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Abstract every type having at least one such semantic proof corre-
sponds to a theorem when types are read as propositions.
For example whenl and B are type variables ranging over
kindred objects such as sets, or vector spaces, the projection
from A x B to A, a natural transformation in the respective
category of those objects, can be understood as witnessing
the validity of the propositio®d A B O A. The correspon-
dences between conjunctighA B and productd x B, and
implication A > B and the function spacd — B, are
prominent features of the Curry-Howard isomorphism.
Viewing an objectA as consisting of all admissible ev-
idence for the corresponding propositignbrings out the
constructive quality of transformations-as-proofs. Our ex-
ample of the projection from x B to A can then be under-
stood as a method for constructing evideac®r A from

We prove full completeness of multiplicative linear logic
(MLL) without MIX under the Chu interpretation. In par-
ticular we show that the cut-free proofs of MLL theorems
are in a natural bijection with the binary logical transfor-
mations of the corresponding operations on the category of
Chu spaces on a two-Ietter alphabet.

This is the online version of the paper of the same title
appearing in the LICS’99 proceedings.

1 Introduction

Ordinary completeness of an axiom system reconciles™", ; :
the syntax and semantics &uth by promising a finite  €vidence(a, b) for A A B by discarding. _
syntactic justification for every semantically valid theorem. ~ One application for extending completeness to proofs is
Full completeness analogously reconciles the syntax and sel0 Symmetrize better the complementarity of truth and proof
mantics ofproof by promising a finite syntactic derivation PY €quipping each with a reconciled syntax and semantics.
of every semantically sound constructive proof. The term Another is to substitute a calculus tailored to the manipu-
“full” comes from category theory, which provides the ap- Igtion of algebraic strqctures for the }Jsual general-purpose
propriate setting for the interpretation of syntactic proofs first-order calculus, with the goal of improving our under-
by semantic in terms of a full functor from a category of the Standing of human algebraic reasoning. Yet another is to
former (as its morphisms) to a category of the latter. For a €nrich automated theorem proving and program verification
sufficiently abstract notion of syntactic proof one can expect Systems with new techniques complementary to the existing

in addition that the representation functor be faithful.

The conventional semantic justification for theorems,
evolved largely during this century, teuth invariancefor
all value assignmentsf the parameters of the theorem, pos-
sibly subject to given axioms. More recently analogous se-
mantic notions of abstract constructive proof have begun to
appear, in particular natural and dinatural transformations
[LS86, BS96] and related notions such as logical transfor-
mations [P1080], game strategies [AJ94, HO93], and unifor-
mity conditions [Loa94]. The naturality condition expresses
transformational invariancedor all transformationsof the
parameters of the proof, again possibly subject to given ax-
ioms.

The interpretation of natural transformations as con-
structive proofs is suggested by the the Curry-Howard in-
terpretation of types as propositions. This interpretation is
motivated at least in part by the striking phenomenon that

ones.

In this paper we prove full completeness of Multiplica-
tive Linear Logic (MLL) [Gir87] without units in the cat-
egory Chu of Chu spaces over 2 [Bar79]. In more detail,
we exhibit a full functor from the--autonomous category
of cut-free proofs of MLL to thex-autonomous category
of binary logical transformations between MLL formulae
interpreted as operation3b(Chu)” — Ob(Chu), where
Ob(Chu) denotes the objects @hu, andn is the number
of variables in a formula.

Elsewhere [Pra97] we demonstrated full completeness
for dinatural transformations i@hu of binary MLL formu-
las, those in which each variable occurs only once with each
sign. We also demonstrated the impossibility of increas-
ing the number of occurrences of one variable by exhibiting
a spurious dinatural transformation @—A)—o(A—A),
one that corresponded to no linear logic proof.



The contribution of this paper is that strengthening di-
naturality to binary logicality eliminates all spurious trans-

A Chu spaceA is biextensionalif it has no repeated
columns and no repeated rows. Thiextensional collapse

formations. The same strengthening has previously provedof a Chu space is the result of identifying repeated rows and
successful in eliminating spurious transformations in the columns.

category of Sets [Plo80, PR98].

A Chu transform (f,g) : (4,7, X) — (B,s,Y)is a

This correspondence between linear logic and Chu pair of functionsf : A — B andg : Y — X satisfying the
spaces enhances both subjects. On the one hand the coadjointness conditions(f(a),y) = r(a, g(y)) for all a in
respondence furnishes Chu spaces with the attractive andd andy in Y.

well-studied structure of linear logic. On the other, lin-
ear logic benefits from having a model that is of inter-
est both in its own right [Bar79, Pav96, Pra98] and for

foundations of mathematics and semantics of concurrency.

The categoryChuy has as objects Chu spaces over
K and as morphisms Chu transforms composing via
(f,9)(f,9)=(ff.99).

It will sometimes be convenient to writé and X as.A"

Chu spaces provide a linear counterpart to relational struc-and.4~, and Chu transforms as(¢*, ¢~ ). We also adopt

tures as universal mathematical objects, inasmuch as a greghe notatior: - = for (a, ) whenr can be deduced easily
many concrete categories arising in mathematical practicefrom context.

emded fully and concretely i€hu(Set, K') for some K

The dual orperp A+ of A = (A,r, X) is (X,r", A)

[Pra95b]. Moreover the rows and columns of Chu Spaces\yherer“(z,a) = r(a,z). On morphisms f, g) : A — B,
model events and states of concurrent processes with th%efine(f 97)1_ = (g ’f) S BL AL Linéar negation is
same even-handedness that Petri nets grant to their pbc%volutivé: ALt — le and(f,v)*t = (f,0).

and transitions, but with a richer process-algebraic struc-

Thetensor productA ® B of A = (A,r,X) andB =

ture [Pra95a, VGP95]. Given these considerations, the ex-(B s,Y)is (A x B,t,F) whereF ¢ Y4 x X is the set

act match of the logicality semantics of Chu spaces with the

proof structure of multiplicative linear logic simultaneously

confers a degree of logical tractability on Chu spaces while

broadening the applicability of linear logic.

In outline, our proof begins with semisimple (par of ten-
sors) MLL formulasA, and associates a MIX proof net
with every Chu logical transformatiom of A. We pull n
back along the Lafont-Streicher embedding)(of coher-
ence spaces [LS91] to yield a dinatufalthen appeal to
full completeness for MLL with MIX [Tan97] to obtaim
(Section 3.1). Next we show thatdetermines; not only
in theLs image but also beyond, by using logical relations

to tie down its behaviour at an arbitrary Chu space via the
Ls image of its coherence space “simulation” (Section 3.3).

To refute MIX we show that, irChu, information flows

between the connected components of switchings of MIX
proof nets and deduce that there can be only one compo
nent (Section 3.4). We conclude by extending to formu-
las of higher type by induction on a measure of the num-

ber of applications of linear distributivity required to reach
semisimple formulas (Section 4).

2 Definitions
2.1 Chu Spaces

A Chu spaced = (A,r, X) over a setK is a setA of
points a setX of states and a function : A x X — K,
called thematrix of A. For each point the o™ row of A is
r(a,—) : X — K, and for each state the = column of
Aisr(—,z) : A— K.

of all pairs(h, k) of functionsh : A - Y, k: B — X
for which s(b, h(a)) = r(a, k(b)) foralla € Aandb € B,
andt : (A x B) x F — K is given byt((a,b), (h,k)) =
s(b, h(a)) (=r(a, k(b))).

Given(f,g) : A — Band(f’,g") : A’ — B’ define
(fr9)e(f,¢): A A — BB on points by(a,a’) —
(f(a), f'(a’)), and on states byh : B — Y’ k : B’ —
Y)— (¢Wf:A—- X' gkf A — X).

Tensor is commutative and associative up to coherent
isomorphism. A—oB abbreviateg A ® B+)+ and A%
abbreviateg A+ @ B+)*+.

Thetensor unitl is ({*x}, Aak.k, K), a single row con-
sisting of K. Chu transformd — A correspond to points
a € A" of A, since the reverse map on states is fully de-
termined. In this paper we treat the axiomatization of MLL
without units.

These operations mak&huy a x-autonomous category
[Bar79]. Our full completeness result is f&f = 2 =
{0,1}, and we henceforth abbrevigi#u, to Chu.

2.2 Logical Transformations

An MLL formula is an expression built from proposi-
tional variables with symbols for tensor and perp. Such a
formula of up ton variables defines an-ary MLL opera-
tion Ob(Chu)™ — Ob(Chu), whereOb(Chu) is the col-
lection of objects ofChu, by interpreting syntactic tensor
® and perp(—)=* by the object part of their namesakes in
Chu. More formally, given an MLL formuld’ on variables
Py, ..., P, we define the correspondingary MLL oper-
ation F : Ob(Chu)™ — Ob(Chu) atA for (Ay,... , Ay)



by induction as follows. second structuré¢A’, B’, R') of the same similarity type.
We call a pair of functionsf : A — A’, g : B — B’

]E(A) = Ai (FoG)(A) = F(A)RG(A) a two-sorted homomorphismvhen for all aRb we have
PH(A) = A+  (FBG)A) = F(ARG(A) F(a)R'g(b). 0
A transformation7 : I — G between-ary MLL op- We now define how MLL operations act on Chu rela-
erations is a family of morphismsy : F(A) — G(A) tions.

indexed byn-tuplesA of Chu spaces. We take the constant Perp.If R = (R*,R") : A~ B, so thatR* C A" x
operationt : (A4, ... ,A,) — 1to be ann-ary MLL oper- B" andR™ C A~ x B satisfy adjointness, theR* —
ation, wherel is the tensor unitit€hu, allowing us to work (R™,R") : AL < B, also satisfying adjointness. In the
with elements) 4 : 1 — F/(A). special case wherR is a Chu transform frord to B, R+

In their role as interpretations of MLL proofs, there are | pe a Chu transform fronB+ to A-~.
far too many transformations for a full completeness re-  ensor GivenR : A« B andR’ : A’ — B, we define
sult, most transformations being too specific to representp o p/ . A o A <« Bw B by () (a,a’)(R ® R')" (b,¥)
general-purpose constructions. The usual criterion for ajt ,r*p anda’R'™" . and () (f1, f2)(R® R') (g1, 92)
canonical choice of transformationsniaturality, but this is iff (f1, 1) is a two-sorted homon{orphism froR" to ’R/—
unavailable for mixed-variance MLL terms such.dso.A and(f», g») is a two-sorted homomorphism froRi* to R
because there is no obvious extension of such operations Tpig brings us to the main concept for our result, that of
from objects to morphisms. logical transformation.

Dinatural transformations circumvent the mixed- Lety : F — G be a transformation betweenary MLL
variance problem by defining a suitable notion of naturality operations. Then each componept : FA — GA is a
for transformations between “compositesl(loosely under- chy transform, consisting of an adjoint pair of functions
stood as includingl— A) of the functorg—)~, (—) ® () na’ : FA* — GA" andns : GA — FA~ (read
and(—)f?(—), of whlch'our MLL operations are the object FA" as(F(A))"). The usual naturality commuting square
part. Dinaturality suffices to prove full completeness of becomes a pair of squares, one for points, and one for states,

MLL, without units but with the MIXruled ® B + A% B, which we call thepositiveandnegative logicality squares
for coherence spaces [Tan97]. For Chu spaces howevef,o top and bottom faces of the following cube.
dinaturality is not strong enough in that it admits certain

spurious transformations corresponding to no MLL proof .
[Pra97]. A further drawback of dinatural transformations is FB* "B aB*

that they do not always compose. FR*

In this paper we eliminate all spurious transforma- / %
tions with the help of a stronger conditiobjnary logi- FA* GA*
cality, which we shall abbreviate tgicality. We ex- na
tend MLL operations to act not on morphisms but lzin TGB
nary relationsR : A — B, yielding binary relationg'(R) :
F(A)—~ F(B). Unlike functions, binary relations are
closed under converse, which neatly sidesteps the main dif- "FA
ficulty with mixed-variance. ns
Definition 1. A Chu relaton R = (R",R™) : A~ B FR™ rB GB
between Chu spaced = (A4,r,X) andB = (B,s,Y) / /
is a pair of ordinary binary relation®” C A x B and FA CA~ GR
R™ C X xY meeting the following adjointness condi- nA
tion: for all a, b, z,y such thatwR* b andzR™ y, we have
a-x=b-y. O In the cubeAd = (A;,...,A,) € Chu", B =
(Bi,...,B,) € Chu", R =Ry,... R, is atuple of Chu
relationsR; : A; ~ B;, FR" abbreviateg F'(R))", and
rc¢ denotes the matrix af. The positive logicality square,
namely the top face of the cube, consists of a two-sorted
homomorphism betweeA(R)" C F(A)" x F(B)" and
GR)" € G(A)" x G(B)", namely a pair of functions
na" : F(A)" — G(A)" andng™ : F(B)' — G(B)"
Definition 2.  Let (A, B, R) be a two-sorted relational  such thate F'(R) b implies n4(a) G(R)np(b) for all a €
structure with one binary relatioR c A x B. Takea F(A)" andbe F(B)".

"FB TGA

In the special case wheR" is a functionA — B and
R~ afunctionY — X, a Chu relation is exactly a Chu
transform. Hence Chu relations generalize Chu transforms.
We need the following notion both to define the action
of MLL operations on Chu relations, and to define logical
relations.



Definition 3. A transformationn betweenn-ary MLL
operationsF' andG is logical when all logicality squares in
7n are two-sorted homomorphisms. O

A less elementary but faster equivalent definition of both
the action of MLL operations on relations and of logical-
ity takes for these cubes the morphismsGifu(Log,2).
This is the result of applying the Chu construction [Bar79,
App.] to Log, the category of binary relations as objects

and two-sorted homomorphisms between them, with dual-

izer the identity relatiori,. This approach requires a famil-

iarity with the general categorical Chu construction that we

have not presumed here.
2.3 Multiplicative Linear Logic

In this section we define a Hilbert-style axiomatization
of multiplicative linear logic (MLL) convenient for our
main result. The language of MLL consists of finite for-
mulas built up from literals (propositional variablés or
P+1) using connectivetensorA ® B andpar A% B. We
expand the abbreviationisl ® B)* to A+ % B+, (A% B)*
to At ®Bt, AoBto A*8B, At toA,andA® B C
to(A® B)®C.

We axiomatize MLL with one axiom schema together
with rules for associativity, commutativity, and linear or
weak distributivity as follows.

Systems:

T, (LiBL)®...®(LiRL,), n>1
A (A®B)®C F A®(B®O0)

A (ABB)BC + A%B(BBC)

C A®B F B®A

C ABB + BRA

D (ABZB)®C + AR(B®C)

E A®B F A ®B

E ABB + A'RB

RulesE andE assumed - A’ andB + B/, i.e. the
other rules may be applied not only to formulas but to their
subformulas.

The obvious interpretation of this system is proposi-
tional: the axiom is am-fold conjunction of trivial implica-
tions L—oL between literals” or P+, and the rules derive
additional theorems in arbitrary MLL formulad, B, C.
(To eliminate explicit® from RuleD, substituteA* for A
and abbreviate the result {dl—oB) @ C+ A—(B ® C).)

spaces. We then understand the above system as a calculus

for deriving new transformations from old.

The transformation produced by each derivation in this
system is defined as follows by induction on the length of
derivations. We only specify the object part of the MLL
operations since we do not use the morphism part.

Axiom schemal denotes for each then-tuple of iden-
tity transformations, with theé-th beingly, : L, — L;
where L; is the i projection fromChu” to Chu when
P;, composed with perp wheh; = P;-.

Rule A maps each point(a,b),c) of F(Ai,...,Ay)
to point (a, (b,¢)) of G(A4,...,A,) for each point of
F(Ay,...,A,), where F' is the n-ary MLL operation
formed as per the left-hand side fromary MLL opera-
tions A, B,C, and G is similarly formed from the right-
hand side. The adjoint of this map sends each @&iy),
wheref : A - (B C)t, g : BeC — At to
f':AxB — C*,g : C — (A® B)*" each obtained
by transposition (Currying) fronf andg respectively. Rule
A'is the evident dual of this.

Rule C maps each poinfa,b) of F(Ay,...,A,) to
point (b, a) of G(Ay, ... , A,), again forF, G respectively
the left and right hand sides of the rule. And again Rble
is merely the dual of Rul€.

The meat of the system resides in Rule linear
distributivity.  This is a pair consisting of a forward
map sending the pai((f,g),c) to the Chu transform
(Az.(f(x),c), A(h,k).g(k(c))) (uniquely determined by
the types), and a backward map frott @ (B+2C*) to
(At ® BY)®C* sending the paifz, (h, k)) to the Chu
transform(A\(f, g).h(g(x), Ac.(x, k(c)), wheref : X —
B,g:Y — A h:B— Z,k:C — Y throughout. Note
the self-duality of RuleD, which therefore needs no dual
unlike A, C, andE.

Rule E takes as input transformatioas: A — A’ and
7 : B — B’, and combines them by tensoring their outputs
together asr ® 7, defined pointwise on objects @hu™.
Likewise RuleE par’s them together.

P =

Theorem 4 (Soundnesy If 7 is derivable in System S then
7 is logical.

2.4 Linkings, Proof nets, and Danos-Regnier

Definition 5. A linking of a formula having: comple-
mentary pairs of literal occurrences is a functibn 2n —

We pass from the logical to the transformational inter- 2n, where2n = {1,2,...,2n}, with the properties that,
pretation via the Curry-Howard isomorphism, which rein- for 1 < i < 2n, (a) A(A(i¢)) = 4, and (b) the literals oc-
terprets propositions as MLL operations and proofs as pro-curring at positions andA(z), counting literal occurrences
cedures for suitably transforming evidence for those propo-from the left starting from 1, are the same variable with op-
sitions. For example the operatiéh-o P, as the case = 1 posite polarities. We say that the literalsiand A(i) are
of the axiom schem@, has a unique proof, namely the iden- connected by a link, which we view as an edge of an undi-
tity transformationlp : P — P asP ranges over all Chu  rected graph.



A proof structureis a pair(A, A) whereA is a linking Morphisms. A linear map! : U — V is a binary
of formula A. relation between tokens C |U| x |V| such that for all

A proof netis a proof structurg(A,A) arising as a  (u,v),(v',v") € [, uZ v = v, v andv = v =
derivation in System S as follows. At the start of the deriva- « =, «’. Composition is usual relational composition, with
tion the instance of axior is made a proof structure with  the usual identities. A linear map defines a function
the linking A defined forl < i < nasA(2i —1) = 2i, [-]l : U* — V* from cliques to cliques and a reverse
A(2i) = 2i — 1, thereby pairing up the two literals in functioni[—] : V° — U° from anticliques to anticliques,
P3P, All subsequent stepd + B of the proof as-  with
sign the linking of A to B, with the exception of rule€

andC, which transform(A, A) to (A’, A’) by modifying A [al = {velV]:3Juea((u,v)el)}
to reflect the new positions of the literal occurrences in the l[z] = {we|U]: wex((uv)el)}
two interchanged formulas while leaving the rest\otin-

changed. O Either[—]! or [[—] determind completely.

Linear negation:U+ = (|U|, =), the exchange of co-
herence and incoherence. On maps V+ — U+ is given
When alln pairs of P;'s of a theorem are distinct, itis by (v, u) € I+ iff (u,v) €.

easy to see that the theorem has a unique proof net. How-  Tensor product: [U® V| = |U| x [V| with
ever repetitions of’;’s, as in(P—oP) @ (P—oP), raise the (4, v) =y (W) iff u =, u ando = v,
possibility that a conseqence such(#&® P)—o(P ® P) Tensor unit:|I| = {x}, with (necessarily} = . Linear

may have more than one proof net. In this example, two maps7 — X correspond to cliques of .

matchings are possible, which may be understood as cor-

responding to the two theoreni® ® Q)—(P ® Q) and . .

(P®Q)—o(Q® P), in each ofthickQ ii th(en renazned o 2.5.1 The Lafont-Streicher embedding

P. Lafont and Streicher [LS91] exhibit a full and faithful func-
Danos and Regnier [DR89] give the following charac- tor Ls : Coh — Chu. Points are cliques, states are

terization of proof nets. Form the parse-tree of the the- anticliques, and matrix entries are given by intersection:

orem, regarded as an undirected graph, with and ®’s Ls(U) = (U*, n,U°), wherea Mz = |a N z|. (Note that

labeling the root and internal vertices, and literals labeling cligue and an anticlique can intersect in at most one point.)

the leaves. Add one edge for every link, between the lit- Onlinear maps$: U — V, Ls(l) = ([-]i,I[-]) : Ls(U) —

erals linked by the proof structure. Now defineswitch- Ls(V).

ing of a proof structure to be a deletion of one of the two ~ The embedding is weakly tensorial with tensorial

edges immediately under eagh The main theorem of the  strengthryy : LS(U) @ LS(V) — Ls(U ® V) andt : 1 —

Danos-Regnier paper is that for MLL with the MIX rule Ls(I) as follows:

A ® BF AR B, a proof structure is a proof net if and only

if its every switching is acyclic. In the absence of the MIX ™ ¢ (a,b) —axb A A b

rule the criterion becomes that every switching be acyclic 7~ : 2z ([=lz,2[-]) = : 0—0, {x}—1

and also connected, that is, a tree. _ _ _ _ .
7 is an isomorphism becauss is full and faithful. The

2.5 Coherence spaces embedding commutes with involutions(U) " = Ls(U~).

Coherence spaces were the first and indeed motivatingz's'2 RelatingLs(Coh) to Coh
model of linear logic [Gir87]. Define the-autonomous cat-  Both our semisimple full completeness result and the subse-
egory of coherence spaces and linear maps as follows.  quent extension to higher types pivot on our ability to move
Objects. A coherence spac& = (|U|, Z,) is a re- freely betweerChu andCoh. In this section we show that
flexive undirected graph: a sgf| of tokensand a reflexive  any semantic proof (logical elemenf)of a formulaF in
symmetriccoherencerelation =, C |K| x |U| between  Chu can be pulled back to a semantic prgasf F' in Coh.
tokens. Definestrict coherenceby v~ , v iff v Z v and We first exhibit a mag~) taking pointsa of F(LsU) in
u # v, incoherenceby u = v iff ~(u ", v), andstrict Chu to cliquesa of F(U) in Coh, then definey compo-

incoherenceby v =, v iff =(u Z,v). nentwise byju = 7s0.

A clique a in U is a subset: of |[U| made of pairwise The Chu spacesU ® LSV has the same states as
coherent tokens; aanticlique x in U is a subset: of |U| Ls(U ® V'), namely all anticliques of/ @ V. However
made of pairwise incoherent tokens. We wiifé andU° LsU ® LSV does not have all cliqgues &f ® V, only the
for the sets of cliques and anticliquesléfrespectively. “rectangular” ones formed as x b, wherea, b are cliques



of U,V respectively. The parsU®LSV has the dual de-

fect. The value irChu of an arbitrary MLL formulaF’ on

LsCoh will then be missing both cliques and anticliques of
the value ofF' in Coh. However, sufficiently many cliques
and anticliques remain that the latter can be reconstructed

as a certain closure of the former, denaid

wherefo s = (fh53: A=Y, f2 5: B— X)is given by

1 {8} ifaca 5 _JHa} ifped

The definition of¢(z) requires working with tokens;, (.

Let A = (A,r,X) be a biextensional Chu space, in These are available since for a Chu spader, X) to gen-
other words, a Chu space with no repeated rows or columns g ate a coherence spabe both A and X must contairf}

Then we can identify every point of A with the subset

{z € X : r(a,2) = 1} of X, and every state with the sub-
set{a € A : r(a,z) = 1} of A. This allows us to treatl
as a set of subsets of, treatX as a set of subsets df,

and to form unions of points and states, as in the following Uy, . .

construction.

Define a set of sets to lm®nsistentwhen it is non-empty
and pairwise disjoint (stronger than necessary, but conve-

nient and sufficient for our purposes).

Definition 6.  The consistent closuref a biextensional
Chu spaced is the biextensional Chu spage= (4,7, X)
given by

Z:

X =

{{JA: A’ C AandA’is consistenit
{{J X’: X’ € X andX" is consisterit

and for all consistenti’ C A and consistenX’ C X

rJasUxn =

a€A’, zeX’

r(a,x)

For a non-biextensional Chu spagedefine A to be the
consistent closure of the biextensional collapsglof [

Note thatA = A and AL = A. If A =~ LsU for

some coherence spatkethen we say thal generated/.
The following Lemma states that il generate$/ and B
generated/, then A ® B (tensor inChu) generate$/ @ V
(tensor inCoh).

Lemma 7. Let A, B be Chu spaces such thdt= LsU and

B = LsV for coherence spacds$, V. Then
A@B = LsS(U®YV)

Proof. Write A = (A,r, X),B = (B,s,Y), AQB = (Ax
B,t,F), LsU = (U*,n,U°) and LSV = (V*,M,V°).
Thusts(U @ V) =((U® V)*,MN, (U ®V)°). We define a
Chu isomorphism(6,¢) : A® B — LsS(U® V), i.e. an
adjoint pair of isomorphismg : A x B — (U ® V)* and
¢ : (U®V)° — F between sets:

o(Ufab)icr}) = [Jtwxn)

el
o(0) = 0
¢(2) U{fas i (@, 8) € 2}
(forz #0)

(as a row and column of Os respectively) and all singletons
(i.e. tokens) ofU. O

Proposition 8. Let F' be ann-ary MLL formula, U =
., U, for coherence spacds; € Coh, andLsU =

LsUy,...,LsU,. Then

F(LsU) = Ls(FU),
where F' is interpreted on the left as an MLL operation in
Chu, and on the right as an MLL operation @oh.

Proof. Since AL = A" for any Chu spaced, so we can
write A% B in F as(A+ ® B*)*, then apply Lemma 7
recursively. O

For the following definition, note that points éf(LsU ) are
a subset of the points df(LsU).

Definition 9.  Let F' be ann-ary MLL formula, U =
Uy,...,U, for coherence spacds € Coh, andLsU =
Lsty, ... ,LsU,. Given any pointa of F(LsU) in Chu,
define the cliqué& of F(U) in Coh, theclique associated
with a, as the image of under the isomorphism of Propo-
sition 8, acting from left to right. O

3 Semisimple full completeness

An MLL formula is semisimpleif it is of the form
Bi<m( @<, Lij) whereL;; are literals. Our route to
full completeness for semisimple formulae passes through
the categorgCoh of coherence spaces, via the nfap con-
structed above. The primary attraction@bh is the exis-
tence of full completeness results for MLL with MIX, for
example [Tan97], which allow us to assign a MIX proof net
to every logical transformation i€@hu.

In the Lafont-Streicher image @oh in Chu, the func-
tional behaviour of the logical transformation corresponds
to a tuple of lambda calculus terms associated canonically
with its MIX proof net. We argue that the behaviour of the
logical transformation outside theéoh image is also gov-
erned by the lambda terms, by asserting logical relations to
hold between arbitrary Chu spaces and their “simulations”
in the Coh image. Thus every logical transformation is
characterized by a distinct tuple of lambda terms.



Finally we refute MIX, by showing that any such lambda Our next Lemma allows us to describe evéiyu transfor-
term must use all of its arguments during computation. mationn : 1 — ?&Sm(®j<kiLij) into a semisimple for-
Hence the corresponding MIX proof net is connected under mula of . variables as am-tuple of families of functions

all switchings, so is a proof net, and we obtain the desired (nif’ .

bijection between proofs of semisimple MLL theorems and
logical transformations in Chu.

3.1 MIX proof nets via Coh

In this section we a associate MIX proof ngt with ev-
ery Chu logical transformation, by passing intcCoh and
appealing full completeness for MLL with MIX [Tan97].

Lemma 10. Let F' be a semisimple formula. Every logi-
cal element; : 1 — F' in Chu gives rise to a dinatural
transformation; : 1 — F' in Coh.

Proof. Definefjy = nsu. We omit the proof thafj is di-
natural. O

Tan [Tan97] has shown that every dinatural transforma-
tion of a formula inCoh is the denotation of a unique MIX
proof net, a proof structure acyclic under all switchings,
though not necessarily connected. Define i proof
net, defined byn to be the MIX proof net denoting in
Coh.

3.2 ) term characterization in Ls(Coh)

We show that every logical transformationin Chu,
when restricted to th€oh-image, is determined by a tu-
ple of lambda terms associated cananocally with the MIX
proof netr, that was assigned to it vidoh.

Lemma 11. Every MIX proof net of a semisimple for-
mula F = %, (®,<,Li;) is characterized uniquely
by an m-tuple (¢!,...,t™) of A-terms. Eacht® is of
the formXas ... an—1.M? where the body\/? is a tuple
(Mf, ..., Mj ) containing noX abstractions and at most
one occurrence of each variablg, 1 < j < m — 1.

Proof. Let G, be the undirected graph with vertices the
clausesF; = ®j<kiLl-j of F' and edges the links of =,
with e connectingF; and F;/ in G, just whene matches a
literal of F; with a literal of £}, in . SinceF is semisimple
andm is acyclic under all switchings;,: is acyclic.

We first construct™. Orient the edges of the connected
component of the vertek,,, so as to point towards,,,. This

Ji}) indexed byA € Chu".

Lemma 12. Let A4, ..., A,, be Chu spaces. Every Chu
transformf : 1 — A;® ... B A,, is characterized by an

m-tuple of functiong f*,... , f™), wheref : A7 x ... x
A X Ay xox A — AT
Proof. Omitted. O

Proposition 13. Letn : 1 — F be a logical element into
a semisimple MLL formula af variables inChu, and let

t = (t%,...,t™) be the tuple of lambda terms represent-
ing the MIX proof netr, associated with). Thenn = ¢

in LS(Coh)" < Chu”. In other words,n,, = t' for
al U = Uy,...,U, € Coh" and1 < i < m, where
LsU = Ls(U), ... ,Ls(U,) € Chu™.

Proof. Omitted. O

3.3 \-term characterization beyondLs(Coh)

Having characterized logical transformations in the
Coh-image by tuples of lambda terms, we show that this
uniform behaviour extends to the whole®©fu.

Proposition 14. Let F' be a semisimple MLL formula of
propositional variables interpreted i8hu. Then every log-
ical tranformationn : 1 — F'is determined by its restric-
tion to theCoh-image, namely the sub-family, indexed
by.A € Ls(Coh)".

Proof. To determine; at arbitrary Chu spaced4 € Chu”
we “simulate” eachA = (A4,r,X) € A by a coher-
ence spaced, then use logical relations betwees(.A) in
LS(Coh) and.A in Chu to pin down the behaviour of4.

The set of tokens ofd is A + X + r, the disjoint
union of the points, the states, and the coordinates of the
1s in the matrix. Coherence is “coherence along rows, in-
coherence within columns’a Z (a,z) and (a, z) Z (a, y)
foralla € Aandz,y € X, together with the requisite
loopsa Za. The “row’-cliguea = {a} U {(a,x) € r :

x € X} “simulating” a intersects the “column™anticlique
Z = {z} U{(a,z) € r : a € A} “simulating” = exactly

whenr(a,z) = 1. Hence the matrix1 of Ls(A) “simu-

defines a tree which we interpret as the applicative structurelates” the matrix of the originala Nz = [aNz| = r(a, x).

of M™. Variablea; corresponds to vertek; and serves as

We establish this relationship formally as the logical rela-

the function symbol at that vertex, taking as arguments thetion R 4 betweerLs(.A) and.A given on points byi R 4" a
subtrees below it, with the leaves thus constituting ordinary for everya € A and on states by R,z for everyz € X.

variables. The,, incoming edges of™ give rise to the
ko componentsM;” of M™,

The remaining’ are obtained similarly, modulo match-
ing a; with F 1 fori <l <m—1. O

R4 is logical becausg M= = r(a, x), the adjointness con-
dition of Definition 2.2.

Lett = Aai...a,_1.M be one of the tuple ok-terms
characterizing) in Ls(Coh), and assume for simplicity, and



without loss of generality, that the tupld is a singleton.
Recast the type of : 1 — F' to parallel the natural typing
of t, so that

nma : hhe...F,—B
Ne @ G1®...9Gn —LS(B)
F, = Bhi®... ®szl_OBz
G; = LS(Bi1)®...®LS(Byy,)—oLs(B;)

for B,B;,B;; € AandLs(A) = (Ls(A4,),...
We shall determine

,LS(AL)).

nat Bt x ... x F,T =B,

a component of the tuple characterizipgs per Lemma 12,
by showing that

A" (fr, oo fm) = t(frs o fm)
for all inputs f; € F;*. For eachf; define the linear map
7 :Bu®...9Bm —B;
between coherence spaces by
{(bit, - b))} % fiT (bir,y . bi,) C s

for all b;; € Bi;© C |By;|, where for a poin of a Chu
spaceA, a is the “row” clique of. A simulatinga as defined
above. Letr; be the tensorial strength

LS(Bi1) ® ... @ LS(Bi,) — LS(Bi1 @ ... @ Bir,)

and definef, = Ls(f;) o 7; of type G;, so thatf;  is a
function from (;-tuples of) “row”-cliques to “row”-cliques.
In particular f; “simulates” f;, for example

T By b)) = fit (b, buky) @)

More formally, f;R;* f; under the Chu logical relation
Ri=Rp, ®...® Rp,,, —oRp, between:; andF;.

Since R; is a Chu 1ogical relation betwee6’; and
F; for eachi, by the logicality of n we must have
nLS(Z)Jr(fla s 7fm) RBi+ 77A+(f1, s 7fm) Further-
more sincer]LS(Z)+ is a A-termt, by repeated application
of (1) we have

G T = Ry U =
= t(fla 7fm)
Thus
t(fl;--- ,f’m)RBi-‘_nAJr(fla-” 7f7n)

and since by constructiofR 5, b if and only if a = b, we
conclude thatj4 ™ (f1,--- , fm) = t(f1,- - fin)-

3.4 MIX refutation

The final link in the chain to semisimple full com-
pleteness is to show that the MIX proof net assigned to a
Chu logical element is connected under all switchings, and
hence is a proof net. This occurs precisely when any (and
hence all) of the lambda terms in the characterizing tuple
use all their arguments.

Lemma15., Lett = Aaj...a,,,—1.M be a)-term of the
m-tuple characterizing a MIX proof net of a semisimple
formula®, ., (®, <y, Li;). If each variables; occurs in
M,1<i<m—1,thennis a proof net.

Proof. The graphG,. in the construction of in Lemma 11
is connected if and only it is a proof net. O

Proposition 16. A A-term of a tuple defining a Chu logi-
cal element of a semisimple MLL operation must use all its
arguments.

Proof. Without loss of generality assume that the operation
has the formA—B whereB is a literal and4 = 4; ®
...® A, is a product of pars of literals. Theterm then
has the form\a; ...a,.M for some applicative termd/

in A\-variablesay, ... ,a,. Letn be the denotation of this
A-term. Set all variables of the formula to the Chu space
J = 8(1) , Son; is a Chu transform fromA(J) to B(J).

Note that/+ = J.

A(J) is a Chu space with just one nonzero point, i.e. just
one point indexing a nonzero rowt; is a par ofk; literals,
s0A4,(J) is the par of; copies ofJ, a matrix with2 points,
2k: states, and only one nonzero entry; hente), the
tensor product ofi such matrices, ha&® points, only one
of which is nonzeroB(J) = J sinceB is a literal.

By continuity of n;, every zero point (the index of an
all-zero row) of A(J) must be sent to 0 il (J). We now
argue by logicality that the nonzero point 4f.J) must be
sentto 1inB(J). LetIN be thel x 1 Chu space whose one
entry is 1, and take to be the Chu relation betwe@ and
J that relates the point dN to the nonzero point of and
the state oiN to the nonzero state of. ThenA(R) relates
the point ofA(N) = N with the nonzero point ofi(J), so
any two-sorted homomorphism frow(.J) to J must send
the nonzero point ofi(.J) to the nonzero point aB(.J), i.e.

1.

But the one nonzero point of(J) is indexed by the
constantly-one-tuple. So when all arguments ig are
set to 1, and any one argument is then changed to 0, the re-
sult of n; changes from 1 to 0. But thepy and hence the
A-term denoting it, depends on allof its arguments. [

Finally, repeat the argument for each of the other lambdaTheorem 17 Gemisimple full completenessLet F be a

terms of the tuple. O

semisimple MLL formula interpreted i@hu. Then every



logical tranformationn : 1 — F'is denoted by a unique
proof of F'.

Proof. Proposition 13 characterizesas a MIX proof net

Proof. We omit the straightforward combinatorial argu-
ment. O

Theorem 21. Every logical elemeny of an MLL formula

7, in the Coh-image, and Proposition 14 extends this char- A represents a proof.

acterization to the whole ofhu. By Proposition 16, in
conjunction with Lemma 157, is a proof net.

4 Full Completeness

We prove our main theorem by induction on level of

Proof. We proceed by induction on level. The previous sec-
tion supplied the basis for the induction. We now assume as
our induction hypothesis the cakand prove the cadet 1.

Let A be a formula of level + 1, and letn be a log-
ical element ofA. Apply commutativity and associativity
as required tod so that when Rul® is applied to some

formulas, a measure of distance of theorems to certainsubformula(A% B) @ C in each of the two possible ways,
semisimple formulas. We first define the notion of level and both consequentd; and A, of A are of levell. The two

state key supporting lemmas.

The rules of our axiomatization of MLL either rearrange
the formula invertibly A andC), cater trivially for context
(E), or do some real workiX). Our argument hinges on the
behavior of this last rule.

applications of the rule map to two transformations, call
themm and’l’]Q.

By soundness eaah is a logical element and therefore
by the induction hypothesis has a proof net. By Lemma
19 the two proof nets must have the same linking By

For convenience and to make more explicit the choice Lemma 20(A, A) is a proof net. By soundnessi, A) de-

implicit in linear distributivity (LD), we replace Rul® by

notes a logical element’ while (A4;,A) and (A4, A) de-

an equivalent pair of rules either one of which would suffice note logical elements], 7, respectively. By the induction

on its own.
DI (ARB)®C +F (A®C)®B
D2 (ARB)®C F A%R(C® B)

A linking of the common antecedent of these rules is per-

muted by the rules to yield identical linkings of the tWwb
consequents

Definition 18. Thelevelof an MLL formula is defined to

hypothesisy; = 7, andn, = n.. But D is injective, so
n=n' O

This completes the proof of our main theorem, leaving
only Lemma 19 to prove.

Proof. (of Lemma 19) Let; in A have consequentg and
12 representing proof nets @hu. Form the corresponding
arrangement irCoh, consisting of a cliqué and conse-
quentsn; andn,. By Lemma 23r; and; represent the
same proof nets for = 1,2. By Lemma 247; and7), are

be maximal subject to the following constraints. The level the LD consequents of a common cliggieBy Lemma 22

of a semisimple formula is zero. If a levidormula is deriv-
able from A by associativity or commutativity theA has
levell. If a pair of LD consequents of have level at most
I then A has level at mogt+ 1. O

So the level of a formulad is the minimum, over all
occurrences withird of a subformula matching Rul®, of

they have the same linking, whence the same holdgfor
andns,. O

We have discharged obligation 19 at the expense of three
new obligations.

Lemma 22. If the two LD consequents of a clique both re-

one plus the maximum of the level of the corresponding pair alize proof nets then those nets have the same linking.

of LD consequentgl; andA,. Every MLL formula reduces
to semisimple formulas after finitely many applications of
D, whence level is well-defined.

We shall need the following lemmas.

Lemma 19. If the LD consequents of a transformation of
an MLL formula inChu both represent proof nets, then
those proof nets have the sarhélinking of literals).

We defer the proof of this lemma to after the main theo-

rem.

Lemma 20. If a linking A is a proof net for both Rul®
consequents of a formuld, thenA is a proof net forA.

Proof. Although the rules of System S nontrivially trans-
form the coherence spaces they act on, their constituent to-
kens, as tuples of tokens oF, are not changed except to
reflect permutations of variables. The linking information
in a dinatural clique irCoh resides entirely in the individ-

ual tokens [Tan97] (as opposed to the coherence relations
between the tokens). Under our reformulation of Rblas

D1 andD2, the two LD consequents of a clique undergo the
same permutation of atomic tokens within each token of the
clique and hence encode the same linking. O

Lemma 23. If n is the unique representation i@hu of a
proof net(A, A), theny representg A, A) in Coh.



Proof. Select any System S derivation (4, A) and inter-
pret it in bothCoh andChu. In the beginning the hat rela-
tionship holds between the respective proof representations[AJ94]
By commutativity of hat and derivation (Lemma 24) this
relationship is maintained during the proof and hence still
holds whenA is reached. SincéA, A) only has one repre-
sentation, the transformation in Chu we ended up with mustgsgg]
ben, whence the transformation @©oh we arrived at must
be7. O

[Bar79]

[DR89]

Lemma 24. The hat map taking the points of the Chu space [Girg87]
F(LsW) to the coherence spadé(W) commutes with the
action of the rules of System S. [HO93]
Proof. Since the rules act according feterms it suffices
to verify the commutativity for all\-terms. If the cor-
respondence between Chu spad¢&ssW) and coherent
spacesF' (W) were an isomorphism this would be a trivi-
ality. However the points of the former embed as a subset[LS%]
of those of the latter, and likewise for states, both for the top
level formula and for all subformulas. We therefore need to [ 591
show that the correspondence is tight enough for the action
of the rules to maintain the correspondence despite this dif-
ference.

We proceed by induction on the height bterms. We
take as our inductive hypothesis that for all MLL formulas

[Loa94]

[Pav96]

F, for all assignments of Chu spaaesV, and correspond-  [Plo80]
ing assignments of coherent spad¥’s to variables ofF’,
and for all bindings of-variables to points of'(LsW), and
correspondingly to points of' (W), evaluating a\-term of [PROS]

heighth in each of the two environments produces a corre-
sponding pair of points of respectively(LsW) and F(W).

The basis for the inductiork-terms that are\-variables,
holds by choice of environment. We now assume the case
of heighth and proceed to heiglit+ 1.

For applications\/ N, the Chu point denoted by/ is a
function f between Chu spacesandB (say) while the cor-
responding coherence space point denoted/big a func-
tion f from A to B. Since the correspondence embeds the
setA of points of A in A, and sinceV evaluates to a point
in the image of that embedding by the induction hypothesis,
f(a) must be the corresponding point which too will
be in the image of the embedding Bfin 5.

A \-abstractiom\z. M, as a point of sayl— B, will de-
note a Chu transfornf ofAChu spaces having correspond- [Tan97]
ing coherence space mgp The induction hypothesis en-
sures thayf andfagree om4, while the fact that coherence
space maps commute with consistent unions ensures thakt/GP93]
the coherence space map denoted\byM (as determined
by evaluating)/ in each environment obtained by setting
to a point of A) agrees Withfon the whole ofA.

For pairs(M, N) the correspondence is immediate]

[Pra97]

[Pra9sg]
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[Pra95b] V.R. Pratt.
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