (... AzY ...x) corresponds to copycat on the
hidden arena Y — Y. The remaining steps, being first-order, are of less interest.

This example is informal, and serves only as a vague impression to have in the back of
the mind when reading Chapter 6 on interaction.

1.2 Overview of chapters
The remaining chapters of the thesis are as follows.

2 Preliminaries
Basic mathematical notation, and categorical semantics for system F'.

3 Simple games
We informally sketch a games model for the simply typed A-calculus, derived from
the ‘top-down term’ methodology introduced in section 1.1.1. We use the model to
set out our method of interacting strategies, based on Nickau interaction [Nic94], for
later extension to hypergames. We finish by describing a hitherto neglected distinction
between Hyland/Ong interaction [HO94] and Nickau interaction.

4 Polymorphic arenas
We formalise the idea of a ‘game-board’ interpretation of polymorphic type, as outlined
above in section 1.1.5.

5 Hypergames
Hyland, Nickau and Ong define a game in an arena using an enriched notion of sequence

8Chapter 3 highlights an important and hitherto overlooked difference between Nickau’s interaction and
Hyland/Ong interaction [HO94].
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called a justified sequence. We define a hypersequence as the analogue in our hyper-
game setting. Hypersequences include polymorphic arenas as ‘second-order moves’,
and ‘first-order moves’ can be located inside previous ‘second-order moves’.

6 Interaction
We define the interaction of strategies in the hypergame model, based on the method
set out for A} in Chapter 3.

7 The categorical model
Using the material developed in chapters 4, 5, and 6, we define a 2Ax-hyperdoctrine,
and hence a model of system F'.

8 Full completeness
We prove that the model defined in the previous chapter is fully complete.

9 Conclusions
Concluding remarks.



Chapter 2

Preliminaries

This chapter is structured as follows:

2.1 Basic Notation (page 17)
Including notation for sets, functions, categories, and sequences.

2.2 Moves and move-occurrences (page 18)
Conventions and notation for dealing with functions between occurrences of elements
of sequences.

2.3 System F (page 19)
We fix our notation for the system with function space T'— T", universal quantification
VX.T, and product T x T".

2.4 Categorical semantics of system F (page 20)
2\ x-hyperdoctrines, as given in Crole [Cro94], for example.

2.1 Basic notation

Notation Explanation

= definitional equality

N the set of natural numbers {0,1,2, ... }

N* the set of non-zero natural numbers {1,2,3, ... }
f: XY f is a function from X to Y

f:X-~Y f is a partial function from X to Y

fla)l f is defined at a

flay f is undefined at a

AxB product of A and B

A+ B sum/coproduct of A and B; if A and B are sets, + is disjoint union
m:AXB — A first projection associated with a product

my: AXxB — B second projection associated with a product

inn:A— A+ B left inclusion associated with a coproduct
in.: B—> A+ B  right inclusion associated with a coproduct

C(A, B) set of morphisms from A to B in a locally small category C
Set the category of sets and functions
Cat the category of small categories and functors

17
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CCCat the category of small cartesian closed categories and
strict cartesian closed functors
s-t the concatenation of the sequences s and ¢
st shorthand for concatenation
€ the empty sequence
X* the set of finite sequences of elements from the set X
[s] the length of the sequence s
sCt s is a prefix of ¢, i.e., t = su for some sequence u
sCat t = sa for some element (singleton sequence) a
ulv/z] the substitution of v for all free occurrences of the variable z

in an expression u

2.2 Moves and move-occurrences

The first and last moves of the sequence mnm are ‘the same’ because they are both “m”,
yet ‘not the same’ because they are distinct occurrences of “m”. This distinction between
“move” and “move-occurrence” can lead to awkwardness in formalising game semantics. In
this section we fix conventions and notation designed to deal with this problem.

The problem of occurrences has been familiar to proof theorists for years. Here is a
passage from Troelstra and Schwichtenberg’s book Basic Proof Theory [TS96], Section 1.1.3
entitled Formulas and formula-occurrences:

Formula-occurrences (f.0.’s) will play an even more important role than the for-
mulas themselves. A f.o. is nothing but a formula with a position in another
structure (prooftree, sequent, a larger formula etc.). If no confusion is to be
feared, we shall permit ourselves a certain ‘abus de langage’ and talk about
formulas when really f.0.’s are meant.

In this thesis we adopt a similar philosophy with respect to moves and move-occurrences.

Equality

If m; and my are move-occurrences, equality m; = mo (“my and mo are ‘the same move’”)
can be interpreted in one of two ways. Consider once again the sequence s = mnm over the
set of moves M = {m,n}. Let my, mo, m3, and m; denote respectively the first, second,
third, and last moves of s. Then as move-occurrences, m; # ms and ms # ms = my, but as
the underlying elements of M, m; = m3 = m; # ma.

When not stated explicity, we shall leave the type of equality to be inferred from the
context. As evidence that such matters are best left to common sense whenever possible,
consider the fact that, given the statements

(1) Bill and Ted have the same teacher.
(2) Bill and Ted have the same tie.

it is obvious even to a young child that a different type of equality (‘sameness’) applies in
each case.

Notation

We write m € s for “m is a move-occurrence of the sequence s”. If m,n € s write m < n if
m is strictly before n in s. Write f : s — s if f is a partial function from the set of move-
occurrences of s to the set of move-occurrences of s. Similarly, by identifying a sequence s
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with its set of m.o.’s, we can use notation such as f : s — ¢ for a function assigning m.o.’s
of t to m.o.’s of s, or g : s +t — u for a partial function assigning m.o.’s of u to m.o.’s of s
and m.o.’s of ¢.

More generally, we adopt similar notation for other types of sequences, for example
sequences of integers, hypermoves, actions, etc.

2.3 System F

The first three pages of Chapter 5 of Crole’s book Categories for Types are an intuitive
and highly accessible introduction to system F [Cro94]. For a more logical perspective,
see Proofs and Types [GLT89b], Chapter 11, which includes a nice presentation of how to
represent inductive datatypes (natural numbers, lists, etc.) in the calculus, and illustrates
the Curry-Howard isomorphism with propositional second-order intuitionistic logic.

We work with the version of system F' [Gir71, Rey74] with arrow (' — T'), universal
quantification (VX.T'), and product (T' x T") types. We adopt the notation of Chapter 5 of
Categories for Types, but without constants. Thus types are generated by the BNF

T == X | Unit | TXT | T - T | VX.T

where X ranges over a countably infinite set of type variables. Terms are generated by the
BNF
s u= x| ()| (s,8) | fst(s) | snd(s) | \aT.s | ss | AX.s | sT

where z is any term variable, and T is any type. Well-typed terms-in-context are as given
in Categories for Types, pages 212-3.
The conversion rules are as follows:

B (zYw)u ~ vu/]
B2 (AXw)U ~ o[U/X]
m AaU.(tz) ~ t

n2 AX(tX) ~ 1

where in 77 the term variable z does not occur free in ¢, and in 72 the type variable X does
not occur free in t. We write 8 for “f; and 32" and likewise n for “n; and 72”. System F' is
strongly normalising with these rules [GLT89b)].

Conventions We adopt the following conventions for variables and metavariables:

z,Y,2 term variables
XY, Z type variables
t,u,v terms

T,U,V types

On types x binds more strongly than —, which in turn binds more strongly than VX. Both
— and X associate to the right. For example:

VX.U->V = VX.(U->YV)

VX.UxV = VX.(UxYV)

UxV->T = (UxV)>T

U-5U— ..U, -V = U5 U= (..o U2 V)...))
Uy xUsx...xUp,xV = Uy xUax(...x({UpxV)...))
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Application st or sT binds more strongly than abstraction Az”. or AX., and application

associates to the left. For example:

tuw = (tu)v
twV = (tu)V
Meltu = AT .(tw)
AX.tu = AX. (tu)
MeT U = \aT.(tU)
AX U = AX.(tU

2.4 Categorical semantics of system F

The hypergame model will be presented as a 2Ax-hyperdoctrine. The thesis has been struc-
tured so that the ideas behind the model can be absorbed without any knowledge of category
theory; for those without a background in categories think of a 2Ax-hyperdoctrine as a struc-
ture required of the hypergames that assures that one does indeed have a model of system

F.

The following definition is from Categories for Types [Cro94], with minor changes in
notation. A 2Ax-hyperdoctrine consists of the following data:

1. Base category. A category B with finite products, whose objects are generated by

finite product from a distinguished object U € B. In other words, for all objects I € B,

I=U"=UxUx...xU
—_——

T occurrences
for some n > 0. In particular, U° is terminal.

. Fibres. A B-indexed cartesian closed category E : B’ — CCCat. The cartesian closed
category EI is called the fibre over I, often written E;, and the set of objects of E;
is exactly the homset B(I,U). Given a morphism « : I — J in B, the strict cartesian
closed functor Ea : E; — Ej is often written a* : E; — E;, and is called the reindexing
functor of a.

. Indexed products. For each object I € B we are given a functor IIy : Ejyy — Ey
which is right adjoint to the reindexing functor n7 : Ef — E;.y of the product
projection 7y : I x U — I. Furthermore, for all morphisms a : I — J in B, the
following diagram of functors

II
Erxvu L E;
(a X idy)* a*
Erxu 0, Er

commutes, and the canonical natural transformation a* o II; — Iy o (a X idy)*
is an identity. The commutation of this diagram, together with the specification on
the canonical natural tansformation, is called the Beck-Chevalley condition for 2Ax-
hyperdoctrines.
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Intuitively, the Beck-Chevalley condition means gquantification commutes with substitution
(when the about-to-be-quantified variable is left untouched). Refer to Categories for Types
for formal details of how a 2\ x-hyperdoctrine is a model of system F'.

Remark The original categorical presentation of the hypergame model in the extended
abstract [Hug97] was in terms of fibrations rather than 2A x-hyperdoctrines. After canvassing
opinions from a number of researchers, it turned out that most found the hyperdoctrine
presentation of a model of system F' to be more intuitive, because substitution (reindexing)
functors are more concrete than the universal property of cartesian maps.



Chapter 3
Simple games

We illustrate the key ideas behind Hyland /Nickau/Ong PCF games [HO94, Nic94] by strip-
ping them down to the bare minimum: a model of the pure simply typed lambda calculus
A{ with types generated by arrow — from a single base type variable X. This elaborates on
the ideas sketched in section 1.1.1. The chapter is relatively informal, because the material
is a special case of the second-order games presented formally in Chapters 4, 5, and 6.

It is now folklore in game semantics that the Hyland/Ong and Nickau models are the
same. At the end of the chapter we highlight a hitherto neglected difference between the
interaction in the two models. For technical reasons, we took Nickau’s interaction as the
first-order basis of hypergame interaction.

3.1 Basic ingredients

There are two players, O and P. Think of P as System, Program, or Us, and think of O as
Environment, Context, or Them. In our ‘discussion of a term’ in section 1.1.1 (page 6), I
was O, and you were P.

The other basic ingredients are arenas, positions, winning strategies, and the interaction
of strategies. Before giving the details, we reiterate the following associations outlined in
section 1.1.1:

Syntax Game
type arena
term winning strategy (for P)
computation /normalisation interaction

Arenas

The arena of a type is the finite tree defined as follows. We start with an example. Given
the type

X=2X)2(X-2X->2X)o X,
first ‘tag’ the type variables in order to distinguish between them:
(X® -5 X% -5 (X° = X% 5 X°) - X/
and then the arena is

22
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(X% - X% - (X¢ - X1 - X°) —» X/

b/e/ P
P 0

The vertices of an arena are called mowves, and if v is the parent of w, we say that v enables
w. As indicated in the picture, moves at odd depth are associated with O, and moves at
even depth are associated with P.
The general rule for constructing an arena is suggested by the decompositions 7' = T; —
. = Ty — X in our ‘discussions of a term of type T’ of section 1.1.1. Given arenas
Ai,..., Ay for types T1,..., T}, the arena of T3 — ... — T — X is obtained by grafting
the A; underneath a new move z corresponding to X:

T — ... > T, - X

T
.//
Ay Ay

Positions

A position in an arena is a sequence of moves each of which (apart from the first) is
equipped with a justification pointer to an earlier enabling move by the opposite player.
The first move is by O, and the pointers from the subsequent O moves are forced to target
the preceding move. For example:

0 a
p b/ \C GKCW c/\e/\f/—\h
/\ o P O P O P O P O
0 d e
| A A —
p f a c e f g c e f h
/\ 0 P 0 P (0] P 0 P 0
0 g h

So a position is an ‘interlacing’ of paths down the arena. Note that although the underlying
sequences of moves are the same, the two positions above differ because the second occurrence
of f is justified by a different occurrence of e in each case.

Intuition As motivated by our ‘discussion of a term of type 7”7, think roughly in terms of
P-moves as indicating a choice of head-variable, and O-moves as indicating a choice of an
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argument. For example, as a position, our ‘discussion of a term’ on page 6 looks (informally)
like this:

0 P 0 P 0 P 0
e

t T3 as Y2 by o cs

A justification pointer from a P-move (head-variable) indicates the argument (O-move) from
which the head-variable is chosen, i.e., the argument containing the ‘batch’ of A-abstractions
from which the head-variable is chosen. O’s justification pointers always target the previous
P-move, because O is always asks about an argument of the most recent head-variable. So
O pointers are somewhat redundant.

Remark Hyland, Nickau and Ong originally defined a notion of justified sequence which
was symmetric in the sense that O was not subject to our constraint on pointers. For tech-
nical reasons, in moving to hypergames it was necessary to adopt the asymmetric viewpoint.

Winning strategies

A winning strategy (for P) is a pre-determined move in response to every move played by
0, such that no matter how O decides to play, he will inevitably be ‘run out of moves’. We
clarify the definition with a few examples. A formal definition is provided in chapter 5.

Examples

We consider some ‘discussions’ of terms, and then show the corresponding winning strategies
in arenas.

Booleans Let Bool be the type X — X — X, so-called because there are two normal
forms of this type:
true = XXX
false = MYXAfX.f
These two 7-long, S-normal terms correspond to the following ‘strategies’ in the ‘top-down

term-discussion’ of a term b of type Bool. The ‘strategy’ of true is to select ¢ as head
variable:

O choosesb b = MXAfX.? b : XXX
P chooses t b = MXNfXt t X

The ‘strategy’ of false is to select f as head variable:
O chooses b b = MXAfX2 b : X=X X

P chooses f b = MXAfX.f f : X

In either case, the game is over, since ¢t and f are of ground type X: O has been run out of
moves, since ¢t and f take no arguments.

In terms of arenas and winning strategies, the corresponding picture is as follows. The
arena of Bool, say via the ‘tagging’ X* — X/ — X? is

t/ \f

P
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The winning strategies are:

N
1. true plays t in response to b: b ¢

/N
2. false plays f in response to b: b f

O is ‘run out of moves’ after either strategy because there are no moves below ¢ or f in the
arena.

Boolean not function Consider the term
not = AbEL XNtX NFX by ft = AbX XX MY NfX by ft
of type
Bool 5 Bool=(X - X - X) > (X > X - X)

which has f-reductions

not(true) ~»j; false
not(false) ~»j5 true
Here is a discussion of not:
O chooses not not = ApECOL X NfX.? not : Bool—» X - X =+ X
P chooses by not = ABELMX X .bjuw by : XXX
O chooses u u = 7 v X
P chooses f v = f f X

Had O decided to look at the second argument v of by instead, the discussion would have
been:

O chooses not ~ mnot = AbB°L AKX AfX.? not : Bool—+ X =X — X
P chooses b; not = AL XX NfX biuv by : XXX

O chooses v v = 7 v X

P chooses t v =t t X

In terms of arenas and winning strategies, the corresponding picture is as follows. The arena
of

Bool 5 Bool=(X - X - X) > (X > X - X)
via the tagging
(Xt = x5 X)) 5 (Xt X - XY
is

0 b

bl/t/ \f
I\,

P

0
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The two discussions of not correspond to the following positions:

0 b b

//\ o P 0 P

P b t f
N
lo) tl/ \fl b bl fl t

Naturals Let Nat be the type
X=>X)»X->X

whose closed, n-long, -normal forms are the Church numerals:

m=XAs* "X A% 5(s(s(...(52)...))).
—_——

m occurrences

Think of s as ‘successor’ and z as ‘zero’. Here is a discussion of the Church numeral m:

O chooses n n = XXX X2 n : X=X)2X—-X
P chooses s n = AsX?X 22X saq s : XX

O chooses a; ay = 7 a : X

P chooses s ay = say s : X=X

O chooses as as = ? a : X

P chooses s as = sas s : X=X

P chooses s Am_1 = Sapm s : XX

O chooses a,, am = ? am : X

P chooses z am = Z z X

In terms of arenas and winning strategies, the corresponding picture is as follows. The arena

of Nat = (X — X) - X — X via the tagging
(X*=>X)>X* > X"

is

0 n
P s/ \z
o &

Think of O’s move a as ‘applied to’ or ‘argument=7". The discussions of 0, 1, and 2 corre-
spond to the following positions:
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The strategy for m plays s m times before playing z.

Successor Consider the term?!

suc = Al As* X A2X ny (Naif .sa1)(s2)
= )\TLgX%X)_)X_’X.)\SXHX.)\zX-m()\a{(-Sal)(sz)
of type
Nat 5> Nat = (X=X)5X->X)> (X >X)> X X)

which has S-reductions

suc(m) ~j m+1

for each church numeral m.
Here is the discussion of suc when O chooses to look at the first argument of n; (we
abbreviate “chooses” to “ch.”):

O ch.n n = Rt asX X N X2 n:lNat— (X = X)=» X=X
P ch. nq n = I AsE X X s m (X2 X)X =X
Och.s; s = Aaf.? s1: X=X

P ch. s 51 = Aaif.sa s: XX

Och.a a = 7 a: X

P ch. a1 a = a1 a1 X

Had O decided to look at the second argument of n; instead, the discussion would have
been:

Och.n n = ARt asX X N X2 n:lNat— (X - X)X =X
P ch. nq no= M X X sz m (X2 X)X o X

O ch. z; 7z = 7 z1: X

P ch. s 21 = sa s : X=X

Och.a a = 7? a: X

P ch. 2 a = =z z: X

'Without n-expansion suc would be AnJat AsX 2% XzX nys(sz).



3.2. INTERACTION 28

In terms of arenas and winning strategies, the corresponding picture is as follows. The
arena of

Nat » Nat=((X 2 X) > X > X) > (X > X) > X - X)
via the tagging
(X =2 X) 5 X 5 X™M) 5 (X2 X°) =2 X7 = X7

is

(0] n
7\

P n1 s 2

O 81/ \21 a

P ap

The two discussions of suc correspond to the following positions:

= X\ 27N
n 1 51 S a ay

0 P 0 P 0] P

3.2 Interaction

We interpret computation (i.e. normalisation or reduction) as the interaction of strategies.
Think of a strategy as a kind of process, in the sense of concurrency theory (e.g. CCS [Mil80]
or CSP [Hoa85]), namely as the transition graph (tree) consisting of its set of stimulus-
response traces (sequences). Then interaction is a form of ‘parallel composition with hiding’.
We shall explore this idea with three examples of interaction, corresponding to the reductions:

not(true) ~p false
suc(0) ~j 1
suc(l) ~j 2

The third example requires a concept introduced by Hyland, Nickau, and Ong, which is
critical for making interaction succeed: the wview of a sequence with justification pointers.

Example 1

We consider the interaction of the not strategy on Bool; — Bool with the strategy true on
Bool;. (We subscript the input copy of Bool for distinguishability.)
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T,
t/ \fl

N———
true

By playing not and true in ‘parallel’, and then ‘hiding’ their interaction on Bool, we shall
obtain a strategy ‘7’ on Bool. We anticipate, of course, that ‘?” will turn out to be the
winning strategy false.

There are three points of view during the interaction: (i) the play so far in Bool, (ii) the
play so far in Bool; — Bool, and (iii) the play so far in Bool;. The first move is by O in
Bool:

Bool

Bool, 'ﬁf Bool

true

Bool;

This is ‘transmitted’ to Bool; — Bool immediately, as the opening O-move of that arena:

?
Bool b
0
Bool; IB;' Bool b
0
true
Bool;

This move acts as a stimulus for not. Looking at its ‘crib-sheet’, consisting of the two
positions on page 26, we see that the response of not is as follows:
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?
;
0]

Bool, 'ﬁf Bool b by

true

Booly

The response is transmitted to true in Bool; to arrive as an opening O-stimulus:

?
Bool b
0
P
Bool; 12; Bool b b1
0 P
true
Bool; by
0
The response of true is:
?
Bool b
0
P
Bool; rﬁ; Bool b b1
0 P
true TN
Bool; by t1
0 P

which is duly sent to Bool; — Bool, inside which it appears as an O-move:
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:
0]

Bool, IB; Bool b by 21
0 P 0
true TN
Bool; by t1
0 P

Again, looking at not’s cribsheet, its response is:

?
Bool b

Bool; 12; Bool b by t1 f

RN
true
Bool; by t1

0 P

which, since it is in the Bool sub-arena of Bool; — Bool, is sent as the final ‘team-response’
in Bool:

. /—\

Bool b f

Bool; 12; Bool b by t1 f

true
Bool; by t1

0 P

Now ‘hiding’ the bottom two rows, and just looking at what happened on Bool, we see that
the composite ‘?’ is indeed the strategy false.

Example 2

We consider the interaction of the suc strategy on Nat; — Nat with the strategy 0 on Nat;.
(We subscript the input copy of Nat for distinguishability.)
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By playing suc and 0 in ‘parallel’, and then ‘hiding’ their interaction on Nat, we hope to
observe the winning strategy 1.

There are three points of view during the interaction: (i) the play so far in Nat, (ii) the
play so far in Nat; — Nat, and (iii) the play so far in Nat;. The first move is by O in Nat:

Nat

Q3

Natq = Nat

0
Natq

This is ‘transmitted’ to Nat; — Nat immediately, as the opening O-move of that arena:

Nat

n
0

Nat, =¥ Nat n

0
Natl

This move acts as a stimulus for suc. Looking at its ‘crib-sheet’, consisting of the two
positions on page 28, we see that the response of suc is to play:
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suc -
Nat; — Nat n n

=]

Nat;

The response is transmitted to 0 in Nat; to arrive as an opening O-stimulus:

Nat

Qs

suc -
Nat; — Nat n n

=]

Natq

The response of 0 is:

Nat

Q3

suc -
Nat; — Nat n ni

0] P
0 VRS
Néfl 1 1
0 P

which is duly sent to Nat; — Nat, inside which it appears as an O-move:
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suc e RS
Nat; — Nat n n 21

0] P 0

0 VRS
Na?l'q 1 1
0 P

Again, looking at suc’s cribsheet, its response is:

Nat

Q3

— T
Nat; — Nat n ni 21 S

0
Nat1

which, since it is in the Nat sub-arena of Nat; — Nat, is sent as the first ‘team-response’ in
Nat:

Nat

Nat; = Nat n ny 21 s

0
Nat; 1 “1

Now it is O to play in Nat. Since s has a unique child a, there is no choice but to play it:
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2 /—\ TN

n S a
Nat
= ) P 0

— N
Nat; — Nat n n1 21 S

0 N
Natq

This move is in the Nat sub-arena of Nat; — Nat, so is transmitted as another stimulus for
suc:

5 TN
Nét n S a
) P )

o m PR
Nat; — Nat n n 21 S

a
0 P 0 P 0

0 RS
Nat,

Looking at the ‘crib-sheet’ (page 28), we see that suc determines to play:

2 /—\ TN

Nat n s a
(0] P 0]

Nat; =5 Nat n ny 2 s a z

(0] P 0 P 0] P

This is transmitted back up to Nat as the final move of the interaction:
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Nat

n
0] P 0] P

Nat; =¥ Nat n ny 21 s 2

a
0] P (0] P 0] P

0
Naty 1 1

As we can see, the end result of the interaction is the strategy 1 in Nat.

Example 3

This example will introduce an important concept in the Hyland/Ong/Nickau approach
to game semantics: the wview of a sequence with justification pointers. We consider the
interaction of suc on Nat; — Nat with 1 on Nat;. (Again, we subscript the input copy of
Nat for distinguishability.)

S
S1 z1 a

By playing suc and 1 in ‘parallel’, and then ‘hiding’ their interaction on Nat, we hope to
observe the winning strategy 2.

The first four events are exactly as in the last interaction, (i) send n from Nat, (ii) receive
n in Nat; — Nat (iii) send n; from Nat; — Nat; (iv) receive n; in Natq:
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suc -
Nat; — Nat n n
0

[

Ngtl g

At this point, 1 deviates from the strategy 0 by responding to n; with:

Nat

suc -
Nat; — Nat n ni

(0] P
1 TN
Na?l'q i 1
0 P

This is received as an O-move by suc in Nat; — Nat:

Nat

suc // P
Nat; — Nat n n S1

0] P 0

1 TN
Ngtl 1 51
0 P

As indicated by the first of the two positions of the cribsheet (page 28), suc’s response is:
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— = —
Nat; — Nat n n S1 S
0 P

)

Ngtl g 51

Sending this up to Nat provides the response to O’s original move in Nat:

Nat

— T~
Nat; — Nat n ni S1 S

)

Na?l'q i 1

Since s has but one child a in Nat, O has no choice but to play it:

Nat

— = T
Nat; — Nat n ni S1 S

)

Nat; 1 51

This is received in Nat; — Nat:
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— /T~
Nat; — Nat n n S1 S a

)

Ngtl g 51

As determined by the first of the two positions of its ‘crib-sheet’, suc is programmed to play:

S
w
S

Nat

suc N S RS
Nat; — Nat n ni S1 S a ai

)

Na?l'q 1 1

Copying this move accross to Nat;, where it is seen as an O-move, we have:

Nat

suc Z N TN
Nat; — Nat n ni S1 B a a

5

Nat; n S1 ai

0] P 0]

The response of 1, having already played s; once, is to play z;, ‘winning’ the game in Naty:
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7 o T
" :
P

0]

[@ RS

suc N S RS
Nat; — Nat n n1 S1 S a ai
0] P

1 o

Nat; n1 S1 a 21
0 P 0 P
We copy this back up to Nat; — Nat, where it appears as an O-move:
? — T 7
Nat n S a
0 P 0

suc o~ T~ RS
Nat; 2 Nat n n s1 s a a 21

; /_\//__\\

Natq

0 P 0 P

At this point, all of a sudden there is a problem: the current state in Nat; — Nat is not a
position, because the justifier of z; is not the immediately preceding P-move. (Recall our
definition of position on page 23.) The solution of Hyland, Nickau and Ong was to hide
everything between the source z; and the target ny of the O-pointer, so that the view, as
far as suc is concerned, is a well-defined position:
2 T/
Nat n s a
0 P (0]

Natq ¥ Nat

1
Nat;

ni S1 ay 1

0] P 0] P

The view is an initial segment of the second position of suc’s ‘crib-sheet’ (page 28), so we
obtain the following response:
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Nat

Nat; = Nat n ny 21 s

1 o

Néfl ni S1 al 1

The move s is in the Nat subarena, so is transmitted upstairs to form the second ‘team-
response’:

Nat

Nat

Nat, ¥ Nat

1

Nat,

This is transmitted back down to suc:
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Nat

Natq ¥ Nat

=

Nat;

Nat

Naty =¥ Nat

1

Nat,

Nat

Nat, = Nat

1
Nat, n S1 ai 21

0 P 0 P

As anticipated, the result of the interaction is the strategy 2 on Nat.

This section was intended to be informal and accessible. A formal definition of interac-
tion for hypergames is given in Chapter 6, the first-order fragment of which is exactly the
interaction introduced intuitively above.
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3.3 Hyland/Ong interaction differs from Nickau inter-
action

It is now folklore in game semantics that the Hyland/Ong and Nickau models are the same.
In this section we highlight a hitherto neglected difference between the interaction in the
two models. For technical reasons, we took Nickau’s interaction as the first-order basis of
hypergame interaction.

The notion of strategy introduced in this chapter corresponds to Hyland and Ong’s notion
of innocent strategy, and to Nickau’s notion of sequential strategy (also called a decision tree).
Hyland and Ong define a more general notion of strategy in an arena, of which an innocent
strategy is a specialisation. They then define composition of general strategies, and prove
that innocence is preserved by composition. Nickau, however (see pages 22-27 of [Nic96])
defines the composition of sequential strategies directly, without reference to a larger space
of more general strategies.

We highlight two consequences of the difference. The first is an advantage of the Nickau
approach, and the second is an advantage of the Hyland/Ong approach.

1. In dealing with only the space of strategies of ultimate interest, the proof of composi-
tionality is much easier in the Nickau approach.

2. Hyland and Ong’s definition of composition for a larger class of strategies enabled
one to think of innocence as an additional ‘rule’ or ‘constraint’ in a larger notion of
game. This line of thinking leads one to ask what can be modelled by relaxing the
rule. This idea (as well as the relaxation of various other constraints) is at the heart of
Abramsky’s programme of using game semantics to explore the space of programming
languages [AM99a].

We elaborate on the distinction between the two models. Our definition of position for A;",
asymmetric in the sense that O’s pointers are forced to target the previous move, coincides
exactly with a path in a Nickau decision tree?. For example, take a look once again at the top
sequence of the last example of interaction, the Nat component: since this is an asymmetric
position, we see a path of the decision tree emerging directly. O in Nat, because of asymmetry,
can target only the previous move with a pointer. If this were the corresponding picture
of interaction in the Hyland/Ong model, things would be complicated by the fact that O
would not be subject to this constraint in Nat.

The hypergame model uses Nickau-style composition for two reasons. The pragmatic
reason is that the move to second order brings with it sufficient combinatorial complications
as it is, without one also having to cope with defining composition for some ‘larger’ class of
strategies. The technical reason is that there seemed to be no immediately obvious notion
of a ‘larger space’ in which both players could be treated symmetrically.

3.3.1 Games, interaction, and abstract machines

We finish the chapter with a remark about the relationship between the interaction of strate-
gies and abstract machines. Danos, Herbelin, and Regnier [DHR96], have indicated that the
interaction in the Hyland/Ong model is the hyper-lazy linear head reduction of the Pointer
Abstract Machine, a variant of Krivine’s Abstract Machine. In the light of the distinction
between Hyland/Ong and Nickau interaction elicited above, it would be more accurate to

20nce stripped of the PCF apparatus, such as questions, answers, and bracketing. All our moves are
effectively questions.
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say that it is the interaction in the Nickau model that corresponds to linear head reduc-
tion. The justification is that a decision tree is the same thing as a B6hm tree presentation
of a head normal form. The abstract machine produces the output term directly, in other
words, it produces paths of a decision tree directly, exactly as in the Nickau model. There
is no ‘larger space of terms’ computed by the machine, of which the ‘innocent’ ones are a
specialisation.



Chapter 4

Polymorphic arenas

A type of system F’ will be interpreted as a kind of ‘abstract Bohm forest’ called a polymorphic
arena. As an example, given the type

T = VXW.( X5 (VZXo5Y3Z5Y)oX)

we first draw its B6hm tree

VX VY X

N

X Y Z

(the process for which will be explained below) and then “abstract” to form the polymorphic
arena interpreting 7"

The six bound occurrences of type variables become the six vertices e, the three binding
occurrences of type variables become the three vertices O, the five occurrences of the arrow
— in the type become the five straight edges , and binding is represented by the arcs
---~. In this case, the forest consists of only a single tree.

45
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4.1 Bohm forests

Our formal game semantics will be in terms of polymorphic arenas, but since B6hm forests
(our terminology for “forest of Bohm trees”) offer a useful intuitive stepping stone, we present
an informal interpretation of types as Bohm forests. We begin with product- and unit-free
types of system F', for which a Béhm forest will always be a single tree.

Bohm trees for system F' types

e Type variables. A type variable X is interpreted as the Bohm tree consisting of a single
vertex labelled X.

o Arrow. If T and T' have Bohm trees

VX Z VY 2z

T T

respectively, where \77() =VX; ... VX, and W =VY; ... VY,, then T — T' has
Bo6hm tree
Wz

v_)fz/T

T

!

formed by connecting the root variables Z of T and Z’ of T with an edge, where we
rename the Y; if necessary in order to avoid capture of free variables below it in the
Bohm tree of T'.

o Universal quantification. With T as above, the type YY.T has Bohm tree

VY VX Z

T

Note that, after renaming X if necessary to avoid capture of free variables in T, the types
T - VX.T" and VX.T — T' have the same Bohm tree: the graphical operations “inserting
an edge between root variables” and “slotting in a new binding variable next to a root
variable” commute. For example, Y — VX.X and VX.Y — X have the same Béhm tree.
Interpreting Y — VX.X we “slot in a binding variable” then “insert an edge”,

VX X

X — VX X —
Y
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and interpreting VX.Y — X we “insert and edge” and then “slot in a binding variable”

X VX X
X > —
Y Y

By induction, since T' — VX.T' ~» VX.T' — T' is the conversion scheme that takes a type
of system F' to its prenex form, modulo a-conversion two types of system F' have the same
prenex form if and only if they have the same Bohm tree. In particular, modulo a-conversion
the prenex types of system F' are in 1-1 correspondence with Béhm trees.

We now generalise to include product and unit types.

Bohm forests for system F types
e Unit. The Béhm forest of Unit is the empty forest.
e Type variables. A type variable X is interpreted as the single-vertex Béhm forest X.
e Product. If the Bohm forest of T consists of n trees
T o T
and the Bohm forest of 7" consists of m trees
o T
then the Béhm forest of T' x T" is
o T T T
obtained by laying the forests side by side.
e Arrow. If the Bohm forest of T' consists of n trees
TR o T
and the Bohm forest of 7" consists of m trees
T e T

then the forest of T — T" is

%T{ %TQ %m

1

where / denotes the “graft” of T onto the root of 7', as in the interpretation of

7'
the arrow — of system F above. Thus a copy of the forest of T' is made for each tree
of T.
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e Universal quantification. If T has Bohm forest

then VY.T has Bohm forest
Yvon. --- VYT,

obtained by placing VY next to the root of each tree, as in the interpretation of
universal quantification VY for system F' above.

As an example here is the step-by-step interpretation of VX.U — (X x (Z — Y)) as the
Bohm forest

VX X VXY
U

U/ \Z

First, X x (Z = Y') has the forest

X Y
7
Interpreting the arrow U — --- grafts a copy of U onto each of the two trees:
X Y
U U Z
Finally, interpreting VX. - - - places a quantifier next to the root of each of the trees:

VX X VXY
U U Z
We note various equalities immediate from the graphical nature of our interpretation.

Write T =gg T for the assertion that modulo a-conversion types T and 7" have the same
Boéhm forest. Then

Unit—> T =gr T TE, T =T =ar Ty xTy =T
T — Unit =gr Unit T—T xTs =ar (T — Tl) X (T — TQ)

UnitxT =, T VX.TxT =, (VX.T)x (VX.T")

TxUnit =, T T->VXT =, VXT->T (X not free in T')
VX.Unit = Unit

BF

We have already seen the “scope extrusion” T' — VX.T' =, VX.T — T', in the case of
Bohm trees for product and unit-free types.

4.2 Polymorphic arenas

Recall our first example of a polymorphic arena obtained via the Bohm tree of the type
VXVY.(Y 5 VZ.(X>Y >Z->Y) X):
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VX VY X

X Y Z

The vertices [I are called holes, and the vertices e are called actions, so-called because of
their future roles in a hypergame. We choose the name “action” for a vertex in order to
reserve “move” for later.

A hypergame will involve the players tracing paths down polymorphic arenas. For ex-
ample, taking the previous picture of a polymorphic arena, and naming the vertices in order
to distinguish them from one another,

one player starts by playing the opening action f, which enables the other player to play
either of the actions a or e. The choice of e then enables the original player to play b, ¢, or
d. The role of the holes «, 8,7 and the reference arcs - - -+ will be explained in the next
chapter.

Before embarking on the formal definition of a polymorphic arena, we show the poly-
morphic arena abstracting the Béhm forest of VX.U — (X x (Z — Y)), the example from
page 48:

Ve
VX X VXY a a c
U U Z b d e

This demonstrates the way in which we will handle free variables as “global holes” floating
above the forest. Here, v, § and € correspond to U, Y and Z respectively.

Let G = (V,—) be a graph consisting of a set of vertices V and an edge relation
—CV x V. A (finite) path in G is a finite sequence v; .. .v, of vertices such that v; = v;y1
fori=1,...,n—1. A root in G is a vertex with no incoming edge, i.e. a vertex v € V such
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that the set {w € V : w — v} is empty. A root-path is a path beginning with a root. A
graph G = (V,—) is a forest if for every vertex v € V there is exactly one root-path in G
ending with v.

DEFINITION 4.1 A polymorphic arena (Acta, Hola, -4, actya, ref4) consists of:
1. A finite set of actions Acty.
2. A finite set of holes Hol4.

3. An enabling relation F4C Acta x Acta on actions, such that the graph (Acta,t4)
is a forest. If a k4 b, i.e. b is a child of a in the forest, we say that a enables b. If a is
a root we write 4 a, and say that a is an opening action; otherwise b -4 a for some
b, and a is called a continuation action. The set of opening actions of A is written
Act?, and the set of continuation actions of A is Acty™.

4. A partial function acty : Hol4 — Acta attaching holes to actions. If acts(a) € Acty
we say that « is a local hole; if acta(a)t we say that « is a global hole.

5. A function refy : Acty4 — Holy assigning to every action a reference hole further up
in the forest, i.e. such that if refs(a) = @ and « is local, then acta(«) F* a, where %
is the transitive, reflexive closure of 4. (We picture global holes “above the whole
forest”.)

The set of global holes of A is written Holl,, the set of local holes is written Hol, and the
set of holes act,;' (a) attached to an action a (i.e. the holes next to a in a picture) is written
Hols(a). Thus Holy = Holl, U Hol,, and Holy, = UacHor, Hola(a). The level level(a) of
an action a € Acty is how far down it is in the forest. Formally, level(a) = 1 if F4 a, and
level(a) = level(b) + 1 if b+ 4 a. When the polymorphic arena A can be deduced easily from
the context we will sometimes omit subscripts, writing F for 4 or Hol for Hol4 for example.

If H is a set, a polymorphic arena over H is a polymorphic arena A with global
holes Holl, = H. We write PA for the class of polymorphic arenas, and PAg for the class of
polymorphic arenas over H.

All of the operations and constructions we shall define on polymorphic arenas in the
next section work equally well for infinite polymorphic arenas, as do hypergames and win-
ning strategies in the next chapter. But since we need finiteness in order to obtain full
completeness, we might as well take finiteness as a basic part of the definition. Intuitively
the reason finiteness is necessary for full completeness is that system F' terms can contain
types, and types are finite. So if we want to make sure there are not too many strategies in
the model, we have to discard infinite polymorphic arenas.

4.3 Operations on polymorphic arenas

We define product A x B, function space A= B, and quantification Ya(A) of a global hole
a, which will be used to interpret syntactic x, —, and V. They can be thought of as the
“abstract” versions of the interpretations of x, — and V on Bohm trees that we saw earlier.
Below A and B are polymorphic arenas over a common set of global holes H.
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Product The product A x B is obtained by laying the graphs A and B side by side.

Actaxp = Actg + Actp
Hol',,, = H (= Holly = Holl)
Holij = Holﬁ‘ + HolfB
Faxp = Fa+Fbs
actaxp = actq + actg
refaxp = refs + refp

Function space The polymorphic arena A=> B consists of B together with a copy bA of
A for each opening action b of B, with in addition b enabling every opening action of bA.

Actasp = Acty x Acta + Actp
Hol'., = H (= Holl = Holl,)
Hol\ ., = Act) x Holy + Hol

Fase = Actf xba + Fp + Fgof
actasp = Acty x actqa + actp

refasp = Acty x refa + refg

where for a set X and a binary relation R C Y x Z, the relation X x R C (X xY) x (X x Z)
is given by (z,y)X x R(z,z) whenever yRz, and the relation Fgf is given by b Fgar (b,a)
whenever b is an opening action of B, and a is an opening action of A. Here is an example:

(o4 (o4

7 d = o f

is
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where we have written pairs as two-element sequences. On the underlying trees of actions,
ignoring holes and references, this reduces to the function space construction of Hyland and
Ong.

Quantification Given a global hole a € HOIL, the quantification Va(A) of a in A is
obtained by replacing a with a local copy «, attached to each opening action a of A. an
action b below a that used to reference « is set to reference a,. The forest (Actyq(a), Fva(a))

of Va(A) is that of A, and, with b denoting the opening action above an action b,

Holi 4y = Holy\{a}
Holéa(A) = Hol, +{a, : a€c Ay}

Acta + {(ag,a) : a€ Act)}

aj if refa(b) =
ref4(b) if refa(b) #

ACtva( A)

refyq(ay(b) = {

a
a

Here is an example. Quantifying § in the polymorphic arena

‘(5 €
a a B e
b d e
gives the polymorphic arena
€
0, @ a 5}6 B v c
b d

4.4 Expansion

We define a form of substitution of polymorphic arenas for global holes of a polymorphic
arena, called expansion, modelled on the substitution of types for the free variables of a type.
Expansion will be crucial for the interaction of strategies in Chapter 6. Since it will not be
used until then, the reader can safely skip the rest of this Chapter for the time being.

Let A be a polymorphic arena over H. An assignment of polymorphic arenas to the
global holes of A is a partial function ¢ : H — PA. On page 59 we define the expansion
¢*(A) of A along ¢. Rather than launch cold into the definition, we warm up with a few
motivating examples.
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Example 1 Consider the types

T = X=>X->Y
TN = YUU—-V —>U
TT'/X] = WUV ->U)-NUU->V >U)>Y

where T'[T'/X] denotes the result of substituting T” for X in T'. Looking at the B6hm trees
of the three types, we observe the substitution of trees for vertices:

VY'Y YU V

/ \ with / \ for X
X X U U

VAN
VANAN

Mimicking this process with polymorphic arenas, we have our first example of ezpansion:
a Y

is

with

is

bé bd o cd

cf
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In order to obtain two distinct copies of the incoming polymorphic arena, we have ‘tagged’ its
vertices by prefixing them with the action onto which they are ‘hooked’. Here for example,
there are two copies bd and c¢d of the local hole §, and two copies bd and cd of the action d.

Example 2 We add subtrees below the two occurrences of X in the previous example. To
aid pattern matching, we switch VU to the right of V.

V YU
with / \ for X
U U

VY'Y

YW VZ X VZ X

is
/VYY\
YW VZ V YU VZ V YU

ANEPZAN

The expansion parallelling this substitution with polymorphic arenas is:
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in a
Y 46b
c
d
is
o
8 a

yh 8h bh b¢

bk

dh

The result of Example 1 is a subtree. The vertices v, 9, ¢, d, €, f, and g have been postfixed
with an h ‘tag’ for reasons that will become apparent later.

Example 3 In the previous examples we saw duplication due to multiple occurrences of
X. The following example shows another form of duplication, caused when the incoming
forest has more than one component.

T = WY->Y->Y)>X
T = VxW
TIT'/X] = (WY S5Y 3Y)>VxW

Interpreting each of these three types as Bohm forests gives:
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X with Vv w for X

VY'Y

is

VANIAN

Note the duplication that occurs when we interpret T[T'/X] = (VY.Y - Y 2 Y) 5> VxW
as a Bohm forest. This is because of the way arrow — is interpreted on Béhm forests. For
polymorphic arenas we will track such duplications by postfixing:

a with h k in Q

is



4.4. EXPANSION 57

v
ah" Cak

fh bh\ 57 bk\
- dh ck | Cdk

Now we see the origin of the h “postfix tags” in the previous example, which is the degenerate
case when the incoming polymorphic arena has just one component.

ch

Example 4 Duplication such as in the last example can occur repeatedly. For example

T = (WY)=»X)—>X
T = VxW
TIT'/X] = (VYY) VxW)>VxW
Interpreting the three types yields:
X with \% w for X
X
VY'Y
is
V v
Vv w Vv w

VY'Y VY'Y VY'Y VY'Y

We can visualise the duplication something like this:
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V w
v w v

w
Y

VY Y YY Y YY Y VY'Y VYYY VYY VY

VxW Vv w

VxW ~ VxW VxW ~

Only the last is actually a Bohm forest; the first two are informal graphs that live somewhere
between types and Bohm forests. Here is how we use postfixing to track the duplication:

v
q with h Kk in o
b
8 e
is
Je
bhh bhk bk bk
6hh chh ﬁﬁk chk ﬂkﬁ ckh ,Bl‘ckb .c.kk

There are two copies ah, ak of a, four copies bhh, bhk,bkh, bkk of b, four copies chh, chk, ckh, ckk
of ¢, and four copies Shh, Shk, Bkh, Bkk of the local hole 5.

Having considered these examples, there are two key points giving rise to the formal
definition of expansion:

1. Duplication of an incoming forest is tracked by prefixing.

2. Duplication of sub-forests of the receiving polymorphic arena is tracked by postfixing.
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4.4.1 Formalisation

Let A be a polymorphic arena over H. Recall from the beginning of section 4.4 that an
assignment of polymorphic arenas to the global holes of A is a partial function! ¢ : H — PA.
We say that an action a of A references the polymorphic arena B via ¢ if a references a
global hole, say a € H, and ¢(a) = B. Let a be an action of A, and let b be the root above
a. A trail of opening actions above a via ¢ is a choice of opening action from each of
the polymorphic arenas referenced via ¢ as we travel down the path from b to the enabling
action (parent) of a. For example, if A is the polymorphic arena below, and ¢ is as shown

N t e 7 . /\ /\
; Al
AN

then typical trails of opening actions above f are glnh, hlmg, and gkmg. Actions in A
referencing local holes, such as ¢ above, do not contribute. Likewise actions referencing
global holes a € H that are not in the domain of ¢ do not contribute. Trails will be the
‘postfix tags’ used to keep track of duplication, for example the four trails hh, hk, kh, kk of
¢ in Example 4 above. We write trails,(a) for the set of trails above a via ¢.

=
=
I

DEFINITION 4.2 Given a polymorphic arena A over H and an assignment ¢ : H — PA, the
expansion ¢*(A) of A by ¢ is the polymorphic arena defined as follows.

e Actions. The actions of ¢*(A) are given by

Actgeay = {an : n € trailsy(a) and refy(a) ¢ dom(¢) } U
{andb : n € trailsy(a), refa(a) € dom(¢) and b € Acty(rer, (o)) }

The actions of ¢*(A) are called compound actions, and the original actions of A and
of the ¢(a)) for a € dom(¢) (i.e. a, b, and the elements of n) are called atomic actions.

e Enabling. In the definition below n and i)' range over trails above a and a' respectively.
The four cases arise from the two different kinds of action in ¢*(A), either of the form

11t does not matter that the codomain PAy is a proper class, since the domain is a set.
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an or of the form anb.

atbad andn=n

atad andn=mn'"and FV

atbad andnb=1n" and b

{aI—Aa’ andnb=1' and F band -V, or

bt b and an = a'n’

an bgeay a'n'
an bgeay a'n't'

<
<
anb |_¢* (A) CLIT]I <~
-~

anb Feeay a'n't’

Thus a path down the forest of ¢*(A) from a root will be of the form

ay [Cl]
az[c1][c2]
as[ci][e2][cs]

am[c.l] ... [em]

amtle1] - - [em]br
amtile1] - - [em]b2
amsaler] .- [cmlbn

where @102 . ..amam+1 IS a path down A starting from a root a; and biby...b, is
a path down ¢(refa(am+1)) starting from a root by. Here [¢;] is an opening action
¢; of ¢(refa(a;)) if refa(a;) € dom(¢) and is empty otherwise. Thus [c1]...[cj—1] €
trailsy(a;) for j=1,...,m+1.

Essentially a path in ¢*(A) is a path in A followed by a path in one of the polymorphic
arenas in the image of ¢, modulo ‘duplication tags’ [c;]. Observe this in the paths of
Examples 1 to 4, most notably those of Example 2.

e Holes. The holes of ¢*(A) are given by

Hol,. 4,y = H\dom(¢) U U Hol.,
aedom(¢)
Holg+(ay(an) = {am : a € Hola(a) }
_ J{amb : a€ Hols(a) yU{anB : € Hol(b) } if Fb
Holy- (a)(anb) - = {{anﬂ . B € Hol(b) } it ¥ b

Again, see Examples 1 to 4. Recall that given an action c¢ of an arena C, the set
Holc (c) is act;te, the holes of C attached to c. So the above not only defines the local

holes of ¢*(A) by Holi*(A) = Ueceact,. s, HOls=()(¢), but defines acty-(4) also.

e References. Note that by the consideration of the shape of paths in ¢*(A) above,
given an action a{ of ¢*(A), for every action a’' above a in A there is a unique action
above a( in ¢*(A) of the form o'(’, and furthermore (' will be a prefix of (. Write
[¢,d',a] for the unique (' such that a'(’ I—;;*(A) aC.

Recall that an action of ¢*(A) is either an or anb, where 7 is a trail above a. Define
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rof (an) = ref(a)n'  if ref(a) is local
¢*(A)\an B ref(a) if ref(a) is g]obal
anref(b) if ref(b) is local
£y b
refys(4)(anb) { ref(b) if ref(b) is global

where ' = [, acta(ref(a)),a).

4.4.2 Live atomic enabling

The following definition will be important for the interaction of strategies. Given an action
d of ¢*(A) define its atomic actions to be live or dead according to whether they ‘play a
role’ in the enabling relation of ¢*(A), as follows. Let b° range over opening actions, and let
b! range over non-opening actions. Then there are three cases, where 1 € trailss(a):

1. d = an: a is live, and the elements of 7 are dead.
2. d = anb®: a and b° are live, and the elements of 5 are dead.
3. d = anb': a is dead, b' is live, and the elements of 7 are dead.

So every enabling d F4-(4) d' involves exactly one live atomic action ¢ € d and one live
atomic action ¢' € d’', with ¢ - ¢’ in the appropriate location. We call this ¢ ¢’ the live
atomic enabling. Observe this with the analysis of paths of ¢*(A) back on page 60, where
the live atomic enablings involved were

a]_l_ag, a2|_(l3, ey aml—am+1, b]_"bz, b2}_b3, ceey bn,]_'_bn.

Also witness it concretely with Examples 1 to 4 earlier. Note that the elements of n are
always dead, so when d - d' with live atomic enabling ¢ F ¢/, either ¢ and ¢ are the first
elements of d and d' respectively, or they are the last elements.

4.4.3 Repeated expansion
Suppose

Ao B A% Ay B8 4,

is a sequence of expansions, i.e., 4; = ¢;(A;_1) for assignments ¢;, 1 < i < k. Then by
definition the actions d of Ay = ¢;(...(#7(Ao))...) are of the form:

d = bon [b1]na[ba] - - - 71 [bi]

where

bo € ACtAO
n; € trailsy, (bom [b1] - .- mi—1[bi—1])
] = {e if refa,_, (bomn[b1] .- -mi—1[bi—1]) & dom(g;)
’ b; € Actp, otherwise, where B; := ¢;(refa,_, (bomi[b1] ... mi—1[bi-1]))

(Note that in the expression for d we have erased a number of brackets, e.g., writing
boma [b1]n2[b2] for (boms [b1])72[ba].)
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Analogous to the definition for the case of a single expansion, define the actions of d (in
its unbracketed form, as above) to be live or dead as follows.

First, all the elements of the 7; are dead. This leaves by and the non-empty [b;]. Of the
b; (i-e. bg or non-empty [b;]) define the last non-opening b; and subsequent opening b; to be
live, and define all other b; to be dead. In the special case that all b; are opening actions,
take all the b; to be live.

Formally, let I > 0 be least with b; (i.e. by or non-empty [b;]) an opening action for all
1 > 1. For j > 0 define b; as dead if j <1 —1 and live if j > I — 1, and define each of the
elements of the 7; as dead.

Thus live atomic enabling generalises to the k-ary case: every enabling d b4, d' involves
exactly one live atomic action ¢ € d and one live atomic action ¢’ € d' with ¢ F ¢’ (in the
appropriate location).

Note that with £ = 1 this coincides with the definition of section 4.4.2.

4.5 Equivalence

We say that polymorphic arenas A and B over H are equivalent, denoted A ~ B, if one
can be obtained from the other by renaming of actions and local holes. Formally, A ~ B if
and only if there exist isomorphisms 8 : Acta = Actp and ¢ : Holqa = Holg preserving and
reflecting the three relations &, act, and ref, and with ¢ [ H the identity on H.

Define PA¥ to be the set of ~-equivalence classes of PA, and define PA% to be the set
of ~-equivalence classes of PAg. From now on we shall work almost exclusively with PA®
and PA%, i.e. with polymorphic arenas modulo ~-equivalence. Note that the operations of
product, function space, and universal quantification of polymorphic arenas respect equiv-
alence, so they are well-defined on PA%. Furthermore, expansion respects equivalence: if
A € PAY and ¢ : H — PA® then ¢*(A) € PA® is well-defined.

Define the set PA = PA® to be a particular choice of representative for each =-class of
PA¥  and define PAy C PA to be the polymorphic arenas of PA with set of global holes
H. Via the isomorphism PA = PA¥  product, function space, universal quantification and
expansion are defined on PA and on PAg.



Chapter 5

Hypergames

A polymorphic arena is a board on which to play a game, just as an 8-by-8 grid is a board
on which to play chess. A hypergame is an ‘interlacing’ of threads of games running on a
variety of different boards. Initially there is just one board, but as a hypergame progresses
the two players O and P import fresh boards, on which new threads may open in the future.
When we come to interpret terms of system F' as strategies for hypergames, importing a
new board will interpret the application sT" of a polymorphic subterm s to a type 7. More
specifically, P imports the polymorphic arena interpreting T into the ‘playing area’.

5.1 Informal overview

Threads A thread in a polymorphic arena is sequence of moves tracing a path of actions
down its forest, storing fresh polymorphic arenas into the holes encountered along the path.
Here is an example of a thread:

a1 Q23 A

a1 az ag B1 B2 ol 4 €1 €2
A1A2A3a B1B2b c ¢ Dd E, E, €

(The references of the arena are omitted.) The first move consists in the action a together
with the storage of polymorphic arenas Ay, As, and Az into the holes a1, as and a3 attached
to a. The second move consists in the action b, enabled by a, together with the storage of
polymorphic arenas B; and B, into the holes 8; and f; attached to b. The third move
consists in the action ¢, together with the storage of the polymorphic arena C' in the hole ~y
attached to ¢. And so on.

63
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Hiding of O-imports A crucial feature of hypergames is an asymmetry between the two
players O and P: imports by O will remain ‘hidden’ from P. So strictly speaking, depending
on whether O or P opened, the thread above ought to have been one of

a1 a2 as b1 B2 ¥ é €1 €2

* k% a By Bs b * ¢ D d * ok €
a1 a2 o3 b1 B2 y 4 €1 €2
A1 Az A3 a L b C ¢ * d E1 E2 €

where we think of % as “some unknown polymorphic arena imported by O.”

The hiding of O-imported arenas from P corresponds to uniformity in system F. In-
tuitively, in a term such as AX.A\zX.z of type VX.X — X, which is uniform in the sense
that it ‘works the same way for all types X, the type variable X denotes a hole containing
an arena * forever hidden from P. In a hypergame ‘works the same way for all types X’
becomes ‘plays the same way whatever the mystery arena * turns out to be’. And ‘plays
the same way’ will be the copycat strategy ubiquitous in game semantics, in which P simply
copies moves to and fro between threads. Copycat will happen between two threads on the
hidden arena with opposite polarity: one opened by P and one opened at some earlier stage
in the hypergame by O. (We shall not witness the uniformity/copycat idea until the next
chapter, when we define the interaction of strategies.)

Moves A move is an action located in a particular arena, together with the storage of

ay 2 Qg .
AL Ay A @ of the thread depicted above. So

a thread is a sequence of moves, each in the same location.

polymorphic arenas in its holes. For example

Hypermoves A hypermove consists of one or more moves in different locations, the first of
which continues or opens a thread in a polymorphic arena, and the remainder of which open
threads in other polymorphic arenas. Figure 5.1 is an example of a run of a hypergame in
which eight threads open up on imported arenas. Each hypermove is displayed as a column
of moves, and the arcs keep track of which thread is continued by which move.

The polymorphic arena A is assumed as given before the start of the hypergame. The
hypermoves numbered 1 to 10 are as follows.

1. The first hypermove, by O, consists in a single move: he opens a thread in A with its
opening action aj, and stores a hidden polymorphic arena in the hole a attached to
aj.

2. The hypermove response of P also consists in a single move: the action a, enabled by
ay in A, together with the storage of arenas B and D into the holes as and a} of as.

3. An O-hypermove consisting in two moves:

(a) The first move continues the thread in A, with the action as.

(b) The second move opens a new thread in B, one of the arenas just stored by P,
with its opening action b;. The opening of new threads will always be governed by
the references of polymorphic arenas. In this case, since the action ag referenced
the hole as, which stores B, O is obliged to open a thread on B.

4. A P-hypermove consisting in two moves:
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1 2 3 4 5 6 7 8 9 10
0 P 0 P 0 P o P o0 P
Ya BB a as " a4 % as ag
/—\ /\
b B Rk b 2%d by xh
c re k
N
e fe
g
a1 ap
A/
oz a5 ap B1 B1 b
B B
" ag B2 B3 ba
2'-,(14 a4 by
a5 as ba
.
c §54d €e v f g K h k
C D E f2 G H K
F

Figure 5.1: An example of a hypersequence. The polymorphic arenas involved are shown
schematically underneath.
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(a) Two arenas A and B are open, and P is free to continue in either. He decides to
pursue the thread in B by playing b, and storing arenas C' and E in its holes 35
and () respectively. Now, because by references 35, which stores C, P must open
a thread on C.

(b) P opens a thread on C' with its opening action c.
5. O continues the thread in B with bs.
6. P switches back to the old thread in A, playing a4 and storing H in its hole a4.

7. (a) O continues the thread in A by playing a5, and stores a ‘hidden’ polymorphic
arena * in the hole as next to as. Since as references the hole o) in A, O is
obliged to open a new thread in its contents D, which was stored in ), by P on
hypermove 2.

(b) O opens a new thread on D with the action d, storing hidden arenas in its holes
0 and ¢'.

8. (a) P returns to the old thread in B with b4, ignoring the thread just opened by O
in D. Since by references 3} in B, whose contents is E, P must open a thread on
E.

(b) P plays opening action e in E, storing F' in its hole €. Since e references ¢ in E,
P must open a thread on its contents F.

(c) P plays the opening action f; in F, storing G in its hole v. Since f; references
in E, P must open a thread on its contents G.

(d) P plays the opening action g in G.
9. O plays f> continuing the thread on F'.

10. (a) P returns to the original thread in A, playing ag. Since ag references a4 containing
H, stored by P on hypermove 6, P must open a thread on H.

(b) P plays the opening action h in H, storing K in the hole k next to h. Because h
references k, P must open a thread on K.

(c) P plays the opening action k on K.

The next two sections introduce formal definitions of move, thread, and hypersequence.

5.2 Moves and threads

DEFINITION 5.1 A move m = (A, ¢,a) consists of:
e A polymorphic arena A € PA, called the location of m.
e An action a € Acty.

e A function ¢ : Hols(a) — PA + {*} assigning polymorphic arenas to the holes of a,
called the store of m.

Intuitively, we think of the symbol * as denoting a ‘hidden’ polymorphic arena. Write
Mov, for the set of moves located in A, and write Loc(n) € PA, act(n) € Actio,) and
storep : Actoqn) — PA + {*} respectively for the location, action and store of a move n.
Given amove m = (4, ¢, a), write Hol(m) for Hol4(a), and define m to be an opening move
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or continuation move according as a is an opening action or continuation action. In other
words, m = (4, ¢,a) is an opening move if 4 a, and is a continuation move otherwise.
When displaying a store ¢, we often stack the ordered pairs of the graph of ¢, for example

writing g g, 16) for ¢ = { (B, B),{(v,C), (3, D) }. When picturing a move within a thread (as

with the examples earlier), we tend to leave the location implicit. For example, we may write

g g, g a for (A,{ (B, B), (v,C),{d,D) },a), when the location of the move can be inferred

easily from the context.

DEFINITION 5.2 A thread 6 is a non-empty sequence' of moves § = my...my, m; =
(A, ¢i,a;) such that -4 a1 and a; b4 a;41, 1 < i < k. The location of 0 is the com-
mon location A of its moves m;. The thread is a P-thread (resp. O-thread) if for all
1 < i < k and holes a € Hola(a;), ¢;(a) = * iff i is even (resp. odd). In other words, a
Q-thread is a thread opened by Q.

Here once again are the threads we saw in the informal introductory section:

a1 a2 3 ﬂl 62 Y 1) €1 €2

* ok % a B1 B> b * ¢ D d %k €
ar a2 o3 B B2 ¥ é €1 €2
A1 A2 A3 a * * b C ¢ * d E1 E2 €

The first is an O-thread, and the second is a P-thread. As will be common, the locations of
the moves are left implicit.
Given a sequence of moves s = my ... mg, m; = (A;, @i, a;), define

Hol(s) = > Hol,(a;)
1<i<k
and define
stores : Hol(s) — PA + {*x}
by
store; = [¢17 ¢27 I 7¢k]

where the source tupling f = [fi,...,fr] : Do1<;<p Xi — Y of functions f; : X; = Y is
defined on a € X; — X by f(a) = fi(a). For example, if s is either of the two threads
depicted above, then Hol(s) = { a1, as,as,b1,52,7,0,€1,€ }, and if s is the second of the
two threads above, then store; is

{(ahAl): <Oé2,A2), (CM3,A3), <ﬂ17 *)7 (/827 *)7 <77C)7 <67 *)7 (617E1>7 (627E2>}

Note that Hol(s) and stores are defined for arbitrary sequences of moves s, not just threads.

5.3 Hypermoves and hypersequences

DEFINITION 5.3 A hypermove p is a non-empty sequence of moves 4 = my ... Mg, M; =
(Ai,dn,ai) such that |—Ai a; for 2 S ) S k.

Typically we draw a hypermove in column format, as in Figure 5.1. There, as usual, the
locations of the moves are not shown explicitly.

L All sequences in this thesis are finite, unless stated otherwise.
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5.3.1 Sequences of hypermoves

Throughout the rest of this section fix s = ;... to be a sequence of hypermoves, p; =
mMi1Mia - ..Mk, and fix ¢ to be the sequence of hypermoves of Figure 5.1 (ignoring the
additional arcs for now).

Write mov(s) for the underlying sequence of moves of s. So

mov(8) = Mm11M12 .. M1 ML -« ---- MY—1, kUL - - - Mk,
and ) ) :
— L Q2 a3 . BB B2 B . .k .
mov(t) =« ax B D as as % % bl C E b2 . K h k

Write mov°?(s) for the subsequence of mov(s) consisting of the opening moves, and mov°"t(s)
for the complementary subsequence of mov(s) consisting of the continuation moves. Since
every move is either an opening move or a continuation move, mov(s) is an interleaving of
mov°P(s) and mov©o™(s).

Given moves? m,n € mov(s), write m < n if m strictly precedes n. So if m = my;
and n = my, then n < m if and only if i < por [{ = p and j < ¢]. Given a hypermove?
u € s, define pl(u) = O or P according as p occurs in odd or even position. In other words,
pl(p;) = O if i is odd, and pl(p;) = P if i is even. For each move m € p, define pl(m) = pl(u).
Thus pl(mi;) = O or P according as i is odd or even.

Write Hol(s) as shorthand for Hol(mov(s)), and store; as shorthand for storemqy(s)- Define
act(s) to be the underlying sequence of actions of s. So with m;; = (Aij, ¢ij,a4j),

3Ct(8) = 011012 --- A1k, 021 -+« - - - aj—1,k;_1 Q1 - - - Qi
and for the hypersequence t of Figure 5.1,
act(t) = ajasasbibacbsasasdbyse f19 foaghk.

By taking actions and holes to inherit properties from their containing move, we obtain
useful shorthand notation. For example, suppose m = (4, ¢,a) and n = (B, 1, b) are moves
in s (i.e., m,n € mov(s)), a € Hol(m) — Hol(s), and 8 € Hol(n) < Hol(s). Then pl(c)
and pl(a) are each equivalent to p(m), and a < b, a < 8, a < mn, m < B, a < b are each
equivalent to m < n.

Define

OHol(s) = {a € Hol(s) : plla) =0}
PHol(s) = {a€ Hol(s) : plla) =P}

For example, for ¢ of Figure 5.1,

OHOI(t) = {alaﬂlaﬂ{7a575761}
PHOI(t) {a27a123/827/8£7a436775’{}

5.3.2 Hypersequences

DEFINITION 5.4 Given a polymorphic arena A over a set of global holes H, a hyperse-
quence (s, ) of A consists of:

28trictly speaking, ‘move-occurrences’.
3Strictly speaking, ‘hypermove-occurrence’.
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e A sequence of hypermoves s.

e A function ¥ : mov*°™(s) — mov(s) assigning a justifier to every continuation move
of s. (Recall that m = (B, ¢,b) is an opening move if kg b, and is a continuation move
otherwise.) We write m+n for \\(n) = m, saying that m justifies n. If m+ n, where
m = (B, ¢,b) and n = (C, 4, c), then we require that:

1. m strictly precedes n: m < n.

2. m and n are played by opposite players: pl(m) # pl(n). In other words, if m and
n are in the i*" and j™ hypermove of s respectively, then i — j is odd.

3. m and n are in the same location: B = C.

4. m ‘enables’ n: btp c.
We require the following conditions to be satisfied:
1. Origin. The first move of s is located in A (unless s is empty).

2. Hiding. The contents of O-holes in s are ‘hidden’: for all holes a € Hol(s), stores(a) =
% if and only if pl(a) = O.

3. Locations. Every move m is located either in A or in a P-stored arena strictly
preceding m. Formally, for all moves m = (B, $,b) in s,

B € {A}U{store;(a) : a € Hol(s),a < m, and pl(a) = P}

4. Scope. Every global hole of a polymorphic arena B stored by P is either an element
of H or is an occurrence of an O-hole preceding B. Formally, for all m € mov(s) and
a € Hol(m) with pl(m) = P,

Hol!

stores () = H + {B € OHOI(S) :f<m }
Conditions 1, 2 and 3 can be seen to hold in Figure 5.1. Intuitively, the scope condition can be
thought of as follows. Given a polymorphic arena A interepreting a type 7', a hypersequence
of A is a ‘journey’ down into the syntax tree of a term of type T, in the sense of the ‘top-
down terms’ of Chapter 1. Every bound variable AX encountered on the way corresponds
to an O-hole «, and type arguments correspond to arenas imported by P. Just as a type
argument lies in the ‘scope’ of a bound variable AX above it in the syntax tree, and can
contain X, an imported arena lies in the ‘scope’ of a hole a before it in the hypersequence,
and can reference a.

Extending the convention that actions inherit properties from their containing move, if
m,n € mov(s), m = (B, ¢,b) and n = (B, 1), ¢), then b¥ ¢, b n, and m+ ¢ are all equivalent
to m+¥n.

Depth

Given a hypersequence h = i1 ...y, i = My ... M4y, the depth depth(m;;) of a move my;
is defined recursively as follows:

e If m;; is a justified move, say mg, m;j, then depth(m;;) = depth(mgyp).

e If m;; is an opening move, then
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— if j = 1 then depth(m;;) = 1.
— otherwise j > 1, and set depth(m;;) = depth(m; ;_1) + 1.

When we display hypersequences, such as in Figure 5.1, moves of the same depth are all in
the same row, and the top row is depth 1.

Prefix

Given hypersequences h = (s,¥) and b’ = (s', v') of a polymorphic arena A, we say that h
is a prefix of A/, denoted h C A/, if s is a prefix of s’ and the restriction of V' to s is exactly
A\. The prefiz-closure h*¢ of a hypersequence h is the set

{W :KWCh}

of prefixes of h. The prefix-closure SP¢f of a set S of hypersequencesis SP* = {h' : ¥ Che S}.
We write h C h' if h is a strict prefix of ', i.e., if hC h' and h # h'.

Threads in hypersequences

Write ~\* for the reflexive, transitive closure of ¥, and if mv*n say that m hereditarily
!
Q2 Qo

B D® hereditarily justifies the move

justifies n. For example, in Figure 5.1 the move

Qs
*
s consisting of the moves hereditarily justifying m, and write m for the the first move of
thread(m). Note that because of conditions 1-4 in the definition of hypersequence, thread(m)
will be a thread located in B, as per the original definition of thread (Definition 5.2, page 67),
and 7 will be an opening move, i.e., if m = (B, 4, c), then Fp c. Furthermore, thread(m) is
a P-thread iff i is a P-move, and an O-thread iff 77 is an O-move.

as. Given a move m = (B, ¢,b) € mov(s), define thread(m) to be the subsequence of

Relationship with Hyland/Ong and Nickau

In the special case that every hypermove consists of a single move, so that all moves are
at depth 1, and after disregarding locations, holes, and storage of arenas, a hypersequence
reduces to what Hyland and Ong call a justified sequence. Nickau independently introduced
the same concept as a play (not to be confused with a different notion of play introduced
later in this thesis, in Chapter 6).

5.3.3 Well-formed hypersequences

In the commentary of Figure 5.1 we saw that the opening of new threads was governed by
references. In this subsection we formally define such a hypersequence to be well-formed.

References in hypersequences

Given a hypersequence h = (s, ), define refy, : act(s) = H + Hol(s) to mimic the references
of actions in the location polymorphic arenas of s. For each move m = (B, ¢,a) € mov(s)
define refy, (a) as follows:

1. If refg(a) is global (i.e., if refp(a) € H), simply set refy(a) = refg(a).



5.3. HYPERMOVES AND HYPERSEQUENCES 71

2. Otherwise refg(a) is local, say refg(a) = 8 € Holg(b), for some action b € Actg with
b} a. Define refy(a) to be the unique occurrence of § in thread(a) (necessarily a hole
of the unique occurrence of b in thread(a)).

For example, given the following hypersequence h = (s,¥)) of the polymorphic arena A
shown to the left,

a a

:
‘_g
)

)

L——O

€

(in which each hypermove happens to consist of a single move) the references in the hyper-
sequences are indicated with dotted lines (always oriented from right to left). Notice how
the distinct occurrences of d reference distinct occurrences of 3; the referenced § is the one
in the appropriate thread.

The image of refy, is well-defined in H + Hol(s) because of conditions 3 (Locations) and
4 (Scope) of Definition 5.4 of hypersequence.

Well-formed hypersequences

DEFINITION 5.5 Let A be a polymorphic arena over a set of global holes H. A hypersequence
h = (s,) of A is well-formed if the opening of new threads and the change of turn between
O and P is governed by refy, : act(s) — H + Hol(s) as follows. Let u be a hypermove of s,
let m = (B, ¢,a) be a move of u, and let o = refy,(a).

1. Thread-opening. If o € PHol(s), then whoever played m must open a new thread
on the arena stored in «. Formally, uy = my...mgmnn;y ...n; for some move n =

(#(@),1,b) and Fy(qy b.

2. Change of turn. Otherwise a ¢ PHol(s) (i.e., if « € H + OHol(s)), and the other
player goes next. Formally, m is the last move of u, i.e. p =my...mgpm, k > 0.

We saw the thread-opening condition at work in Figure 5.1, but not the change of turn
condition, because the arenas were too schematic. The two conditions together mean that
from the point of view of a player, a hypermove works like this: “keep opening threads in the
arenas of referenced holes until you reference a hole whose contents is ‘inaccessible’, upon
which your turn is over.” Here ‘inaccessible’ means either a global hole of H or an O-hole
containing a hidden arena *.

5.3.4 Legal hypersequences

Recall the copycat rule motivated intuitively in section 1.1.2 by ‘type-checking’ considera-
tions.
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DEFINITION 5.6 A well-formed hypersequence h is legal if it satisfies the following condition:

e Copycat rule. The reference of the last move of every P-hypermove is the same as the
reference of the last move of the previous O-hypermove. In other words, if h = hy uvhs,
u=p'm, v=yv'n, and pv) = pl(n) = P, then ref,(n) = refp(m).

The hypersequence of Figure 5.1 is too schematic for us to be able to observe the copycat
rule at work.

The copycat rule should not be confused with the copycat strategy, though when we
define composition in the next chapter we will see a strong relationship between the two.
The copycat rule will ensure that, on a hidden arena, there will exist two threads between
which P can play copycat.

Convention We take m,n to range over moves and move-occurrences, i,V to range over
hypermoves and hypermove-occurrences, and h to range over hypersequences.

5.4 Positions and winning

Our final refinement of the notion of hypersequence is that of a position. We think of the
collection of positions of a polymorphic arena A as defining a game, namely the hypergame
associated with A.

DEFINITION 5.7 Let A be a polymorphic arena over a set of global holes H. A position of
A is a legal hypersequence p = (s, ) of A satisfying the following conditions.

1. Full justification. Apart from the first hypermove of p, the first move of every
hypermove of p is a continuation move. (Hence the first move of every hypermove of
p (apart from the first hypermove) is justified, and in a picture of p ‘every column is
justified’.)

2. O-trivial justification. Justification pointers from O-moves point into the previous
hypermove. In other words, if m € u € s, n € v € s, m¥ n and pl(n) = O, then pu and
v are consecutive in p, i.e., § = 81 uVS3.

We write Pos(A) for the (non-empty, prefix-closed) set of positions of A.

The hypersequence in Figure 5.1 satisfies conditions 1 and 2.

Intuitively, we think of the collection Pos(A) of positions of a polymorphic arena A as
defining the hypergame associated with A. The ‘opening position’ is the empty sequence
¢, and p is reachable from ¢ if ¢ C p. Note that Pos(A) is non-empty (containing €) and
prefix-closed.

5.4.1 Winning

In order to define the notion of winning strategy later, which is the class of strategy for
which our full completeness result is obtained, we require the following definition.

DEFINITION 5.8 A winning position* is a position in which P has ‘run O out of moves’.
Formally, a winning position is a prefix-maximal position in which O is to move next, in
other words, a position p € Pos(A) such that |p| is even and for all ¢ € Pos(A), if p C q then
p=gq.

4We adhere to the usual bias towards the point of view of P.
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5.4.2 Examples

In this section we consider some examples of positions on various polymorphic arenas. In
particular, we look at the arena interpreting the type VX.X — X of polymorphic identity,
and the arenas interpreting the system F' encodings of the boolean and natural number
datatypes, as given (for example) in book Proofs and Types [GLT89a]. These examples
are very simple in that each of the hypermoves consists of only a single move, because the
types have no universal quantifiers in negative position. More interesting examples will be
considered in a later section.

Polymorphic identity

The polymorphic arena interpreting® the type VX.X — X of the polymorphic identity
AX\zX .z is:

5

The only positions on this arena are the prefixes of the following winning position:

0 P

o N
a b

After O’s first hypermove consisting of the action a, storing a ‘hidden’ arena in the hole a,
P has no choice but to play b justified by a. Formally, the set of positions of this arena is
{, : a, p}, where p is the two-move position displayed above. Note that the copycat rule is

satisfied, as both b and a reference a in the position.
The storage of the hidden arena by O into S plays no real role. We shall see the influence
of holes such as 8 in the examples of a later section.

Booleans

Let Bool € PA be the polymorphic arena

5

0

interpreting Bool = VX.X — X — X, the system F encoding of the Boolean datatype.
Then the set of positions Pos(Bool) is the prefix-closure of the following pair of winning
positions:

5The formal definition of the interpretation of types as polymorphic arenas comes in Chapter 8, as a
side-effect of showing that the model has the structure of a 2Ax-hyperdoctrine.
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After O’s first hypermove consisting of the action b ‘requesting Boolean data’, P has a choice:
either ‘supply Boolean data 1’ or ‘supply Boolean data 0’. The hypergame is then finished,
because O has no moves available. Note that the copycat rule is satisfied in both positions.

Natural numbers

Let Nat € PA be the polymorphic arena

interpreting Nat = VX.(X - X) - X — X, the system F encoding of the datatype of
natural numbers. Then Pos(Nat) is the prefix-closure of the following scheme of winning
positions:
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After O’s first hypermove with action n ‘requesting a number’, P has a choice: either
‘successor’ s or ‘zero’ z. After z the game is over because there are no O-moves available
(as in the first position above); after s, O has one continuation a available, ‘request for
argument’ or “successor of what?” (as in the second and third positions). The request for
an argument can be satisfied either by supplying ‘zero’ z (as in the second position), or
by making another call to ‘successor’ s (as in the third position). And so on. Thus there
winning positions p; for each ¢ > 0, where 4 is the number of times P plays s before playing
z.

5.4.3 Various technical lemmas

The following lemmas will not be needed for the time being, but are collected together here
since they concern positions.

LEMMA 5.9 Positions are finitely branching at O-hypermoves. In other words, if p € Pos(A)
and |p| is even, then { pu : pu € Pos(A) } is finite.

Proof O does not import arenas, so every O-move corresponds merely to the choice of an
action in a location. The result is then immediate from the fact that polymorphic arenas
are by definition finite, and since O can only target justification pointers into the previous
P-hypermove, which consists of a finite number of moves, there are only a finite number of
locations to choose from. d

LEMMA 5.10 Let p be a position of A. Then all depth 1 moves of p are located in A.

Proof By definition of depth, every depth 1 move m is necessarily the first move of the
hypermove containing it. Hence, by the full justification condition on positions, every such
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move (apart from the very first move of p) is a justified move, and all depth 1 moves are
hereditarily justified by the very first move m; of p. Since the location of m; is A (by
condition 1 of Definition 5.4 of hypersequence), and since justification respects enabling
(condition 3 of the definition of ¥ of Definition 5.4), m is located in A. O

LEMMA 5.11 In any position p,
1. If m+ n then depth(m) = depth(n).

2. If m is an opening move, and is not the very first move of p, then depth(m) > 2.

Proof Immediate from the inductive definition of depth.

LEMMA 5.12 Let p be a position of a polymorphic arena A. If A has no local holes at even
level® then:

1. Every hypermove in p consists of a single move.
2. Every move of p is at depth 1 and is located in A.

3. No polymorphic arenas are stored during p, i.e., |J store,(m) = € or {*}.

mep
Proof Immediate from the definition of position. O

LEMMA 5.13 Let p be a position of a polymorphic arena A.
1. Every O-hypermove of p consists in at most 2 moves.

2. The first O-hypermove of p (if p is non-empty) is a single move.

Proof (1) The second move m = (B, ¢,a) of a hypermove is an opening move. Since m is
an opening move played by O, there are no P-moves hereditarily justifiying it, so it cannot
reference a hole storing an arena.

(2) is trivial. O

5.5 Winning strategies

A strategy is a ‘cribsheet’ telling P how to respond every time O plays a hypermove. We work
with Hyland/Ong’s formalisation [HO94], adapted to a hypersequence/hypermove context.
Following the conventions of McCusker [McC96b], we leave justification pointers implicit
whenever possible. For example, given a position p and a hypermove y, when we write “pu”
we mean “a hypersequence extending p by u, together with a pointer from the first move
of u back to some move in p.” So a statement such as “pu = pv” asserts the equality of
the positions pp and pr (including their ‘silent’ justification pointers), rather than the mere
equality of their underlying sequences of hypermoves.

DEFINITION 5.14 A strategy o for A is a non-empty prefix-closed subset of Pos(A) satisfying

1. P-determinism. If pu,pv € o and pl(u) = P, then pu = pv.

SRecall that opening actions have level 1.
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2. O-contingent completeness. If p € o and pu € Pos(A) with pl(u) = O, then pu € o.

A winning strategy is one that always reaches a winning position, no matter how hard O
tries to avoid it. We formalise the idea below. Recall that a winning position is one in which
P has just ‘run O out of moves’, i.e., a winning position is an even-length prefix-maximal
position.

DEFINITION 5.15 A strategy o for A is winning if it is the prefix-closure of a finite set of
winning positions. We write wins(c) for the finite set of winning positions generating o by
prefix-closure.

Finiteness is part of the definition because it is no good to ‘wait forever’ to reach a
winning position. For example, the strategy corresponding to the infinite ‘top-down term’
MfX2X)2X=X i £i(fi(..))) of type (X = X) = X = X) = X, where i = A\zX .2, is
the prefix-closure of a set of winning positions.

A property related to winning is the following.

DEFINITION 5.16 A strategy o is total if it always manages to produce a response to an
O-hypermove. Formally, if py € o with pl() = O then puv € ¢ for some hypermove v.

LEMMA 5.17 If a strategy is the prefix-closure of a set of winning positions, then it is total.

Proof Every position p in which P has to find a move is the strict prefix-closure of one of
the wins g, since |p| is odd and |g| is even. O

The converse is not true. The strategy corresponding to the infinite ‘top-down term’
AEX2X F(F(f(...))) of type (X — X) — X (‘trying hard’ to be the fixpoint combinator)
is total, but is not the prefix-closure of a set of winning positions.

PROPOSITION 5.18 A strategy is winning if and only if it is total and finite.

Proof If ¢ is winning, then it is finite by definition, and is total by Lemma 5.17.
Suppose ¢ is total and finite. Then take wins(c) to be the set of prefix-maximal positions
of o. By finiteness of sigma, the prefix-closure of wins(c) is 0. Furthermore, every p € wins(o)
is of even length, otherwise o would not be total at p, hence every p € wins(o) is a winning
position. O

5.5.1 Examples

We consider some examples of winning strategies on various polymorphic arenas. In partic-
ular, we look at the arena interpreting the type VX.X — X of polymorphic identity, and the
arenas interpreting the standard system F' encodings of booleans, natural numbers, sums,
products, and lists, as given in Proofs and Types [GLT89a].

Polymorphic identity

The unique winning position of the polymorphic arena interpreting VX.X — X was shown
on page 73. Since there is only move available to P after O’s opening move, there is only
one winning strategy o, given by wins(c) = {p}, where p is the (unique) winning position of

the arena displayed on page 73. Formally, the winning strategy is {e, i a, p}.
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Booleans

Let p be the first winning position of Bool shown on page 74, and let g be the posi-
tion displayed underneath p. There are two winning strategies, true and false, given by
wins(true) = {p} and wins(false) = {q}. The former picks “1” in response to O’s opening
hypermove, and the latter picks “0”.

Natural numbers

Refer to the positions p; of Nat displayed on page 75. Each ¢ > 0 corresponds to a winning
strategy 4, which plays s (‘successor’) i times, then plays z (‘zero’). Formally, wins(i) = {p;}.

Sum

Given types Ty and Ty, the system F' encoding of the sum of Ty and T is Sum(Ty,7%) =
VX.(T; - X) = (T> —» X) - X, for X chosen not free in T} or T». Let A; and Ay be the
arenas interpreting T; and T» respectively, and for simplicity assume that A; and A, are
trees, with opening actions a; and as respectively. Then the polymorphic arena interpreting
Sum(77,T») has the following shape:

AN

ai as

Ay As

Any winning strategy ¢ on A; gives rise to a winning strategy for this arena as follows.
When O plays the ‘question’ g asking “in which component would you like to play?”, reply
[ for “left”. Then proceed to play ¢ in the subarena A;. Similarly, any winning strategy 7
on As gives rise to a winning strategy on A; + As by replying to g with r for “right”, then
playing 7 in A,. Interestingly, this “left or right?” idea is similar to the interpretation of
FPC sums in Guy McCusker’s Ph.D. thesis [McC98].

Product

Given types Th and Ti, the system F' encoding of the product of T and T3 is Prod(T1,T>) =
VX.(Ty - T - X) — X, for X chosen not free in Ty or T>. Let A; and A be the
arenas interpreting 77 and 75 respectively, and for simplicity assume that A; and A, are
trees, with opening actions a; and as respectively. Then the polymorphic arena interpreting
Prod(Ty,T») has the following shape:
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74

L y
ay as
A Ay

Any pair (o,7) of winning strategies ¢ on A; and 7 on As defines a winning strategy for
this arena as follows. When O plays the ‘question’ g asking “are you ready to play?”, reply
y for “yes”. Then proceed to play o in the subarena A; if O’s next move is a1, and play 7
in the subarena A, if O’s next move is as.

Lists

Given a type T', the system F' encoding of the type of lists of elements of type T" is ListT =
VX.X -5 (T - X —- X) = X, for X chosen not free in T'. Let A be the arena interpreting
T, and for simplicity assume that A is a tree. Without loss of generality, rename the opening
action of A to be head. The polymorphic arena interpreting ListT has the following shape:

l

nil cons
head tail
A
Every list 07 . .. o) of winning strategies o; for A defines a distinct winning strategy (o1, ... ,0%)

for this arena as follows. In order to simplify matters, we fix a specific type T, namely
T = Nat, and focus on type ListNat = VX.X — (Nat - X — X) — X of lists of natural
numbers. The following arena ListNat is the interpretation of this type:
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nil cons

a head tail

a

(Notice that the Nat subarena has had its opening move n renamed to head). Since we
already know (from page 78) that natural numbers are in bijection with winning strategies
on Nat, we work with lists of natural numbers such as 132 rather than actual lists of winning
strategies 13 2.

The empty sequence of natural numbers corresponds to the winning strategy with the
following winning position:

0] P

YN
>I<l nil

Upon O asking to ‘look at the list’ with the action I, P immediately responds with nil
because the list is empty.

The winning strategy corresponding to the singleton list 1 is given by the following pair
of winning positions:

(0] P (0] P 0] P
R Ny
l cons head s a z
% %k
N
l l cons tail nil

Upon O’s opening request [ to ‘look at the list’, P responds with cons because, unlike the
example of the empty sequence above, in which P responded with nil, there is an element
in the list this time. Now O has a choice between (a) head, looking at the ‘head’ of the list
(as in the first position above), or (b) tail, skipping the first element and asking to look at
the next element (as in the second position). In case (a), head is the opening move of the
Nat subarena (remember that the opening action n of Nat was renamed to head), and P
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continues with the strategy 1 on Nat. In case (b), since there is only one element in the list,
the tail is empty, so P responds with nil.

The winning strategy corresponding to the three-element list 101 is given by the following
winning positions:

(0] P (0] P (0] P 0 P (0] P
m

1 { cons i head s - a 2

NFTN ay, 7, N

* { cons tail cons o head 2

* { cons tail cons tail cons head s a z

¥ m R TN . .

* l cons tail cons tail cons tail nil

0 P (0] P (0] P 0 P 0 P

The first position is O inspecting the first element 1, and is the same as the first position
of the singleton sequence 1 above. The second position is O inspecting the second element
0, having played tail to skip the first element. The third position is O inspecting the third
element 1, skipping the first two elements by playing tail twice. The fourth position is an
attempt by O to inspect a fourth element, by playing tail three times; P returns nil because
there is no fourth element.

In general a list my ... my, of kK numbers defines the winning strategy with k£ + 1 winning

positions p1,ps, ... ,Pr+1 as follows. Each p; begins with l [, O’s opening request to extract

data from the list. This is followed by i —1 pairs of cons+tail, corresponding to O ‘skipping’
the first 4 — 1 elements of the list in order to reach the i*'. If i < k this is followed by a cons
from P to say “yes, there is an i** element”; otherwise i = k 4+ 1 and it is followed by a nil
from P to say “there are no more elements”. For 4 < k the rest of p; consists of the strategy
for the natural number m; (with the opening move n of Nat renamed to head).

Thus every list of natural numbers defines a distinct winning strategy on ListNat.

5.6 A suite of examples

We present more examples of winning strategies for polymorphic arenas with holes occurring
at even level. These strategies are more interesting than those of the previous sections,
because they involve the storage of arenas and then the subsequent migration of play to the
stored arenas. The winning strategies presented here (specifically even : Nat — Bool and
inc : Nat — Nat) will be used in the motivating example of interaction at the beginning of
Chapter 6.
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Figure 5.2: The winning strategies true and false interpreting the terms true =
AX A zX AyX .z and false = AX.AzX \y¥X .y respectively. The top position is the winning
position of true and the bottom position is the winning position of false.

For the sake of completeness, we also recall the boolean and natural number examples of
the previous section. There are six figures, as follows:

e Figure 5.2: true and false on Bool.

Figure 5.3: not on Bool — Bool.

Figure 5.4: 0, 1 and 2 on Nat.

Figure 5.5: inc (increment by one) on Nat — Nat.

Figure 5.6: even on Nat — Bool, the interpretation of a term returning true/false
according to whether its input is even/odd.

Figure 5.7: odd on Nat — Bool, the interpretation of a term returning false/true
according to whether its input is even/odd.

Below are commentaries to the figures.

Commentary to Figure 5.2 (true, false : Bool.) The strategies true and false were dis-
cussed in section 5.5.1.

Commentary to Figure 5.3 (not : Bool — Bool.) Before detailing the relationship
between the structure of the strategy and the structure of the term, we give an intuitive
reading of the strategy in pure game-theoretic terms.

In the arena Bool, think of the action b as “request for boolean input”, and think of 1 and
0 as “supply of boolean data”. Then, focusing on the underlying sequences of actions bb'1'0
and bb'0'1 in the top rows of the two positions, the strategy reads as follows. O starts with a
request b for boolean data. Since not is a constant function P cannot output a value until he
has received input. So he goes to the ‘input Bool component’, Bool', and requests boolean
data from O by playing b'. If O supplies data 1’ on the input component, P responds with
0 to O’s original request for boolean data b (hence the justification pointer back to b); if O
suplies data 0’ on the input component, P responds with 1 to O’s original request b.
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Bool' = Bool (B, w)

Figure 5.3: The winning positions of the winning strategy not interpreting the term not =
AfBL AX Az X A\yX.fXyx. A commentary is given in the main body of the text, on page 82.
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The relationship of the structure of the strategy with the structure of the interpreted
term

not = AfE° AX \zX X . fXyz

is as follows. After O’s first move i b, the three children b, 0 and 1 correspond respectively

to the three A-abstractions Af, Az, and Ay in the term. The hole 8 of O’s first move ib

corresponds to the A-abstraction AX. The fact that subsequent arenas imported by P can
reference B corresponds to the fact that subsequent type arguments can have X as a free
variable.

P chooses the action b, corresponding to the choice of f as headvariable for the body of
the term. Since b’ has a hole 8’, P must store a polymorphic arena in 3’. This corresponds
to the fact that f is of polymorphic type, and must be supplied a type argument. P stores
the arena {8, w) in B, the singleton arena consisting of the action w referencing the hole
of O’s first move. This corresponds to the argument X supplied to f in the term.

Since b’ references B, P must open a thread on its contents (3, w). Since the arena is
a singleton, there is no choice put to play its only action w. Since w does not reference a
hole containing a stored arena, there is no need to play another opening move, and P’s first
hypermove is complete. Note that the copycat rule is satisfied, because this last move w
references 3, which is the reference of O’s action b.

For his second move, O can choose between two locations: he can either continue in the
arena Bool' — Bool by justifying from b, or continue in the arena (8, w) by justifying from
w. He is forced to do the former, since w has no children. So O’s options are (i) pick the
child 1’ of b' in Bool' — Bool, as in the top winning position, or (ii) pick the child 0’ of b’ in
Bool' = Bool, as in the bottom winning position.

(i) In the term this corresponds to ‘inspecting the first argument of fX’. Since 1’ refer-
ences 3, O must follow up immediately with an opening move on the arena (8, w) stored
in B'. Since (B, w) is a singleton, there is no choice but to play its only action w. This
completes a hypermove for O, since w references 3, which does not store an arena.

P’s response is to play 0 in Bool' — Bool, justified by O’s first action b. This corresponds
to the fact that the first argument of fX is y, which, as discussed earlier, is the abstracted
variable corresponding to the action 1. This completes a hypermove for P, because 1 ref-
erences 3, which does not store an arena. The copycat rule is satisfied, because § was the
reference of O’s last move w.

We have reached a winning position, since 0 is a leaf, leaving no actions available to O.

(ii) In the term this corresponds to ‘inspecting the second argument of fX’. It is analo-
gous to (i).

Commentary to Figure 5.4 (0, 1, and 2 on Nat.) Thinking of n as “What’s the num-
ber?”, s as “successor”, z as “zero”, and a as “of”, the third sequence nsasaz reads as:
“What’s the number? Successor of successor of zero.” In more detail, O starts with “What’s
the number?”. P replies with “It’s the successor.” O says “The successor of what?” P re-
sponds with “(The successor of) the successor”. O replies “(The successor of) the successor
of what?”. P finishes with “((The successor of) the successor of) zero”. In other words, the
number 2.

Each action s by P corresponds to picking the variable f. Each action a by O corresponds
to ‘inspecting the argument of f’. The action z corresponds to picking the variable z.
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Figure 5.4: The winning strategies 0, 1, and 2 interpreting the terms AX A fX>X \zX .z,
AXAfX2X XX fo, and AX XX AzX.f(fz) respectively. The top position is the win-
ning position of 0, the middle position is the winning position of 1, and the bottom position
is the winning position of 2. A commentary is given in the main body of the text, on page 84.

Commentary to Figure 5.5 (inc: Nat — Nat.) Before detailing the relationship between
the structure of the increment strategy and the structure of the term, we give an intuitive
reading of the strategy in pure game-theoretic terms.

In the arena Nat, think of the action n as “request for a number”, think of s as “successor”,
think of a (standing for “argument”) as “successor of what?”, and think of z as “zero”. Then,
focusing on the underlying sequences of actions in the top rows of the two positions (ignoring
the storage of the arena (@, w) and the moves w located on it), the strategy reads as follows.

O starts with n asking “What’s the number?” Since inc is not a constant function, P
must inspect the input. So he goes to the ‘input Nat component’, Nat', and plays n', asking
“What’s the input number?” O responds with 2/, “the input number is zero.” Now P
proceeds with the strategy for successor of zero back on the output component Nat, i.e., P
proceeds with the strategy I.

The intuition for the second winning position only makes sense when one observes the
interaction of inc with a number.

The relationship of the structure of the strategy with the structure of the n-long variant

AmMEAX XX AeX mX (\eX . fe)(fx)

of the interpreted term
I VEAX XX A X mX f(f2)

is is as follows.

After O’s first move &

M the three children n’, s and z correspond respectively to the

(67

three A-abstractions Ag, Af, and Az. The hole a of O’s first move *

n corresponds to the A-
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Figure 5.5: The two winning positions of the winning strategy inc : Nat' — Nat interpreting
the term AgV*AX.AfX7X AzX g X f(fx), which is AgN*EAXANfX X AxX g X (NeX.fe)(fz)
in n-long form. A commentary is given in the main body of the text, on page 85.
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abstraction AX. The fact that subsequent arenas imported by P can reference a corresponds
to the fact that subsequent type arguments can have X as a free variable.

P chooses to play the action n’, corresponding to the choice of g as headvariable for the
body of the term. Since n’ has a hole o/, P must store a polymorphic arena in o'. This
corresponds to the fact that g is of polymorphic type, and must be supplied a type argument.
P stores the arena (a,w) in o, the singleton arena consisting of the action w referencing
the hole a of O’s first move. This corresponds to the argument X supplied to g in the term.

Since n' references «, P must open a thread on its contents (a,w). Since the arena is
a singleton, there is no choice put to play its only action w. Since w does not reference a
hole containing a stored arena, there is no need to play another opening move, and P’s first
hypermove is complete. Note that the copycat rule is satisfied, because this last move w
references «, which is the reference of O’s action n.

For his second move, O can choose between two locations: he can either continue in the
arena Nat' — Nat by justifying from n', or continue in the arena {a,w) by justifying from
w. He is forced to do the former, since w has no children. So O’s options are (i) pick the
second child 2’ of n' in Nat' — Nat, as in the top winning position, or (ii) pick the first child
s' of n' in Nat' — Nat, as in the bottom winning position.

(i) In the term this corresponds to ‘inspecting the second argument of gX’. Since 2’
references o/, O must follow up immediately with an opening move on the stored arena
{a,w). Since (a,w) is a singleton, there is no choice but to play its only action w. This
completes a hypermove for O, since w references a, which does not store an arena.

P’s response is to play s back on Nat' — Nat, justified by O’s first action n. This
corresponds to the fact that the head-variable of the second argument of ¢ X is f, which, as
discussed earlier, is the abstracted variable corresponding to the action s. This completes a
hypermove for P, because s references a, which does not store an arena. The copycat rule
is satisfied, because a was the reference of O’s last move w.

O has no choice but to play the only child a of s. This corresponds to the fact that f,
being of type X — X, has only one argument. This immediately completes a hypermove
for O, since a references «, which does not store an arena.

P has the following choices for his next action: n’ justified by n, s justified by n, or z
justified by n. These correspond to the lambda-abstractions Ag, Af, and Az respectively,
from which P chooses the headvariable of the argument to f. The fact that the argument is
x corresponds to the fact that P’s next action is z.

(ii) In the term this corresponds to ‘inspecting the first argument of gX’. Since s
references o', O must follow up immediately with an opening move on the stored arena
{a,w). Since (a,w) is a singleton, there is no choice but to play its only action w. This
completes a hypermove for O, since w references «, which does not store an arena.

The first argument of g X is of type X — X. This is not a base type, so in n-long form,
the argument must begin with an abstraction of type X, namely AeX.

P has the following choices for his next action: n' justified by n, s justified by n, 2z
justified by n, or a' justified by s’. These correspond to the lambda-abstractions A\g, Af,
Az, and e, respectively, from which P chooses the headvariable of the argument subterm
AeX _fe. The fact that the headvariable is f corresponds to the fact that P’s next action is
s.

O is forced to pick the only child a of s, corresponding to the fact that he is forced to
inspect the one and only argument of f.

P’s last action is a’ in Nat' — Nat, justified by O’s action s’. This corresponds to the
fact that the argument of f is e, which, as discussed above, corresponds to the action a'.

This is a winning position because a' is a leaf (corresponding to the fact that the body



5.6. A SUITE OF EXAMPLES 88

of AeX.fe has reached ground type).

Commentary to Figure 5.6 (even: Nat — Bool.) The idea of the interpreted term
Ag™*.gBool not true

is to apply not to true g times, hence (after normalisation) yielding true if g is even and
false if g is odd.
The structure of the strategy relates to the structure of the n-long variant

A AX AzX AyX .gBoolnot true X 2y

of the term as follows. First we disentangle the different occurrences of the quantified type
variable VX. Let Bool' = VX' X' —» X' — X', i.e., a copy of Bool =VX.X - X — X with
its bound variable renamed to X'. Write not’ : Bool — Bool' for

APV AX AxX A X f Xy

and write true’ : Bool’ for
AX Xz MK

Then the n-long form is
A"t AX Az X AyX .gBool’ not' true’ X zy
ie.,

AEAX A AN K g(VX X 5 X X')()\fn"“l’ .AX'.)\a:XI.)\yX’.fX'yaf;)(AX'.)\xXl.)\yX’.x)X:I;y

After O’s first move ib, the three children n, 1 and 0 correspond respectively to the

three A-abstractions Ag, Az, and Ay. The hole 8 of O’s first move i b corresponds to the A-

abstraction AX. The fact that subsequent arenas imported by P can reference 8 corresponds
to the fact that subsequent type arguments can have X as a free variable.

P chooses to play the action n, corresponding to the choice of g as headvariable for
the body of the term. Since n has a hole a, P must store a polymorphic arena in a. This
corresponds to the fact that g is of polymorphic type, and must be supplied a type argument.
P stores the arena Bool' in «, a tagged copy of Bool, as displayed top-right in the figure. In
the term this corresponds to the type argument Bool’ supplied to g.

Since n references «, P must open a thread on its contents Bool'. Since Bool' is a tree,
with only one opening action b, there is no choice but to play b'.

Since b’ has a hole 8', P must store a polymorphic arena in 8’. This correspondst to the
fact that gBool’ is of type (Bool — Bool) — Bool — Bool, i.e., (Bool — Bool) — Bool —
VX' X" - X' —» X' the prenex (‘quantifiers outermost’) form of which is VX’.(Bool —
Bool) — Bool — X' — X' — X' a polymorphic type requiring an argument. Another
way of looking at this is a follows. Whatever arguments u and v are supplied in the future,
gBool'uwv will be of polymorphic type, so it will require a type argument; we are being ‘eager’
and supplying the type argument (X) as early as possible.

P elects to store the arena (8,c) in 8, the singleton arena with action ¢ referencing the

hole g of O’s first move i b. This corresponds to the type argument X.
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Figure 5.6: The winning strategy even : Nat — Nat interpreting the term

Ag"®*.gBool’ not’ true’, which is Ag"*.AX.A\zX . AyX.gBool’ not’ true’ X xy in n-long form.
The five winning positions are represented compactly: the second and third are ‘two-in-one’.
Read a; in each a1 /as to extract one position, and read as to extract the other. A commen-
tary is given in the main body of the text, on page 88.
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Since b’ references ', P must open a thread on its contents {#,c). Since the arena is a
singleton, there is no choice put to play its only action ¢. Since ¢ does not reference a hole
containing a stored arena, P’s first hypermove is complete. Note that the copycat rule is
satisfied, because ¢ references 3, which is the reference of O’s action b.

For his second move, O can choose between three locations: (i) he can continue in
Nat — Bool by justifying from n, (ii) he can continue in Bool' by justifying from ', or (iii),
he can continue in (3, ¢) by justifying from c¢. The last is not possible, since ¢ has no children,
so we need consider (i) and (ii) only.

(i) O continues in Nat — Bool by justifying from n. Since n has two children, s and z,
(a) O can choose z, as in the top winning position, or (b) O can choose s, as in the middle
winning position(s).

(i)(a) O plays z, the second child of n. This corresponds to inspecting the second ar-
gument of gBool’. Since z references 8, O must open a thread on its stored arena Bool'.
Because Bool is a tree, O has no choice but to pick its root b’, and ‘store a hidden arena’
% in B'. (In order to be able to distinguish the new occurrences of the action b’ and hole
B' in the third hypermove from the previous occurrences in the second hypermove, we add
an overhead ‘dot’. This is a convention we shall employ in general, whenever it is useful to
be able to distinguish different occurrences of actions, moves, holes, or hypermoves.) Since
the second argument of gBool’ is true’, P finishes by playing the strategy for true’ inside
Bool', i.e., by playing 1’ justified by b'.

(i)(b) O plays the first child s of n. This corresponds to inspecting the first argument
of gBool’. Since s references §, O must open a thread on its stored arena Bool'. Because
Bool' is a tree, O has no choice but to pick its root b’, and ‘store a hidden arena’ * in 3.
(As in (i)(a), we ‘dot’ the fresh occurrences of b’ and 4'.) Rather than going into the nitty
gritty details of the remaining moves, it is more informative to observe that the rest of the
position” consists in P playing the strategy for not’ on Bool'. (To see this, pattern-match
bH1'0" and b'H'0'1’ with the picture of not in Figure 5.3.)

(ii) O continues in Bool' by justifying from b’. This sequence is ‘two-in-one’; without loss
of generality choose 1’ and 1 from 1'/0' and 1/0. So O plays the action 1’ in Bool', justified
by b'. This corresponds to ‘inspecting the first argument of gBool’ true’' not’X’. Since 1’
references (', containing the singleton arena {8, ¢), O has no choice but to play c.

P replies with 1 back up on Nat — Bool, corresponding to the fact that the inspected
argument (i.e., the first argument of gBool’ true’ not’X) is the variable z. (Recall that, as
discussed at the beginning of the commentary, 1 and 0 correspond to Az and Ay respectively.)

This is a winning position, because 1 is a leaf.

Commentary to Figure 5.7 (odd: Nat — Bool.) The strategy is the same as even, apart
from 0’ in place of 1’ in the top position. This corresponds syntactically to the fact that the
interpreted term has false' in place of true'.

5.7 Application: counting inhabitants of types

In this section we look ahead to the full completeness of the hypergames model, and demon-
strate how it can be used to reason about system F'. The reader interested in getting to the
details of the hypergame model can safely skip to the next chapter without loss of continuity.
The syntactic ‘top-down term’ argument corresponding to the game-theoretic proof of the
proposition below is given in Appendix A.

"Remember that this is really two positions, depending on whether one reads the ai /a2 as a1 or az.
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Figure 5.7: The winning strategy odd : Nat — Nat interpreting the term

Ag"t.gBool’ not’ false’, which is Ag"*®.AX.AzX.\yX.gBool' not' false’ X zy in 7-long
form. The five winning positions are represented compactly: the second and third are
‘two-in-one’. Read a; in each a;/as to extract one position, and read as to extract the
other. The strategy is identical to even of Figure 5.6, but for 0’ in place of 1’ in the top

position. A commentary is given in the main body of the text, on page 90.
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We use the copycat rule as leverage to prove:

PROPOSITION 5.19 Let U and V' be types without negative occurrences of quantifiers. Then

1. Bn-normal forms of type Prod(U,V) =VX.(U -V — X) — X are in bijection with
pairs congsisting of a fn-normal form of type U and a fn-normal form of type V.

2. Bn-normal forms of type ListU =VX.X —» (U - X — X) — X are in bijection with
finite lists of Bn-normal forms of type U.

3. The set of fn-normal forms of type Sum(U,V) =VX.(X - U) > (X =-V)—> X isin
bijection with the disjoint union of the set of fn-normal forms of type U and the set
of Bn-normal forms of type V.

These properties are not in general true for arbitrary types U and V: system F' encodings
of inductive datatypes are well-known not to be universal. For example, Prod(U, V) does
not always satisfy surjective pairing. Although every pair of closed 8n-normal forms u and
v defines a distinct closed Sn-normal form (u,v) of type Prod(U, V), by

(u,v) = AX\zV V=X guw,

for some types U and V not every Sn-normal inhabitant of Prod(U, V) is of this form. Simi-
larly, ListU may have more n-normal inhabitants than those arising as lists of inhabitants
of Bp-normal forms of type U, and Sum(U, V) may have more Sn-normal inhabitants than
the union of the fn-normal inhabitants of U and V.

The stepping-stone to the proof of Proposition 5.19 is:

PROPOSITION 5.20 Let U and V be types without negative occurrences of quantifiers, and
let A and B be the polymorphic arenas interpreting U and V.

1. Winning strategies for the polymorphic arena interpreting Prod(U, V') are in bijection
with pairs consisting of a winning strategy for A and winning strategy for B.

2. Winning strategies for the polymorphic arena interpreting ListU are in bijection with
finite lists of winning strategies for A.

3. The set of winning strategies for the polymorphic arena interpreting Sum(U, V) is in
bijection with the disjoint union of the set of winning strategies for A and the set of
winning strategies for B.

The original proposition then follows immediately from the following corollary of the main
full completeness theorem of Chapter 8:

COROLLARY If T is a type with no negative quantifiers then every winning strategy o for
the polymorphic arena interpreting T defines a distinct n-long (B-normal form t, whose
interpretation is o. So in particular, fn-normal forms of type T are in bijection with winning
strategies for the polymorphic arena interpreting T

So all that remains is to prove Proposition 5.20. We prove part 2 of the proposition. Parts
1 and 3 follow by similar reasoning. The key to the proof is the copycat rule. We illustrate
the reasoning with the arena ListNat from page 80.
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nil cons

a head tail

a

Notice that in each of the positions displayed underneath the original picture of the arena,
the copycat rule is satisfied. For example, here is the third position of the list 101, with its
reference arcs drawn in, so we can verify the copycat rule at a glance:

0 P 0] P 0] P 0] P 0] P
x ! cons tail cons tail cons heq_d” 8 a Tz

The copycat rule means that as soon as the game goes into the Nat subarena of ListNat, P
is ‘stuck’ there, in the following sense. Both of the O actions head and a in Nat reference
a, so there is no way P can ‘get back out’ by playing cons or nil: they both reference -,
which would break the copycat rule. Thus every prefix-maximal position p of ListNat starts

with the O-move ;Iy< 1, is followed by 7 > 0 pairs cons tail, and ends with either nil or a

prefix-maximal position of Nat (with its opening action n renamed to head). In other words,
p is of the form

7

* (cons tail)! ¢

where g is either nil or a prefix-maximal position of Nat with its opening move n renamed to
head. From this and the fact that every prefix-maximal position ¢ of Nat defines a winning
strategy of Nat by taking its prefix-closure, we are done.

This idea of P being ‘stuck’ in the Nat component generalises to arbitrary types U with
no negative quantifiers. Since ListU has no negative quantifiers (because U has no negative
quantifiers), by Lemma 5.12, part (iii), no arenas get stored during the hypergame.

The same argument of getting ‘stuck’ applies to Prod(U, V) and Sum(U, V). O



Chapter 6

Interaction

Games models interpret normalisation as the interaction of strategies. Given strategies
o0:A— Band T:B — C, the composite o;7 : A = C is obtained by allowing ¢ and 7 to
interact through the ‘interface’ B, and then deleting the ‘chit-chat’ moves made in B. This
is reminiscent of “parallel composition plus hiding” in concurrency theory.

Up to first-order, interaction in the hypergames model is as in the Nickau games model
of PCF [Nic94]'. Before presenting the definition of interaction in section 6.1, we first work
through a motivating example.

The strategies inc : Nat' — Nat and even : Nat — Bool, increment and a test for evenness

of a natural number, were presented in the previous chapter in Figures 5.5 and 5.6. We
] even

demonstrate that their composite Nat —= Nat <= Bool by interaction through Nat is
exactly odd : Nat' — Bool, the strategy depicted in Figure 5.7. The interaction will involve
three ‘agents’, inc on Nat — Bool, even on Nat' — Nat, and O on Nat' — Bool. The three
arenas Nat' — Bool, Nat — Bool, and Nat' — Nat are shown together in Figure 6.1.

The first-order (A-calculus) fragment of interaction was set up in Chapter 3, pages 29—
42. Now, as then, we keep track of the events in each of the three arenas (Nat' — Bool,
Nat — Bool, and Nat' — Nat) in parallel. At this point, it may be useful to flip quickly
through the next 30 pages or so for an impressionistic preview of how interaction will work.

The interaction begins with the opening move i b by O in Nat' — Bool:

By

*

This is “transmitted’ through Bool, the common component of Nat' — Bool and Nat — Bool,
to arrive as an opening O-move in Nat — Bool:

LChapter 3 highlighted an important and hitherto overlooked difference between Nickau’s interaction and
Hyland/Ong interaction [HO94].
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Cz Nat £25 Bool

Figure 6.1: The polymorphic arenas involved in the interaction Nat' 1% Nat €% Bool.
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In first-order interaction (pages 29-42), actions were transmitted up and down between the
three positions. In anticipation of the fact that here, in second-order interaction, actions will
be copied around in more complex patterns, we shall keep a record of the origin of copied
actions.

CONVENTION 6.1 Given any action a (resp. hole a) appearing in the interaction, use a
subscript 1, 2, or 3 in order to indicate an occurrence of a (resp. a) in the top, middle, or
bottom hypersequence. For example, in the diagram above, b; denotes the occurrence of b
played by O in Nat' — Bool, by denotes the occurrence of b just played by O in Nat — Bool,
1 denotes the occurrence of B next to by, and B2 denotes the occurrence of 8 next to bs.

We record the fact that by was transmitted from b; in a table underneath the interaction
state:

Nat' — Bool

By

*

Nat 2% Bool

By

*

action | by
source | by

The next step of the interaction is just as at first-order. The action by that just arrived in
Nat — Bool acts as a stimulus for even. Consulting the ‘chart’ of winning positions of even
(page 89), we see that even determines the following response in Nat — Bool, a hypermove
consisting in three moves:



action

ba

source

by

Now the first-order interaction algorithm breaks down.

%

Nat 223 Bool

B, «
*b Bool' ™
JCH
8,0 °

C

97

We would like to transmit this

hypermove to Nat' — Nat, in a similar manner to the way in which, on page 30 (for example),
b1 was transmitted down to Bool;. But P’s three-move hypermove would not be legal on
Nat'" — Nat, so it does not make sense to transmit it. In particular, it would arrive as an

O-hypermove rather than a P-move, so the storage of arenas would be anomalous.

Instead, motivated by a ‘uniformity’ intuition, that arenas stored by even should be
‘hidden’ from inc, and vice versa, we shall transmit only the first action of even’s hypermove

down to Nat' — Nat:

Nat' 2% Nat
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action | by | ns
source | by | na

Since the copy of n in Nat' — Nat has had its parity reversed to that of being an action of
0, we fill its hole with *, ‘hiding’ from inc the arena Bool' originally stored in a.

%

Nat £25 Bool

B,
*b Bool' ™
B
(8,¢)"

C

67
n
*

action | by | ns
source | by | no

This completes a hypermove for O in Nat' — Nat, so (for now, at least), nothing need be
done with the remaining actions ' and ¢ of even’s hypermove.

B
*

the winning positions of inc (page 86), we see that inc determines the following response in
Nat' — Nat, a two-move hypermove:

With the arrival of a stimulus O-move ‘, n, now Nat' — Nat is ‘active’. Consulting



action | by | ns

source | b; | ngy
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Now how should we proceed? Since inc just played an action n’ in Nat', a component shared
with Nat' — Bool, we can certainly transmit n’' to the top:



action | by | ns

source | by | ngy

RN
By

*

nl

even
/

Nat — Boo
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To turn the action n' into a move, we have to store an arena in the hole o' of n' in Nat' —
Bool. The simplest thing to do would be to directly copy accross inc’s storage of the singleton

arena {a,w) in o':
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ﬂb/—\a’ ,

* {a, w) n

Nat £25 Bool

B, —a
*b Bool' ™
g
8,0

C

Nat' =5 Nat

a m, ,
n n
* (@, w)

w

action | bs | n3 | nj
source | by | m2 | nj

But this is ill-defined, because the stored arena (a,w) has a global hole o which is not
a preceding O-hole in the top position, breaking the scope condition of Definition 5.4 of
hypersequence (page 68). The only global hole permitted in a stored arena is 3, the O-hole
at the beginning of the sequence.

To get around this problem, we use the fact that « ‘secretly’ contains the arena Bool
stored by even on his first hypermove, although down in Nat — Nat this fact remains
‘hidden’ from inc. More precisely, since the global hole a of the arena {a,w) stored by inc
in Nat' — Nat is the O-hole next to n3, we consult the ‘source’ copy of a next to the source
ng of nz, which stores the arena Bool'. Then we ‘substitute Bool' for o’ in {(a,w), i.e., we
expand the arena {(a,w) along the assignment o — Bool'. (Expansion, our game-theoretic
analogue of the substitution of types for type variables, was defined on page 59.)

The singleton arena {a,w) is:

and the arena Bool', to be ‘substituted’ for «, is:
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1 | 0’
The result of the expansion is a ‘w-prefixed’ copy of Bool':
wh'

wl’ w0

which we shall refer to as wBool'. We store wBool' instead of (a,w) in the hole o' of n' in
Nat' — Bool:

Nat' — Bool

Nat 225 Bool

B,
*b Bool'
B8
(8,¢)°

C

Nat' 25 Nat

action | be | m3 | nj
source | by | m2 | nj

This time the scope condition is satisfied, because wBoo!' does not have any global holes at
all, let alone a global hole distinct from the preceding O-hole 3.



103

Since n' references o' in Nat' — Bool, we have to play an opening move on the contents
wBool' of /. From where do we obtain such a move?

The polymorphic arena wBool' is an ‘amalgamation’ of the two arenas («,w) and Bool'.
In Nat' — Nat, inc has already played an opening action w on {(a,w), and in Nat — Bool,
even has already played an opening action b’ on Bool'. So we ‘amalgamate’ the two actions
w and b’ and play the opening compound action wb' of wBool':

Nat' — Bool

Nat £ Bool

B,
* b Bool' ™
B8
(6,0 °
C
Nat' "% Nat
a -~ X
£ (auw)”

action | be | m3 | n} | wy i

source | by | na | nf | ws | bh

As usual, we record the source of each transmitted action in the table underneath the
interaction state, this time indicating that the occurrences of w and b’ in the top position
came from the occurrences of w and b’ in the bottom and middle positions respectively.

The action wb' has a hole w3’ in wBool', so we must find an arena to store in w3’. From
the definition of expansion, the reason that wb' has the hole wg' in wBool' is because b’ has
the hole ' in Bool' (because we just ‘prefixed w onto Bool” to get wBool'). So since even
stored the singleton arena (8, ¢) in 8, we copy this and store {8, ¢) in wf':



even

Nat — Bool

B,
*b Bool' ™
JC -
8,0

C

Nat' =5 Nat

a -~ X
n
* (o, w)

nl

w

action | bs | ng | nf | wy

I
1

source | by | no | nf | w3

by

104

Still this does not complete a hypermove, because wb' references the hole w3’, which contains
the arena (8, c) just stored. In the corresponding situation in Nat — Bool of b’ referencing
!

B’ after even’s move b', even played the opening move ¢ of (3, c).
(8,) &

behaviour up to Nat' — Bool:

So we copy this



even

Nat — Bool

Nat' "% Nat

a /_WI ,
n n
* (a, w)
w

action

bs

ng | nj

I
1

C1

source

by

no ng

!
2

(&]

As usual, the source of the copied action is recorded in the table.

Suppose O responds in Nat' — Bool with the following two-move hypermove:

105
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* wBool'n z
’ I
éﬂ C)wb’ wf wd'
c
B,
* b Bool' "
B
b
(B, c)
c
Nat' 25 Nat
a -~ W
T (o)
w

action | b | ng [ nf | w | B | &1
source | by | n2 | ny | wy | by | co

(In order to distinguish the new occurrences of actions and holes from those in the previous
hypermove, we have placed ‘dots’ over them.) Following the standard first-order interaction
protocol, we immediately transmit 2z’ to Nat’ — Nat through the shared component Nat':
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* wBool’ n z
’ ro
éﬂ o) wb' wf wd'
c

Nat 222 Bool

B,
*b Bool' "
B
b
(B,¢)
c
Nat' 25 Nat
a5~
" (a w)n z
w

action | be [ m3 | nf | wy | b] | c1 | 24
source | by | ma | ny | w3 | by | c2 | 21

Now 2z’ in the bottom position references the P-hole o', which stores the arena {a,w), so
we must find an opening move of (a,w). The original 2’ in the top position analogously
referenced o' in the top position, and O played wb' on wBool'. This compound action wh'
includes (a copy w) of the action w of (@, w), so we throw away the b’ part and use w as our
opening action in the bottom position:
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* wBool’ n z
' oo,
éﬂ o) wb' wf wd'
c

Nat 222 Bool

B,
*b Bool' ™
JE -
8,0

C

Nat =5 Nat

action | be | m3 | nj | wy e | 25 | s
source | by | ma | ny | ws | by | ca | 21 | U

This completes a hypermove for O, since wb' references an O-hole (namely wA' in wBool' ).

Referring to the winning positions of inc (page 86), we see that inc responds in Nat' — Nat
as follows:
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* wBool’n z
’ Al
é’ﬂc) wy
C

action | be | ng | ny | wy | b |1 | 2% | ws
source | by | mo | nf | w3 | by | e | 21 | un

The standard first-order protocol applies, transmitting s accross to Nat — Bool through the
shared component Nat:



n
* wBool’
I
w
B wh'
(B,c)
c
eve
Nat 5 Bool
ﬂb/_\a n
* Bool
ﬂ’
(B, c)
c
inc
Nat' =5 Nat
o T
&% ' ]
n
* (o, w)
w
action | by | mg | n) | wy | b | e | 25 | w3 | so
source | by | ma | ny | w3 | by | c2 | 21 | W1 | S3
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However, unlike its source, the transmitted copy of s does not complete a hypermove for O
on Nat — Bool, since in Nat — Bool, s references the earlier P-hole a, which contains Bool'.
We copy accross the occurrence b’ of b just played by O in the top position as part of the

compound action @b’ in wBool', and ‘hide’ the stored arena (8, c):



111

* wBool'n z
’wﬂ’ ’ wﬂ, i1
LR
c
Nat 225 Bool
B, « —
* b Bool' " s
g By
(8,0)° « 0
c

n z s
* {a, w)
w w
action | be | ng | nf | w Pl e | 25 | w3 | s2 | b
source | by | me | ny | w3 | by | ca | 21 | W1 | s3 | b

This completes a hypermove for O, since b’ references an O-hole, namely ' in Bool'.

Now it is even to move. Consulting even’s table of winning positions, we obtain the
following response:



* wBool’ n z
(Zﬂc) wb’ wh wh'
C

Nat 28 Bool

B, — T
* Bool' " s a
/3’ ! B' il ﬂ' 71
(/Lc)b $ 0 (ﬂ’,d)b
c d

action | by | ng | ny | w1 | b | e | 25 | w3 | s2 | by
source | by | mo | ny | w3 | by | co | 21 | w1 | s3 | b

The standard first-order protocol transmits the first action a through the component Nat
shared with Nat' — Nat:

112
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* wBool’ n Z
(ZBC) wb' U)ﬂ ’U)bl
C

Nat 28 Bool

By

e N
* Bool' ™ 5 a
/3’ ! B' il B' 7
b b . b
(B,c) * (', d)
c d

n n z s a
* (o, w)
w w
: ! ! i . !
action b2 ns nq wn 1 C1 Z3 w3 89 ) as
source | by | me | ny | ws | by | ca | 2] | w1 | s3 | b | a2

This immediately completes a hypermove for O against inc, because in the bottom position
a references an O-hole, namely the O-hole a of the first move.

The response of inc, as determined by its ‘cribsheet’, is:



* wBool'n Z
(ZBC) wb' wh ’U)bl
C
B, — T
s T S a
* Bool
/3’ ! B"/ B' 7
b b b
(B, <) * (B, d)
c d

; , —
n n Z s a
* (o, w)
w w
3 b I ! ! - !
action o | M3 | ny | wr 1] ¢ | 23 | w3 | 82 5 | as
source | by | mo | ny | ws | by | ca | 2 | w1 | s3 | b | a2

The standard first-order protocol transmits the P-action z through the component Nat shared

with Nat — Bool, to arrive there as an O-action:
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Nat 28 Bool

g T
) a

* Bool' ™

JC L
B,0)°

n n z s a
* (o, w)
w w
: ! ! ! - !
action b2 ns ny w1 1 C1 23 w3 89 o as z9
source | by | n2 | ny | ws | by | ca | 2 | w1 | s3 | b | a2 | 23

115

Since z references «, which stores Bool', we have to find an opening move of Bool'. The
interaction algorithm plays this move by copycat, as follows. Since inc played the original z in
the bottom position subject to the copycat constraint, we know that in the bottom position
a references the same hole as z, namely the hole a of the first move n. So correspondingly,
because the moves n, s, a, z were transmitted up and down between the middle and bottom
positions through the shared component Nat, we know that the same is true of the middle
position: a references the same hole a of z. Hence even must just have played an opening
action of Bool' underneath a. We take this opening action ¥ and open a fresh ‘copycat
thread’ inside Bool' by copying it as an O-action b’ underneath z, and we ‘hide’ the stored

arena (3, d) (For distinguishability, we have ‘tilde’-ed the new occurrences of 4’ and b'.)
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* wBool’ n z
’ ro
éﬂ o) wb' wf wd'
c

G T
S a

* Bool' " z
ﬂ’ ! 5.' i B’ 7 B, I
b b S b b
(B,c) * (6, d) *
c d
Nat' = Nh
a ﬂ{_/\\, P
" n (Ot, ’U)) n z S a z

action | be | ng | ny | wy | b | c1 | 25 | w3 | s2 | by | a3 | z2 | b

source | by | mo | ny | ws | by | ca | 2y | Wi | s3 | b | ax | 23 | b

This completes a hypermove for O, since b references an O-hole, namely its own hole 3'. This
is the first instance of an action that arose as a copy of a move from within the same position,
rather than as a copy transmitted from one of the other positions. Nothing resembling this
happens in first-order /A-calculus interaction. We call such an action a copycat action, and
think of even as having been made to ‘play a move against himself’. As usual, we record the
source of b’ in the table.

Now it is even’s turn to play in Nat — Bool. However, the hypersequence is not a position,
because z’s justification pointer does not target the previous O-move, violating condition 2
of the definition of position (page 72). In order to obtain a response from even, we precede
exactly as we did in the first-order case (page 40), and ‘force’ the hypersequence to be a
position by ‘hiding’ all the hypermoves between the source and target of the latest pointer:
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!
n z
* wBool’
wpf’ wh' .
wb' wb'
(B,¢) *
c
éeven
Nat — Bool
ﬂb/_\a
y T z
* Bool
! ol
B b B 51
(ﬂ)c) %
c
inc
Nat 2% Nm
« T o T~ —
n n z s a z
* (o, w)
w w
action | be | m3 | nj | wr | by | e | 25 | w3 | s2 | by | as | z2 | b
source | by | ma | ny | ws | by | ca | 2] | w1 | s3 | b | aa | z5 | b

Looking up this ‘view’ in even’s set of winning positions, we obtain the following response:
g g



1
% wBool' n z
’ oo,
('[‘3’56) wy Pl
C

even

Nat — Bool

* Bool'
, ~,/_\
ﬂ bl IB bl 1I
(B, c) *
c
inc,
Nat' 5 Nm
(6] m T~
n n z s a z
* (o, w)
w w
action | be | m3 | nj | wr | by | e | 25 | w3 | s2 | by | as | z2 | b
source | by | ma | ny | ws | by | ca | 2] | w1 | s3 | b | aa | z5 | b

which, after restoring the hidden moves, gives
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* wBool’ n z
’ ;.
éjﬂ o) wb’ wf wb'
c

Nat 22 Bool

e N
* Bool' ™ 5 o
/3’ by B' b/ ﬂ’ 'B/ B’ m/
(B,¢) * (6',d) *
C

d

- , —
n n z s a z
* (a, w)
w w
action | be | m3 | nj | wr | b] | c1 | 25 | w3 | s2 | by | as | 22 | b
source | by | me | ny | ws | by | ca | 2] | w1 | s3 | b | az | z5 | b

The action 1’ in Bool' is justified by &', which was a copycat action. Accordingly, we ‘continue

to copycat’ by playing a copy 1’ of 1’ justified by the source b of ', and at the same time
we ‘copycat’ accross the action d:
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* wBool’ n z
(ZBC) wb' U)ﬂ ’U)bl
C

Nat 2% Bool

’@b/\a ﬁ

* Bool’
’ ; A /"’/—\
B B B B B B B gl/\ll i
(B,c) * (B, d) *
c d d
inc
Nat' 125 Nh
I
n n z S a z
* (o, w)
w w
action b2 ns n'l w1 Il C1 Zé 1[)3 89 12 as z9 12 1’2 d2
source | by | mo | ny | ws | by | ca | 2 | w1 | s3 | b | aa | 23 | by | 1} | da

Again, we turn the hypersequence into a position by hiding the moves that lie between the
source and target of the latest justification pointer:
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* wBooI'n z
(zﬂ c)wb’ wh wh'
C
B, — T/~
¢ TV S a
* Bool
,3’ ! ﬂ.' il ﬁ, 11
(8,)° e !
C

n n z s a z
* (o, w)
w w
action | be | m3 | nj | wr | by | e | 25 | w3 | s2 | by | as | 22 | by |1, | da
source | by | m2 | ny | ws | by | ca | 2] | w1 | s3 | b | ax | 2z | by |1, | da

Looking up the view in even’s set of winning positions, we obtain the following response:
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* wBooI'n z
wﬂ’ ! 'wﬂ’ br
(ﬂ,c)wb . wb
C
B, —« — T/
y T S a
* Bool
/B' ! B"/ 1 !
(8,0)° g a) 0
c d d

n n z s a z
* (o, w)
w w
: ! r 1 : ! 1 11
action | by | n3 | my | wr | b | c1 |23 | W3 | Ss2 | by |as |2 | by |15 de
source | by | m2 | ny | w3 | by | ca | 2y | w1 | 83 | b | ax | 23 | by |1, | da

The action 0’ is justified by b'2 whose source is i”p so we transmit 0’ to the top position,
justified by (the compound move wb' containing) b}:
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* 'wBooI'n z
wp' wp’ .-,//—\ .y
(8,0) " b @0
c
P Q
* Bool' ™ a
ﬂ I ﬂ.' ) //ﬂf——\\
b b
(B¢ * B, d) %
c d d
Nat' 2" Nat
an@sﬁ\a .
* (o, w)
w w

action | ba | ng | ny | wy | b | c1 | 25 | w3 | s2 | by | as | 22 | by | 15 | da | Of

source | by | n2 | ny | ws | by | ca | 2] | w1 | s3 | by | ax | 23 | by | 15 | dy | 0

We record the source of 0’ in the table?. Now the interaction is over, because @0’ is a leaf.
So the combined efforts of even and inc have achieved victory in Nat' — Bool. Notice that
this winning position is the top winning position of the winning strategy odd : Nat' — Bool
displayed in Figure 5.7, as one would hope.

6.1 The interaction algorithm

In this section we formalise the algorithm that governed the interaction of the introductory
example. The algorithm is presented in subsection 6.1.9. First, in subsections 6.1.1-6.1.8,
we introduce some auxiliary definitions: views and plays, interaction states, live atomic
actions and live atomic enabling, holes of live atomic actions, match, source, lookup and full
expansion, and well-formedness of interaction states.

2For technical reasons, it turns out that the ‘prefix’ u is simply ‘copied forward’ as 1, and this fact is not
recorded as part of the source table. This is because w, although an atomic action of a compound action, is
what we call a dead atomic action (defined in section 4.4.2).
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6.1.1 Views and plays

The definition below is motivated by the situations on pages 117 and 121, in which anomalous
O-pointers forced us to restrict P’s ‘view’ of the hypersequence. Given hypermoves u,v of
a hypersequence s, write u¥ v if the justifier of the first move of v is in u, and say that pu
justifies v. We recall (McCusker’s [McC96a] variant of) Hyland/Ong and Nickau’s notion
of the view of a justified sequence, adapted to our hypersequence setting.

DEFINITION 6.2 The view of a hypersequence h = (s,+)) is defined by induction on the
length of s as follows:

e —

€ = €
Tsiusov™ = Tsipwv if pl(v) = O and po v
Fsiv? = v if pl(v) = O and v is unjustified
Fsiv? = Ts1w ifpllv) =P

The graph of ¥ on the view is defined as the restriction of ¥ from the original hypersequence
s.

The justfication graph of the view "h™ may turn out to be a partial function rather than a
function, because some of the targets of the pointers may become deleted. So "h™ need not
be a hypersequence. Similarly, some of the O-holes referenced by stored arenas may become
deleted. The following definition yields a class of hypersequence whose view will be free of
such ‘dangling pointers’.

DEFINITION 6.3 A play is a well-formed hypersequence h = (s, ) of a polymorphic arena
A satisfying the following conditions.

1. If the first move m of a hypermove p is an opening move, i.e., if m is unjustified, then
m is an O-move located in A.

2. Justifier vistbility. The justifier of every P-move is in the view: if s = siusavss,
pl(v) = P and pu+ v, then p € "squss ™.

3. Reference visibility. The global references of every polymorphic arena stored by P
are amongst the O-holes of the view: if s = sy us2, pl(u) = P, m € u, and a € Hol(m),
then

Hol!

stores ()

= H + {B€OHol"s") : p<m}.

(This is a refinement of the scope condition of Definition 5.5 of well-formed hyperse-
quence.)

We write Plays(A) for the set of plays of A.

The second condition is adapted from Hyland/Ong. The next two lemmas, though trivial,
will turn out to be very useful later.

LEMMA 6.4 Let h be a hypersequence. If h is a play, then the view "h™ of h is a position.

Proof A simple induction on the length of h. The view "h™ satisfies the copycat condition
because (unwinding the definition of view) "suv™ = s'uv whenever pl(v) = P. O

LEMMA 6.5 Suppose p € Plays(A) and p is a P-hypermove such that "p'u € Pos(A), with
Jjustification pointer targeting some O-move m in "p. Then pu € Pos(A).
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Proof The target m of the justification pointer is in "p™, as are the references, hence pu
satisfies the visibility conditions. O

6.1.2 Interaction states

We formalise the interaction states of the illustrative example of interaction at the beginning
of the chapter. First we formalise the notion of ‘hypersequence with gaps’ that was used in
the example.

DEFINITION 6.6 A timestamped hypersequence (s, >, T) is a hypersequence (s, ) to-
gether with an assignment T : s — N, such that for all hypermoves u,v € s, if 4 < v then

T(w) < T().

The three hypersequences in the motivating interaction example earlier are each times-
tamped: the timestamp of a hypermove is the index of its column, counting from left to
right. Given two timestamped hypersequences (s, ¥, Ts) and (¢, ¥y, T;) and hypermoves
u,v € s+t, write p < v for T(u) < T(v) and p < v for T(u) < T(v), where here each
occurrence of T is T, or T, as appropriate. Given moves m of p and n of v, we write m < n
if and only if 4 < v and write m < n if and only if 4 < v. So m < n means “m is in a col-
umn strictly preceding the column containing n”. The length |(s,, T)| of a timestamped
sequence (s,+, T) is 0 if s is empty, otherwise the timestamp of the last hypermove of s.
Note that the length of (s, >, T) may be strictly greater than the length |s| of s, because of
‘gaps’.

Given an arena D with global holes H + H; and a function rename : Hy — H, (a
‘renaming’ of some of the global holes), define the arena rename(D) with global holes H + H,
in the obvious way, i.e.,

rename(refp(a)) if refp(a) € Hy

fr nam =
I'€Trename(D) (a) { refD(a) otherwise

DEFINITION 6.7 Given polymorphic arenas A, B,C over a set of global holes H, an inter-
action state p = (p,q,r, next) of A, B and C consists of:

1. A timestamped position p of A=C;
2. A timestamped play q of B=C;

3. A timestamped play r of A= B;

4. A ‘control’ next € {1,2,3} such that:

(a) If next = 1 then in p it is O to play next.
(b) If next = 2 then in q it is P to play next.
(c) If next = 3 then in r it is P to play next.

Every polymorphic arena D stored by P in p is required to be either:

1. A polymorphic arena stored by P in q or r, expanded repeatedly by polymorphic arenas
stored by P in q or r. Formally,

D = rename(¢y (. - - (1 (¥(@))) - --)),
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for a a hole of a P-move m = (E,1,a) of q or r, assignments ¢, ... ,$; with
im(¢;) C im(store,) Uim(store,),

and
rename : OHol(q) + OHol(r) — OHol(p).

(Note that since D is stored in p, it must have global holes H + OHol(p), and by
definition of the expansions, ¢j(...(¢7(¢(a)))...) has global holes H + OHol(q) +
OHol(r), hence the renaming function.)

2. A singleton arena {(a,e) with the distinguished action e (called the dummy action)
referencing a previous O-hole a of p. (In our motivating inc/even example we did not
come accross any dummy actions. For a preview of dummy actions, look to pages 150
or 153.) We assume that e is not an action of A, B or C, so in particular e does not
occur as a depth 1 action of p, q, or r. Furthermore, by convention we shall assume
that e is not an action of any stored arena other than one of the (o, e).

We write Inty(A, B, C) for the set of interaction states of A, B, and C. The length |p| of p
is max{|p|, |q|, |r|}, i-e., zero if each of p, q, and r is empty, otherwise the maximum of T(u)
as p ranges over all the hypermoves of p.

Each picture in the interaction of even and inc earlier is an interaction state, with A = Bool,
B = Nat and C = Nat', and with p, ¢, and r as the top, middle and bottom hypersequences
respectively. The function of next is to indicate at every step of the interaction which of the
hypersequences p, g, or r has control, i.e., which of the three hypersequences is about to be
extended by a hypermove.

Recall our convention that for any action a (resp. hole &) appearing in the interaction, we
use a subscript 1, 2, or 3 in order to indicate an occurrence of a (resp. «) in the top, middle,
or bottom hypersequence. The polymorphic arena wBool' stored by P in p is the expansion
of the arena (as,w) stored in r, along the assignment az — Bool' (k = 1 in condition 1
above), followed by the renaming of B2 to the corresponding occurrence 81 of 8 in the top
hypersequence. The polymorphic arena (31, ¢) stored by P in p is the ‘zero-step’ expansion
of the arena (s, ¢) stored in the second hypermove of ¢ (k = 0 in condition 1 above), again
followed by the renaming of 85 to f;.

6.1.3 Live atomic actions and live atomic justification

By condition 1 of the definition of interaction state above, given an interaction state p =
(p,q,r, next), the location of every action d of p will be (the renaming of) a repeatedly
expanded arena ¢ (... (¢7(¢()))...). Hence, by definition of repeated expansion (Defini-
tion 4.2, and section 4.4.3), every action d € act(p) is a compound action

d = bony[bi]n2[b2] - - - M [bk]
where

by € Act¢(a)
7; € trails¢i. (b0771[b1] . ’I’)z',l[bz',l])
b]=14° if refq,_, (bomu[ba] - - 1i-1[bi-1]) & dom(¢s)
bi € ACtBi otherwise, where B,’ = ¢i(b0771 [bl] M1 [blfl])
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(The above is simply cut-and-pasted from section 4.4.3, with ¢ (a) in place of Ap.) In
particular every atomic action a of d (i.e., by, non-empty [b;] or an element of one of the
7;) is located in an arena stored by P in g or r, because (by condition 1 of the definition
of interaction state) B; € im(¢;) is an arena stored by P in q or r. Write I6c(a) for this
location. In the degenerate case that d = e, the distinguished action of a singleton arena
{a, @), define Ioc(e) = Loc(e) = {a,e).

Write dct(p) for the sequence of atomic actions underlying act(p). For example, with
p the top hypersequence of the illustrative interaction example on page 123, act(p) =
bn'(we)z' (we) (w0') and dct(p) = bn'wez'wew'. Write Odct(p)/Pact(p) for the subsequences
of atomic O/P-actions respectively. By convention, take all actions of ¢ and 7 to be atomic,
and define the atomic actions of p to be dct(p) = act(p) + act(q) + act(r).

Define act(p) to be the subsequence of dct(p) consisting of the live atomic actions. By
convention take every action of ¢ and r to be live atomic, and define the live atomic
actions of p to be act(p) = act(p) + act(q) + act(r). In order to maintain the consistency of
the ‘overline’ notation, given a live atomic action a € act(p), we write loc(a) for its location
I6c(a). Write act®?(p) and act®°™(p) for the subsequences of act(p) consisting of the live
atomic opening- and continuation actions respectively, and write Oact(p) and Pact(p) for
the subsequences of act(p) consisting of the O- and P live atomic actions respectively.

Define live atomic justification

7N - 3t (p) — act(p)

to correspond to ¥ : act®™(p) — act(p) as follows: set a¥~ b whenever a is a live atomic
action of d, b is a live atomic action of e, d¥ e, and a F b is the live atomic enabling
behind d F e. (Live atomic labelling was defined in section 4.4.2, page 61.) For example, on
page 123, in the top hypersequence, b'7~0’ is the live atomic enabling behind wb' ~w0'. (So
w just ‘comes along for the ride’ as a ‘prefix-tag’.) Note that (as sets of pairs, i.e., graphs
of functions) ¥~ and ¥ are in bijection, since every enabling of compound actions is due
to exactly one live atomic enabling. Define ¥~ : act®™(p) — act(p) as the extension of
7N acto™(p) — act(p) with ¥ : act*™(q) — act(q) and ¥ : act°™(r) — act(r).

6.1.4 Holes of live atomic actions

For any atomic action a € d = by [b1]n2[bs] - - - nk[bk] of p as in the previous subsection (i.e.,
with bo, 1;, and [b;] page 126) define (2 as the subsequence of d strictly preceding a and (%
as the subsequence of d strictly following a, i.e., d = (2a{%. Then, unwinding the definition
of the holes of a compound action d (Definition 4.2, page 59),

Hold) = |J {¢aC? : o€ Holp,(a)}
live a€d

where the range “live a € d” means “live atomic actions a of d”. For each live atomic action
a of d, define

Hol(a) = {{%all : a € Holg,(a)}
ie.,

Hol(a) = {({2a(% : a € Holgyg(a) }
Thus

Hold) = |J Hol(a),

live acd
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and since the union is disjoint,
Hol(d) = > Hol(a).
live ac€d

By definition

Hol(p) = Y Hol(d),

d€eact(p)

Hol(p) = > Hol(a).

a€act(p)

SO

For example, in the top hypersequence (position) p of the example at the beginning of the
chapter (page 123), Hol(b) = {8}, Hol(n') = {a'}, Hol(w) = 0, Hol(b') = {wp'}, Hol(z') = 0,
Hol(w) = 0, Hol(b') = {wp'}, Hol(w) = B, Hol(0") = 0, and Hol(p) = {B,a/,wps’,wB'}.

6.1.5 Match

In the motivating interaction presented at the beginning of the chapter, the ‘sent’ and
‘received’ copies of an action were ‘the same’. We formalise ‘the same’ in the definition
below. The depth 1 case appears complicated at first sight, but it is just the obvious
bookkeeping associated with the fact that in a function space D = E there are multiple
copies of D. Write an action (c,b) € Acty x Actg — Actpsc as be, with the idea that (c,b)
is a copy of b ‘tagged’ with ¢. Given an atomic action a of a compound action d of p, define
depth(a) = depth(d).

DEFINITION 6.8 Live atomic actions e # e and e’ # e of an interaction state p = (p, q,r, next)
of Inty(A, B, C) match, denoted e ~ €, if either of the following conditions hold:

1. depth(e) > 1, depth(e') > 1, loc(e) = loc(e'), and e = €' in Actjse(q)- In other words, e
and €' are occurrences of the same action.

2. depth(e) = depth(e') = 1 and, with a,b, ¢ ranging over Acta, Actp, Actc respectively,

eececp e eq,e=ce€Actpc, and e = ¢ € Actpc; oOr
eeccq, e er,e=b, € Actp=c, and €' = b € Actpp; Or
ecep e er, e=a.€ Actpc, and € = ay € Actap; or
e any of the above three cases with e and e' exchanged.

The depth 1 case (case 2) is familiar in first-order (i.e. A-calculus) interaction. For example
in the following typical interaction:

A=C c ac
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The two copies of ¢ (one in A=-C and the other in B= C') match; b, € B=C and b€ A= B
match; a, € A= B and a. € A= C match.

Note that in the example interaction at the beginning of the chapter we judiciously
renamed the actions of Nat' — Bool, Nat — Bool, and Nat — Nat in order to avoid
‘subscript tags’ (such as ¢ in b, or a.). So in all cases the matching of a ‘sent’ and ‘received’
live atomic action reduced simply to ‘having the same name’. Examples of match in the
interaction state of page 123 include any of the pairs in the action-source table underneath
the picture, e.g. by ~ by (an instance of condition 2, modulo the judicious renaming), and
wy ~ w3z (an instance of condition 1).

An important fact used in the interaction algorithm is that the sets of holes associated
with matched live atomic actions are isomorphic. This will allow us to pass stored arenas back
and forth between the corresponding holes during interaction (modulo possible expansion of
the stored arenas on their way into the top hypersequence).

LEMMA 6.9 For all live atomic actions a,a’ € Pact(p), if a ~ a' then Hol(a) = Hol(a').

Proof Direct from Definition 6.8 of match and the definition of Hol(a) in section 6.1.4.
Note in particular that by definition of match, for b. € Actasp, Holamp(b:) = Holg(b) =
Holsp(b), and for a, € Actasc, Holasc(ac) =2 Holy(a) = Holsp(ap). O

6.1.6 Source

We formalise the source depicted underneath each of the interaction states in the motivating
interaction example.

DEFINITION 6.10 A sourced interaction state (p,q,r, next, source) is an interaction state
(p, q,r, next) together with a partial function

source : Pact(p) + Oact(q) + Oact(r) — Oact(p) + Pact(q) + Pact(r)
assigning a source to each of the live atomic actions a in its domain, such that
e source(a) if and only if a = e, the distinguished dummy action.
e source(a) ~ a, i.e., every action matches its source.

e source(a) X a, i.e., the source of an action is in a (non-strictly) preceding column of
the interaction state.

If source(a)t then a (where necessarily a = ) is a dummy action; if source(a) is in the same
hypersequence as a, a is a copycat action; otherwise a is a transmitted action.
Ints(A, B, C) denotes the set of sourced interaction states of A, B, and C.

In the example interaction state of page 123, the graph of the source was shown in the table
underneath the interaction state. (In that particular example we did not come accross any
dummy actions.) Note that, because of the typing of source, if a is a copycat action then
the condition source(a) < a becomes strict, i.e., source(a) < a.

LEMMA 6.11 For all live atomic actions a € Pact(p), Hol(a) = Hol(source(a)).
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Proof Immediate from Lemma 6.9, since by definition of source, source(a) ~ a. O
Extend

source : Pact(p) + Oact(q) + Oact(r) — Oact(p) + Pact(q) + Pact(r)
to holes, by defining
source : PHol(p) + OHol(q) + OHol(r) — OHol(p) + PHol(q) + PHol(r)

via the isomorphism Hol(a) = Hol(source(a)) of Lemma 6.9 just above. In other words, for
every live atomic action a in the domain of source, writing f, : Hol(a) = Hol(source(a)) for
the isomorphism, define source(a)) = f(a) € Hol(source(a)) for each hole a € Hol(a).

Following the convention that a1, as, a3 mean respectively occurrences of the hole a in
the top, middle, or bottom hypersequence, the source table on holes of the inc/even example
(page 123) is

hole Ba | as | of | why | By

source | 1 | aa | o | By | wpy

Note that, on holes, source is total, because Hol(e) = () always.

6.1.7 Lookup and full expansion

We define a form of repeated expansion of arenas stored in the plays ¢ or r of a sourced
interaction state p = (p, ¢, 7, next, source) which is crucial for the definition of the interaction
algorithm in the next section.

A motivating example is the expansion of the singleton arena (a,w) in the illustrative
example of interaction at the beginning of the chapter. First we ‘looked up the hidden
contents’ Bool' of O’s first hole a of the Nat' — Bool play, and then (page 102) performed
the expansion of the singleton arena («,w) by the assignment « — Bool'.

We begin with a formal notion of ‘look up the hidden contents’ of an O-hole.

DEFINITION 6.12 Let p = (p, q,, next, source) be a sourced interaction state. Define
lookup : OHol(q) + OHol(r) — OHol(p) + PA

on a € OHol(q) + OHol(r) by

store(source(a)) € PA  if source(e) € PHol(q) + PHol(r)
source(a) if source(a) € OHol(p)

lookup(a) = {
In case 1, we are ‘looking up the hidden contents of &’ by going back to the source P-move.
In the illustrative example earlier, we found Bool' this way when we constructed wBool'
(page 102). In case 2, there are no ‘hidden contents’ because the move containing the hole
originated from an O-move in p.

On page 102, having ‘looked up the hidden contents’ Bool' of a, we then expanded the
singleton arena (@, w) by the assignment a — Bool', modifying (a,w) in order to make it
a viable stored arena of the top sequence p. This idea is formalised in the definition below.
Given a set holes G of p, denote by G<¢ the subset of G' consisting of holes with timestamp
strictly less than i.
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DEFINITION 6.13 Let p = (p,q,r, next, source) be a sourced interaction state. Then given
an arena D stored in a P-hole a € PHol(q) + PHol(r), say store(a) = D for a a hole of
n € Pmov(p), define the full expansion D* of D, with global holes

Holl,, C H + OHol(p)<™™,

(i.e., with global holes amongst H or the O-holes of p preceding n) as follows.
By the scope condition of Definition 6.3 of play,

Holl, C H + OHol(s)<™(™

where s is q or r according as a € PHol(q) or a € PHol(r). In other words, the global holes
of D are either global holes of the whole interaction (members of H), or are earlier O-holes
of the play (q or r) containing D.

Define

pOHol(q) = { B € OHol(q) : source(8) € OHol(p) }

pPOHol(q) = { B € OHol(q) : source(B) ¢ OHol(p) }
Since

Holl, C H + OHol(s)<™™
we have
Holl, C H + OHol(q)<™™ 4 OHol(r)<T(™

hence

Holl, C H +pOHol(g)<™™ + pOHol(q)<"
+ pOHol(q)<T™+ pOHol(r)<T(™

Define the partial function
Iookup : OHol(q) + OHol(r) — PA
in the canonical way from the function
lookup : OHol(q) + OHol(r) — OHol(p) + PA

of Definition 6.12, i.e., lookup(a) = lookup(a) if lookup(a) € PA, and lookup(a) if lookup(a) €
OHol(p). By the scope condition of Definition 6.3, which constrains store in Definition 6.12,
the result l6okup* (D) of expanding D along the assignment I66kup has global holes

Hol!

ookupr(p) € H + pOHol(q)<™™ + pOHol(r)<T()

+ pOHol(g)<T(™ =14+ pOHol(r)<T(m)—1
Hence the repeated expansion (lookup*)* (D), k times along lookup, has global holes

C  H + pOHol(q)<T(™) + pOHol(r)<T(")

HOl oty
ookup*)* (D)

+ HOHol(q)<T(M=*k+ pOHol(r)<T(m=k
so in particular

HOl ruoryri—1py S H +pOHol(g)<T™ + pOHol(q)<™™
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Define D* to be (lookup*)T(")~1(D) with each global hole
B € pOHol(q)<T™ + pOHol(g)<™™

renamed to
source(f3) € OHol(p)<T(™

Thus
Holl,, C H + OHol(p)<™™
6.1.8 Well-formed (sourced) interaction states

Below we refine our notion of sourced interaction state by imposing various conditions needed
in order to define interaction smoothly. In digesting the conditions, it may be helpful to
browse the examples following the definition in parallel with the definition itself.

DEFINITION 6.14 A sourced interaction state (p, q,r, next, source) is well-formed if for all
live atomic actions e € Pact(p) + Oact(q) + Oact(r),

1. depth(e) = 1 if and only if depth(source(e)) = 1.
2. If depth(e) > 1 (so depth(source(e)) > 1 also) then
f¥source(e)  if and only if  source(f) e

So in particular e is (live atomic) unjustified if and only if source(e) is (live atomic)
unjustified.

3. Suppose a € PHol(p), hence source(c)) € OHol(p) + PHol(q) + PHol(r).

(a) If source(a) € PHol(q) + PHol(r) then store(a) = store(source(a))*, the full ex-
pansion of the contents of source(c).

(b) If source(c) € OHol(p) then store(c) = (source(c), ®), the singleton arena with
dummy action e referencing the O-hole source(a).

4. If depth(e) = 1 (so depth(source(e)) = 1, by condition 1) then, as motivated by the
following typical first-order/\-calculus interaction

A=C c ac

A=B b ap

(a) T(e) = T(source(e)), i.e., e and source(e) are in the same column. (So in partic-
ular, by the typing of source, e and source(e) are in distinct hypersequences.)
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(b) if e € act(r), source(e) € act(q) and source(e) = b. € Act x Acty — Actass,
then e is unjustified. (E.g. in the diagram above e = b and source(e) = b,.)

(c) if e € act(p), source(e) € act(r) and source(e) = a. € Acty x Act¥ — Actasc
then source(f)+# e, where f+¥ source(g) and g source(e). (E.g., in the diagram
above, e = a., source(e) = ap, g = b, source(g) = b., f is the occurrence of ¢ at
the start of the second row, and source(f) is the occurrence of ¢ at the start of
the top row.)

(d) Otherwise (i.e., neither of (b) or (c) hold) - source(e) if and only if source(f)e.
(This is the depth 1 counterpart of condition 2.)

13 13

We use “well-formed interaction state” as an abbreviation for “well-formed sourced interac-
tion state”. Write Int,f( A, B,C) for the set of well-formed interaction states.

Consider the Nat' — Nat — Bool example on page 123. Condition 1 is clearly satisfied.
Instances of condition 2 are: by 15 and by 1, (i.e., source(by)¥ 15 and by source(1));
b 0] and bh0), (i.e., source(by)¥Y)] and by Nsource(07)). Recall that the graph of source
on holes is

hole B2 | az | of | why Ba

source | B1 | as | af | B4 wh

The (one and only) instance of condition 3(a) is
store(wB;) = store(source(wfBy))* = store(B5)* = (Ba2,c)* = (B1,c)

(This example is somewhat degenerate, since the expansion is trivial.) Condition 3(b) does
not arise in this example. Conditions 4(a-c) are seen to hold trivially (bear in mind for
(b) and (c¢) that we judiciously renamed the actions of the function spaces, as remarked on
page 129). An example of condition 4(d) is that nj¥ 2] and n§¥ 23, ie., nj ¥ source(z;)
and source(n}) ¥ z5.

6.1.9 The algorithm

Having armed ourselves with all the necessary auxiliary definitions and concepts, we are
ready to present the interaction algorithm. Let * denote the constant function with value
%, with domain to be deduced from the context.

DEFINITION 6.15 The set of valid interaction states Int(A, B,C) C Int,f{A, B,C), a subset
of the set of well-formed interaction states of A, B, and C, is defined by recursion on length
of p = (p, q,r, next, source) € Int,{A,B,C).

Base cases.

1. |p| = 0: Set (e,€,€,1,€) € Int(A, B,C). So initially, with next = 1, O is about to play
inp=e.

2. |p| = 1. For singleton positions yu = (A=C, ¢,¢) € Pos(A=C), let ' = (B=C, ¢,c)
and set
(u, 1y €, 2, source(p') = p) € Int(A, B, C).

In other words, given any opening O-hypermove pu of A=-C (necessarily a single move,
by Lemma 5.13, page 76) in p, we transmit p across to q to appear as an opening O-
hypermove of B=C.
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Induction step. Suppose p € Int(A, B,C), with |p| > 1. Subdivide into cases according to
next € {1,2,3}. We consider the cases in the order next = 2, next = 3, next = 1. The bulk of
the material is case next = 2, on pages 134-151; next = 3 is essentially the same as next = 2;
next =1 is on pages 151-154.

1. next = 2, i.e. q has control, so in q it is P’s turn. Let u = m;y ... my, be a hypermove
extending the view of ¢, in other words such that "¢y € Pos(B = C). Let m; =
(D, ¢,a) and let m = (D, *,b) be the justifier of m,. Let ¢' = qu, the extension of q
by w, justify my by m = (D, *,b), and set T(my) = |p| + 1:

0 P
/—\
(D, *,b) (D, ¢,a)
ma
my

Note that, by Lemma 6.5 (page 124), ¢' = qu € Plays(B = C). Let b = source(b).
Due to the typing of source, there are three subcases: (a) b € act(q); (b) b € act(r);
(c) b € act(p). Note that b = e is impossible, since by condition 2 of the definition of
interaction state (page 125), e € act(p) only, and here b € act(q).

(a) b € act(q). Sob is a copycat action, pl(b) = P, depth(b) = depth(a) > 1, and b
and b are occurrences of the same action, i.e., b= b in Actp (see diagram be]ow)
Let 1 = (D, 4, b) be the move containing b. Let i, be a copy of m with stored
arenas ‘hidden’, i.e. thy = (D, *,a), where a and a are distinct occurrences of
the same action, ie., a =a in Actp. Take q" = ¢'uin, justify my by m, and set
T(rm1) = T(m) + 1. So ¢"

P 0] P 0]
] /\
q” st (D7¢7b st (D7i7 b) st (D7 ¢7a) D7i7a)
ma
mg

Due to the typing of ref;n we consider two subsubcases: i. refy: (@) € H+OHol(q");
ii. refqu (a) S PHOI(p)

i. refy(a) € H + OHol(g"). Since refy (a) has no stored arena, vy = (D, *,a)
completes a hypermove for O. So set (p,q",r,2, source') € Int(A, B,C), where
source extends source with source' (a) = a.

ii. refy:(a) € PHol(p). Let o = refy:(a) (see diagram below). Since depth(b) =
depth(a) > 1, by condition 2 of the definition of interaction state (page 132),
a and a are in ‘copycat threads’, so refy (@) = source(c). Let & = source(a)
(which happens to be an occurrence of a, i.e., & = a in Holfj). Let E be the
polymorphic arena stored in &. So q" looks like this:
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P 0] P 0] P 0

oy (D) (DX - (Didia) D, x,a)

(Reference arcs are shown underneath.) Note that necessarily k = 1, i.e.,
the hypermove p consists of the single move m; = (D, $,a), because the
reference o of a is an O-hole. Since the reference & of a stores an arena E,
unlike subsubcase i above, m; = (D, *,a) does not complete a hypermove:
O is required to open a thread on E.

Since P played m; = (D, ¢,a) subject to the copycat rule, the O-move m; =
(F, x,c) immediately preceding m; (in other words, the last move of the
previous O-hypermove) also references a, i.e., refy:(m]) = a.

Since ¢ references an O-hole which is not at depth 1, depth(c) > 1, so
depth(source(c)) > 1 and source(c) is another occurrence ¢ of c.

Due to the typing of source, there are two cases to consider: A. ¢ € act(q),
and B. ¢ € act(p). (The case ¢ € act(r) is impossible, since that could only
happen if depth(c) = 1. The case ¢ = dummy, i.e., ¢ = e, is impossible, since
e € act(p) only, and ¢ € act(q).) The two cases A and B are very similar:

both involve retrieving a move (E, %, é) to play as a second O-move beneath
(D, *,4a).

A. ¢ € act(q). Let ny = (F, (,¢) be the move containing ¢. By condition 2 of
the definition of well-formedness (132), ¢ and ¢ are in ‘copycat threads’,
S0 refy: (¢) = &, the same as the reference of a. Since & stores the arena
E, immediately below ny = (F,(,¢) there must be a move ny = (E,w,e)
which opens a new thread on E.
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P O P 0 P 0 P 0]
_ ./////::::::::::::::\\\\\\
Cpo L Db (Disb) e (FGE) e (Fixo) (D, ) (D, %, a)
(B, w,e) :

Let na = (E, %,€é), a copy of ny = (E,w,e) with stored arenas ‘hidden’,
and where ¢ is a fresh occurrence of e (i.e., € = e in Actg). Define ¢'"' to
be ¢" with 7, immediately below m, = (D, *,a):

P O P 0 P 0 P 0
S LDl (D) e (RGY e (Fxo  (Didia) (D, %,4)

(B Ge) L (B

Put (p,q"",r,2,sourcd) € Int(A, B, C), where source extends source with
source' (a) = a and sourcé (¢) = e.

B. ¢ € act(p). Thus ¢ is part of a compound action (¢’ € act(p) located in
a fully expanded arena G*:

0]

P (G %, CineC)

" ...a

Since refy:(c) is an O-hole of ¢", which was expanded to E in the full
expansion G*, ¢ is not the last atomic action of (¢(': the next live atomic
action after ¢ is an opening action of E, i.e. (' = ne(" for n a trail above
Ccande € Acty. O’s action a references &, storing E, so O is required to
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play an opening move on E. We obtain this opening move as (E, %, é),
for é a fresh occurrence of e, i.e., ¢ = e in Actg:

0
7] (G %, Cinec™)
P P P 0 0 P 0
T
qm ; % (Da¢;b (Daiab) (Fai:c) (D>¢7a) Diaa)

This completes a hypermove for O, since é references an O-hole. Put
(p,q",r,2,s0urce’) € Int(A, B,C), where source’ extends the function
source with source'(a) = a and source (¢) = e.

(b) b€ act(r). Som = (D, *,b) was a transmission from P in r.

0 P
(D,i,b)/i\D,q),a)
ma
mg

By definition of source (page 129), since source(b) = b, we have b ~ b, and
by definition of match (page 128), depth(b) = depth(b) = 1 and D = B = C.
Furthermore b = d. € Actpc for d € Actpg and ¢ € Act?}’, and a = e, € Actpo
for e € Actg, withd Fg e. Som = (B=C,*x,d.), mi = (B=C,d¢,e.), and

q' = qu looks like this:

0 P
(B=C, x,d.) e (B=C,¢,e.)
ma
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(Bothd,. and e, are at depth 1.) By definition of match (page 128), b= source(b) =
source(d.) € act(r) is an occurrence d of d (i.e., d = d in Actp), and depth(d) = 1.
Let m = (A= B,%,d) € act(r) be the move containing d. So the interaction

state looks like this:

0 P
o (B=C, % d,) - (B=C,¢,e.)
ma
my,
P
oo (A= B,1,d)

We shall transmit m, = (B=C, ¢, e,) accross tor, justified by 1h = (A= B, 1), d).
Let vy = (A= B, *,¢), a ‘copy’ of my with stored arenas ‘hidden’, and where e
and ¢é are occurrences of the same action, i.e., e = € in Actg. Let r' = rrn, justify
my by m = (A= B,v,d), and set T(m1) = T(m,), ie., put my = (A= B, *,¢)
in the same column as m; = (B=C, ¢,e.):

0 P
o (B=C,%d.) - (B=C, ¢, e.)
ma
my,
P 0
o (A=B,¢d) - (A= B, %,¢)

Analogous to (a)i and (a)ii earlier, there are two subcases: i. ref.(¢) € H +
OHol(r"), and ii. ref,..(¢) € Hol(n) for some P-move n in r'.

i. ref.(é) € H+OHol(r"). Since ref,.(€) has no stored arena, vy = (A= B, *,¢é)
completes a hypermove for Q. Set (p,q',r',3,source’) € Int(A, B,C), where
source’ extends source with source' (¢) = e..

ii. ref.(é) € Hol(n) for some P-move n in r'. Let a = refy (e.), and note that,
by construction of function space, a = 3, € Actocp X Holjl5 — Holﬁbc for
some f§ € HoI]LB. (Adopting the usual convention, we write (. for the pair
(c, B).) Since é is a transmission of e., by condition 4(d) of Definition 6.14
of well-formed interaction state, ref.(€) is a copy 8 of 3, and source(3.) = f3:



6.1.

THE INTERACTION ALGORITHM 139
0 0 P
Be - (B=C,%,d.) - (B=C, ¢,e.)
P P 0
B - (A=B,yd) - (A= B, *,¢)

Note that k = 1, i.e., P’s hypermove pn consists in the single move m; =
(B = C,¢,e.), because e. references an O-hole. We continue to proceed
analogously with case (a)ii. Since 8 stores an arena E, mmy does not complete
a hypermove. O is required to open a thread on E.

Since P played my = (B = C,¢,e.) subject to the copycat rule, the O-
move m; = (F, %, f) immediately preceding m; = (B = C,¢,e.) (in other
words, the last move of the previous O-hypermove) also references f3., i.e.,

refy (ml_) = Be:

0 0 0 P

ﬂCK o (B=C,%[d.) - : (B=C, ¢,e.)
\ (E;i,f)

P P 0

8 (A:>B,¢,d) (A= B, *,¢)

Let f = source(f). Due to the typing of source, there are three cases to

consider: A. f € act(r), B. f € act(p), C. f € act(q). (f = e is impossible,

since f = e only if f € act(p).)

A f e act(r). Thus depth(f) = 1, so F = B = C and since 8 € HoI]LB,
f = h¢ for some h € Actg (the only way taht f could reference f3.).
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0 0 0 P

o Be o (B=2C,xd,) - (B=C,%,h) (B=C,¢,e)
P P 0

B (A= B, d) - (A= B, x,¢)

Since f € act(r'), f = h, another occurrence of h € Actg. Let ny =
(A = B,(,h) be the move containing h, which (by condition 4(a) of
Definition 6.14 of well-formed interaction state) is in the same column as
my = (B$C7i7 hc):

0] 0 0] P

/\
e Be o (B=2Cxd,) - (B=C%,h) (B=C4e)

P P P )

r" B (A:>B7¢7d) (AﬁB;C;h) (A:>B,i,€)

Since 3 stores an arena E, immediately below ny = (A= B,(,h) there
must be a move ny = (E,w, g) opening a thread on E:
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0] 0 0] P

/\
e Be o (B=2Coxd,) o (B=C,%,h) (B=C,¢,e)

P P P 0
r ﬂ (AiB,’Iﬁ,d) (A¢37C7h) (A#B,i,e)

L "(E,w,g) |

Let ny = (E, *,9), a copy of na = (E,w, g) with stored arenas ‘hidden’.
Define "' to be r' with ny immediately below m; = (A= B, *,é), i.e.,

0] 0 0] P

/\
o B o (B3C,x7de) - (B=C,x,h) (B3C,0,e)

P P P 0
r ﬂ (AiB,’Iﬁ,d) (A¢37C7h) (A#B,i,e)

This completes a hypermove for O, since § cannot reference a P-hole
(see Lemma 5.13, part 1). Put (p,q',r",3,source) € Int(A, B,C), where
source' is the extension of source with source' (é) = e, and source' (g) = g.

B. ¢ € act(p). So depth(f) > 1 (the only way an action with source in p
could reference a hole 3. in a ‘B component’ of B=>C), and f is part
of a compound action ¢ f¢' located in a fully expanded arena G*. (This
case is nearly identical to (a)ii.B.)



6.1. THE INTERACTION ALGORITHM 142

]

0]

(G*, *,(fng¢")

0 0 0 P

Be (Bicaiadc) (B:>07¢7€c)
(F, %, f)

P P 0

/\
(A=B,y,d) --- (A= B, x,¢)

-

Since refy (f) is an O-hole of ¢', which was expanded to E in the full
expansion G*, f is not the last atomic action of (f(': the next live
atomic action after f is an opening action of E, i.e. ¢' = ng¢" forn a
trail above (f and g € Acty. O’s action é references B, storing E, so O
is required to play an opening move on E. We obtain this opening move
as (E, *x,9), for g a fresh occurrence of g, i.e., § = g in Actg.
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H -
(G*, *,{fng¢")

0 0) 0) P
/_\
o Be o (B3C,kd) - 1 (B3O, 4,ec)
(F,x,f)
P P 0
(E, *,9)

This completes a hypermove for O, since g cannot reference a P-hole (see
Lemma 5.13, part 1).

ct(q). This case reduces either to case A or to case B above. Let
= (F,¢, ) be the move containing f, and note that depth(f) > 1 and
depth( ) > 1 since f is a copycat action.

Cfe
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0] 0] P 0 P

ﬂc\ (B:}C,i7dc) (B$C7¢7ec)
\ (F.¢.f)  (Fx.0)

P P 0

(A=B,¢,d) - (A= B, x,¢)

& -

Since depth(B.) = 1 and depth(f) > 1, the only way refy (f) = B, is
possible is with 3. € Hol}, a global hole of F (as opposed to 3. € Holf,,
a Iocal hole of F). Then because f is a copycat action, ref, (f) = 8. also.
We are in search of an opening move in E, to ‘copy’ as a move underneath
m1 = (A=C, *,é). We shall ‘chain back’ along moves

Ly l'u_l N - iu—? R [ A

O P o P 0 P o P 0]

in ¢', each of which references (3., until we reach a suitable candidate
l, with source(l,) € act(r') + act(p), and then appeal to case A or B
according as source(l,) € act(r') or source(l,,) € act(p).

The O-movesl; = (G;, *, g;) and P-movesl; = (G, (;, g;) are determined
as follows. Let Iy = (G1, *,¢1) be the O-move immediately preceding
ny = (F,(, f), ie., the last move of the O-hypermove preceding the P-
hypermove containing ni. By the copycat rule, refy(li) = refy(ni) =
B.. Having defined I; = (G, *,9)s, if source(l;) € act(q'), define [; =
source(l;) = (G}, (i, 9:) and define l;11 to be the O-move preceding li,
and repeat. (Thus refy (I;) = B., and by the copycat rule, refy (liv1) = B
also.) Otherwise (i.e., if source(l;) € act(p) + act(r')) terminate, setting
u to be the current value of i. (Note that the algorithm must terminate,
since liy1 < 1;.)

Now by construction either source(l,) € act(r'), or source(l,) € act(p).
In the former case, proceed as in case (b)ii.A. above, but with l,, in place
of (F, %, f); in the latter case, proceed as in case (b)ii.B. above, again
with I, in place of (F, %, f).

(c) b € act(p), so m was a transmission from O in p. Since b = source(b) ~ b, by
definition of match (page 128) there are two subcases to consider: i. depth(b) =
depth(b) =1, D = B=C, b = ¢ € Actl — Actsc anda = (¢, e) = e, €
Act® x Actg < Actpsc, and ii. otherwise.

i. depth(b) = depth(b) = 1, D = B= C, b = ¢ € Act? < Actpsc and
a={(b,c)=e. € Act¥ x Actp — Actp=sc. So ¢ = qu looks like this:
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iI.

(0 P
/—\
(B=0C, x,d,) (B=C,¢,e.)
ma
mp,

We shall transmit P’s move my = (B=-C, ¢,e.) accross to r as an opening
hypermove of A= B. Let my = (A= C, *,¢é) be a ‘copy’ of m; = (B=
C, ¢,e.) with stored arenas hidden, where é and e are occurrences of the
same opening action of B (i.e., ¢ = e in Actg), treated as an opening action
of A= B. Let r' = rmhy, with mhy = (A= C, %, ¢€) unjustified:

0 P

(BicaiadC) (B:>07¢766)

0

(A= B, x,¢)

Define T(m1) = T(m4). Note that this completes an O-hypermove since é,
being an opening action, references either a global hole of H or one if its own
local holes. Set

(p,q',r', 3, source) € Int(A, B, C),

where source extends source with source (€) = e..

Otherwise. Thus depth(b) > 1, depth(b) > 1, and b is part of a compound
action (1b(, located in a fully expanded arena E*, where (2 = m1[b1]. . . 1o [bu]
and n; € trails(Cibm[b1] .. .mi—1[bi—1])- Let ¢' = qu. Thus:
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0
p| oo (B %, GDG)
0 P
T~
(D,%8) ... (D,¢a)
ma2
my

Define actions a;; and c;, holes o;, and k; € N, by recursion on i as follows.

Base case. Define ky = k. For j = 1,... ,k define ay; to be the action of
m; (so in particular, a1 = a). Define oy = refy(a1), and define ¢; to
be the last action of the O-hypermove preceding ay:

0] P
! :
aq “e . aii
C1
A1k,

(Note that a € H is possible, though the diagram may suggest o €
Hol(q').) By the copycat rule, refy(c1) = refy(aix) = ai.

Recursion step. Suppose a;j, a;, ¢; and k; have been defined for some
i > 1. If a; € H, source(c;) € act(p), or source(a;) € Hol(p), then stop.
Otherwise a; € OHol(q) + OHol(r), source(c;) € PHol(q) + PHol(r), and
source(c;) € act(q) + act(r). Let ¢; = source(c;) and & = source(a).
Without loss of generality, assume ¢; € act(q). (For ¢é; € act(r) switch q
and r in the passage below.) By inductive hypothesis, ¢; € Oact(q) is the
last move of an O-hypermove, and o; = refy(c;). There are three cases:
(1) ¢é; € act(r); (2) é; € act(q) and ref,(¢;) € PHol(q); (3) ¢; € act(q) and
refy(¢;) € OHol(g).

(1) ¢é; € act(r). Thus depth(c;) = depth(¢;) = 1, &; € PHol(r), and
refr(c'i) = Oé,
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@ a; C;

ai+1 .. O[, . Cit+1 Cz

S Gig1,1

Qit1,ki 41

Define ki1 to be the number of actions below ¢;, and define a;11,;
to be the j*" such action (k;y1 > 0 since ¢; references a P-hole.)
Define c¢; 1 to be the last O-action of the O-hypermove preceding
(the P-hypermove containing) ¢;. (In the diagram c;;1 need not be
at the same depth as ¢;.) Define a1 = ref,(cip1) = refp (@i piyy)
(the latter equality holding because of the copycat rule).

(2) ¢é; € act(q) and refy(¢;) € PHol(q). Thus depth(c;) = depth(¢;) >
1, &; € PHol(q), and refy(¢;) = .

P 0] 0] P 0]
@ ai+1 - .. di ... ai PR ci+1 c.i ... ci
Qiy1,1
Ait1,kig1

(¢, o, ¢ and ¢; are in the same row, but a;1 and ¢;4; need not
be in that row. In particular, a;11 € H is possible.) The definitions
are exactly the same as in case (1). Define k;y1 to be the number of
actions below ¢;, and define a;11,; to be the j* such action. (Note
that k; 1 > 0 since ¢; references a P-hole.) Define c¢;;1 to be the last
O-action of the O-hypermove preceding (the P-hypermove contain-
ing) ¢;. Define a1 = ref.(ciy1) = refp(aiy1,k,,,) (the latter equality
holding because of the copycat rule).
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(3) ¢; € act(q) and refy(¢;) € OHol(q). Thus refy(¢;) = refy(c;) = a,
and there are no actions below ¢;.

0 0] P 0]

@ a; Ci+1 éi vci

Define k;y1 = 0, a;41 = «, and define ¢;y1 to be the last O-action
of the O-hypermove preceding (the P-hypermove containing) ¢;. (So
refy(ci+1) = oy, by the copycat rule.)
Let | > 1 be the maximum ¢ defined by the recursion above (which must
terminate, because c¢;;1 < ¢;). Define s to be the column obtained from the
sequence
A11 - - A1k, 21 "7 - A2ky - - Q1 -~ - Qi

of all the a;; contructed in the recursion by inserting a ‘linebreak’ before
every a;; with j > 2. For example, given

(11012013021022023031041 042043

a11
a2
13021
a22
23031041
42
Q43

Define a;; to be the j** action of the i'h row of s, let y be the number of rows

of s, and let x; be the number of elements of row i. For example, with s as

above, G52 = az1, y =7, and x5 = 3. Note that @1 is an occurrence of a, the

action of P’s move (D, ¢,a) in ¢'.

The column s will constitute the live atomic actions of a P-hypermove in

p, the ‘team-response’ of P in q and P in r. We break into two cases: A.

¢ ¢ act(p), and B. ¢; € act(p).

A. ¢ & act(p), ie., ¢ € act(q) + act(r). Recall that b = source(b) is a live
atomic action of the O-move

m = (E*, %, Gbm[b1] . . 0w[bu))-
Add the following hypermove v to p, with its first move justified by m:

(E*, 01, Craar m[bi]@rz - - - Mey—1[bey—1]@121 Mey[b21] - - - Nw[bw])
(LQ, 02, asy - - .6,23;2)
(Ls, 03, a3 .. .a34,)

(Ly, Oy, Gy1 - ..Gys,)
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where the locations L; and stores 0; are is given as follows. Write n;; =
(Dij, ¢ij,as5) for the move containing the action d;;. For i = 2,...,y
define

Li = D;'kla

the full expansion of the location of @;;. Given an element e of a sequence
t, recall that we define t<. and ts, by t = tccets.. Fori =1,...,y
let d' be the action of the i*® move of v, and for j = 1,...,z; and
B € Holp,; (a;;) define

0i(dis,; B dis,;) = 6ij(B),

the full expansion of the arena stored in 3. (At this point it might be
useful to look at section 6.1.4, about the holes of compound actions.)

Define p' to be the extension of p by v as above, and put
(®',q',r,1,s0urce) € Int(A, B, C),

where source’ extends source with the addition of source'(d;;) = s,
and where the occurrence of a;; on the left is in v, and the occurrence
of a;; on the right is the original copy in the move n;; of ¢ or r. The
hypersequences p' and ¢' now look like this:

0 P
/—\ R
(B, %,GbG) oo (B*61,Gado)
(L2,0,82)
(Lyaéyasy)
0 P
T
(D, *,b) (D, ¢,a)
my

where a = a1 = ay1, a copy of a.

B. ¢ € act(p). Proceed exactly as in the previous case, but then extend the
last compound action s, to form p" from p' as follows:



6.1. THE INTERACTION ALGORITHM 150

(0] 0] P
. //\ ~
P <o (B %, G10G) e (G Rk wiGw) e (B, 01, Gade)

(Ly1,62,2)

(Lh—-1,6h-1,5n—1)
(L0, 5,35)

YUy

0 0 P P
/—.\
(D,%,0)" -+ o e © .. (D, ¢,a)
k q Ql,kt ma
mg

The source ¢; of ¢; is part of a compound action wiéws in p. Here ws
is (a fresh copy of) the subsequence of wy consisting in its live atomic
actions. Given a live atomic action e of wy, write é for the corresponding
occurrence of e in wy. Extend the store 0, associated with s, to form 6;
as follows. Let w = wiéws and @ = syws. For live e € wy and B € Hol(e)
define

0; (a<é B C~U>é) = <w<e B wse, .>a

the arena with the single action e referencing the global hole w<. S Wse.
Finally, we have two cases to consider: (1) ref,(wiéwe) = W<e B Wse, OF
(2) otherwise. We consider (2) first.

(2) Thus refy (syWs) is not a P-hole, sov completes a (p", q,r, 1, source")
to Int(A, B, C), where source' extends source’ of case A with source' (é) =
e for each live atomic action e € wo (equivalently, for each € € Ws).

(1) Thus refy (syws) = W<s fWse, which (by construction) stores the
singleton arena (W<, Bwse,®), so we duly open a thread, forming p""
from p"':
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p" e (B %, GbG)
0]
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0] P

(B*, 61, C1als)
(L1,02, s2)

(G*aia wlélw?)

(Lh-1,0h-1,5h—1)
(L0, 5,35)

YUy

(<w<e ﬂw>€a .>7®7 .)

Since e references w. fwse, an O-hole, this completes a hypermove.
Put (p'',q,7,1,source’) € Int(A, B,C), where source” is as in case (2)

above.

2. next = 3. This case is exactly as next = 2, but with q and r exchanged, modulo the
special case of an r-move in an A component of A=-B justified by an opening A= B
move. Then (similar to Hyland-Ong interaction) realign the justification pointer of the
transmited move to point to the very first move of p.

3. next = 1. Thus O is to move in p. Let p' € Pos(A=C') be a position extending p by a

hypermove u. So p has the following shape:

P

(E,6,¢b¢")

(B, %,(aC")
(F*,%,c1...¢)

where ¢ is an occurrence of ¢ ‘dotted’ in order to distinguish it from the original, and
the ¢; are the atomic actions of the compound action c¢; .. .cy, constituting the second
move of u. (By Lemma 5.13 u consists in at most two moves, and we code the case
of u a singleton with k = 0.) We have distinguished the live atomic actions b and a
within the compound actions as those of the live atomic justification b¥~a behind the

justification (b¢' A~ Cal!.
Let b = source(b).

There are three cases: (a) b € act(q), (b) b € act(r), and (c)

b € act(p). (Note that b = dummy (i.e., b = o) is impossible, since e, being the action
of a singleton arena, could not justify another action.)
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(a) b € act(q). Let m = (D, ¢,b) be the move containing b. We copy a as a move
my = (D, *,a) justified by , forming ¢':

(E",6,¢6¢")  (E*, *,(ag")
: (F*,i,cl...ck)

Set T(mm1) = T(ma). Let o = refy(a). There are two cases: i. « € H + OHol(q'"),
or ii. o € PHol(¢").

i. @ € H + OHol(q"). Then my = (D, *,a) completes a hypermove for O. Put
0,4 ,r,2,sourc’) € Int(A,B,C), where sourcé extends source by setting
source(a) = a. (Note incidentally that if o € H then in fact " = ('.)

ii. a € PHol(q'). Due to the conditions of being a well-formed interaction state
(page 132), ref,(Ca(") is a P-hole &)’ with source(pén)’) = o, and & a copy
(occurrence) of a. In order for a to have referenced a P-hole, a must be
the last live atomic action of (al" (by construction of expansion). Let G =

store(e). Then by well-formedness of the interaction state store(ypa)’) = G*,
so in fact G = F':

P 0

. //\ Lo
F (E*,0,¢b¢")  (E", *,Cac")
: (YF*,i,Cl...Ck)

MR
5
T
=
S
*
&
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Since refy(a) = «, O is obliged to open a thread on F. By definition of
expansion, since c; . . .cy is an opening (compound) action of F*, we play the
opening move (F, %, ¢;) for ¢ a fresh occurrence of ¢y, forming q":

P 0

o N
vay (B*,0,85¢)  (E*, %, ¢ac)
: (YF*,i,Cl...Ck)

MR
S
SRRSO
=
S
L*
&

This completes a hypermove for O. Put (p',q",r,2,source) € Int(A, B,C),
where source’ extends source by setting source(a) = a and source(¢1) = c;.
Set T(F, *,¢1) = T(D, *x,a).

(b) b € act(r). Exactly as the previous case, but with r in place of ¢, hence adding
(', q,7",3,sourcé) € Int(A, B, C).

(c) b € act(p). So b is part of a compound action £b(' € act(p). We ‘copycat’ O,
defining p' as:

0] P 0] P

(G*Jii beI) T (E*J 07 Cbcl) (E*aia CaC”) (G*J ¢a gaC”)
(F*, %,c1...¢p)

Just as ¢ and C are copies, so £ and § are copies, and a is a copy (fresh occurrence)
of a. Define the store ¢ as follows. Since we have chosen the live atomic justifi-
cation b#va to ‘copycat’ the live atomic justification b¥a, we have (b¢' ~ ag".
Thus, by Lemma 6.9, there is an isomorphism of holes f : Hol(€a(") = Hol(¢h¢!).
Define ¢(8) = (f(B), »), the singleton arena with action e referencing the O-hole
f(B) of the O-move (E*, %,CaC"). Due to the typing of refy , there are three
subcases: i. refy (EaC") € PHol(p), ii. ref, (€aC") € OHol(p), iii. refy (€a¢") € H.

i refy (€al") is a P-hole, say g1 (see below). Then since we are in copycat
threads, a has a source & in an earlier O-hole 6. In particular k = 0,
since a(" references an O-hole, in other words O’s hypermove consists of a
single compound action (a¢". Since €aC" references a P-hole, P is required
to play an opening move on the polymorphic arena inside the hole. By well-
formedness of the interaction state, the stored arena is the singleton arena
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(p2cp, ®). So we complete a hypermove for P by playing e, the only possible
action, to form p".

0 P 0 P 0 P

Cpeag | p0p (G*’*’@m

* (o, 902d$é> T ) (E*avvia éa’C”) (G , ¢, gaé_”)

Add (p",q,7,1,s0urce') to Int(A, B,C), where source' extends source with
source (a) = a, and source/(d) = d for the corresponding copies of live actions
de (" andd € (". Set T((s,p26¢),0,0) = T(G*, $,£ac").

ii. refy(€ac") is an O-hole. The situation is similar to the previous case i, but

this time it is O who is obliged to play e, rather than P. P’s hypermove
consists of the single action £a(".

0] P 0 P 0] P

2 Ge 1 ) N . ..
’ 7 3 (‘0 e (‘jp¢2§5.0> e (G*Jiag CI) e (E*J 07 CbCI) (E*avi7 CO'C”) (G*7 ¢7 gaC”)

o ((',SO2C¥(,0), @7 .)

Let p"" be this extension of p'. Add (p",q,r,1, source) to Int(A, B, C), where
sourcé is as in the previous case.

iii. ref, (€ac") is a global hole o € H:

a 0 P (0] P

(G*7i7 §bC') o (E*707 CbCI) (E*{i: CO’C”) (G*7 ¢7 faC”)

In this case both O and P’s last move complete hypermoves. Let p'' be this

extension of p'. Add (p",q,r,1, source’) to Int(A, B,C), where sourc€ is as in
case i.
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6.2 Interaction is well-defined

In this section we prove that the interaction algorithm is well-defined.

Technically, the following theorem is the cornerstone of the thesis, and is the culmination
of all the auxiliary concepts in earlier chapters and sections, such as expansion, live atomic
enabling, match, source, and so on. Due to the level of detail in the definition of the
interaction algorithm, a lot of the work has already been done. The key case below is
1.(c).ii.A, the ‘team-response’ in p of P in g and P in r.

THEOREM 6.16 Interaction is well-defined. In other words, every sourced interaction state
p = (p,q,r, next, source) added to the set Int(A, B,C) of valid interaction states in Defini-
tion 6.15 is well-formed.

Proof By induction on length |p|, and by case analysis on the algorithm. The case enumer-
ations below correspond to the cases in the algorithm. The base cases |p| = 0 and |p| =1
are clearly well-formed. Througout the sequel, “condition ¢’ of an unqualified definition
means “condition ¢ of the definition of well-formed interaction state”. (The definition of
well-formed interaction state is on page 132.)

1. (a) Because m«\my, we have b Fp a, so (D, 1, b) m?* respects enabling and location.
Since m} is an O-move, it stores no arenas, so the scope condition of being a
hypersequence is satisfied.

i. Condition 1 of well-formed interaction state is trivial. Condition 2 is verified
since b a and b#Na, with b = source(b) and a = source(d). Condition 3 is
inherited from p, since p is left unchanged. Condition 4 does not apply to a,
the m;, or b, since each are of depth strictly greater than 1.

ii. We have to check conditions for the second O-move (E, *,d).

A. All events take place in ¢’ alone, still at depth greater than 1, so all that
remains is to verify condition 2. Condition 2 holds since source(é) = e
and both e and é are unjustified.

B. Just as for A., the only condition of concern is condition 2. The interac-
tion state now involves a move of p, since this time ¢ € act(p). Since é is
unjustified, we must verify that the live atomic action e of d = {¢n¢” is
not live atomic justified. Because ¢ is a live atomic action, e is not the
first live atomic action of d. By definition of the live atomic actions of
compound actions (section 4.4.3), only the first live atomic action of a
sequence can be live atomic justified. Hence e is not live atomic justified.

(b) Since depth(d.) = depth(e.) = depth(d) = depth(¢) = 1, condition 1 is satisfied.

Condition 2 does not apply to the new moves of ¢’ and r' since k = 0.

i. The addition of the copied O-move (E, %, g) is analogous to case (a)ii.A.

ii. The addition of the copied O-move (E, *, ¢) is analogous to case (a)ii.B.

iii. By construction, this case of the algorithm reduces to case A or case B (by
‘backchaining’ along the I; and [;). Thus well-formedness is inherited from A
and B. (Note how crucial the copycat condition is in this step of the algorithm,
which ensures that every action of the ‘chain’ reference 3..)

(¢c) i. This case is familiar from first-order (A-calculus) interaction. The only ad-
dition to p is the unjustified opening move (A = B, *,¢é) of A= B. Since
depth(é) = depth(e) = 1, conditions 1 and 2 are satisfied. Condition 3 does
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not apply, since no holes have been added to PHol(p). Condition 4(a) holds
since we defined T(rv;) = T(mq). Condition 4(b) holds since 7114 is unjusti-
fied. Conditions 4(c) and 4(d) do not apply.
ii. A. First we must show that the hypermove v is well-defined, i.e., that p’ =
pv € Pos(A=C). We start by showing that

GbG Fre Galy, (6.1)

i.e., that the first action of v is justified by ¢1b¢, in the location E*. In
particular, (ya(s is indeed an action of E*, which is not obvious. By
inductive hypothesis, since p is a well-formed interaction state, E* is the
location of the justifier ¢;b¢y of glag}. By definition of full expansion

(page 131),
E* = rename((lookup*)"' (E)),

with rename in the definition determined by source on OHol(q) + OHol(r),
and w' > w, where w is the index appearing in

C1bGa = Gbma[b] - - - 7o [bus)-

Recall the definition of enabling for compound actions (page 59):

m Feuxy M & fri flandn=1
fm Fexy f'g & frx fandnp=n'and ¢

fng texy fM' & frxfandng=n'and bg

o {f Fx f',mg=7', Fgand F g, or

}_* [N N}
g Ferxy f'i'g gF g and fn = f'n'

In order to show ) .
Gbl ke Gago,
we start by showing )
Clb l_Icvokup* (Eo) Cld;

where Ey = (lookup*)?" (E) and w" = w' —w—1. (If {; = € then trivially
C1bt (ia since b a, and our arguments later still apply.)

First we must show that (ja is indeed an action of lookup*(Ep). Recall
the definition of the actions of an expanded arena (page 59):

Actyexy = { fn : n € trailsg(f) and refi(f) & dom(¢) } U
{fng = n € trailsy(f), refx(f) € dom(¢),
and g € Acty(refic (7))}

Since (E*, *,(1b(2) is in p, by inductive hypothesis ¢;b¢, is an action of
E*, and so (1b is an action of lookup*(Ep). Since b = source(b), by the
typing of source the atomic action b is a live atomic action. Hence (1b
arises as an action of lookup*(Ep) via the second set in the union, i.e.,
with K = Ey, ¢ = lookup, (; = fn, and g = b. Thus by taking g = a
in the same expression, we obtain (;a as an action of lookup*(Ey), as
required.
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Since (D, *,b)¥ (D, ¢, a) in ¢’ (and ¢’ is by induction hypothesis a play),
we have b Fp a. Thus by the fourth case in the definition of enabling
quoted above, with fn = f'n' = (1, g = b, and ¢’ = @ (and hence with
the second clause of the “or” on the right hand side),
Gib Flookup*(Bo)  C1-

Recall that

G1bG Gubmbr] - 7w [bo]

Gage = Gaumbilaiz ... Ney—1[be;—1]@1a; Moy [ba] - - Mw[bu]

For j =0,...,w define o; and o; by
G(be = ojmjt1-..[bu]
Gala = 0141 --- [bu)

(So 0o = (1b and &y = (1a.) Define E; = (lookup*)’(Es). Having just
shown that oo Fjookup* (£,) 00, We now show that

0j—-1 l_lookup*(Ej_l) 5]'—1 = 0j l_Iookup*(Ej) 5]'7 (6'2)

hence by induction
Ow I_Iookup* (Eyw) Ow
ie,

Gbe Fre Gad,

our objective 6.1.
Suppose

0j—1 |_Iookup* (Bj-1) 51'—1-
Our goal is to deduce
05 Flookup* ;) ;- (6.3)
We start by showing that
0j,0; € lookup®(E;) (6.4)

Since (1b¢s is in p, o; € lookup*(E;). By inductive hypothesis ¢;_1 €
E; = lookup*(E;_1). We show that

o; € lookup*(E;)

by appealing once more to the definition of the actions of an expanded
arena:

Actiooup (B;) = { fn : n € trailsporup(f) and refg, (f) ¢ dom(lookup) }
U {fng : n € trailsporup(f), refg,(f) € dom(lookup),
and g € Actiookup(refs, ()) }
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Define a;; = ref(a;;). We shall require the following facts:

ai; € OHol(q) + PHol(r) (6.5)
ref(a;;) is global (6.6)
source(ct1;) € PHol(q) + PHol(r) (6.7)
Q1,, € PHol(a,,) (6.8)

where 1 < j < z;. (We relegate the proofs to the end of this section.)

We consider two cases: (1) j < z1, and (2) j > z1.

(1) j < z1. So by definition of 5},
gj = ojan;lbslay.
By definition of references in an expansion (page 60),
ref(d)n’  if refl
ref(d) if refi

—~

d) is local
d) is global
dnref(e) if ref(e) is local
ref(e) if ref(e) is global

—~

refg; (dn) = {

refg, (dne) = {

where 7' = [, actg,_, (ref(d)), d] (defined on page 60). Since
Gj—1 = 0j-2nj-1[bj-1]ar-),

taking d = 6; 2, 7 =n;_1[b; 1] and e = Gy(;_1) in the definition of
reference, we obtain

reij (5]',1) = I’ef(ﬁl(]’_l))

In the conditional of the definition of reference, the bottom case
(ref(ay(j—1)) is global) applies, since earlier we defined

G(j-1) = ref(@i-n),

and a;(;j_1) is global by fact 6.6.
Recall that

Actiookupr(£;) = { fn : n € trailspokup(f) and ref; (f) ¢ dom(lookup) }
U {fng : n € trailsporup(f), refg, (f) € dom(lookup),
and g € ACtIoakup(reij (f))}

By taking f = 0;_1, n = n;[b;], and g = @y, since

oj = oj-1nslbilar,

we obtain ¢ € Actjookup+(E,) as required. Note that
refg; (f) € dom(lookup)

holds because

OHol(q) + PHol(r) C dom(lookup)
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and (as we showed just above)

refg; (f) = q1(j—s)
and by fact 6.5,
ay(j—i) € OHol(q) + PHol(r).
The condition
9 = 1j € ACtiookup(refs, (f))

holds because of the following argument. Since

refg,; (f) = a1

we have
lookup(refy, (f)) = lookup(cty(j_1))-

By definition of lookup (page 130), since ay(;_1) € OHol(g),
lookup(ciy(j—1)) = store(source(diy(j_1)))-

Now because of the ‘linebreak’ construction, a(;_1) = aj;1 for some
i; > 1, and (refer to the two diagrams following “Recursion step”
of page 146) by definition a;;; is immediately below ¢;;. Since
ref(¢i;) = &, , and by definition &;; = source(ay;) and a;; = ay(j_1),
we have

ref(¢) = source(diy(j_1))-

Thus @, (;j_1) is an opening action of lookup(refg; (f)), so in particular

a1 € ACtiookup(refs, ()
as required. Thus we have completed case (1) j < z; of subgoal 6.4.

(2) 7 > z1. This is analogous to case (1). Instead of using the fng
component of Actipokup* (E,), We use the fn component. Fact 6.8 plays
the same role in the verification that fn € Actiporup-(E;) as fact 6.5
played in (1) in verifying fng € Actioorup* (EB;)-
So we have completed subgoal 6.4. To complete goal 6.1, all that remains
is to verify 6.2:

0j—1 I_Iookup*(Ej_l) afj—l = 0j }_IOOkUp*(E]‘) 5]-.
Recall once again the definition of enabling of compound actions:
n Fe(x) ' & frr flfandnp=1q
fmn Fexy f''g & frx fandn=n'and kg
fmg Fexy M & [frx flandng=1n'and +g
- {f bk f';ng=n', Fgand kg, or

}_* 1o ! A
fng Fe-y f'i'g gF g and fn = fu

We break into the same two conditions, (1) j < z; and (2) j > ;.
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(1) j < =y Thus
051 Flookup*(B;_1) Tj—1 = 05 Flookup* (E;) Tj-
is
oj-1 FE 05
=

oi—1n[0;]  Frookupr ;) Ti—1mj[bjla1;

and so we appeal to line 2 of the definition of enabling of compound
actions, with f = 0j-1, K = Ej, fl = 5j_1, n = nj[bj] and ’l]l =
Ui [bj]ﬁlj, and ¢ = /ookup.

(2) j > z1. Thus

0j—1 Flookup*(E;_1) Tj—1 = 0} Fiookup~ (k) 0j-
is
oj-1 kg 01
=

o101 Fiookupr(B;)  Ti—175[05]

and so we appeal to line 1 of the definition of enabling of compound
actions, with f = 0j—1, K = Ej, fl = 51',1, n = nj[bj] and T]I =
n;[b;], and ¢ = lookup.

Thus we have proved our goal

GbG b Gals,

The verification of the first move of v was the tough case. For i = 2,. ..y,
to verify that s; € Act‘i’: is essentially the same, though simplified by
the fact that each of the n; are empty. The location L; = D}; are well-
defined as store(ref(s;)), since for any compound action d, ref(d) is (by
definition) determined by the last atomic live action of d. The copycat
rule (required for p’ to be a play) is satisfied because the copycat rule is
satisfied at every step of “Recursion step”” (from page 146): in cases (1)
and (2) ref(aiq1,k;y,) = refciyr = aiqr, and in (3) ref(éi1) = refeipy =
Q; = Oj41.

Finally, we must return to prove facts 6.5-6.8. (Refer to the diagrams in
cases (1), (2), and (3) of “Recursion step”, page 146.)

(6.5) aa; € OHol(q) + PHol(r). Since j < 1, the recursion has not
terminated. Thus in the paragraph “Recursion step” (page 146),
a; € OHol(q) + OHol(r) holds.

(6.6) ref(ay;) is global. By definition of ‘linebreak’ in construction
of s (and, in particular, s;), we have a;; = a;,; for some i; > 1,
so ref(a1;) = a4+1. (Refer to the diagrams of cases (1) and (2) of
the recursion.) By the previous fact (if a;; 41 is not already global,
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because of the termination condition a;, 41 € H, for i; 4+ 1 maximal)
a;;4+1 is an O-hole. Now the only way an opening P-move (viz. a;;)
can reference an O-hole (viz. a;;41) is if that O-hole is global, since
there are no O-holes in the thread of an opening action.

(6.7) source(as;) € PHol(q) + PHol(r). Because j < z1, the recursion
is not yet terminated, so the condition source(c;) € PHol(q)+ PHol(r)
of the paragraph “Recursion step” (page 146) holds.

(6.8) @1z, € PHol(ayz,). Since @i, is the last action a;, 1 of s1,
by definition of the ‘linebreak’ condition, the next action of s must
be a;, 2, and hence k;, > 1. Thus (refer to the diagrams of cases
(1) and (2) of the recursion) there are at least two actions beneath
Ci,, _1, and in particular a;, 1 must reference a P-hole.

B. By construction, this case is merely the extension of case A with an
additional e-move. Since this is a e-move, conditions 1,2, and 4 are
immediate. Condition 3(a) does not apply, and condition 3(b) holds by
construction of the stored singleton arenas.

2. This case was by construction case 1 with ¢ and r swapped, so the same correctness
argument carries through (with ¢ and r swapped).

3. (a) i. If depth(Cb(') = 1, then E* = A= B and D = B = C. So since ba,
depth(a) = 1. Condition 2 holds, because bva and b+ a. Condition 3 is
vacuous, since we are not adding any new P-moves to p. Condition 4 holds
trivially.

ii. With the addition of the move (F, *,¢1), since depth(¢i) > 1, the only case
of concern is condition 2. This holds since both ¢; ... cg and ¢ are unjustified.
(b) By definition, this case parallels case (a).

(c) For each of1i., ii., the reasoning is the same as case 1.(c).ii.B. Case iii. is immediate,
since no additional e-move has been played.

O

6.3 Composition

Having defined the interaction algorithm in the previous section, we are ready to derive from
it the composition of strategies.

DEFINITION 6.17 Given polymorphic arenas A, B,C over a common set of holes H and
strategies 0 : A - B and 7 : B — C, their composite o;7 : A — C is defined as the set of
positions

{p : (p,q,r, next,source) € Int(A,B,C), "¢ € 7 and "r" € o}

inA—C.

We must verify that o;7 is a well-defined strategy.

PROPOSITION 6.18 The composite o;7 C Pos(A = C) as defined above is a strategy for
A=C.
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Proof We must verify that o; 7 is non-empty, prefix-closed, P-deterministic and O-contingent
complete. It is non-empty because (¢, ¢€,€,1,¢) € Int(A, B, C). It is prefix-closed because the
set of valid interaction states was built up inductively on length. P-determinism is inherited
from the P-determinism of o and 7, because every move played by P in p was the aggregate
of actions each with source a P-move in ¢ or r, together with copy-cat actions, which are
deterministic. O-contingent completeness comes from the fact that every time next = 1 in
the interaction algorithm, we allowed every possible O-move extending p. O

PROPOSITION 6.19 Composition of strategies is associative.

Proof Because parallel composition of processes is associative. Given strategieso : A — B,
7:B = Cand v : C = D, define valid interaction states p = (p, q,r, s, next, source) €
Int(A, B, C, D) analogously to Int(A4, B,C), with p € Pos(A= D), p a play on (C=D), q a
play on (B=-C), and r a play on (A= B). Define o; 7; v as the set of positions

{p : (p,q,r, next,source) € Int(A,B,C), "¢"€v, re€rand "sT€0o}

Since the interaction algorithm merely copies moves around, both (o;7);v and o;(7;v) are
equal to o;T; V. |

6.3.1 Identities

Given a polymorphic arena A € PApg, the identity strategy id4 on A = A is a copycat
strategy. Distinguish the input and output components of A = A by writing subscripts:
(A= A) = (A; = A). Given an action or hole 6 in A;, write 8 for the corresponding
action or hole in Ay, and vice versa.

We define ida C Pos(A; = As) in stages. On the depth 1 actions, things are exactly as
in the Hyland/Ong definition of an identity strategy:

0 P 0] P 0] P 0 P

PR VRS VRS
ai ai az a2 as a3 ag Qg

First, define S C (Acta, + Acta,)* to consist of sequences s of actions from A; and A, such
1 2

that
, b=a if |s|is even
s=sab = . .
at b if |s]is odd

where a b b stands for a F4, b or a F 4, b depending on whether a is in 4; or As,.

For each s € S add justification pointers ¥ : s — s by defining ¥ (a) to be the predeces-
sor of a if a is in position 2,3,5,7,9, ..., or the action three before a if a occurs in position
4,6,8,....

Now turn each action a of s into a move (A1 = A2¢, a) as follows. If a is in odd position,
then define ¢ to be constantly *. If a is in even position, so that the preceding move in
s is a copy @ of a in the opposite copy of A, for each a € Hols(a) define ¢ : Holy(a) —
PA by ¢(a) = (a,e), the singleton polymorphic arena referencing @. In other words, P
‘copies’ the hidden contents of O-holes by storing singleton polymorphic arenas referencing
the corresponding holes.
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The final step is to turn the justified sequence of moves into a play of A; = A,. To do
so, we shall add a move e underneath some of the P-moves (where e is the action of all the
stored singleton arenas), in order to form two-move P-hypermoves. Specifically: whenever
the reference ref;(a) of an action is a P-hole of s, add the move e underneath a. Note that
the copycat condition is satisfied because of the e moves, and the identity is clearly a winning
strategy.

Given a strategy o : A= B, the composite ida; o is o, as is 0; idg. At the level of actions,
this is for the usual reason in game semantics, that ‘copying does nothing’. Likewise at the
level of stored arenas: P copies the x contents of O holes as his own stored arenas.

6.3.2 Winning strategies compose

PROPOSITION 6.20 The composition of winning strategies is winning.

Proof Suppose 0 : A — B and 7 : B — C are winning strategies, in other words, both o
and 7 are total and finite. We show a contradiction when (i) o;7 : A — C is infinite, and
(ii) 037 : A = C is not total. To make the arguments easier to follow, we first consider (1)
the case when A, B, and C have no local holes, and then (2) the general case.

(1i) Suppose that A, B and C have no local holes, and that ;7 : A — C is infinite.
Every strategy is finitely branching (by Lemma 5.9, and the fact that it is finitely branch-
ing at P-hypermoves because of P-determinism), so by Konig’s lemma there must be an
infinite sequence of positions pg C py C p2 C .... Correspondingly, by definition of compo-
sition, there must be an infinite sequence of valid interaction states pg C p1 C p2 C ... in
Int(A, B,C). Let p; = (p;, qi, i, next;, source;), and define p = (p, g, r, next, source) to be the
infinite interaction state that is the limit of the p;.

Since A, B and C have no local holes, every hypermove of p, ¢ and r consists in a single
move, which in turn consists in an action with no storage of arenas. Hence the source of
source(a) of every P-action a of the infinite position p is either in ¢ or r. So since every
P-action is the direct result of a P-action in ¢ or r, (at least) one of the plays ¢ or r must
be infinite. Without loss of generality, suppose ¢ is infinite.

Since ¢ is infinite and 7 is finite, some view v € 7 must recur an infinite number of times.
In other words, there exists an infinite increasing sequence of indices i1 < ia < i3 < ...
such that "g;;" = v. Write a; for the last action of g;. Since the last action of a play is
by definition in the view, a;; = a for a the last action® of the postition v. Note that a;, is
the only of the a;; that appears in the view* Tg;, 7. For suppose a;, is in T¢;, 7 for [ < I.
Then "g;, "' = "g;, '+ s - a;,, for some subsequence s of the actions between a;, and a;, , hence
v =v-S§-a;,, acontradiction.

For a;; not to appear in "g;, ", it must be deleted in the process of taking the view.
By definition of the view algorithm, there must be an O-pointer ‘skipping’ over a;;. More
precisely, there exists an O-action b; and a P-action b} such that b}\b; and b; < a;; < b; <
Aijyq -

The only way for an O-action b of the play ¢; (hence of ¢) to have a non-trivial justification
pointer, i.e., to be justified not by the preceding P-move, but an earlier one, is if b is an

3Note that this equality ai; =a, a;; is an action-occurrence in ¢ and a is merely an action of B=C.

4Similar to the action-occurrence/action distinction, we consider T¢;, 7 as a subsequence of g¢;, (and
hence of ¢), rather than ‘forgetting where its actions came from’ and regarding it merely as an element of
Pos(B=C). So it makes sense to ask whether some action of g;, (and hence of ¢) appears in "g;, ' or not.
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action of®> B. This is because of the following reasoning. Certainly b is® either in B or C.
If it is in C, then source(b) was in p. O’s pointers are by definition trivial in p (because
p is a position, rather than a play), and by the definition of the interaction algorithm on
O-moves in p, when b is passed accross to ¢, it is provided with the corresponding trivial
pointer there. Hence b must have been in B.

Thus we have found an infinite subsequence by < by < bz < ... of actions in ¢ all of
which are” in B. Since B is finite, one of the actions b of B must occur infinitely often. In
other words, there exist jo < ji < j2 < ... such that® b;, = b for i > 0.

Without loss of generality, the enabling action b’ of b in B=-C occurs only finitely often.
Otherwise take b = b', and repeat. (This terminates because there are finitely many actions
b" in B such that b" g b. Also, note in passing that ' € Actc — ActOCp x Actg + Actc if
and only if b is an opening action of B.) Since there are an infinite number of occurrences of
bin ¢ and only a finite number of occurrences of o', one of the occurrences of b’ must justify
an infinite number of occurrences of b. Now by Martin Hyland’s result on timewasting for
dialogue games and innocent strategies (quoted in [NO]), necessarily there are an infinite
number of distinct views in ¢. (The timewasting result applies because, in the interaction
algorithm every move by ¢ and 7 was based on the view in A= B or B=-C alone, so each of
o and 7 are playing innocently in B.) The infinite number of distinct views in ¢ contradicts
the finiteness of o.

(1ii) Suppose that A, B, and C have no local holes, and that o;7: A — C is not total.
Then p is finite, and is terminated by an O action a, with timestamp 4. So after timestamp i
there are no further moves by o in A or by 7 in C. Thus ¢ and 7 engage in ‘infinite chit-chat’
between p and q.

(2i) Suppose that o; 7 : A — C is infinite. Recall that the depth of a hypermove my ... my
in a hypersequence h is the depth of the row in which the first move m; appears when we
display h (the formal definition was Definition 5.3.2, page 69). Then there are two cases:
(a) there are an infinite number of moves in p of depth 1, or (b) after a final depth 1 move
m, every move of p is of depth 2 or more.

In case (a), by Lemma 5.10 every move at depth 1 is located in A= C, so there are an
infinite number of moves in A=-C. So then we apply (1i) to reach a contradiction.

Suppose case (b) applies. In the interaction algorithm, P-moves m in p of depth 2 or
more arise in one of two ways: (A) by copycat (when source(m) is in p), or (B) by o or 7
(when source(m) is in q or r).

Claim. An infinite number of P-moves of p are of type (B).

Proof of claim. Suppose only finitely many moves of p arise from o or 7. Then after some
move n, every P-move is a copycat move. The only polymorphic arenas stored by P in such
copycat moves are singletons, so the size of the playing area remains constant after n. So
since P is playing copycat to O, who always justifies by the immediately preceding move, O
will eventually reach the leaf of an arena. When P copies this leaf action in his next move,
O will have been run out of moves. So p is prefix-maximal, contradicting finiteness. (QED
Claim.)

Since there are an infinite number of moves of type (B), i.e., transmissions from o or T,
one of g or r is infinite. Without loss of generality, suppose ¢ is infinite.

5When we say an action b of B=>C “is an action of B” we mean morally that b is in the input component
corresponding to “B =Y. Technically speaking, since Actp—¢c is Actocp X Actpg + Actc, by “is an action of B”
we mean b € Act(g’ X Actp. So in thinking of b € Actp, b implicitly carries a ‘tag’ indictating which opening
action of C the copy of B containing b is grafted on to in the function space construction.

8Modulo the previous footnote.

"Modulo the last but one footnote.

8See footnote 3.
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In particular, there are an infinite number of moves at depth 1 in ¢. For if not, there
is some move n' in ¢ after which every move is of depth 2 or more. So by definition of the
interaction algorithm, every O-move after n’ is a copycat move, and 7 is being played against
itself. So since 7 is finite, ¢ is finite, which is a contradiction.

Now because ¢ has an infinite number of moves at depth 1, by Lemma 5.10 these are all
located in B=-C". So there are an infinite number of moves in B=-C, and the reasoning of
(1i) applies to q.

(2ii) Suppose o; 7 is not total. Then p is finite, terminated by an O-move. Since ¢ and 7
are total, at least one of ¢ and r are infinite. Without loss of generality, assume q is infinite.
There are an infinite number of moves at depth 1 in ¢q. Otherwise after some move m every
move is at depth 2 or more, so every O-move after m is a copycat move (7 is being played
‘against himself’), hence g is finite by the finiteness of 7. Once again, by Lemma 5.10, every
move of ¢q at depth 1 is in B=>C, so there are an inifinite number of moves in ¢ in B=C,
and we can apply the reasoning of (1i) once again, in order to reach a contradiction.

O

Note that it was finiteness that was contradicted when we assumed that 0 : 7: A — C
was not total.



Chapter 7

The categorical model

We take the work of the previous chapters and construct a 2Ax-hyperdoctrine H, and hence
obtain a model of system F. The first step is to define an auxiliary 2\ x-hyperdoctrine G,
which contains ‘partial’ as well as winning strategies. Then we take H to be the subcategory
of G consisting of the winning strategies.

7.1 The auxiliary hyperdoctrine G

We define a hyperdoctrine G, i.e., a B-indexed cartesian closed category G : B°* — CCCat.
For n > 0 let [n] denote the set {1,...,n} of positive natural numbers up to and including
n, and write PA,, as shorthand for PAy,), the set of polymorphic arenas over [n], i.e. with n
global holes {1,... ,n}. Given 1 < m < n write o for the single-action polymorphic arena
of PA,, in which the action references the global hole m € [n].

7.1.1 The base category B

The base category B of G is defined as follows. It is very similar in spirit to the base category
of the term model of system F.

Objects The set N={0,1,2,...} of natural numbers.

Morphisms A morphism in B(m,n) consists of an n-tuple of polymorphic arenas in PA,,.
Thus a morphism a : m — n in B is a function a : [n] = PA,.

Composition Given a : k = m and 8 : m — n, the composite of ;5 : K — n is given
by expansion (analogous to substitution in the base category of the term model).
Specifically, as a function [n] — PAy, the composite a; 3 is given by (a;3)(i) =
a*(B(7)), the expansion of the polymorphic arena 3(i) € PA,, by the assignment « :
[m] — PA}, of polymorphic arenas to the global holes of 3(i), as given in Definition 4.2,
page 59.

Identities The identity n — n, as a function [n] — PA,,, takes i to %, i.e. the singleton
polymorphic arena whose action references i € [n].

Products The product of m and n is their numeric sum n+m. The projections 7, : m+n —
m and 7, : m +n — n, as functions my, : [m] = PAy, 4, and 7, 1 [n] = PAy 4, are
given by 7, (i) = i, and m,(i) = en1! . Again, just think of the term model.
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Distinguished object The distinguished object from which all other objects are generated
by finite products is 1.

7.1.2 The fibre G,

The cartesian closed category G, is defined as follows.
Objects The set PA,, of polymorphic arenas over [n].
Morphisms A morphism ¢ : A — B is a strategy on the polymorphic arena A= B.

Composition Given strategies 0 : A — B and 7 : B — C, composition is as given in
Definition 6.17 at the end of the previous chapter.

Identities Copycat strategies, as given in Definition 6.3.1 at the end of the previous chapter.

Products and Exponentials Product A x B and exponential A=>B of arenas was defined
in Chapter 4.

Terminal object The terminal object is the empty polymorphic arena.

ProrosiTION 7.1 G, is cartesian closed.

Proof The natural isomorphism G, (4, B x C) = G, (A4, B) x G, (4, C) is given as follows.
Suppose o is a strategy on A = B x C. By construction of = and x, A = B x C is
(A=B) x (A=C). Define 7 € G, (A4, B) x G, (A,C) as (01,02), where

or={p€oc : p€ Pos(A=B) C Pos((A=B) x (A=C)) }

and
o ={p€oc : p€Pos(A=C) C Pos((A=B) x (A=C)) }

This is clearly a natural isomorphism, with inverse (o1,02) — o1 U 0s.

By construction of = and x, A= (B =C) is exactly A x B=C. So Pos(A,B=C) =
Pos(A x B,C), and G, (4,B=C) =2 G, (A x B, () directly.

The empty arena E is terminal because A= FE = FE and there is a unique strategy on
E, namely {e}. O

Note that, as required in the definition of 2Ax-hyperdoctrine, the set of objects of G,, =
PA,, is exactly the homset (n, 1), because this homset is by definition the set of ‘1-tuples’ of
polymorphic arenas over [n].

7.1.3 Reindexing functors

Given a morphism a : n — m in the base category, we define a strict cartesian closed
reindexing functor o* : G,, = G,,.

On objects Given A € G,,, i.e., a polymorphic arena with m holes, define a*(A) to be the
expansion a*(A) of A along « : [m] — PA,,, an assignment of polymorphic arenas to
the global holes of A.
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On morphisms Given a strategy ¢ on A = B=(C, the strategy a*(c) on a*(A) is defined
as follows. By definition of a strategy, o is a set of positions on A. We use o as the
‘backbone’ of a set of positions on a*(A), and then use copycat for the ‘ribs’ consisting
of moves that go outside this core set.

Recall from page 60 of the section on expansion that a path down the forest of a*(4)
corresponds to a path (the ‘backbone’) in A ending at an action a referencing a global
hole i € [m], followed by a path (the ‘rib’) in «(i), together with an accumulation
of post-fix tags on the actions of the path in A. Let Plays(a*(A4)) be the subset
of Pos(a*(A)) consisting of positions such that all threads on a*(A) (as opposed to
threads on imported arenas) are paths for which the ‘rib’ is at most one move.

Let 7 : Plays(a*(A)) — Pos(A) be the projection (i.e. surjection) defined by deleting
the post-fix tags from threads in (a*(A)), including the tag consisting of the first ‘rib’-
move when it arises. (At this point it is probably useful to look at the column on
page 60 characterising a path in an expanded arena.) Then by live atomic enabling
(section 4.4.2) 7 is a ‘local homeomorphism’ in the following sense: given any p €
Plays(a*(A)) with w(p)u € Pos(A) for some hypermove p, there is a unique hypermove
i such that pji € Plays(a*(A)) and 7 (pfi) = w(p)p (trivially so, infact, if the first move
of p is not located in A).

Define the ‘backbone’ strategy o1 C Plays(a*(A)) C Pos(A) by iterating the ‘local
homeomorphism’, starting at the empty hypersequence. Thus each position of o7 is a
position of o with some additional post-fix tags on the moves of threads in a*(A4).

We extend o1 with ‘copycat ribs’ in order to define a* (o). Suppose pu € Pos(A), with
p € o1, and with the last move of 7(p) referencing a global hole i. Thus the last action
of p is of the form avb for a € A, v a sequence of post-fix tags, and b an opening action
of a(i). Suppose further that u was a P-hypermove. Then by the copycat rule, w(pu)
also references 7, so pji is also a compound move ending in b. Now to form a*(o), for
each such p and p add all extensions of pu obtained by playing the copycat strategy
against O if the live atomic enabler of his next action is b. In other words, P plays
copycat on the copy of the ‘rib’ arena a(7) that got pasted onto a in the expansion of
the ‘backbone’ A.

The functor o is trivially strict cartesian closed because of the simplicity of the definitions
of product and exponential for polymorphic arenas as a graphical operations.

7.1.4 Indexed products

Let 7, : n+ 1 — n in B be projection onto n, i.e. , : [n] = PA, ;1 maps i to e/ ;. Then
the reindexing functor =« : G, — Gn41 simply adds an extra global hole to a polymorphic
arena A, and acts as the identity on morphisms!. Define a right adjoint IT, : G,y1 — G,
to 7} on objects by IL,(A4) = V(n + 1)(A), the quantification of n + 1 in A, as defined on
page 52. On morphisms, IT, (o) is essentially the identity: for each position p € o simply
add an extra O-import * to the first move of p (corresponding to the global hole n + 1,
which has now become local).

Because of the syntactic flavour of polymorphic arenas, the fact that the two functors
are adjoint is just as trivial as in the term model. We need to verify that for all arenas with
global holes [n], G, (B,Y(n + 1)(A)) is naturally isomorphic to Gy 1 (7}(B), A). In other
words, strategies on B=¥(n + 1)(A) correspond naturally to strategies on «(B)=>A. This

1Modulo some additional (but redundant) tags that get put on to the actions of A.
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is immediate, since the two arenas are the same apart from the fact that the hole n + 1 is
global in the former and (copies of it are) local in the latter.

We must verify the Beck-Chevalley condition, that ‘quantification commutes with expan-
sion’. Formally, we require that the diagram on page 20 commutes, i.e., for all a : m — n

in the base B, the functors G,y LN Gy, o G, and Gy (o xid)” Grt1 LN G,, are
the same. On an object A, the first functor moves (copies of) the global hole n + 1 down
into the roots of A, then a* expands actions referencing 1,...,n into polymorphic arenas
a(l),...,...a(n). The second functor expands the actions 1,...,n, and essentially sets
actions a referencing n + 1 to reference m + 1, because id; expands a with omi}; then it
moves m + 1 down into the roots. By similar considerations, the two functors are also the
same on morphisms, and the canonical natural transformation is an identity.

We have shown:

PROPOSITION 7.2 G is a 2Ax-hyperdoctrine.

Hence, as detailed in [Cro94], G is a model of system F'.

7.2 The hypergame model H

Define H as the subcategory of G obtained by reducing the homsets in the fibres to the
winning strategies. We need to check that H is a well-defined 2\ x-hyperdoctrine.

The fibre H, is closed under composition, since winning strategies compose (Proposi-
tion 6.20). Identities are winning strategies, as is the unique strategy on the empty arena.
The product adjunction puts winning strategies in bijection with pairs of winning strate-
gies, and the exponential adjunction, being trivial, puts winning strategies in bijection with
winning strategies.

Given a morphism «a : m — m in the base category B, and a winning strategy o on A,
a*(0) is winning. The underlying ‘backbone’ of a* (o) is o itself, which is total, and as soon
as P elects to go into a ‘rib’ a(i), a* (o) becomes the copycat strategy between instances of
the arena (i), and copycat strategies are winning. Finally, there are only a finite number of
copycat strategies added to o in the construction of a*(o), because, since arenas are finite,
only a finite number of holes of A were expanded.

Since the right adjoint II, : Gp41 — G, to 7} : G, = G,41 acts essentially trivially
on morphisms, it maps winning strategies to winning strategies. The natural isomorphism
Gp (B,Y(n+1)(A)) = Gpy1 (7(B), A) is by definition essentially trivial, and so puts winning
strategies in bijection with one another.

Thus we have shown:

ProrosiTIiON 7.3 H is a 2Ax-hyperdoctrine.

Hence H is a model of system F', as detailed in [Cro94].



Chapter 8

Full completeness

In this chapter we prove our main result.

THEOREM 8.1 (FULL COMPLETENESS) Every morphism (i.e. winning strategy) o of H de-
fines an n-long, f-normal term &, whose interpretation is o.

Before proving the theorem, we require the analogous result at the level of types:

PROPOSITION 8.2 Every polymorphic arena A € H,, defines a prenex normal type A of
system F' with free type variables amongst X1, ... , X, and whose interpretation is A.

Proof We define A by recursion on the depth of the forest of A. If A is the empty
polymorphic arena, define A = Unit. If A is of depth d > 1, first consider the case that A is
a tree. Let L be the set of local holes attached to the root a, and without loss of generality
assume L = [k] for some k > 0. Let ay,...,a, be the children of a. Define A4; to be the
polymorphic arena over [n+ k] with actions { b € A : a; % b} and structure inherited from
A, but with references to j € L now taken to be global references to n + j. Being of strictly
smaller depth, the A; define types A; with free variables amongst X;,... , X;,1r. Now define

A\ = VXn+1 . --vXn+k-(A\l - ... ;im — Xl);

where | = j if refs(a) € [n], and I =n + j if ref4(a) = j € L.
For the more general case when A is a forest consisting of tree polymorphic arenas
By, ..., By, defining types By, ..., By by the above method, define

~

A = By x (.. x (Bp_z x (By_1 x By))...).

The fact that the interpretation of Ais Ais a simple structural induction on the height of
the type. O

Proof (of Theorem 8.1) Let o be a winning strategy for A € H,,. We define the normal
form ¢, by recursion on the size of o.

The construction of A from A in the previous proposition induces a linear ordering on
the opening actions of A, the set of children of every action of A, and the set of local holes
of every action of A. Thus, with | = |Hol4(a)|, the set of local holes Hol4(a) is canonically
isomorphic to [I] = {1,2,...,I}, and a store ¢ : Hols(a) :— PA corresponds to a sequence
of [ arenas.
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If o = {€}, then necessarily A = Unit, and we define t, = ( ). Otherwise, consider the
case when A is a tree. Let a be the opening action of A, and let by1,... , b1, be the children
of a. (Note that u; = 0 is impossible, for then A is an arena with the single action a, P has
no response to an opening hypermove in A, and there are no winning strategies for A.)

Let [l] be the set of local holes Hols(a) of a. O’s (unique) opening hypermove on A
consists in the single move (A4, *,a), where the store * : [I[] - PA,, + {*} is constantly *.
After P’s response hypermove determined by o, we reach the following position (with the
justification pointer omitted):

(A,i, Cl) (A;B11B12 .. 'Blz17ble1)
(B1f2 9 B21322 LY B2Z2 ) b262)

(B(i—1)f;» BBz . .. Biz;, bie,)

(B(v—l)fv ) B’UlB’U2 .. B'uzv ) b'uev)

where 1 < f; < 2,21, 1 < e; <y, and for ¢ = 2,...,1, bj1,bs2,...,bu, are the opening
actions of B(;_1)s,. (Following the convention set out above, we identify the store of a move
with a finite sequence of arenas.)

We construct an arena A’ € H,1; such that there is a bijection between positions of A
that begin with the two hypermoves above, and positions of A'.

Let a;1,. .. ,iw; be the children of bj.,. Define

A = II «©=by)
1<i<wv
1<j<w;

c = ]I <
1<k<u1

where (C = D;;) represents the positions of A that result from O playing the child a;; of bs,
as his next action, and C}, represents P’s option to play the child by justified by the action
a of O’s first move.

The arena CY, is the subtree of A below big. Formally, C}, € H,,4; has the set of actions
{c€Acts : bip F* ¢} and structure inherited from A, but with references to local holes
J € Hols(a) of the root a of A redirected to reference the global hole n + j.

The arena D;; is the expansion of the subtree of A below a;; by the arenas stored in P’s
first hypermove. Formally, D;; € H,,4; is ¢}(D;;), where the assignment ¢; : Hola(bi,) —
PA,; is the store B;; Bjs ... B;., of P’s i*® move, and Dz’j € H,y; + Hola(bse,) is obtained
as follows. The set of actions of D;; is { d € Acta : a;; F* d }, and structure is inherited
from A, apart from the redirection of references to local holes j € Hols(a) of a to reference
the global hole n + j, and the set of (previously local) holes Hol4 (b;e;) now considered to be
global.

Given p € Pos(A) extending the pair of hypermoves above, define p € Pos(A') as follows.
First, form p from p by deleting the first two hypermoves, and changing the location of
all depth 1 moves from A to A'. Reset dangling P justification pointers that previously
targetted (A, *,a) to target the first O-action of p.

Now we must deal with opening moves located in the arenas stored by P in the second
hypermove of p. Although these arenas have been deleted the beginning of the position,
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their ghosts are present in A’ because of the expansions forming the D;;. Suppose pu =
myms ...mg is a hypermove in which m; references the hole of

m = (B(T—l)fr yBr1Bra ... By, brer)

containing B,s, and formally set f; = 0 and Bgy = A in order to account for the case
r = 1. Thus m2 is an opening move (Bys, d,b) on B,s. Now my, in order to reference a
hole of 7, must be hereditarily justified by 7, hence is in the same location as m, so m; =
(B(r=1)#,,%,c). Reset u = mimy...mq to be & = Mms3...mq, where m = (4, [$, ], be),
[¢, 1] is the source tupling of ¢ and ¢ (since expansion takes disjoint unions of holes), and
be is the compound action formed from b and c.

The retargetted justification pointers are well-defined, because any such justified P-action
is b;k, an opening move of C, which is in negative position in the function space component
C = D;j of A, and hence (by definition of the enabling relation of =) is enabled by the
opening action a;; of D;;. The construction p — P is clearly a (prefix-preserving) bijection.

Via the bijection of positions just defined, o determines a winning strategy o' for A’,
which by product factorisation of A is equivalent to a winning strategy agj for each C'= Dy;.
Since ¢ is strictly smaller than o, by the induction hypothesis we have normal forms ;;
defined by the o;.

We define the normal form & as follows. For 2 < i < v define the context (“e;*" projec-
tion”)

] snd...sndfst[—], if1l<e; <wuy,
i l—] =
snd...sndsnd[—], if e; = u;,

where the number of consecutive occurrences of snd in the first case is e; — 1, and in the
second case is e;. Then for 2 < i < v define the contexts

E[-] = [-1BuBiy...B1.,611 . 01w

Ez' [—] = (7Ti [—])ﬁzlézg P E,’Zi E,-l e Giwi

Define

ty = AXy .. . AXp 22Tt NS BBy ... ByEy[we,]

The validation that the interpretation of ¢ is indeed ¢ is a simple structural induction.

Finally, in the case that A has more than one component, we take the terms generated
by o restricted to each of the components, and then form the appropriate { , )-pairings of
these terms that correspond to the product type A as defined in the proposition above. O

An immediate corollary of the construction of the term ¢, in the proof of the theorem is:

COROLLARY 8.3 If T is a type with no negative quantifiers then every winning strategy o
for the polymorphic arena interpreting T defines a distinct n-long -normal form t, whose
interpretation is o. So in particular, fn-normal forms of type T are in bijection with winning
strategies for the polymorphic arena interpreting T .

This corollary was applied in section 5.7, where we obtained results about Bn-normal
inhabitants of the encodings of inductive datatypes in system F. Note that in the main
theorem one does not have uniqueness of the n-long, S-normal form, since type arguments
are identified up to prenex equivalence. One has uniqueness in the corollary because when
there are no negative quantifiers, terms do not contain type arguments.
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One way of thinking about full completeness is that the model is isomorphic to a quotient
of the syntax. The quotient induced by H on the product- and unit-free fragment system F'
includes 87 together with the isomorphism induced on terms (because terms contain types)
by identifying every type with its prenex normal form. So the equational theory of the model
is very close to initial.



Chapter 9

Conclusions

We began in Chapter 1 by introducing a methodology for extracting strategies from normal
forms of the simply typed lambda calculus as ‘top-down terms’. By applying this method-
ology to normal forms of system F', we obtained the key idea for a fully complete game
semantics: types as second-order moves.

Hyland/Ong and Nickau, in their work on first-order games, interpreted a type as an
arena or ‘board’ on which to play a game. In order to turn the types as second-order moves
idea into a working model, we required the interpretation of polymorphic types as some
suitably generalised notion of ‘board’. Our solution in Chapter 4 was simple: decorate
Hyland/Nickau/Ong arenas with ‘holes’ corresponding to quantified type variables. Poly-
morphic arenas turned out to be in bijection with prenex types, and can be presented as a
kind of B6hm tree.

The technically most demanding step in the construction of the hypergame model was
to define a composition of strategies. Our detailed analysis of first-order interaction in
Chapter 3 uncovered a neglected difference between the approaches of Hyland/Ong and
Nickau. For technical reasons, outlined at the end of Chapter 3, we chose Nickau interaction
as the first-order basis of interaction in the hypergame model.

The interaction algorithm was presented in Chapter 6. The main idea that was not
present in first-order interaction is that moves are not only transmitted between the three
agents of an interaction, but can be ‘reflected back’ aginst the same agent, by a form of
copycat. This copycat component of interaction corresponds to the uniformity of polymor-
phic terms of system F. P cannot see polymorphic arenas stored in holes by O, so the only
way to proceed on such arenas is by playing copycat.

By full completeness, the model is parametric, in the informal Strachey sense that every
function acts ‘uniformly’. The model is not Reynolds relationally parametric, using a result
of [PA93]: VX .X — X is not terminal. Note that the term model of system F is not
relationally parametric for the same reason, so this is not a symptom of non-uniformity.

On the product- and unit-free fragment system F', the equational theory of the model
includes (7, together with the equivalence induced on terms by identifying every type with
its prenex normal form (because terms contain types). So the equational theory of the model
is very close to initial. A conjecture, and a topic of future research, is that this is exactly
the equational theory of the model.

A long-term objective of the line of work in this thesis is to take the ‘top-down term’
methodology and apply it to other calculi, including other vertices of the lambda cube
[Bar92], such as F, and dependent types.
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Appendix A

Counting inhabitants of types

We consider an example of the copycat rule at work, supplementing the text of section 1.1.1.
This is the syntactic argument corresponding to the proof of proposition 5.19.
Given types U and V, the system F' encoding of the product of U and V is

UxXV = VY. U=V -=Y)-=Y,
for some Y not occurring free in U or V. Take

U = Bool = VX. XXX
V. = Nat VX.(X=2X) XX

Here is a possible discussion of a term of type BoolxNat, following our usual protocol:

I choose ¢ t = AY. )\pPool-lat=Y 9 t VY.(Bool » Nat - Y) - Y
You choose p t = AY. \pPooroNat=Y ppn p Bool — Nat —» Y

I choose b b = AX. X\ X? b VX. X=X =X
You choose z b = AX.AzX Xz x X

Your first move was forced, as ¢ has only one abstracted term variable. The head-variable p
required two arguments in order for the body to be of ground type (and hence for ¢ to be
n-long): b of type Bool, and n of type Nat. I chose to inspect b; you followed up with the
strategy for true.

I could have asked to inspect n instead:

I choose t t = AY. \pBocl-lat=Y 7 t : VY.(Bool 5 Nat »Y) > Y
You choose p t = AY. ) \pPeol7Nat=Y phy p i Bool — Nat — Y

I choose n n = AXAfX7X X2 n:VX.(X=-X) XX
You choose f n = AX AN X X fay, f:X-oX

I choose a; ag = ? a;: X
You choose f a1 = fas f: X=X

I choose ay aya = ? az: X
You choose = ay, = X z: X

This time you followed up with the strategy for the Church numeral
2 = AX N2 X AaX f(fx)
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Taking the two together, these discussions define the encoded pair
(true,2) = AY. A\pPool7"* =Y ptrue2 @ Bool X Nat

So every pair of strategies, one on Bool and one on Nat, gives rise to a strategy on Bool X Nat,
injectively. But is pairing surjective? In other words, do all inhabitants of Bool X Nat arise
by pairing? Because of the copycat rule, we shall see that the answer is yes.

Recall the first seven moves of the previous dialogue, in which I was inspecting the second
component of the pair:

I choose t t = AY. \pBocl-Nat=Y 7 t : VY.(Bool » Nat - Y) =Y
You choose p t = AY.\pPooloNat=Y by p i Bool = Nat = Y

I choose n n = AX XX X2 n:VX.(X=-X)»X—-X
You choose f n = AX A7 XX fay, f:X-oX

I choose a; ap = ? a;: X
You choose f a1 = fas f: X->X

I choose as aya = ? as : X

At this point, you have three abstracted term variables to choose from: p, f, and z. In the
last discussion you played z, yielding the Church numeral 2; if you play f you’ll be on the
road to defining some higher numeral. What happens if you play p?

I choose t t = AY. \pBooi—Nat=Y 7 t : VY. (Bool - Nat - Y) =Y
You choose p t = AY.\pPool=Nat=Y php p i Bool — Nat — Y

I choose n n = AX XX X2 n:VX.(X=-X)»X—-X
You choose f n = AX A7 XX fa, f:X-oX

I choose a; ag = ? ar: X
You choose f ar = fas f: X->X

I choose a» a = 7 as: X
You choose p as = pb'n p : Bool - Nat - Y

This suggests some kind of attempt on your part to recursively store a pair within the
component of a pair—and certainly, should you succeed, the answer to our surjectivity
question would be no. But we have a violation of the copycat rule: the type of a3, being X,
is of the form “.-- X”, but the body pb'n' is of type Y.

So the copycat rule means that after my first move, either b or n, determining in which
component (Bool or Nat) to play, you are ‘stuck’ playing in that component: you can never
‘get back out’ by playing p. Thus winning strategies on Bool xNat are in bijection with pairs
of winning strategies, one on Bool and one on Nat. So (informally), we have deduced that
in (product- and unit-free) system F, closed, 5-long, S-normal terms of type BoolxNat are
in bijection with pairs of closed, n-long, B-normal terms, one of type Bool and one of type
Nat.
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