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Cockett and Seely recently introduced a Lambek-style deduc We define a categoryC whose objects are formulas

tive system for finite products and sums, and proved deditiabi
of equality of morphisms. The question remaiheas to whether
one can present free categories with finite products and sums
canonical wayji.e., as a category with morphisms and composition
defined directly, rather than modulo equivalence relatiofikis
paper shows that the non-empty case,(omitting initial and final
objects) can be treated in a surprisingly simple way: mamsi
of the free category can be viewed as certain binary relatioith
composition the usual composition of binary relations. &ntic-
ular, there is a forgetful functor into the categdtgl of sets and
binary relations. The paper ends by relating these bindayioas
to proof nets.

1 Introduction

built from atomsA;, A, ... by non-emtpy finite product
[I;c; Xi and non-empty surh _, ., X;, and in which mor-
phisms X — Y are certain binary relations between the
leaves ofX (when X is viewed as a parse tree) and the
leaves oft”. For example, above, we depicted the four mor-
phisms fromA x A to itself, and the four morphisms from
A+ Atoitself. Composition inC is simply the usual com-
position of binary relations. In particular, there is a fetfgl
functor from L into the categonRel of sets and binary re-
lations. £ contains, as full subcategories, the category of
non-empty finite sets, and its opposite.

Our main theorem (Theorem 1) is thatis isomorphic
to the free category generated from the atomsg bfy non-
empty finite product and coproduct (sum). Since binary re-

In essence, this paper rigorises the following widely used lations are graphs, we can thus viévas a canonical graph-

informal graphical notation for the four canonical mor-
phisms from a product x A to itself:

— |
Ax A AxA id = Xz, y).(z,y)

[ 1
AxA—AxA tw = Nz, y).(y, z)

,:‘
AxA—AxA

ko = Mz, y).(x, x)

e
AxA—AxA ki = Xz, y).(y,y)

Or dually:
—ft— 1
A+A—-A+A id = Xz, 4).(z, 1)
|
A+A—-A+A tw = N, i).(x, —3)
o
A+A—-A+A ko = Az, 1).(x,0)

e
A+A—-A+A ki = Mz, 1).(x, 1)

*This paper essentially uses the resolution condition of NMAdlkoof
nets to characterise the free product-sum category. It eesrrpublished
as it turned out Hongde Hu had already characterised theciigory:
Contractible coherence spaces and maximal maps, ENTCS 20 1999. The
proof in the present paper can be shortened considerabgubeof this
prior art. Thanks to Cockett and Seely for pointing out tlektionship.
[Note: In footnote 1 overleaf, “ill-defined” refers to condlace,i.e., lack
of a unigue normal form under the rewrite, not to the rewritie rtself.]

ical syntax for non-empty finite products and sums.

The binary relations constituting the morphismsadre
akin to the graphs used by Kelly and MacLane to study co-
herence in symmetric monoidal closed categories [KM71],
and to the linkings of proof nets for linear logic [Gir87].

In section 5 we discuss the relationship between the mor-
phisms ofL and proof nets for multiplicative-additive linear
logic [Gir96, HGO2].

This work was motivated by a recent paper of Cockett
and Seely [CS01], which introduced a Lambek-style de-
ductive system [Lam69] for finite products and sums, and
proved decidability of equality of morphisms. The under-
lying sequent calculus is similar to additive linear logic
[Gir87], without negation, and with exactly one formula ei-
ther side of every turnstile. Our proof thétis the free
category goes via the fragment of Cockett and Seely’s de-
ductive system without initial and final objects (empty sum
and product). Additional motivation for this work came
from the relationship between proof nets and coherence
for monoidal closed categories [Blu93], and the two-sided
proof nets (with units) used to tackle coherence for linearl
(or weakly) distributive categories [BCST96].

Cockett and Seely suggest connections between their de-
ductive system and Blass games [Bla92] (see also [San99]).
Types can be viewed as finite games which lack the usual re-
quirement that play should alternate strictly betweengiday
(product structure) and opponent (coproduct structurie¢. T
concurrent games of Abramsky and Mellies [AM99] (a
strict extension of Blass games, constituting a fully com-
plete model for multiplicative-additive linear logic) go a
step further, dispensing altogether with a global schedule



between players. The similarity between the two is not sur-2  Notation for binary relations

prising; afterall the underlying proof theory of Cockettlan

Seely’s deductive system is essentially additive linegido We writeRel for the category of sets and binary relations,
Cockett and Seely remark that sum/product-games, in turn,and writeR : U - V if R is a morphism fronl/ to V,
relate to protocols for communication channels. There-i.e, a subsetR C U x V. We denote the composite of
fore, the characterisation of the free category presemtedi R: U - VandS:V -» Wby R;S : U - W. We write
this paper may contribute to a foundation for understanding [1,c; X for biproduct inRel (simultaneously product and
channel-based concurrent communication. sum), which acts as disjoint union on objects (sets).

3 The category. of linkings

Open problems. Following a suggestion of Peter
Selinger, Cockett and Seely [CSO01, app. B] sketched aFix asetd = {4, 4z,...} of atoms. An object of is a
graphical decision procedure (calledlular squares) for ~ formula generated from the atoms©by non-emtpy finite
the equality of cut-free proofs in their deductive system, i Product][;.; X; and non-empty sumx_,_, X;. We shall
the special case of binary products and sums. It would berefer to these objects simply &srmulas. We useX, x X
interesting to consider whether there is a ‘correctness-cri  as shorthand fof [, (, ;, Xi, and X, + X, as shorthand
rion’ for picking out sound cellular squareisg, those that ~ for >, 0,1} Xi-
interpret deductions), and to attempt to define a direct com-  We identify a formulaX with the corresponding labelled
position of cellular squares that preserves the critefioe.  tree,viz,, with vertices labelled wit [, >, and atoms, and
conceivable that the two conditions presented in this paperwith edges labelled with indiceg€, elements of the index-
for the well-formedness of the binary relations (morphisms ing sets occurring ifX). For example:
in £ may map accross to yield a soundness criterion for cel- _ ) )
lular squares. / \J

It would be interesting to make formal, concrete con-

I1 >

nections between the following: (a) Cockett and Seely’s k m q r

remarks that their deductive system [CS01] has a game- /l| \ E/ \
>

theoretic connection; (b) Santocanale’s game-theoretic B 11 I1 ;
work on meet and join posets with fixed points [San99]; (c) n‘ o/ \ P S/ \
the concurrent games of Abramsky and Mellies [AM99]; A C D F G

(d) conditions (1) and (2) characterising the binary refadi
that constitute the morphisms of the category of linkidgs By aleaf of a formula X we mean an occurrence of an
presented in this paper (section 3). atom inX, literally a leaf of X whenX is viewed as a tree.

Work in progress aims to extend the approach presented '€ 1208l of a leafz is its atom, and is denoted € A.
here to unitsi(e. initial and final objects), and to an arbi- ' the vertexz is a child ofy (soy is necessarily 4]- or

trary base category (rather than a set of atdmsdiscrete 2_-occurrence), then the subtree rooted &ite., = together

category). The former, if at all feasible, appears to beequit With its descendents) is amgument of y. _
involved. This is evidenced by the fact that, when empty A [[-strategy of a formulaXis any result of deleting all
products and sums are present, there is no obvious confluPut 0ne argument of evep] in X. Thus every surviving
ent and terminating rewrite system for the cut-free proofs II _OfX becomes unary, and every su_rwv@retalns each_
(or proof terms) of Cockett and Seely’s deductive system. of its arguments. For example, here is one of the 8 possible
If such a rewrite system can be found, it might provide use- [I-strategies of the formula depicted above:

ful clues towards extending the approach presented in this

. > .

paper to the initial and final objects, yielding a canonical / \j
graphical syntax for finite products and sums. I >

| N

IFollowing a suggestion of Santocanale, the term equiveteruf B E

[CS01] can be oriented to give normal forms in the non-nultase [CSO01, I
app. A]. Unfortunately, this orientation is ill-defined whthe empty prod- S/
uct (final object) is present: the rewritey (fi))icr = pr((fi)ier) F
(the orientation given to conversion (10) of [CS01]) faileemI is empty,
sincek is undetermined. For example, in terms of proofs, this rewran-
not be applied 6% <771 7', since the right side pattern-matches two  (We emphasise that we are only interested in end results,

W tuple

proofs, namely,— %o ccrion for k = 0andk = 1. not choices made along the way. For example, deletion of




C or D becomesirrelevant, given that we did not retain their PROPOSITION1 Composition and identities are well-

parentll.) Define a)_-strategy of X analogously, as any
result of deleting all but one argument of evéry Thus ev-
ery surviving) . of X becomes unary, and every surviving
[ ] retains each of its arguments.

Henceforth we identify a strategy of with the corre-
sponding set of leaves. The following is immediate:

LEMMA 1 Any []-strategy and _-strategy ofX intersect
in a single leaf ofX. Conversely, every leaf oX is the
intersection of somg]-strategy and _-strategy ofX .

Write | X | for the set of leaves of a formul&. A morphism
X — Yin L is alinking from X to Y, namely, a binary
relationR C |X| x |Y'| between the leaves of and the
leaves oft” such that:

(1) R respects leaf labellingiz,y) € Ronlyif z =7 €
A.

(2) forevery>_ -strategyX’ of X and] [-strategyY”’ of Y,
R contains exactly one edge betweEhandY” (i.e,
RN (X’ xY’)is asingleton).

The edges (elements) of a linkidgare calledinks. Note
that, as distinct from Kelly-MacLane graphs for symmet-
ric monoidal closed categories [KM71], and proof nets for
multiplicative linear logic [Gir87], we do not demand that
the links be disjoint.

Composition of linkings inC is simply the usual com-
position of binary relations. Identities are also inhatite
from Rel. For example, the following diagram illustrates
the compositiorkg; tw = ki, for kg, tw andk; as shown in
section 1 (Introduction):

)

A+A—-A+A—- A+ A
L — |

l

/ll + /Il — A+ zléll
To prove that composition is well-definddg., that compo-
sition preserves conditions (1) and (2) in the definition of
linking, we shall use the following lemma.

LEMMA 2 Let X = [],.; Xi, and letL be a set of leaves
of X such that for aly_-strategies’ of X, LN X" is a sin-
gleton. Therl is contained entirely within one of thg;.
The dual result also holdse., with | and}_ interchanged.

Proof. Supposer, € Xy NLandx; € XyNLfork,lel
andk # I. Fori = k,l choose & -strategyX/ for X;
with z; € X/, and for remaining € I choose an arbitrary
>_-strategyX; of X;. ThenlJ,., X; is a}_-strategy ofX
which intersectd. in two leaves £; andz;), a contradic-
tion. O

defined inL. In other words, the composite of any two
linkings is a linking, and the identity binary relation oreth
leaves of a formula is a linking.

Proof. ldentities clearly satisfy condition (1), and (2) fol-
lows from Lemma 1. Given linking®® : X — Y and

S :'Y — Z, the fact that the composite binary relation
R; S satisfies condition (1) is immediate. Condition (2)
holds by induction on the number of verticeslin the base
case is trivial, and the inductive step follows directlyrfro
Lemma 2. O

REMARK 1 Since the morphisms df are binary relations
between leaves, with composition and identities inherited
from Rel, the map — | (taking a formula to its set of leaves)
extends trivially to a forgetful functof — Rel.

REMARK 2 The full subcategory of whose objects are of
the form} ., A for a fixed atomA is isomorphic to the
category of non-empty finite sets. Substitutinpfor >,

we obtain the opposite category as a full subcategody. of

Non-empty finite products and sums. Recall that we
identify a strategyX’ of X with a subsetX’ C |X| of the
set of leaves oX. The following is immediate:

LEMMA 3 Every [[-strategy of .., X; is a union
U,er X of a]]-strategiesX; of X. Dually, every}) -

strategy of [,.; X; is a unionlJ,.; X; of a} -strategies
X/ of X.

el

PROPOSITION2 L has all non-empty finite products and
non-empty finite coproducts.

Proof. Define product and sum in the obvious way on for-
mulas,i.e., (X;)ier — [[;c; Xi and) ;. ; X; respectively.
Projections and injections
in, X — > e Xi (injections)
pry [Lic;Xi — Xk (projections)
are inherited fronRel, i.e,, the underlying binary relations
on leaves are the corresponding canonical morphisms in
Rel:
ing | X k| - Jler IXi]  (injections)
pry e/ 11Xl = | X k| (projections)
(using the fact that] [, Xi| = | >_,c; Xil = [Lics 1 Xi)-
These canonical binary relations clearly satisfy condgio
(1) and (2) of the definition of linking. The natural isomor-
phims

~

hom(Z, [ [,c; Xi) [I,c;hom(Z, X;)
hom(zie] Xi,2) Hie] hom(X;, Z)

follow from condition (2) of linking, using Lemma 3. [

~J

REMARK 3 The forgetful functor| — | L — Rel
preserves binary products and sums, sifEg.; X;| =

| Ziel Xi| = Hie[ |Xz|



Softness. Recall that a category with producid and tion, and with exactly one formula either side of every turn-
sums}  is soft [Joy95] if every morphism[[,.; X; — stile. The inference rules are shown in Figure 1. Through-
ZjeJ Y; factors either through a projection from one of the out the paper, we adopt the convention thaf3, . . . range
X, or through an injection into one of th§. The softness  over atoms and(, Y, ... range over formulas.
of £ will follow directly from the following simple combi- An object of D(A) is a formula generated from the atoms
natorial lemma: of A by non-empty finite produdt], ., X; and non-empty
finite sum} .., X; (so the objects oD(A), F(A) and
LEMMA 4 Letr be a binary relatiom C U x V between  L(A) are the same). A morphisXi — Y is an equivalence
setsU andV each with at least two elements, and suppose class of cut-free proofs of + Y, modulo conversions (9)—
everyu € U andv € V is in some edge af. Thenr has a (12) shown in Figure 2 (more precisely, the symmetric and
pair of disjoint edges,e., there exist distinct,, v’ € U and transitive closure of (9)—(12)). (We follow the enumeratio

distinctv,v' € V such thatu,v) € r and{u/,v') € r. given in [CS01].) We writdr] for the equivalence class of
the cut-free proofr.

PROPOSITION3 L is soft. Composition is by cut elimination, using conversions
(2)—(8) shown Figure 3. More precisely, the composite of

Proof. Supposel : [[;c; Xi — > ;Y was notsoft.  [r]. X — Y and[#'] : Y — Z is the equivalence class of

Then eachX; andY; has an atom in a link of2. By  the proof resulting from taking and=’ as hypotheses of a

Lemma 4, contains disjoint edge, y) and(z’,y) with cut rule, yielding (say) the proof*, and then eliminating

z andz’ in distinctX;, say X, and Xy, andy, y’ indistinct  the cuts fromr* using conversions (1)—(8) of Figure 3.

Y;, sayY; andYy. Pick}_-strategies ofX; and X, con- The identityidy : X — X is defined by induction on the

tainingz anda’, and][-strategies of; andY;: containing  number of connective{ or ) in X, as follows. Given
y andy’. Pick arbitrary) -strategies anl[-strategies for  an atomA, let 14 be the derivation consisting of the iden-
the remainingX; andYj, respectively. By Lemma 3, the ity rule with conclusionA + A. The identity derivation
unions yield &) -strategy of[ [, ; X; and a] [-strategy of 1., x; iS given by:

> jes Y;. By construction, there are two edges ®fbe-

tween these strategies (namélby, yo) and(z1,y1)), con- Lx,
tradicting condition (2) of linking. O X+ X;
[Lier X F X

4 Isomorphism with free category i€l ]y

Hiel Xk Hie[ Xi

The identity 15, _, x, is obtained duallyj.e., exchanging
left and right around the turnstile, and exchang]jgand
>". Define the identity morphisridx : X — X to be the
equivalence clasd x] of 1x.

In this section we prove our main theorem (Theorem 1),
that L is isomorphic to the free category generated by non-
empty finite product and sum from its atoms.

Throughout this section;(.A) denotes the category of
linkings over a set of atoms, andF(A) denotes the cat-
egory generated freely frord by non-empty finite product . )
and non-empty finite coproduct. In section 4.1, we define PROPOS'T'_ON4 The free category(A) is isomorphic to
D(.A) to be Cockett and Seely’s deductive system for finite the deductive syste(A).
products and sums [CS01], restricted to the non-empty case. . _

This category is isomorphic to the free categ@iiyA). Sec- Proof. Proposition 4.6 of [C_SOl], res_tncted to the non-
tion 4.2 defines a functar : D(A) — L£(A) witnessing an empty case, and to a generating set (discrete categary).
isomorphism betweef(A) andL(.A). Therefore, by tran-

sitivity (£(A) = D(A) = F(A)), we obtain our main the- 4.2 The functor

orem (Theorem 1)L(.A) is isomorphic to the free category

F(A). We define a functo” : D(A) — L(A) as follows.
On objects, defing’ to be the identity. Given a cut-free
4.1 Cockett and Seely’s deductive system derivationr, defineF () by induction on the depth of the

derivation, as follows. For the base casejs an iden-
We writeD(.A) for Cockett and Seely’s deductive system tity rule A - A'd; define F(7) to be the identity linking
for finite sums and products [CS01], restricted to the non-id, : A — A. The four cases of the inductive step (cor-
empty casei(e., without initial and final object), and gener- responding to the last rule af) are shown in Figure 4. To
ated from the se#l of atoms. The underlying sequent calcu- aid clarity, this presentation leaves various canonicgsna
lus is similar to additive linear logic [Gir87], without nag of Rel implicit; they are shown explicitly in Figure 5.



. X;FY}. XY
— id XE Yier S — ~ I (ke
AFA S XibY [Lie; XiFY
XFY Y+HZ Y+ X}, Y F Xy
cut g IIr —— > r (kel
XFHZ YFHieIXi YFZieIXi
Figure 1. Inference rules.
U
Uy

{XiFYk}iel S 9) X FY;

ZieIXiFYk —> Xil_ZjeJYj icl Zl
Eie] Xik Zjejyj Zie[ Xk ZjeJYj

Enan
Xk Y, (10) XetYj) s I
S S N r
Hie[ XiFYj jeJ - Xy - HjeJYj it
Hiel Xik HjeJ Y; Hiel Xik HjeJ Y;
™ e
XY, (11) XY,
— II! — —_— 7
HieIXi FYm X '_ZjeJYj Hl
Hiel Xi k- ZjeJ Y; Hiel Xk ZJEJ Y;
{ g } { g }
XitY)ier ol (12) Xi Y jeJ I
ZielXi'_Yj jeJg H —> XiFHjeJYj el Zl
. T

Ziel Xik HjEJ Y;

Ziel Xik HjEJ Y;

Figure 2. Conversions of cut-free derivations.




XFA AFA
XFA

cut

AFA AFX
AFX

cut

0 Y Z,

XrY YEY, Zi
X+, Zi

s

Z kY ™

71_[[

[, ZiFY YEX
[Lies Zim X

T
T YFZ; .
e HT

XY  YF[Le %
X+l Zi

Uz
Zi kY . T

S ZikY YEX
S Zik X

iv T
XEYi | Y Z
icl

T — I
X FILe Ve [Le; Vi Z

XFZ

™ T
Z+EYs YiEX |
r icl Zl
ZFZ'L'GI)/Z‘ ZZEIKFX
cut
Z+X

cut

cut

cut

cut

—

(dual to (1))

(4)

—

(dual to (3))

(6)

—

(dual to (5))

(8)

—

(dual to (7))

XFA

AFX

XFY Y+ Z
cut

XFEZ
XEY e Zi

Zy kY YEX
cut

Zr X
[le, Zi - X

XFY Y+ Z;
—  cut
XFZ;

icl HT
X+ HiEI Zi

iv ™

ZiFY YEFEX

cut
Zi X e >
L l

et ZiF X

Tk ™
XFYs Yo Z
X+HZ

cut

ZEYy YiEX
ZFX

cut

Figure 3. Cut elimination rewrites.




RiZXi—>YZ-
{ her g

U RS> X " Prk:|HieIXi|:|Zieri|:Hiej|Xi|"‘>|Xk|
ier tvi @ 2 er i

ing [ Xi| = [ 1Xal = [ TLier Xil = 12 25er Xil

{Ri Y — Xi}ie]
: L (R Xi - Y},
Uier Bi 0 Y = [Lie; Xi el s
R:X Yy Uier(pris Ri) ZieIXi*Y
: k —
l
R:Il;e; Xi =Y I {Ri:Y — Xi},o; -
R:Y =X Uier(Rising) = Y — [T, Xi
: k
2 _
R:Y — 3, Xk R:X,—Y ot

pri; R [[ie; Xi =Y
Figure 4. The inductive step for the definition
of F': D(A) — L(A), with canonical maps in R:Y — X,

i icl T
Rel left implicit. Riine - Y — >, X, >

Figure 5. The inductive step for the definition
of F: D(A) — L(A), with canonical maps in
Rel made explicit.

4.2.1 Well-definedness

For F' to be well-defined on morphisms, we must verify that
the binary relation below each rule of Figure 4 is a linking
whenever the hypotheses relation(s) are linkings, and that
the definition ofF’ respects equivalence of cut-free deriva-
tions. The former follows from the fact that)a-strategy
of ., Xi corresponds to a choice bfc I together with
a ) _-strategy ofXy, and a] [-strategy of)_,_; X; is the
union|J,.; X of [[-strategiesX; of X; (and dually, with
[T and_ exchanged).

The verification of the latter is equally simple: either side
of each of the conversions (9)-(12) of Figure 2 results in
the same linking. For example, both sides of conversion (9)

resultinlJ,, F(m) : > 0,c Xi — Zje, Y;.

For the inductive step, we must verify the translations of
conversions (3)—(8) of Figure 3 using the definitionof
given in Figure 5. (Conversions (1) and (2) correspond to
the base case, already dealt with above.) These follow from
the equalities between binary relations shown in Table 1:
takeR = F(w), R’ = F(r') andR; = F(m;), wherer, 7/
andr; are the cut-free proofs parameterising (3)—(8). (To
aid pattern-matching, we have labelled the equation corre-
sponding to conversiofn) by n.) Equalitites 3 and 4 are
instances of the associativity of the composition of binary
relations; equalities 5-8 hold by unfolding the definitions
of injections and projections iRel.

4.2.2 Functoriality

We must verify thatF” respects identities and composition. 4-2-3 Fullness

The former follows by induction, since the identities of The fullness ofF is essentially a corollary of the softness
D(A) are defined inductively (section 4.1). To verify the of £(4) (Proposition 3).

latter, we must show that for all cut-free derivatiansof Given a linkingR : X — Y we must show that there
X Y andm of Y - Z, we have exists a cut-free proaf such thatF'(r) = R. We proceed
by induction on the sum of the number of connectivis (
or >’) in X and the number of connectivesin The base
case (0 connectives) B = id4 : A — A for some atom
A, which is the image of the identity rule with atam For
the induction step:

F(m); F(m) = F(elim(cut(m,72)))

wherecut (71, 72) is the derivation obtained by placing
andm, above acut-rule, andelim(r) is the result of elmi-
nating the cuts ofr using conversions (1)—(8) of Figure 3.

We proceed by induction osize(m) x size(mz), where
size(r) is the number of nond rules inw. (Thussize(n) =
0 iff = consists of a singlel-rule.) In the base case, one of
1 Or o is an identity rule, selim(cut(my, 72)) is equal to
the other. The result follows sindeé preserves identities.

1 If X = 5 ,.; X, then, by condition (2) in the defi-
nition of linking, and the nature of & -strategy of a
sum) .., X;, Ris the union ovei € I of linkings
R; : X; — Y. By induction hypothesisk; = F(m;)
for cut-free proofsr;. Now R = F(r) for 7 the proof



[[eo

R; (R;iny) (R; R');ing

e

(pry; R); R pry; (R; R')

HCﬂ

R; (Uie[ Ri;ini) Uier ((R;Ri);ini)

(Uierpris Ri); R User (prii (Ri; R))

(Uiel Ri?ini)?(PrmR) Ry R

(R;ing); (Uie[ pri;Ri) = R; Ry,
Table 1. Equations on binary relations corre-
sponding to conversions (3)—(8).

consisting of &  I-rule with hypothese$r; }, ;.
2. 1Y =], Y;, thenk = F(r) for a proofr ending
in a []r-rule, by an argument similar to 1.

3. If Xisanatomand” = }_, Y}, then by condition
(2) of linking and the nature df[-strategies of a sum
ZjeJ Y;, R intersects exactly one of thg, sayYs.
ThusR = R/;in, for someR’ : X — Y}. By induc-
tion hypothesisk’ = F(x’), henceR = F(x) for =
the extension of’ with a > r-rule.

4. IfYisanatomand = [],.; X;, thenR = F(r) for
a proofr ending in a] | I-rule, by an argument similar
to 3.

5. OtherwiseX = [[,.; X;andY = }_._;Y;. By soft-
ness (Proposition 3] factorises either aB = R';ing,
or R = pr,,; R'. Inthe former caseR = F(r) for a
proof = ending in a)_ r-rule (by reasoning as in 3),
and in the latter casé} = F'() for a proofr ending
ina ] l-rule (by reasoning as in 4).

4.2.4 Faithfulness

To show thatF is faithful, we prove that ifr and =’ are

distinct normal forms with respect to the cut-free rewrites

(9)—(12) in Figure 2, then the linking8(7) and F(r') are
distinct.

Let 7 and 7’ be distinct normal cut-free proofs of the

sequentX + Y. We argue thal'(w) # F(x’) by induction
on the sum of the number of connectivg§ 6r >°) in X
and the number of connectivesin

Base case. X andY are atoms. Necessarilf = Y
andr and#’ are uniquely determined as the saitteule,
contradicting the fact that and=’ are distinct.

Induction step. Assumer and #’ finish with distinct
rules, otherwise we can appeal immediately to the induc-
tion hypothesis with the branchesofindx’.

1. Case: one o orY is an atom. Them and=’ nec-
essarily finish with the same rule, contradicting our as-
sumption.

2. CaseX = [[,c; Xy andY = []..,Y;. Thusw and

. [ jeJ 7I°
7' each finish with one of the following rules:

{Hz‘el Xk Yj}jeJ
Hiel Xk HjEJ Y

Xy HjeJ YJ
Hie[ Xi bk HjeJ Y;

By our earlier assumption; and#’ end with distinct
rules. If the final rules are both[ /, with £ = m and

k = m’ respectively (and necessarily # m'), then
F(w) and F(=') are distinct: all links of the former
intersectX,,,, and all links of the latter intersect,,,/,
so to be equalF(w) and F(7’) must both be empty.
However, every linking is non-empty (by condition (2)
of the definition of linking), so this is a contradiction.

it

Thus one ofr and 7’ ends with [, and the other
with J]{. Without loss of generalityr ends with
[I= andn’ ends with []/. For a contradiction, as-
sume the linking’(7) and F'(7') are equal. Lep
be (one of) the highest occurrencesrfimeasured in
terms of the number of rules below of a []i-rule
introducing] [,.; X;. Sincer’ ends with [][, each
of its links intersectXy, thusp in = has hypothesis
X, F Zand conclusiorﬂiel X,; F Z, for some sub-
formulaZ of Y. Let p’ be the rule immediately fol-
lowing p, necessarily introducing a connective on the
right, with Z as one of its arguments. This connective
must be g [, andp’ an occurrence of [ », otherwise

p and p’ together would constitute a redex for con-
version (11) of Figure 2, contradicting the normality
of 7. Thusy' has hypothesi§[T,.; Xi - Zm}, _,,
and conclusio [;.; Xi F [[,.car Zm, @andZ = Z,
for someq € M. Sincep is highest, each proof
Tm Of [[;e; Xi F Zn ends with an instance of] /,
with hypothesisXy,,,) - Z,,. (There must be a rule
somewhere inr,, introducing]‘[iel X;; it cannot be
any higher tharp, sincep is highest.) Furthermore,
k(m) = k for all m, since it isXj that is in the hy-
pothesis of the last rule af’ (hence this is the only
one of theX; which intersects with a link). Thus in



we have:
Tm
X Z,,
R — Hl
HiGI Xi Zn, meM HT
Hiel XiF HmeM Zm

for I],,car Zm @ subformula ofy”. This is a redex of
conversion (10), contradicting the normalityof

(=r")

. CaselX =5 ., X;andY = . ;Y. Dualto the
previous case: exchange Ieft/nght alF[d/ >

. Case:X = [[;c; X;andY = > . ;Y;. Thust and
7' each finish with one of the foIIowmg rules:
Hiel XiF Y
Hiel Xik ZjEJ Y
Xy b Zje] YJ Hl

Hie] Xik ZjeJ Y;

By assumptions and=’ end with distinct rules. If the
final rules are botH ]/, we obtain a contradiction (as
in case 2). Similarly, both_ r leads to a contradic-
tion. Therefore, without loss of generality,finishes
with > r andr’ finishes with[] I. Now the reasoning
of case 2 applies directly (sineg finishes with ] ),
yielding a contradiction i’ (7) = F(n').

. CaselX = >, ., X;andY =[]..;Y;. Thusr and

7' each finish Wlth one of the followmg rules:

{Ziel Xi + }/j}jeJ
Zie[ Xk HjGJYj

{XiF e, }EI
ZZEIX - H]EJ Y Zl

By assumption;r and 7’ end with distinct rules, so
without loss of generalityr ends with []r, and#’
ends with>_ [

For a contradiction, assume the linking§~) and

F (') are equal. Lep be (one of) the highest rules
in 7 (measured in terms of the number of proof rules
below it) introducing} ., X; (sop is an instance of
>_1), say with conclusior),_; X; - Z. Letp’ be
the rule immediately following. If p’ is an instance
of > r, thenp andy’ together form a redex for con-
version (9) of Figure 2, contradicting the normality of
. Hencep’ must be an instance df[ r, introducing
[1,.c s Zm, and withZ one of theZ,,,.
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Since p is highest, each proof,, of > ., X;
Z. ends with an instance op [, with hypothe-
sis {X; = Z },c; and conclusion) ., X; = Z,,.
(There must be a rule somewheresp, introducing
> icr Xi; it cannot be any higher thap, sincep is
highest.) Thus inr we have:

S,
Xit Zm }ier S
ZiGIX FZn

meM H,,,

Zie] XiF HmeM Z

for a subformulaﬂmeM Z.y of Y, and where the;,,,,
asi ranges ovet, together with the following} I-
rule, constituter,,. This is a redex of conversion (12),
contradicting the normality of.

(=0

4.2.5 Preservation of non-empty finite products, sums

The factthat” : D(A) — L(A) preserves non-empty finite
products and sums is easily verified, since the objects of
D(A) andL(A) coincide, as do the definitions §f,.; X
and)_,.; X; on objects.

4.3 Main theorem

THEOREM 1 The categonL of linkings is isomorphic to
the category generated freely from the atomsiakings

by non-empty finite product and non-empty finite sum (co-
product).

Proof. F(A) = D(A) by Proposition 4. In section 4.2

we defined a structure-preserving full and faithful functor

F : D(A) — L(A), which witnesses an isomorphism
D(A) L(A), since F' acts trivially on objects. Thus

F(A) = L(A). O

||2 IR

5 Relationship with proof nets

In [Gir96], Girard defines a notion of proof net for
multiplicative-additive linear logic. The definition is ise-
what involved, so we do not reproduce it here. We substitute
the standard categorical notatier/+ for Girard's & /.

To relate the category of linkings to proof nets, we re-
strict products and sums to the binary case. XeandY
be x /+-formulas over the setl of atoms. Viewing atoms
as literals, X+ andY are well-defined formulas of additive
linear logic. Let® be a cut-free proof net with conclusions
X+ andY. Every axiom link of© determines an edge be-
tween a literal ofX - and a literal ofY’, whence® deter-
mines a binary relatiol®(©) C |X| x |Y| between the
leaves ofX and the leaves df. Note that distinct cut-free
proof nets can yield the same binary relation, for example:



p p
p P
AL AL A A AJ‘ AJ‘ A
X +1 +1 X +1
I NS I |
AL x AL A+ B At x AL A+B

both yield the following binary relation between leaves:

[ —|
A+ A A+ B

Define® to betight if every formula occurrenc& x V of
O has exactly onex-link immediately above it, and every
formula occurrenc& + V' has exactly one-;-link and one
+o-link immediately above it.

PROPOSITIONS Let X andY be x /+-formulas over the
atoms ofL. MorphismsX — Y in L are in bijection with
tight, cut-free Girard proof nets with conclusioXs- and
Y.

Proof. First we show thai?(©) is a linking. Condition
(1) of linking is trivial. Every valuationy of the eigen-
variables of® determines at+-strategyX’(¢) of X and a
x-strategyY”’(¢) of Y, and every paikX’,Y”) consisting
of a +-strategy ofX and ax-strategy ofY arises in this
manner.

We must show that, given any-strategyX’ of X and
x -strategyY”’ of Y, R(©) contains a unique edge between
X’ andY’. By the previous paragraph, there exists a val-
uationy such thatX’ = X’(¢) andY’ = Y’(p). Since
the slicep(©) gives rise to an edge, of R(©) between
X'(¢) andY’ (), it remains to verify that there is at most
one edge ik(O) betweenX’ andY”. For a contradiction,
suppose there are distinct edges’ € R(©) betweenX”’
andY”. Without loss of generality; = e,,. Lety’ be a val-
uation such that’ = e,/. Lete = (z,y), lete’ = (2/,¢'),
let z* be the unique vertex oX suchz andz’ are leaves of
distinct arguments af*, and lety* be the unique vertex of
Y such thalyy andy’ are leaves of distinct argumentspf.
Sincee ande’ are both between the strategi&$ andY”,
neither ofz* andy* is a x.

Let a anda’ be the axiom links ir® that gave rise te
ande’, respectively. Lef andy be the vertices occurrences
of © corresponding ta* andy*. Recall from [AM99] that
since® is a proof net, ifpr.w is any weight occurring in
O, thenw C w(L), for any x-link in ©. Therefore, since
neitherz nor g is a x-link, the weightw(a) of a does not
depend on any of the’s on whichy andy’ differ. Hencea
is present not only ip(O), but alsoy’(©), a contradiction
(the weight of one oft or 3 fails to be the disjoint sum of
the weights of its children). This completes the proof that
R(©) is alinking.

It remains to show thaR(—) is injective and surjective.
Injectivity follows from the tightness assumption. Surjec
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tivity follows from the fact that every morphism deter-
mines a tight proof ne®(R). By tightness, the link and
formula-occurrence structure is fully determined X¥yand

Y, with the literal occurrences @(R) being in bijection
with the leaves involved in edges @&. The weights of
O(R) are determined by specifying weights on axiom links
a: identifying a valuation with a monomial, the weightof

is the union of the valuations such that the edge dt cor-
responding ta is between the strategies induceddyit is
easy to check that each of these weights will be a monomial,
and the remaining requirements f0f R) to be a proof net.
Itis routine to verify thatd(—) is inverse toR(—). O

The present author, with Rob van Glabbeek collaborating as
second author, recently introduced an alternative notfon o
proof net for multiplicative-additive linear logic [HG0Z2]

PROPOSITIONG Let X andY be x /+-formulas over the
atoms ofL. MorphismsX — Y in L are in bijection with
cut-free proof nets, as defined in [HGO0Z2], on the sequent
FXLY.

The proof is far less involved than that of Proposition 5,
since[[- and>_-strategies are directly related to the notion
of resolution defined in [HGO02].

Acknowledgement Thanks to Vaughan Pratt for insight-
ful feedback.
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