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Cockett and Seely recently introduced a Lambek-style deduc-
tive system for finite products and sums, and proved decidability
of equality of morphisms. The question remained∗ as to whether
one can present free categories with finite products and sumsin a
canonical way,i.e., as a category with morphisms and composition
defined directly, rather than modulo equivalence relations. This
paper shows that the non-empty case (i.e., omitting initial and final
objects) can be treated in a surprisingly simple way: morphisms
of the free category can be viewed as certain binary relations, with
composition the usual composition of binary relations. In partic-
ular, there is a forgetful functor into the categoryRel of sets and
binary relations. The paper ends by relating these binary relations
to proof nets.

1 Introduction

In essence, this paper rigorises the following widely used
informal graphical notation for the four canonical mor-
phisms from a productA × A to itself:

A × A → A × A id = λ〈x, y〉.〈x, y〉

A × A → A × A tw = λ〈x, y〉.〈y, x〉

A × A → A × A k0 = λ〈x, y〉.〈x, x〉

A × A → A × A k1 = λ〈x, y〉.〈y, y〉

Or dually:

A + A → A + A id = λ〈x, i〉.〈x, i〉

A + A → A + A tw = λ〈x, i〉.〈x,¬i〉

A + A → A + A k0 = λ〈x, i〉.〈x, 0〉

A + A → A + A k1 = λ〈x, i〉.〈x, 1〉

∗This paper essentially uses the resolution condition of MALL proof
nets to characterise the free product-sum category. It was never published
as it turned out Hongde Hu had already characterised the freecategory:
Contractible coherence spaces and maximal maps, ENTCS 20, 1999. The
proof in the present paper can be shortened considerably because of this
prior art. Thanks to Cockett and Seely for pointing out this relationship.
[Note: In footnote 1 overleaf, “ill-defined” refers to confluence,i.e., lack
of a unique normal form under the rewrite, not to the rewrite rule itself.]

We define a categoryL whose objects are formulas
built from atomsA1, A2, . . . by non-emtpy finite product∏

i∈I Xi and non-empty sum
∑

i∈I Xi, and in which mor-
phismsX → Y are certain binary relations between the
leaves ofX (when X is viewed as a parse tree) and the
leaves ofY . For example, above, we depicted the four mor-
phisms fromA × A to itself, and the four morphisms from
A + A to itself. Composition inL is simply the usual com-
position of binary relations. In particular, there is a forgetful
functor fromL into the categoryRel of sets and binary re-
lations. L contains, as full subcategories, the category of
non-empty finite sets, and its opposite.

Our main theorem (Theorem 1) is thatL is isomorphic
to the free category generated from the atoms ofL by non-
empty finite product and coproduct (sum). Since binary re-
lations are graphs, we can thus viewL as a canonical graph-
ical syntax for non-empty finite products and sums.

The binary relations constituting the morphisms ofL are
akin to the graphs used by Kelly and MacLane to study co-
herence in symmetric monoidal closed categories [KM71],
and to the linkings of proof nets for linear logic [Gir87].
In section 5 we discuss the relationship between the mor-
phisms ofL and proof nets for multiplicative-additive linear
logic [Gir96, HG02].

This work was motivated by a recent paper of Cockett
and Seely [CS01], which introduced a Lambek-style de-
ductive system [Lam69] for finite products and sums, and
proved decidability of equality of morphisms. The under-
lying sequent calculus is similar to additive linear logic
[Gir87], without negation, and with exactly one formula ei-
ther side of every turnstile. Our proof thatL is the free
category goes via the fragment of Cockett and Seely’s de-
ductive system without initial and final objects (empty sum
and product). Additional motivation for this work came
from the relationship between proof nets and coherence
for monoidal closed categories [Blu93], and the two-sided
proof nets (with units) used to tackle coherence for linearly
(or weakly) distributive categories [BCST96].

Cockett and Seely suggest connections between their de-
ductive system and Blass games [Bla92] (see also [San99]).
Types can be viewed as finite games which lack the usual re-
quirement that play should alternate strictly between player
(product structure) and opponent (coproduct structure). The
concurrent games of Abramsky and Melliès [AM99] (a
strict extension of Blass games, constituting a fully com-
plete model for multiplicative-additive linear logic) go a
step further, dispensing altogether with a global schedule
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between players. The similarity between the two is not sur-
prising; afterall the underlying proof theory of Cockett and
Seely’s deductive system is essentially additive linear logic.
Cockett and Seely remark that sum/product-games, in turn,
relate to protocols for communication channels. There-
fore, the characterisation of the free category presented in
this paper may contribute to a foundation for understanding
channel-based concurrent communication.

Open problems. Following a suggestion of Peter
Selinger, Cockett and Seely [CS01, app. B] sketched a
graphical decision procedure (calledcellular squares) for
the equality of cut-free proofs in their deductive system, in
the special case of binary products and sums. It would be
interesting to consider whether there is a ‘correctness crite-
rion’ for picking out sound cellular squares (i.e., those that
interpret deductions), and to attempt to define a direct com-
position of cellular squares that preserves the criterion.It is
conceivable that the two conditions presented in this paper
for the well-formedness of the binary relations (morphisms)
in L may map accross to yield a soundness criterion for cel-
lular squares.

It would be interesting to make formal, concrete con-
nections between the following: (a) Cockett and Seely’s
remarks that their deductive system [CS01] has a game-
theoretic connection; (b) Santocanale’s game-theoretic
work on meet and join posets with fixed points [San99]; (c)
the concurrent games of Abramsky and Melliès [AM99];
(d) conditions (1) and (2) characterising the binary relations
that constitute the morphisms of the category of linkingsL
presented in this paper (section 3).

Work in progress aims to extend the approach presented
here to units (i.e., initial and final objects), and to an arbi-
trary base category (rather than a set of atoms,i.e., discrete
category). The former, if at all feasible, appears to be quite
involved. This is evidenced by the fact that, when empty
products and sums are present, there is no obvious conflu-
ent and terminating rewrite system for the cut-free proofs
(or proof terms) of Cockett and Seely’s deductive system.1

If such a rewrite system can be found, it might provide use-
ful clues towards extending the approach presented in this
paper to the initial and final objects, yielding a canonical
graphical syntax for finite products and sums.

1Following a suggestion of Santocanale, the term equivalences of
[CS01] can be oriented to give normal forms in the non-nullary case [CS01,
app. A]. Unfortunately, this orientation is ill-defined when the empty prod-
uct (final object) is present: the rewrite(pk(fi))i∈I =⇒ pk((fi)i∈I )
(the orientation given to conversion (10) of [CS01]) fails whenI is empty,
sincek is undetermined. For example, in terms of proofs, this rewrite can-
not be applied toX0×X1`1

tuple , since the right side pattern-matches two

proofs, namely
Xk`1

tuple

X0×X1`1
projection for k = 0 andk = 1.

2 Notation for binary relations

We writeRel for the category of sets and binary relations,
and writeR : U 9 V if R is a morphism fromU to V ,
i.e., a subsetR ⊆ U × V . We denote the composite of
R : U 9 V andS : V 9 W by R; S : U 9 W . We write∐

i∈I Xi for biproduct inRel (simultaneously product and
sum), which acts as disjoint union on objects (sets).

3 The categoryL of linkings

Fix a setA = {A1, A2, . . .} of atoms. An object ofL is a
formula generated from the atoms ofL by non-emtpy finite
product

∏
i∈I Xi and non-empty sum

∑
i∈I Xi. We shall

refer to these objects simply asformulas. We useX0 × X1

as shorthand for
∏

i∈{0,1} Xi, andX0 + X1 as shorthand
for

∑
i∈{0,1} Xi.

We identify a formulaX with the corresponding labelled
tree,viz., with vertices labelled with

∏
,
∑

, and atoms, and
with edges labelled with indices (i.e., elements of the index-
ing sets occurring inX). For example:
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By a leaf of a formulaX we mean an occurrence of an
atom inX , literally a leaf ofX whenX is viewed as a tree.
The label of a leafx is its atom, and is denoted̂x ∈ A.
If the vertexx is a child ofy (so y is necessarily a

∏
- or∑

-occurrence), then the subtree rooted atx (i.e., x together
with its descendents) is anargument of y.

A
∏

-strategy of a formulaX is any result of deleting all
but one argument of every

∏
in X . Thus every surviving∏

of X becomes unary, and every surviving
∑

retains each
of its arguments. For example, here is one of the 8 possible∏

-strategies of the formula depicted above:
P

����
HHHH

Q

B

l

i

P

j

�� @@
E

q

Q

r

��
F

s

(We emphasise that we are only interested in end results,
not choices made along the way. For example, deletion of
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C orD becomes irrelevant, given that we did not retain their
parentΠ.) Define a

∑
-strategy of X analogously, as any

result of deleting all but one argument of every
∑

. Thus ev-
ery surviving

∑
of X becomes unary, and every surviving∏

retains each of its arguments.
Henceforth we identify a strategy ofX with the corre-

sponding set of leaves. The following is immediate:

LEMMA 1 Any
∏

-strategy and
∑

-strategy ofX intersect
in a single leaf ofX . Conversely, every leaf ofX is the
intersection of some

∏
-strategy and

∑
-strategy ofX .

Write |X | for the set of leaves of a formulaX . A morphism
X → Y in L is a linking from X to Y , namely, a binary
relationR ⊆ |X | × |Y | between the leaves ofX and the
leaves ofY such that:

(1) R respects leaf labelling:〈x, y〉 ∈ R only if x̂ = ŷ ∈
A.

(2) for every
∑

-strategyX ′ of X and
∏

-strategyY ′ of Y ,
R contains exactly one edge betweenX ′ andY ′ (i.e.,
R ∩ (X ′ × Y ′) is a singleton).

The edges (elements) of a linkingR are calledlinks. Note
that, as distinct from Kelly-MacLane graphs for symmet-
ric monoidal closed categories [KM71], and proof nets for
multiplicative linear logic [Gir87], we do not demand that
the links be disjoint.

Composition of linkings inL is simply the usual com-
position of binary relations. Identities are also inherited
from Rel. For example, the following diagram illustrates
the compositionk0; tw = k1, for k0, tw andk1 as shown in
section 1 (Introduction):

A + A → A + A → A + A

↓

A + A −−−−−−−→ A + A

To prove that composition is well-defined,i.e., that compo-
sition preserves conditions (1) and (2) in the definition of
linking, we shall use the following lemma.

LEMMA 2 Let X =
∏

i∈I Xi, and letL be a set of leaves
of X such that for all

∑
-strategiesX ′ of X , L∩X ′ is a sin-

gleton. ThenL is contained entirely within one of theXi.
The dual result also holds,i.e., with

∏
and

∑
interchanged.

Proof. Supposexk ∈ Xk ∩L andxl ∈ Xl ∩L for k, l ∈ I
andk 6= l. For i = k, l choose a

∑
-strategyX ′

i for Xi

with xi ∈ X ′
i, and for remainingi ∈ I choose an arbitrary∑

-strategyX ′
i of Xi. Then

⋃
i∈I Xi is a

∑
-strategy ofX

which intersectsL in two leaves (xk andxl), a contradic-
tion. �

PROPOSITION1 Composition and identities are well-
defined inL. In other words, the composite of any two
linkings is a linking, and the identity binary relation on the
leaves of a formula is a linking.

Proof. Identities clearly satisfy condition (1), and (2) fol-
lows from Lemma 1. Given linkingsR : X → Y and
S : Y → Z, the fact that the composite binary relation
R; S satisfies condition (1) is immediate. Condition (2)
holds by induction on the number of vertices inY : the base
case is trivial, and the inductive step follows directly from
Lemma 2. �

REMARK 1 Since the morphisms ofL are binary relations
between leaves, with composition and identities inherited
from Rel, the map|− | (taking a formula to its set of leaves)
extends trivially to a forgetful functorL → Rel.

REMARK 2 The full subcategory ofL whose objects are of
the form

∑
i∈I A for a fixed atomA is isomorphic to the

category of non-empty finite sets. Substituting
∏

for
∑

,
we obtain the opposite category as a full subcategory ofL.

Non-empty finite products and sums. Recall that we
identify a strategyX ′ of X with a subsetX ′ ⊆ |X | of the
set of leaves ofX . The following is immediate:

LEMMA 3 Every
∏

-strategy of
∑

i∈I Xi is a union⋃
i∈I X ′

i of a
∏

-strategiesX ′
i of X . Dually, every

∑
-

strategy of
∏

i∈I Xi is a union
⋃

i∈I X ′
i of a

∑
-strategies

X ′
i of X .

PROPOSITION2 L has all non-empty finite products and
non-empty finite coproducts.

Proof. Define product and sum in the obvious way on for-
mulas,i.e., 〈Xi〉i∈I 7→

∏
i∈I Xi and

∑
i∈I Xi respectively.

Projections and injections
ink : Xk →

∑
i∈I Xi (injections)

prk :
∏

i∈I Xi → Xk (projections)
are inherited fromRel, i.e., the underlying binary relations
on leaves are the corresponding canonical morphisms in
Rel:

ink : |Xk| 9

∐
i∈I |Xi| (injections)

prk :
∐

i∈I |Xi| 9 |Xk| (projections)
(using the fact that|

∏
i∈I Xi| = |

∑
i∈I Xi| =

∐
i∈I |Xi|).

These canonical binary relations clearly satisfy conditions
(1) and (2) of the definition of linking. The natural isomor-
phims

hom(Z,
∏

i∈I Xi) ∼=
∏

i∈I hom(Z, Xi)

hom(
∑

i∈I Xi, Z) ∼=
∏

i∈I hom(Xi, Z)

follow from condition (2) of linking, using Lemma 3. �

REMARK 3 The forgetful functor| − | : L → Rel

preserves binary products and sums, since|
∏

i∈I Xi| =
|
∑

i∈I Xi| =
∐

i∈I |Xi|.
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Softness. Recall that a category with products
∏

and
sums

∑
is soft [Joy95] if every morphism

∏
i∈I Xi →∑

j∈J Yj factors either through a projection from one of the
Xi, or through an injection into one of theYj . The softness
of L will follow directly from the following simple combi-
natorial lemma:

LEMMA 4 Let r be a binary relationr ⊆ U × V between
setsU andV each with at least two elements, and suppose
everyu ∈ U andv ∈ V is in some edge ofr. Thenr has a
pair of disjoint edges,i.e., there exist distinctu, u′ ∈ U and
distinctv, v′ ∈ V such that〈u, v〉 ∈ r and〈u′, v′〉 ∈ r.

PROPOSITION3 L is soft.

Proof. SupposeR :
∏

i∈I Xi →
∑

j∈J Yj was not soft.
Then eachXi and Yj has an atom in a link ofR. By
Lemma 4,R contains disjoint edges〈x, y〉 and〈x′, y′〉 with
x andx′ in distinctXi, sayXk andXk′ , andy, y′ in distinct
Yj , sayYl andYl′ . Pick

∑
-strategies ofXk andXk′ con-

tainingx andx′, and
∏

-strategies ofYl andYl′ containing
y andy′. Pick arbitrary

∑
-strategies and

∏
-strategies for

the remainingXi andYj , respectively. By Lemma 3, the
unions yield a

∑
-strategy of

∏
i∈I Xi and a

∏
-strategy of∑

j∈J Yj . By construction, there are two edges ofR be-
tween these strategies (namely〈x0, y0〉 and〈x1, y1〉), con-
tradicting condition (2) of linking. �

4 Isomorphism with free category

In this section we prove our main theorem (Theorem 1),
thatL is isomorphic to the free category generated by non-
empty finite product and sum from its atoms.

Throughout this section,L(A) denotes the category of
linkings over a setA of atoms, andF(A) denotes the cat-
egory generated freely fromA by non-empty finite product
and non-empty finite coproduct. In section 4.1, we define
D(A) to be Cockett and Seely’s deductive system for finite
products and sums [CS01], restricted to the non-empty case.
This category is isomorphic to the free categoryF(A). Sec-
tion 4.2 defines a functorF : D(A) → L(A) witnessing an
isomorphism betweenD(A) andL(A). Therefore, by tran-
sitivity (L(A) ∼= D(A) ∼= F(A)), we obtain our main the-
orem (Theorem 1):L(A) is isomorphic to the free category
F(A).

4.1 Cockett and Seely’s deductive system

We writeD(A) for Cockett and Seely’s deductive system
for finite sums and products [CS01], restricted to the non-
empty case (i.e., without initial and final object), and gener-
ated from the setA of atoms. The underlying sequent calcu-
lus is similar to additive linear logic [Gir87], without nega-

tion, and with exactly one formula either side of every turn-
stile. The inference rules are shown in Figure 1. Through-
out the paper, we adopt the convention thatA, B, . . . range
over atoms andX, Y, . . . range over formulas.

An object ofD(A) is a formula generated from the atoms
of A by non-empty finite product

∏
i∈I Xi and non-empty

finite sum
∑

i∈I Xi (so the objects ofD(A), F(A) and
L(A) are the same). A morphismX → Y is an equivalence
class of cut-free proofs ofX ` Y , modulo conversions (9)–
(12) shown in Figure 2 (more precisely, the symmetric and
transitive closure of (9)–(12)). (We follow the enumeration
given in [CS01].) We write[π] for the equivalence class of
the cut-free proofπ.

Composition is by cut elimination, using conversions
(1)–(8) shown Figure 3. More precisely, the composite of
[π] : X → Y and[π′] : Y → Z is the equivalence class of
the proof resulting from takingπ andπ′ as hypotheses of a
cut rule, yielding (say) the proofπ∗, and then eliminating
the cuts fromπ∗ using conversions (1)–(8) of Figure 3.

The identityidX : X → X is defined by induction on the
number of connectives (

∏
or

∑
) in X , as follows. Given

an atomA, let 1A be the derivation consisting of the iden-
tity rule with conclusionA ` A. The identity derivation
1Πi∈IXi

is given by:






1Xi

Xi ` Xi ∏
l∏

j∈I Xj ` Xi





i∈I

∏
r∏

i∈I Xi `
∏

i∈I Xi

The identity1Σi∈IXi
is obtained dually,i.e., exchanging

left and right around the turnstile, and exchanging
∏

and∑
. Define the identity morphismidX : X → X to be the

equivalence class[1X ] of 1X .

PROPOSITION4 The free categoryF(A) is isomorphic to
the deductive systemD(A).

Proof. Proposition 4.6 of [CS01], restricted to the non-
empty case, and to a generating set (discrete category).�

4.2 The functor

We define a functorF : D(A) → L(A) as follows.
On objects, defineF to be the identity. Given a cut-free
derivationπ, defineF (π) by induction on the depth of the
derivation, as follows. For the base case,π is an iden-
tity rule A ` A

id

; defineF (π) to be the identity linking
idA : A → A. The four cases of the inductive step (cor-
responding to the last rule ofπ) are shown in Figure 4. To
aid clarity, this presentation leaves various canonical maps
of Rel implicit; they are shown explicitly in Figure 5.
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id
A ` A

{Xi ` Y }i∈I ∑
l∑

i∈I Xi ` Y

Xk ` Y ∏
l (k ∈ I)∏

i∈I Xi ` Y

X ` Y Y ` Z
cut

X ` Z

{Y ` Xi}i∈I ∏
r

Y `
∏

i∈I Xi

Y ` Xk ∑
r (k ∈ I)

Y `
∑

i∈I Xi

Figure 1. Inference rules.

{
πi

Xi ` Yk

}

i∈I
∑

l∑
i∈I Xi ` Yk ∑

r∑
i∈I Xi `

∑
j∈J Yj

(9)

−→






πi

Xi ` Yk ∑
r

Xi `
∑

j∈J Yj





i∈I

∑
l∑

i∈I Xi `
∑

j∈J Yj






πj

Xk ` Yj ∏
l∏

i∈I Xi ` Yj





j∈J ∏

r∏
i∈I Xi `

∏
j∈J Yj

(10)

−→

{
πj

Xk ` Yj

}

j∈J ∏
r

Xk `
∏

j∈J Yj ∏
l∏

i∈I Xi `
∏

j∈J Yj

π

Xk ` Ym ∏
l∏

i∈I Xi ` Ym ∑
r∏

i∈I Xi `
∑

j∈J Yj

(11)

−→

π

Xk ` Ym ∑
r

Xk `
∑

j∈J Yj ∏
l∏

i∈I Xi `
∑

j∈J Yj






{
πij

Xi ` Yj

}

i∈I
∑

l∑
i∈I Xi ` Yj





j∈J ∏

r∑
i∈I Xi `

∏
j∈J Yj

(12)

−→






{
πij

Xi ` Yj

}

j∈J ∏
r

Xi `
∏

j∈J Yj





i∈I

∑
l∑

i∈I Xi `
∏

j∈J Yj

Figure 2. Conversions of cut-free derivations.
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π

X ` A

id

A ` A

cut

X ` A

(1)
−→

π

X ` A

id

A ` A

π

A ` X

cut

A ` X

(2)
−→

(dual to (1))

π

A ` X

π

X ` Y

π
′

Y ` Zk
P

r

Y `
P

i∈I
Zi

cut

X `
P

i∈I
Zi

(3)
−→

π

X ` Y

π
′

Y ` Zk

cut

X ` Zk
P

r

X `
P

i∈I
Zi

π

Zk ` Y
Q

l
Q

i∈I
Zi ` Y

π
′

Y ` X

cut
Q

i∈I
Zi ` X

(4)
−→

(dual to (3))

π

Zk ` Y

π
′

Y ` X

cut

Zk ` X
Q

l
Q

i∈I
Zi ` X

π

X ` Y

(

πi

Y ` Zi

)

i∈I
Q

r

Y `
Q

i∈I
Zi

cut

X `
Q

i∈I
Zi

(5)
−→

8

>

<

>

:

π

X ` Y

πi

Y ` Zi

cut

X ` Zi

9

>

=

>

;

i∈I
Q

r

X `
Q

i∈I
Zi

(

πi

Zi ` Y

)

i∈I
P

l
P

i∈I
Zi ` Y

π

Y ` X

cut
P

i∈I
Zi ` X

(6)
−→

(dual to (5))

8

>

<

>

:

πi

Zi ` Y

π

Y ` X

cut

Zi ` X

9

>

=

>

;

i∈I
P

l
P

i∈I
Zi ` X

(

πi

X ` Yi

)

i∈I
Q

r

X `
Q

i∈I
Yi

π

Yk ` Z
Q

l
Q

i∈I
Yi ` Z

cut

X ` Z

(7)
−→

πk

X ` Yk

π

Yk ` Z

cut

X ` Z

π

Z ` Yk
P

r

Z `
P

i∈I
Yi

(

πi

Yi ` X

)

i∈I
P

l
P

i∈I
Yi ` X

cut

Z ` X

(8)
−→

(dual to (7))

π

Z ` Yk

πk

Yk ` X

cut

Z ` X

Figure 3. Cut elimination rewrites.
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{Ri : Xi → Y }i∈I ∑
l⋃

i∈I Ri :
∑

i∈I Xi → Y

{Ri : Y → Xi}i∈I ∏
r⋃

i∈I Ri : Y →
∏

i∈I Xi

R : Xk → Y ∏
l

R :
∏

i∈I Xi → Y

R : Y → Xk ∑
r

R : Y →
∑

i∈I Xk

Figure 4. The inductive step for the definition
of F : D(A) → L(A), with canonical maps in
Rel left implicit.

4.2.1 Well-definedness

ForF to be well-defined on morphisms, we must verify that
the binary relation below each rule of Figure 4 is a linking
whenever the hypotheses relation(s) are linkings, and that
the definition ofF respects equivalence of cut-free deriva-
tions. The former follows from the fact that a

∑
-strategy

of
∑

i∈I Xi corresponds to a choice ofk ∈ I together with
a

∑
-strategy ofXk, and a

∏
-strategy of

∑
i∈I Xi is the

union
⋃

i∈I X ′
i of

∏
-strategiesX ′

i of Xi (and dually, with∏
and

∑
exchanged).

The verification of the latter is equally simple: either side
of each of the conversions (9)–(12) of Figure 2 results in
the same linking. For example, both sides of conversion (9)
result in

⋃
i∈I F (πi) :

∑
i∈I Xi →

∑
j∈J Yj .

4.2.2 Functoriality

We must verify thatF respects identities and composition.
The former follows by induction, since the identities of
D(A) are defined inductively (section 4.1). To verify the
latter, we must show that for all cut-free derivationsπ1 of
X ` Y andπ2 of Y ` Z, we have

F (π1); F (π2) = F
(
elim(cut(π1, π2))

)

wherecut(π1, π2) is the derivation obtained by placingπ1

andπ2 above acut-rule, andelim(π) is the result of elmi-
nating the cuts ofπ using conversions (1)–(8) of Figure 3.

We proceed by induction onsize(π1) × size(π2), where
size(π) is the number of non-id rules inπ. (Thussize(π) =
0 iff π consists of a singleid-rule.) In the base case, one of
π1 or π2 is an identity rule, soelim(cut(π1, π2)) is equal to
the other. The result follows sinceF preserves identities.

prk : |
∏

i∈I Xi| = |
∑

i∈I Xi| =
∐

i∈I |Xi| 9 |Xk|

ink : |Xk| 9

∐
i∈I |Xi| = |

∏
i∈I Xi| = |

∑
i∈I Xi|

{Ri : Xi → Y }i∈I ∑
l⋃

i∈I(pri; Ri) :
∑

i∈I Xi → Y

{Ri : Y → Xi}i∈I ∏
r⋃

i∈I(Ri; ini) : Y →
∏

i∈I Xi

R : Xk → Y ∏
l

prk; R :
∏

i∈I Xi → Y

R : Y → Xk ∑
r

R; ink : Y →
∑

i∈I Xi

Figure 5. The inductive step for the definition
of F : D(A) → L(A), with canonical maps in
Rel made explicit.

For the inductive step, we must verify the translations of
conversions (3)–(8) of Figure 3 using the definition ofF
given in Figure 5. (Conversions (1) and (2) correspond to
the base case, already dealt with above.) These follow from
the equalities between binary relations shown in Table 1:
takeR = F (π), R′ = F (π′) andRi = F (πi), whereπ, π′

andπi are the cut-free proofs parameterising (3)–(8). (To
aid pattern-matching, we have labelled the equation corre-
sponding to conversion(n) by n.) Equalitites 3 and 4 are
instances of the associativity of the composition of binary
relations; equalities 5–8 hold by unfolding the definitions
of injections and projections inRel.

4.2.3 Fullness

The fullness ofF is essentially a corollary of the softness
of L(A) (Proposition 3).

Given a linkingR : X → Y we must show that there
exists a cut-free proofπ such thatF (π) = R. We proceed
by induction on the sum of the number of connectives (

∏

or
∑

) in X and the number of connectives inY . The base
case (0 connectives) isR = idA : A → A for some atom
A, which is the image of the identity rule with atomA. For
the induction step:

1. If X =
∑

i∈I Xi, then, by condition (2) in the defi-
nition of linking, and the nature of a

∑
-strategy of a

sum
∑

i∈I Xi, R is the union overi ∈ I of linkings
Ri : Xi → Y . By induction hypothesis,Ri = F (πi)
for cut-free proofsπi. Now R = F (π) for π the proof

7



R; (R′; ink)
3
= (R; R′); ink

(prk; R); R′ 4
= prk; (R; R′)

R;
(⋃

i∈I Ri; ini

) 5
=

⋃
i∈I

(
(R; Ri); ini

)

( ⋃
i∈I pri; Ri

)
; R

6
=

⋃
i∈I

(
pri; (Ri; R)

)

(⋃
i∈I Ri; ini

)
; (prk; R)

7
= Rk; R

(R; ink);
( ⋃

i∈I pri; Ri

) 8
= R; Rk

Table 1. Equations on binary relations corre-
sponding to conversions (3)–(8).

consisting of a
∑

l-rule with hypotheses{πi}i∈I .

2. If Y =
∏

j∈J Yj , thenR = F (π) for a proofπ ending
in a

∏
r-rule, by an argument similar to 1.

3. If X is an atom andY =
∑

j∈J Yj , then by condition
(2) of linking and the nature of

∏
-strategies of a sum∑

j∈J Yj , R intersects exactly one of theYi, sayYk.
ThusR = R′; ink for someR′ : X → Yk. By induc-
tion hypothesisR′ = F (π′), henceR = F (π) for π
the extension ofπ′ with a

∑
r-rule.

4. If Y is an atom andX =
∏

i∈I Xi, thenR = F (π) for
a proofπ ending in a

∏
l-rule, by an argument similar

to 3.

5. OtherwiseX =
∏

i∈I Xi andY =
∑

j∈J Yj . By soft-
ness (Proposition 3),R factorises either asR = R′; ink

or R = prm; R′. In the former case,R = F (π) for a
proof π ending in a

∑
r-rule (by reasoning as in 3),

and in the latter case,R = F (π) for a proofπ ending
in a

∏
l-rule (by reasoning as in 4).

4.2.4 Faithfulness

To show thatF is faithful, we prove that ifπ andπ′ are
distinct normal forms with respect to the cut-free rewrites
(9)–(12) in Figure 2, then the linkingsF (π) andF (π′) are
distinct.

Let π and π′ be distinct normal cut-free proofs of the
sequentX ` Y . We argue thatF (π) 6= F (π′) by induction
on the sum of the number of connectives (

∏
or

∑
) in X

and the number of connectives inY .

Base case. X andY are atoms. NecessarilyX = Y
andπ andπ′ are uniquely determined as the sameid-rule,
contradicting the fact thatπ andπ′ are distinct.

Induction step. Assumeπ and π′ finish with distinct
rules, otherwise we can appeal immediately to the induc-
tion hypothesis with the branches ofπ andπ′.

1. Case: one ofX or Y is an atom. Thenπ andπ′ nec-
essarily finish with the same rule, contradicting our as-
sumption.

2. Case:X =
∏

i∈I Xi andY =
∏

j∈J Yj . Thusπ and
π′ each finish with one of the following rules:

{∏
i∈I Xi ` Yj

}
j∈J ∏

r∏
i∈I Xi `

∏
j∈J Yj

Xk `
∏

j∈J Yj ∏
l∏

i∈I Xi `
∏

j∈J Yj

By our earlier assumption,π andπ′ end with distinct
rules. If the final rules are both

∏
l, with k = m and

k = m′ respectively (and necessarilym 6= m′), then
F (π) andF (π′) are distinct: all links of the former
intersectXm, and all links of the latter intersectXm′ ,
so to be equal,F (π) andF (π′) must both be empty.
However, every linking is non-empty (by condition (2)
of the definition of linking), so this is a contradiction.

Thus one ofπ andπ′ ends with
∏

r, and the other
with

∏
l. Without loss of generality,π ends with∏

r and π′ ends with
∏

l. For a contradiction, as-
sume the linkingsF (π) andF (π′) are equal. Letρ
be (one of) the highest occurrences inπ (measured in
terms of the number of rules belowρ) of a

∏
l-rule

introducing
∏

i∈I Xi. Sinceπ′ ends with
∏

l, each
of its links intersectXk, thusρ in π has hypothesis
Xk ` Z and conclusion

∏
i∈I Xi ` Z, for some sub-

formulaZ of Y . Let ρ′ be the rule immediately fol-
lowing ρ, necessarily introducing a connective on the
right, with Z as one of its arguments. This connective
must be a

∏
, andρ′ an occurrence of

∏
r, otherwise

ρ and ρ′ together would constitute a redex for con-
version (11) of Figure 2, contradicting the normality
of π. Thusρ′ has hypothesis

{∏
i∈I Xi ` Zm

}
m∈M

and conclusion
∏

i∈I Xi `
∏

m∈M Zm, andZ = Zq

for someq ∈ M . Sinceρ is highest, each proof
πm of

∏
i∈I Xi ` Zm ends with an instance of

∏
l,

with hypothesisXk(m) ` Zm. (There must be a rule
somewhere inπm introducing

∏
i∈I Xi; it cannot be

any higher thanρ, sinceρ is highest.) Furthermore,
k(m) = k for all m, since it isXk that is in the hy-
pothesis of the last rule ofπ′ (hence this is the only
one of theXi which intersects with a link). Thus inπ

8



we have:





πm
...

Xk ` Zm ∏
l∏

i∈I Xi ` Zm





m∈M

∏
r (= ρ′)∏

i∈I Xi `
∏

m∈M Zm

for
∏

m∈M Zm a subformula ofY . This is a redex of
conversion (10), contradicting the normality ofπ.

3. Case:X =
∑

i∈I Xi andY =
∑

j∈J Yj . Dual to the
previous case: exchange left/right, and

∏
/

∑
.

4. Case:X =
∏

i∈I Xi andY =
∑

j∈J Yj . Thusπ and
π′ each finish with one of the following rules:

∏
i∈I Xi ` Ym ∑

r∏
i∈I Xi `

∑
j∈J Yj

Xk `
∑

j∈J Yj ∏
l∏

i∈I Xi `
∑

j∈J Yj

By assumption,π andπ′ end with distinct rules. If the
final rules are both

∏
l, we obtain a contradiction (as

in case 2). Similarly, both
∑

r leads to a contradic-
tion. Therefore, without loss of generality,π finishes
with

∑
r andπ′ finishes with

∏
l. Now the reasoning

of case 2 applies directly (sinceπ′ finishes with
∏

l),
yielding a contradiction ifF (π) = F (π′).

5. Case:X =
∑

i∈I Xi andY =
∏

j∈J Yj . Thusπ and
π′ each finish with one of the following rules:

{∑
i∈I Xi ` Yj

}
j∈J ∏

r∑
i∈I Xi `

∏
j∈J Yj

{
Xi `

∏
j∈J Yj

}

i∈I
∑

l∑
i∈I Xi `

∏
j∈J Yj

By assumption,π and π′ end with distinct rules, so
without loss of generality,π ends with

∏
r, andπ′

ends with
∑

l.

For a contradiction, assume the linkingsF (π) and
F (π′) are equal. Letρ be (one of) the highest rules
in π (measured in terms of the number of proof rules
below it) introducing

∑
i∈I Xi (soρ is an instance of∑

l), say with conclusion
∑

i∈I Xi ` Z. Let ρ′ be
the rule immediately followingρ. If ρ′ is an instance
of

∑
r, thenρ andρ′ together form a redex for con-

version (9) of Figure 2, contradicting the normality of
π. Henceρ′ must be an instance of

∏
r, introducing∏

m∈M Zm, and withZ one of theZm.

Since ρ is highest, each proofπm of
∑

i∈I Xi `
Zm ends with an instance of

∑
l, with hypothe-

sis {Xi ` Zm}i∈I and conclusion
∑

i∈I Xi ` Zm.
(There must be a rule somewhere inπm introducing∑

i∈I Xi; it cannot be any higher thanρ, sinceρ is
highest.) Thus inπ we have:






{
πim

Xi ` Zm

}

i∈I
∑

l∑
i∈I Xi ` Zm





m∈M

∏
r (= ρ′)∑

i∈I Xi `
∏

m∈M Zm

for a subformula
∏

m∈M Zm of Y , and where theπim,
as i ranges overI, together with the following

∑
l-

rule, constituteπm. This is a redex of conversion (12),
contradicting the normality ofπ.

4.2.5 Preservation of non-empty finite products, sums

The fact thatF : D(A) → L(A) preserves non-empty finite
products and sums is easily verified, since the objects of
D(A) andL(A) coincide, as do the definitions of

∏
i∈I Xi

and
∑

i∈I Xi on objects.

4.3 Main theorem

THEOREM 1 The categoryL of linkings is isomorphic to
the category generated freely from the atoms oflinkings
by non-empty finite product and non-empty finite sum (co-
product).

Proof. F(A) ∼= D(A) by Proposition 4. In section 4.2
we defined a structure-preserving full and faithful functor
F : D(A) → L(A), which witnesses an isomorphism
D(A) ∼= L(A), sinceF acts trivially on objects. Thus
F(A) ∼= L(A). �

5 Relationship with proof nets

In [Gir96], Girard defines a notion of proof net for
multiplicative-additive linear logic. The definition is some-
what involved, so we do not reproduce it here. We substitute
the standard categorical notation×/+ for Girard’s ........

........
........
...............................................
... /⊕.

To relate the category of linkings to proof nets, we re-
strict products and sums to the binary case. LetX andY
be×/+-formulas over the setA of atoms. Viewing atoms
as literals,X⊥ andY are well-defined formulas of additive
linear logic. LetΘ be a cut-free proof net with conclusions
X⊥ andY . Every axiom link ofΘ determines an edge be-
tween a literal ofX⊥ and a literal ofY , whenceΘ deter-
mines a binary relationR(Θ) ⊂ |X | × |Y | between the
leaves ofX and the leaves ofY . Note that distinct cut-free
proof nets can yield the same binary relation, for example:
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A⊥ A⊥ A A

× +1 +1

A⊥
× A⊥ A + B

p

p
A⊥ A⊥ AA

× +1+1

A⊥
× A⊥ A + B

p

p

both yield the following binary relation between leaves:

A + A A + B

DefineΘ to betight if every formula occurrenceU × V of
Θ has exactly one×-link immediately above it, and every
formula occurrenceU +V has exactly one+1-link and one
+2-link immediately above it.

PROPOSITION5 Let X andY be×/+-formulas over the
atoms ofL. MorphismsX → Y in L are in bijection with
tight, cut-free Girard proof nets with conclusionsX⊥ and
Y .

Proof. First we show thatR(Θ) is a linking. Condition
(1) of linking is trivial. Every valuationϕ of the eigen-
variables ofΘ determines a+-strategyX ′(ϕ) of X and a
×-strategyY ′(ϕ) of Y , and every pair〈X ′, Y ′〉 consisting
of a +-strategy ofX and a×-strategy ofY arises in this
manner.

We must show that, given any+-strategyX ′ of X and
×-strategyY ′ of Y , R(Θ) contains a unique edge between
X ′ andY ′. By the previous paragraph, there exists a val-
uationϕ such thatX ′ = X ′(ϕ) andY ′ = Y ′(ϕ). Since
the sliceϕ(Θ) gives rise to an edgeeϕ of R(Θ) between
X ′(ϕ) andY ′(ϕ), it remains to verify that there is at most
one edge inR(Θ) betweenX ′ andY ′. For a contradiction,
suppose there are distinct edgese, e′ ∈ R(Θ) betweenX ′

andY ′. Without loss of generality,e = eϕ. Let ϕ′ be a val-
uation such thate′ = eϕ′ . Let e = 〈x, y〉, let e′ = 〈x′, y′〉,
let x∗ be the unique vertex ofX suchx andx′ are leaves of
distinct arguments ofx∗, and lety∗ be the unique vertex of
Y such thaty andy′ are leaves of distinct arguments ofy∗.
Sincee ande′ are both between the strategiesX ′ andY ′,
neither ofx∗ andy∗ is a×.

Let a anda′ be the axiom links inΘ that gave rise toe
ande′, respectively. Let̃x andỹ be the vertices occurrences
of Θ corresponding tox∗ andy∗. Recall from [AM99] that
sinceΘ is a proof net, ifpL.w is any weight occurring in
Θ, thenw ⊂ w(L), for any×-link in Θ. Therefore, since
neitherx̃ nor ỹ is a×-link, the weightw(a) of a does not
depend on any of the×’s on whichϕ andϕ′ differ. Hencea
is present not only inϕ(Θ), but alsoϕ′(Θ), a contradiction
(the weight of one of̃x or ỹ fails to be the disjoint sum of
the weights of its children). This completes the proof that
R(Θ) is a linking.

It remains to show thatR(−) is injective and surjective.
Injectivity follows from the tightness assumption. Surjec-

tivity follows from the fact that every morphismR deter-
mines a tight proof netΘ(R). By tightness, the link and
formula-occurrence structure is fully determined byX and
Y , with the literal occurrences ofΘ(R) being in bijection
with the leaves involved in edges ofR. The weights of
Θ(R) are determined by specifying weights on axiom links
a: identifying a valuation with a monomial, the weight ofa
is the union of the valuationsϕ such that the edge ofR cor-
responding toa is between the strategies induced byϕ. It is
easy to check that each of these weights will be a monomial,
and the remaining requirements forΘ(R) to be a proof net.
It is routine to verify thatΘ(−) is inverse toR(−). �

The present author, with Rob van Glabbeek collaborating as
second author, recently introduced an alternative notion of
proof net for multiplicative-additive linear logic [HG02].

PROPOSITION6 Let X andY be×/+-formulas over the
atoms ofL. MorphismsX → Y in L are in bijection with
cut-free proof nets, as defined in [HG02], on the sequent
` X⊥, Y .

The proof is far less involved than that of Proposition 5,
since

∏
- and

∑
-strategies are directly related to the notion

of resolution defined in [HG02].

Acknowledgement Thanks to Vaughan Pratt for insight-
ful feedback.
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