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A cornerstone of the theory of proof nets for unit-free multiplicative linear logic (MLL) is the
abstract representation of cut-free proofs modulo inessential rule commutation. The only known
extension to additives, based on monomial weights, fails to preserve this key feature: a host of
cut-free monomial proof nets can correspond to the same cut-free proof. Thus the problem of
finding a satisfactory notion of proof net for unit-free multiplicative-additive linear logic (MALL)
has remained open since the inception of linear logic in 1986. We present a new definition of
MALL proof net which remains faithful to the cornerstone of the MLL theory.
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1 Introduction

The beautiful theory of proof nets for unit-free multiplicative linear logic (MLL)
appeared alongside the introduction of linear logic [Girard 1987]. A proof net is
an abstract representation of a proof: the translation of cut-free proofs into proof
nets identifies proofs modulo inessential rule commutation. The identifications
have since been verified as canonical from a semantic perspective, with numerous
full completeness results for MLL, e.g. [Abramsky and Jagadeesan 1994; Hyland
and Ong 1993; Loader 1994; Tan 1997; Blute and Scott 1996; Devarajan, Hughes,
Plotkin and Pratt 1999]. Furthermore, the identifications correspond to coherences
of free star-autonomous categories [Blute, Cockett, Seely and Trimble 1996].

The problem of finding a satisfactory extension of the theory of proof nets to
unit-free multiplicative-additive linear logic (MALL) has remained open since the
inception of linear logic [Girard 1987]. Progress towards a solution was made by
Girard [1996] with a notion of MALL proof net based on monomial weights. Un-
fortunately, monomial proof nets failed to extend the MLL theory faithfully: a
single cut-free proof may correspond to a host of monomial proof nets, and there
is no natural map from cut-free proofs onto monomial proof nets. To quote Gi-
rard, monomial proof nets are “far from being absolutely satisfactory” [1996]. We
illustrate the problems in detail in Section 6.1.

In this paper we propose a new notion of MALL proof net (Section 4) which
adheres faithfully to the original MLL theory: we provide a simple function from
cut-free proofs to cut-free proof nets, yielding the sought-after abstract represen-
tations of cut-free proofs modulo inessential commutation of rules. We define a
cut-free proof net on a sequent I" as a set of linkings on I' satisfying a geometric
correctness criterion®, and prove that a set of linkings is the translation of a proof if
and only if it is a proof net (Theorem 4.18, the cut-free Sequentialisation Theorem).
The definition of proof net is pleasingly succinct, taking only 11 lines (page 14).
The reader can glean an impression of our approach by perusing Figure 1.

In Section 5 we extend our proof nets with cuts, and present a notion of cut
elimination (and turbo cut elimination). Cut elimination is simply defined, strongly
normalising, and yields a category of cut-free proof nets which is semi (i.e. unit-free)
star-autonomous, with products and coproducts. For an impressionistic overview
see Figures 2 (cut), 3 (cut elimination), and 4 (composition). After extending to
cut, the definition of proof net remains succinct: see the box on page 40. As
with Girard’s monomial proof nets, in the presence of cuts multiple proof nets may
correspond to the same proof. However, from a semantic point of view (viz. full
completeness) the provision of abstract representations of MALL proofs modulo
rule commutation is crucial only in the cut-free setting.

A crisp notion of cut-free MALL proof net is fully motivated from a proof-
theoretic perspective alone. However, just as MLL has blossomed through nu-
merous fully complete semantics via cut-free MLL proof nets, we hope that the
new definition of cut-free proof net presented here will lead to a similar blossoming
of MALL. Since cut-free monomial proof nets for MALL are unsatisfactory for the
reasons outlined earlier (detailed in Section 6.1), any MALL full completeness re-
sult based on them (e.g. the concurrent games model [Abramsky and Mellies 1999]

1 Relaxing the criterion slightly yields a notion of proof net for MALL with mix (Section 4.9).
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Fig. 1. Example of the inductive translation of a cut-free MALL proof into one of our cut-free
proof nets. The concluding proof net has two linkings, one drawn above the sequent, the other
below. Each contains two axiom links. The proof nets further up in the derivation have one or
two linkings, correspondingly above and/or below the sequent. Had we switched the order of the
right-hand tensor rule and the plus rule, we would have obtained exactly the same pair of linkings;
thus we identify cut-free proofs modulo a commutation of rules.

or the hypercoherence model [Blute, Hamano and Scott 2005]) suffers accordingly,
particularly with regard to faithfulness. Our new definition of MALL proof net
should yield cleaner and more accessible MALL full completeness results.?

Liberation from monomials

The technical starting point for our definition of proof net was Girard’s definition
of monomial proof net [1996], and we employ variants of Girard’s ingenious notions
of slice and jump. One of our contributions relative to [Girard 1996] is that we do
not partition weights into monomials. In [1996] Girard remarks that he had been
trying to circumvent this technical limitation since 1990, and lists three specific
problems that must be solved in any attempt to eliminate it, i.e., to define what he
calls “more liberal proof-nets”, such as ours:

Weights must be monomials. However, weights of the form p U q will
naturally occur if we want to allow more superimpositions. The present
state of affairs is as follows:

(1) in spite of years of efforts, I never succeeded in finding the right
correctness criterion for these more liberal proof-nets;

(2) general boolean coefficients might be delicate to represent (on the
other hand, the case we consider has a natural presentation in terms
of coherent spaces);

(8) normalization in the full case might be messy.

[Girard 1996, Appendix A.1.5]

2Part of the first author’s motivation for finding a satisfactory notion of proof net came from
a collaboration with Gordon Plotkin and Vaughan Pratt aiming to extend the Chu space full
completeness result [Devarajan, Hughes, Plotkin and Pratt 1999] to MALL: we were initially
encumbered by the complexity of monomial proof nets. Ultimately we discovered that full com-
pleteness does not extend: the Gustave example (see Section 4.6.1) inhabits the model.
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Fig. 2. Example of the translation of a proof with a cut into one of our proof nets. The con-
cluding proof net is on what we call a cut sequent: a MALL sequent (the formulas P1 and
P ((@3Q1) ® (R®RL))) together with a cut pair [P @ P [P1&P~L] formed using the cut
connective *. The concluding proof net comprises two linkings of three axiom links each, one
linking drawn above the cut sequent, the other below. When transitioning through the cut rule,
the axiom link on PL, P®P on the left becomes duplicated, so that a copy appears in each of the
two final linkings; in general, when m linkings pass through the left of a cut rule, and n through
the right, we construct all m X n disjoint unions of the linkings on the conclusion. (Here m =1
and n = 2.)

Pt [PePl«[P*&PY]  Pe((Q3QY)e(RARY))

additive cut elimination
step: delete inconsistent

linkings
1 | | —
Pt [P] * [PY] PR((Q3Q)®(RBRY))
literal cut
elimination
step
T 1 | —
Pt PR((Q3Q")®(RIR"))

Fig. 3. Example of cut elimination, normalising in two steps. The top proof net, two linkings,
was derived in Figure 2. The first elimination step, aside from eliminating the @ and & to leave a
literal cut [P]*[P~L], deletes the underhanging linking: our rule for additive elimination is simply
delete inconsistent linkings, where a linking is inconsistent if it chooses opposite arguments for
the cut @ and &. (Here the underhanging linking chooses @-left and &-right, and is therefore
inconsistent, hence deleted in the cut elimination step.) Note that the end result is a cut-free
proof net: it is the translation of the left branch of the &-rule in Figure 2.
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Fig. 4. Example of composition f,g — ¢f in our category N of cut-free proof nets. Objects
are MALL formulas, and a morphism h : A — B is a cut-free proof net on the sequent AL, B.
The morphisms f (top-left) and g (top-right) are the left- and right hypotheses of the cut rule in
Figure 2. The first step of composition is to cut the two morphisms; in doing so we are emulating
precisely the cut rule of Figure 2. Having negated on the left of the arrow —, the two cut formulas
are no longer dual but identical; thus we are afforded the additional economy of superimposing
them. The two ensuing computation steps are exactly those of Figure 3, modulo this superposition.

An important stepping-stone towards finding the right criterion to address (1) was
to first settle the open problem of whether Girard’s criterion becomes insufficient
without partitioning weights into monomials. We show that this is indeed the case:
in Section 6.2 we present a non-monomial proof structure that does not correspond
to any proof (i.e., it is not sequentialisable), yet satisfies Girard’s criterion. We
address (2) by leaving weights implicit, defining a proof net on a sequent T' as a
set of linkings on an extension of I by zero or more cut pairs A% A+, Bx* B*,
etc. (See Figure 5 for an example of extracting weights from a proof net.) Issue
(3) is addressed by the fact that our definition of cut elimination is very simple:
confluence and strong normalisation are immediate.

The proof that our correctness criterion captures proof translations (the Sequen-
tialisation Theorem) hinges on an ordering on vertices called domination®. By
introducing domination we avoid the use of empires [Girard 1987; 1996], thereby
sidestepping the problem of stability of maximal empires [Girard 1996, Section
1.5.3]—the main technical problem that led Girard to resort to monomials.

In Section 6.4 we define a surjection collapsing Girard’s proof nets to ours. There
are more Girard proof nets than ours because of the redundancy issues related to
monomials (see Section 6.1).

3Unrelated to domination in flowgraphs.
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Fig. 5. (a) Four-linking example of one of our proof nets. Rather than draw all four linkings on one
sequent, we have drawn two linkings (one above, one below) on each of two copies of the sequent.
Section 4.8 shows how to encode a proof net as a collection of axiom links labelled with predicates
(‘weights’, c.f. [Girard 1996]). Subfigure (b) shows the weight encoding of (a). To distinguish the
&s, we have subscripted them. Every &-assignment (assignment of left or right to each of &; and
&) determines a linking by restricting to axiom links whose predicates hold, where we read the
predicate = (resp. T) as “&g is assigned left (resp. right)” (and y analogously), A is and and V
is or. We invite the reader to verify that taking each of the four possible &-assignments in turn
produces the four original linkings.

2 MALL
By MALL we mean multiplicative-additive linear logic without units [Girard 1987].
Formulas are built from literals (propositional variables P, @, . .. and their negations

PL, Q+,...) by the binary connectives tensor ®, par %, with & and plus ©.
Negation (—)* extends to arbitrary formulas with P-+ = P on propositional
variables, and de Morgan duality: (A ® B)* = A'®B+, (A®B)! = At ® B,
(A® B)t = AL&B*, and (A&B)*+ = AL @ B*. Throughout the paper we shall
identify a formula with its parse tree, a tree labelled with literals at the leaves
and connectives at internal vertices. A sequent is a non-empty disjoint union of
formulas. Thus a sequent is a particular kind of labelled forest. We write comma
for disjoint union. For example,

Pt (P® PHRP
is the graph

pt L P

P P
\./
®
N\

2
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Throughout the paper we adopt the convention of Mother Nature, and depict the
leaves of a tree above, and the root below. Sequents are proved using the following
rules:

r,A At A A B,A I,A B

ax —  cut _— QR _—
p pt r,A [LA® B,A I, ABB

T,A TI,B T, A T, B
- — — @
T, A&B T,A® B T,A® B

Here, and throughout this document, P, @, ... range over propositional variables,
A, B, ... over formulas, and I A, ... over (possibly empty) disjoint unions of for-
mulas. Without loss of generality we restrict the axiom rule to literals [Girard
1987].

3 Background: Cut-free MLL proof nets

For didactic purposes, we review the definition of cut-free MLL proof net [Girard
1987; Danos and Regnier 1989]. MLL is the subsystem of MALL obtained by
omitting the additive connectives, @ and &. Our style of presentation anticipates
the subsequent definition of MALL proof net.

An axiom link or simply link on an MLL sequent T is an edge between comple-
mentary leaves in I, i.e., between leaves in I' labelled with complementary literals
P and P*. A linking on T is a partitioning of the leaves of I into links, i.e., a set
of disjoint links whose union contains every leaf of I'. A linking on an MLL sequent
is also called a cut-free MLL proof structure.

Ezample 3.1. Two linkings are possible on the sequent P+, (P @ PL)®P:

— — ]
Pt (P® PH)BP Pt (P®PH)BP

3.1 A function from cut-free MLL proofs to linkings

Let II be a cut-free MLL proof of a sequent I'. By downwards tracking of formula
leaves, the axiom rules of II determine a linking Aj; on I'. Alternatively, one can
define the same function from proofs to linkings by induction. The base case of an
axiom rule P, P1 defines the linking EDL . Writing A > T for the judgement “A
is a linking on I'”, the inductive translation is as follows:

AD>TA N > BA A D>TAB
® ————————————
AUXN D TA®B,A A D> T,A®B

Here we use the implicit tracking of formula leaves above the line of a rule to leaves
below the line. Figure 6 shows an example. Any linking A which is the image of
a proof is sequentialisable, and any such proof is a sequentialisation of \. In
general a linking has many distinct sequentialisations, corresponding to the fact
that MLL proof nets are canonical abstract representations of MLL proofs modulo
inessential rule commutation.
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ax ax
1 1
pL P pPL P
1 1 ®
pPL PPl P
%

1 1
Pl (PRPHBP

Fig. 6. An example of the translation of a cut-free MLL proof into a linking, i.e., into a cut-free
MLL proof structure.

3.2 Geometric characterisation of sequentialisability

Given a linking A on I, the graph G, of ) is the graph I' together with the edges
A. A B-switching of a linking A on T is any subgraph of G, obtained by deleting
one of the two argument edges of each %-vertex.

Example 3.2. One of two possible #-switchings of the first linking of Example 3.1:
r 1

pt P Pt P
\ /
®

N\

2]

Definition 3.3. A linking on an MLL sequent (i.e., a cut-free MLL proof structure)
is a cut-free MLL proof net if each of its #-switchings is a tree (acyclic and
connected).

Example 3.4. The second linking of Example 3.1 fails to be a cut-free MLL proof
net. This &-switching is not a tree:

—
P pt P
\/

®

N\

»

PL

The first linking of Example 3.1 is a proof net: both Z-switchings (one of which
was depicted in Example 3.2) are trees.

THEOREM 3.5 CUT-FREE MLL SEQUENTIALISATION. A linking is the translation
of a cut-free proof iff it is a cut-free proof net.

This was proved by Girard, for a different geometric criterion, based on long trips
[1987]. Danos and Regnier [1989] simplified the criterion to the elegant one above,
showing it to be equivalent to Girard’s. Several other equivalent formulations will
be presented in Sections 4.7.1 and 4.7.2.
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pt P R RY R Rt
@/ \& \@ \®/
ea/ \®/ \93
pt P R R R Rt
\ &/ @/ \®/
@ \®/ \?y

P*o(QoPh), (P&P)(R®R), (R-QR)BR™
Pto(QePt), (P&P)®(RDR), (R*®R)ZR*

Fig. 7. Top: two additive resolutions of P @(Q@ PL), (P&P)®(R®R), (R*®R)®R*. Equiv-
alent compact ‘in-line’ representations are shown underneath.

4 Cut-free MALL proof nets

We begin by defining a linking on a MALL sequent, and a simple function from
cut-free MALL proofs to sets of linkings. With such a function in hand, it is natural
to ask about its image and kernel:

(I) Image. Can one characterise the sound sets of linkings, i.e., those that come
from proofs?

(K) Kernel. Does the kernel exactly characterise proof equivalence modulo rule
commutation?

We answer both in the affirmative. In Section 4.3 we present a geometric charac-
terisation of those sets of linkings that arise as the translations of cut-free MALL
proofs, and call them proof nets. In a sibling paper we show that any two cut-free
MALL proofs are equal modulo rule commutation if and only if they map to the
same proof net (see Section 4.11). Thus:

Our cut-free MALL proof nets provide canonical abstract representations of cut-
free MALL proofs modulo rule commutation.

4.1 Linkings

An additive resolution of a MALL sequent I' is any result of deleting one argu-
ment subtree of every additive connective (& or @) of T'. See Figure 7 for examples.
An axiom link or simply link on T is an edge between complementary leaves in T,
i.e., between leaves in I" labelled with complementary literals P and P*. A linking
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Aon T is a set of disjoint links on T" such that UA is the set of leaves of an additive
resolution of IT'; this additive resolution is denoted I' [ A.
Example 4.1. Let T' be the sequent
P ®(QoP"), (P&P)®(R®R), (R"®R)BR".

The following set A of three disjoint links is an example of a linking on I':

PLo(Q@PL), (P&P)2(ROR), (R*®R) IR

For A to be a linking, as opposed to merely an ad hoc collection of disjoint links, it
must take the leaves of some additive resolution of I'. This is indeed the case: the
leaves of (the links of) A are exactly those of the first of the two additive resolutions
depicted in Figure 7:

PLo(@oPL), (P&P)2(ROR), (R-9R) TR

Example 4.2. Multiple linkings can have the same additive resolution. For exam-
ple, the following linking X’

— [ — |
Pta(QoPt), (P&P)®(R®R), (R*®R)®R*

has the same additive resolution as the linking A of Example 4.1, i.e., T[A =TT\

— [ — |
Pto(QoPt), (P&P)®(ROR), (R*®R)ZR*
Note that A and X' are the only two linkings possible on this additive resolution.

Example 4.3. This pair of disjoint links fails to be a linking:

0, 1
P&Q, Qt®P*,
It is not a linking because it contains a leaf on each side of the &.

Numerous other examples of linkings can be seen in Figures 1 and 2 (pages 4 and 5).
One can easily verify that each of them takes the leaves of an additive resolution.
See also Figure 5 (page 7).

4.1.1 FEwvery linking induces an MLL proof structure. Every additive connective
(®/&) remaining in an additive resolution is unary (i.e., has one remaining argu-
ment), by construction. One can observe this, for example, in the parse trees in
Figure 7. Thus any additive resolution R of a MALL sequent I' induces an MLL
sequent R~ by collapsing its additive connectives. A linking A on I', viewed as
being on (T'[ )™, is a cut-free MLL proof structure (as defined in Section 3), which
we call the MLL proof structure induced by \.

Example 4.4. The MLL proof structure induced by the linking A\ of Example 4.1:

[ 1 [ 1 [ 1
PY, P®R, (R*®R)3R*



12 D.J.D. Hughes & R.J. van Glabbeek

6 >T,AB 6>T,A ¢ >T,B
— —ax  ————7 &
(PPt} > PP 6 >T,ABB gud > T, A&B

6>T,A ¢ > B,A 6>T,A 6>T1,B
® — &  ——
{AUXN :Xe€eg XN ed'} >T,A®B,A 6>T,ApB 6>T,AdB

D2

Table I. Inductive definition of the function from cut-free MALL proofs to sets of linkings. Here
8 > T is the judgement “# is a set of linkings on I'”. We use the implicit tracking of formula
leaves downwards through rules. The base case ax is a singleton set of linkings whose only linking
comprises a single link, between P and PL.

4.2 A function from cut-free MALL proofs to sets of linkings

Every cut-free MALL proof IT of T defines a set 01y of linkings on T" as follows. Define
a &-resolution R of II to be any result of deleting one branch above each &-rule
of II. By downwards tracking of formula leaves, the axiom rules of R determine
a linking A on I". Define 0 = {Agr : R is a &-resolution of II}. See Figure 8
(page 13) for an example. Alternatively, Table I defines the same function by
induction; see Figure 1 (page 4) for an example.

By structural induction, each linking is well-defined (i.e., takes the leaves of an
additive resolution); thus the translation is well-defined. The fact that the above
procedures yield the same set of linkings follows from a simple structural induction
on proofs. A set of linkings A is sequentialisable if it is the translation of a proof;
any such proof is a sequentialisation of A.

4.3 Geometric characterisation of sequentialisability

In this section we define a proof net as a set of linkings satisfying three conditions.
These conditions characterise the image of the function from cut-free proofs to sets
of linkings defined in Section 4.2: in Theorem 4.18 (the cut-free Sequentialisation
Theorem) we prove that a set of linkings is the translation of a proof if and only if it
is a proof net. The definition of proof net is pleasingly succinct, and is given in the
box on page 14. In the remainder of this section we clarify the definition and work
through examples. As in the standard approach to MLL (and as in [Girard 1996]),
we define a proof structure as a stepping-stone towards the definition of proof net.

4.3.1 Resolution condition. Similar to the definition of additive resolution in Sec-
tion 4.1, define a &-resolution of a sequent I' to be any result of deleting one
argument subtree of every & of T.

Example 4.5. The two possible &-resolutions of the sequent
Pro(QoPt), (P&P)®(R®R), (R"®R)BR™*
featured in Examples 4.1 and 4.2 are:
Iy PLe(QaPt), (P&P)®(RDR), (R*®R)BR*
I3 Pro(QaPr), (P&P)®(ROR), (R*®R)BR"
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ax
Q+,Q
ax —_— P ax
PP PLoQt, Q R R
(11) T 0 1ol e Lol T, ®2
P-®Q—, P o (P-®Q7)®R-, Q (P-®QT)OR—, R
1
(ProQtyeRrt, P (PreQh)eRt, Q&R
&
(PreQt)eR*, P&(Q&R)
ax
Pt P
— D
(R1) PreQn P
D1
(PreQt)eR*, P
&
(ProQh)oRY, P&(Q&R)
ax
Q*+,Q
— D2
PreQt, Q
R D1
( 2) (PJ'@QJ')@RJ_, Q N
(PreQh)eR", Q&R
&
(PLteQb)oRY, P&(Q&R)
n ax
RY,R
PloQlh)eR* R®2
(Rs3) (P-0Q)®R™, ©
(PreQh)eR", Q&R
&

(ProQl)®R', P&(Q&R)

. 1
M (PL®QL)®RL, P&(Q&R)
. 1
20 (pleQlyeRt, PL(QUR)
A3 :

1
(PreQt)® R, PL(QYR)

Fig. 8. Example of the mapping of a cut-free MALL proof into a set of linkings. At the top is a
proof II, followed by its three possible &-resolutions R;, Rz, R3, followed by the corresponding
linkings A1, A2, A3. Each linking comprises a single link. Categorically, this example expresses
associativity (P X Q) X R — P X (Q x R). Note the compactness of the representation as a set of
linkings relative to the size of the proof.
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— Definition: cut-free MALL proof net on a sequent I

Additive resolution: deletion of one argument subtree of each @©/&; &-resolution analogous.
(Aziom) link on I': edge between complementary leaves (literal occurrences) in T'.

Linking X on I': partitioning of the leaves of an additive resolution I' [ A of I into links.

A set A of linkings on I' toggles a & w if both arguments of w are in T'[A = Uy I'TA
Graph Ga: T'[A + UA + jump edges l—w—1"if {I,'} € A\ X and {\, X'} CA toggles w only.
% -switching of A: any subgraph of Gy} obtained by deleting one argument edge of each 7.
Switching cycle: cycle with < 1 switch edge (= jump or argument edge) of each % /&.

A set 0 of linkings on T is a proof net if it satisfies:

RESOLUTION: Exactly one linking of 6 is on any given &-resolution of T'.
MLL: Every Z®-switching of every A € § is a tree (i.e., each A € 8 induces an MLL proof net).*
TOGGLING: Every set A of >2 linkings of 8 toggles a & that is in no switching cycle of Gp.%

A linking X on T is on a &-resolution I'™* of T if every leaf of A is in I'™*. A set of
linkings 6 on T is a cut-free proof structure if it satisfies

(P1) RESOLUTION. For any &-resolution I'™* of T', exactly one linking of § is on T,

Ezample 4.6. Here is a two-linking proof structure § = {A;, A2} on the sequent of
Example 4.5, with A\; drawn above the sequent and A2 drawn below:

ProQaPY), (P&I?)@(}IZEBR), (1'2%1%)&%&

AL
}\2:

To verify RESOLUTION, we must check that exactly one of the linkings fits on each
of the two &-resolutions of I', depicted in Example 4.5. Taking the &-resolution
Iy,

)\1:
A2 :

we see that A; is on I'f (all six of its leaves are in I'}), but A2 is not (its P literal
is not in I'Y). Similarly, taking the second &-resolution I'},

Pro@oP), (p&;)@(f'zeam, (RE@R) 3R

| E—

}\1:
A2 :

we see that Az is on I'j (all six of its leaves are in I'y), but A; is not (its P literal
is not in T'5). Hence RESOLUTION is satisfied.

Pro@oP), (P&IID)®(II%®R), (RL@R)3R:

L

Example 4.7. The pair of linkings
Pt PRQT, Q0Q

4Tree = acyclic + connected. Dropping the connectedness requirement in the MLL condition
yields a cut-free proof net for MALL augmented with the mix rule. See Section 4.9.

51n fact, it suffices to verify TOGGLING merely for saturated sets of linkings A, namely, such that
any strictly larger subset of # toggles more &s than A. There is exactly one saturated set of
linkings in 8 for each partial &-resolution of T', the latter being any result of deleting at most
one argument subtree of each & of I
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fails RESOLUTION: any &-free sequent is its own unique &-resolution, and therefore
RESOLUTION will hold if and only if there is a single linking.

Example 4.8. The singleton set of linkings

1
P o (Q&R), P+

(comprising just one link) satisfies RESOLUTION. Note that the sequent has two
distinct &-resolutions, but there is only one linking.

Remark 4.9. In the restricted case of an MLL sequent I', since there are no &s, a
set, of linkings satisfies the resolution condition iff it comprises a single MLL linking
on I (in the sense of Section 3). Thus our cut-free MALL proof structures generalise
cut-free MLL proof structures.

Example 4.10. We invite the reader to verify the resolution condition for the sets
of linkings in Figures 1, 2 and 5 (pages 4, 5, and 7).

Section 4.4 provides intuition for the resolution condition. The resolution condi-
tion, on its own, suffices as a correctness criterion for pure additive proof nets: see
Section 4.10. Section 4.8 shows how to encode a proof structure using weights (c.f.
[Girard 1996]), as illustrated by the example in Figure 5 (page 7). In Section 6.3
we detail the relationship between RESOLUTION and Girard’s so-called technical
condition.

4.3.2 MLL condition. The second requirement for a set of linkings 6 to be a proof
net is “pointwise MLL correctness”:

(P2) MLL. Every linking of 6 induces an MLL proof net.

In other words, for each linking A € 6, the MLL proof structure induced by X (as
defined in Section 4.1.1), is an MLL proof net (as defined in Section 3).

Ezample 4.11. See Figure 9, subfigures (a)—(d).

Ezample 4.12. The proof structure § = {A1, A2} in Example 4.6 (page 14) satisfies
the MLL condition. Both A; and A; induce the same MLL proof net, whose graph
is Figure 9(c).

Naturally one need not collapse to an MLL proof structure to check the MLL condi-
tion for a linking A: one can simply leave the unary ®/&s of the additive resolution
in place, and verify that every #-switching is a tree. For self-containedness of our
definition of cut-free MALL proof net, without reference to MLL proof nets, we
describe this formally.

Construct the graph G, of A from the graph of the additive resolution T'[ A (a
subgraph of T') by adding the edges A. For example, Figure 9(e) shows the graph
G, of the linking \; of Figure 9(a). A %-switching of a linking A on T is any
subgraph of Gy obtained by deleting one of the two argument edges of each 7. See
Figure 9(f) for an example. Clearly, the induced MLL proof structure of a linking
A is an MLL proof net if and only if every ®-switching of A (in G,) is a tree. Thus
we can reformulate the MLL condition on a set of linkings 8, without reference to
MLL proof nets, as follows:
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(a) — T ] T ]
The linking P*a(QoPh), (P&P)R(R®R), (R*QR)BR*
A1 onT
b
The liglk)ing A1 f ! [ !
Pro(QoPh), (P&P)R(RDR), (R-QR)BR*

on its additive
resolution I' [ A1

] | ]
() P

P R
The graph of the \®/
MLL proof net \
®

induced by A;

| | | |
(d) pL P R Rt R Rt
A %-switching \ / \®/
of (c)
® \?51
| | | |
pL P R Rt R Rt
(€) / N\ N\ N/
The graph Gy, @ &\ ® ®\
ea/ ®/ %
| | | |
(f) pl P R Rt R Rt
The corresponding 69/ \\& \GB \®/
Z-switching of A1
ea/ \®/ \?51

Fig. 9. Subfigure (a) shows a linking A1 on a MALL sequent I', which is shown on its additive
resolution in (b). Subfigure (c) is the MLL proof structure induced by A1, which is an MLL proof
net since each of its Z@-switchings is a tree. Subfigure (d) shows one of its two Z-switchings.
Subfigure (e) is the graph Gy, of A; on I, and (f) is the @-switching of A1 in G, corresponding
to the 2-switching (d) of the induced MLL proof net (c).
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(P2) MmLL. Every ®-switching of every linking of 6 is a tree (acyclic and connected).

Relaxing the connectedness requirement yields a notion of cut-free proof net for
MALL augmented with the mix rule. See Section 4.9.

4.3.3 Toggling condition. We require some auxiliary concepts to state our third
and last proof net condition. A set of linkings A toggles a &-vertex w of T if both
arguments of w are present in J, ., I'[ A, i.e., there exist A;, A, € A such that the
left argument of w is present in the additive resolution I' [ A; and the right argument
of w is present in the additive resolution I' [ ...

Ezample 4.13. Recall our running example,

A1t
A2

ProQoPY), (P&IID)®(}IZEBR), (R“®R)®R*

L

The pair of linkings § = {1, A2} toggles the & of the underlying sequent I" because
its left argument (the left P) is present in the additive resolution I' [ A1, and its right
argument (the right P) is present in the additive resolution I' | A2. Neither {A;}
nor {2} toggles the &: a single linking can never toggle a & because all additives
are unary in an additive resolution.

Let A be a set of linkings. A link a depends on w in A if, inside A, a can be
made to vanish by toggling w alone: there exist A\, \' € A such that a€ X\, ag X,
and w is the only & toggled by {\, \'}.

Ezample 4.14. In

AL
)\2:

let w be the & of the sequent. The link between the left-most R and the left-most
R* depends on w in A = {A1, A2}: it is present in A; € A but not in Az €A, and w
is the only & toggled by {A1, A2}. The link between the right-most R and R does
not depend on w in A, since it is present in both A\; and Ay. It is the only one of
the five links in A (more precisely, in |[J A) that does not depend on w in A.

Pro(QaPY), (p&}f)@(éeem, (1';:@&)&%

We now extend the definition of the graph of a linking to the graph of a set A
of linkings on I'. The partial additive resolution of A is the graph I' | A =
Uxea T T'A, the union (superposition) of the additive resolutions of the linkings of
A. Some additives of T [ A may be unary, some binary. The graph Gp of A is
T I A together with each edge {l,1'} of (a linking of) A, and jump edges from [
and I’ to any &-vertex on which {l,I'} depends in A. For example, in Figure 10
(page 18), subfigure (b) shows the graph of the pair of linkings in subfigure (a),
and subfigure (f) shows the graph of the pair of linkings in subfigure (e). Note that
A C A implies Gy C Gpr, and that for any linking A, Gyyy = G (the graph of a
single linking, defined in Section 4.3.2), because Gy} has no jumps (since a single
linking toggles no &s).

A switch edge of a &- or B-vertex x of Gy is an edge between x and one of its
arguments, or a jump to z (if z is a &). For example, Figure 9(e) on page 16 has
three switch edges, the left argument edge of the &, and both argument edges of
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(a)

Linkings At 1 1 : bl o1 bl
PLo(QaPt), (P&P)®(R®R), (R*®R)BR
A= {)‘17/\2} A2 : L | [ B
on T’
‘ ‘ | I‘ | |
(b) Pt Pt P P R R Rt R Rt
The graph G @/ \\&// \GB/ \®/
® %
(©) R
The switching &/ D
cycle C of G
\®/
(d)
The switching R R Rt
cycle C’ of Gp \GB/
(e) N
Linkings 1t n N ' Ll b1
6= (A, A} X P-e(QeP7), (P&P)®(ROR), (R"®R)TR
onT
| 1 | e
0 pt Pt P P R Rt R Rt
The graph Gy @/ \\ / \GB \®/

GB/ &\®/ \

Fig. 10. Subfigure (a) is a pair of linkings A = {A1, A2} whose graph G, is depicted in subfigure
(b). To distinguish jumps, we draw them as curved edges (unless the jump edge was already
present as an argument edge, in which case it remains straight). There is no jump to a leaf of
the right-most link, since it does not depend on the & in A. (This was explained in detail in
Example 4.14, page 17.) Subfigures (c) and (d) show switching cycles of G5. Subfigure (e) is a
pair of linkings § = {A1,A,}, whose graph Gy is (f). This pair of linkings satisfies the toggling
condition: the only subset of § of two or more linkings is 8 itself, so to verify the condition we
need only confirm that Gy contains no switching cycle; this is apparent from the depiction of Gg
in subfigure (f).
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the %. Figure 10(b) has 9 switch edges, the two argument edges of the % and the
7 jumps to the & (two of which are argument edges).

A cycle of Gy is a subgraph of Gy with vertex set {z1,...,2,} for n > 3, all z;
distinct, and an edge x; — x;41 for all ¢ (mod n). A cycle switches or is switching
if it contains at most one switch edge of each & and %. For example, the graph Gj
of Figure 10(b) contains the switching cycles C and C' shown below it (subfigures
(c) and (d)). Our third and final proof net condition on a set of linkings 6 is:

(P3) TOGGLING. Every set A of two or more linkings of 6 toggles a & that is not
in any switching cycle of G .

It is clear from the definition of the graph G, that it suffices to verify TOGGLING
for saturated sets of linkings A, namely, such that any strictly larger subset of 8
toggles more &s than A. Note that there is exactly one saturated set of linkings in 6
for each partial &-resolution of T', the latter being any result of deleting at most
one argument subtree of each & of I'. We retain the more general quantification
over A in the formulation of the toggling condition so that the definition of proof
net is more succinct.

Ezxample 4.15. The pair of linkings A in Figure 10(a) fails the toggling condition,
because of the switching cycle C of subfigure (c), which traverses the &.

More generally, whenever every & is in a switching cycle (in the case of Exam-
ple 4.15, just one &), the toggling condition fails. Another example of this will be
given in Section 6.2.

Ezample 4.16. The pair of linkings 6 in Figure 10(e) satisfies the toggling condi-
tion. Any switching cycle in the graph Gy (Figure 10(f)) is only permitted to use
one switch edge of the &, and therefore to traverse the & it must go via the ® im-
mediately below it. Since there is no cycle containing the ®, there is no switching
cycle through the &.

The box on page 14 defines a cut-free MALL proof net as a set of linkings on a
MALL sequent satisfying all three conditions introduced above: (P1) RESOLUTION,
(P2) MLL, and (P3) TOGGLING. (In other words, a cut-free MALL proof net is a
cut-free MALL proof structure satisfying the MLL and toggling conditions.) In the
example below, we go through the full process of verifying all three conditions.

Example 4.17. Consider the pair of linkings on the sequent I' = P+&P+, P& P
obtained as follows:

ax

PJ_’PGBP PJ_,P@P
&

1
P1&PL PaP
[

Let A1 and A3 be the upper- and lower linking of the concluding sequent, respectively
(each having just one link). We shall verify that 8 = {\;, A2} is a cut-free proof
net. I' has two &-resolutions, I'f = PL&P+, POP and T = PL&P+,P®P. The
resolution condition holds, since § contains exactly one linking on I'}, namely A;.
Here are the graphs Gy,, Gx,, and Gy:
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\ / P
& 3}
]
pt P gx
/ \ :
& ®

pt  pt P p Go
NN

Each A; has just one #-switching, namely Gj,; since each G, is a tree, the MLL
condition holds. Finally, the toggling condition holds since 8 toggles the &, which is
not in any switching cycle of Gy. (An outermost &, i.e., one that is not an argument
of any other connective, can never be in a switching cycle.)®

Section 4.6 provides proof-theoretic intuition for the toggling condition.

THEOREM 4.18 CUT-FREE SEQUENTIALISATION. A set of linkings is the transla-
tion of a cut-free proof iff it is a cut-free proof net.

By a simple induction, the translation of a cut-free proof is a cut-free proof net.
The proof of the converse reduces to a simple induction on the number of %s and
&s (Section 4.13) once we prove (Section 4.12):

LEMMA 4.19 SEPARATION LEMMA. For any cut-free proof net 8, if Gy has a % or
&, then it has a % or & that separates.

Here a %- or &-vertex = separates if it is not an argument (i.e., is an outermost
connective), or it is the argument of y and deleting the edge between z and y
disconnects” Gg. We shall prove the Separation Lemma, via an ordering on &s and
Xs which we call domination®, a concept reminiscent of the ordering induced by
the notion of an empire of Girard [1996], but different in an essential way.

The remainder of this section is structured as follows. Sections 4.4, 4.5 and
4.6 provide intuition for the resolution, MLL and toggling conditions, respectively.
Section 4.7 presents some alternative formulations of the definition of proof net.
Section 4.8 describes how to encode a proof structure/net using weights. Section 4.9
defines a miz net as the analogue of a proof net in the case of MALL augmented with
the mix rule. Section 4.10 notes that the resolution condition, on its own, suffices as

SMore generally, there are n™ proof nets on the sequent &™PL @®"P (above m = n = 2), in
bijection with natural transformations [ [ X — J[™ X on sets, or equivalently, [[* X — [[™ X.
"In the case with mix, read “disconnects” as “increases the number of connected components of”.
8Unrelated to domination in flowgraphs.
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a correctness criterion for additive proof nets. Section 4.11 observes that our cut-
free proof nets exactly capture cut-free MALL proofs modulo commutation of rules.
We conclude by proving the cut-free sequentialisation theorem in Sections 4.12 and
4.13 (the Separation Lemma and the main induction, respectively).

4.4 Intuition for the resolution condition

Recall from Section 4.2 that the set 6 of linkings obtained from a cut-free MALL
proof II comprises one linking Ag € 6y per &-resolution R of II. This correspon-
dence between proof &-resolutions and linkings is what is captured in the resolution
condition. (One can observe this correspondence in Figures 8 (page 13) and 11
(page 22).)

Define a &-assignment of a sequent I' to be a choice of left or right for each
of its &s, i.e., a function from the set of &-vertices of I' to {I,r} (I=left, r=right).
Every &-assignment ¢ defines a &-resolution I'? in the obvious way, by restricting
each & to the argument dictated by its assignment (i.e., delete the right (resp. left)
argument subtree of w iff p(w) = [ (resp. r)). In turn, every &-resolution I'* of
a sequent I' induces a &-resolution IT [ I'™* of a proof IT of I': work upwards from
the concluding rule of IT and delete branches of &-rules according to which branch
of the corresponding &-occurrence is deleted in T'*. Note that more than one &-
assignment can give rise to the same &-resolution of the sequent T', and that more
than one &-resolution of I' can give rise to the same &-resolution of a proof II of
I': see Figure 11.

4.5 Intuition for the MLL condition

Every &-resolution R of a proof II has all additive rules unary. (The @ rules are
unary at the outset, and the & rules become unary upon taking the &-resolution.)
Collapsing the unary additive rules of R (and the now-unary connectives in the
corresponding formula parse trees) yields an MLL proof. Since every linking of 6y
comes from a &-resolution of II, i.e., from a disguised MLL proof, we demand that
every linking of a MALL proof net be MLL correct.

4.6 Intuition for the toggling condition

In the preceding subsections we saw how a cut-free MALL proof IT determines a set
of cut-free MLL proofs, one per &-resolution of II. However, IT is more than just
a set of non-interacting MLL proofs, as each of them is implicitly embedded inside
the tree of II. Correspondingly, a set of linkings merely satisfying the resolution and
MLL conditions need not be sequentialisable, as one must capture the constraint
associated with the superposition of branches of the &-resolutions of II inside the
tree structure of II. We have already seen an example: the pair of linkings A =
{A1, A2}

AL
}\2:

of Figure 10(a) (page 18) satisfies the resolution condition (verified in Example 4.6,
page 14) and the MLL condition (Example 4.12, page 15), but A is not sequential-
isable. It fails to sequentialise because we cannot write down a rule to introduce
the central tensor: its left argument P& P must go in the left hypothesis of the

ProQaPY), (P&I?)@(}IZEBR), (1'2%&)&'#
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Fig. 11. (a) A proof II of a sequent I' illustrating a collapse from &-assignments of T" to &-
resolutions of I" to &-resolutions of TI. The sequent T has 23 = 8 &-assignments, more than its
3 x 2 =6 &-resolutions, more than the 4 &-resolutions of II. (b) The set of linkings associated
with II, one from each of its &-resolutions. It is convenient to show all four linkings on the same
copy of the sequent; no ambiguity arises because every linking has only one link. (¢) For additional
clarity, we show the same set of four singleton linkings displayed on the parse trees of the two
formulas (i.e., we show the union of the graphs Gy for each of the four linkings ).

rule, and its right argument R @ R in the right hypothesis; but then the & will not
be available in the right branch to superimpose a left-& and right-@® rule as would
be required to obtain A; with the left R of R @ R and A, with the right R.

There is a conflict between the central ® and the &: the tensor wishes to separate
its & argument from its @ argument, into distinct non-interacting proofs; meanwhile
the & argument interacts with the @ argument since in the \; the @ goes left iff
the & goes left, a direct dependency (interaction) across the tensor. Via jumps,
the toggling condition captures this kind of dependency, and rules out A as a proof
net: the graph Ga (Figure 10(b), page 18) of A contains the switching cycle

R
/ \
&\ /@
®
(copied from Figure 10(c)) traversing the only &, and therefore breaking the tog-

gling condition. The jump captures the communication between the & and the
®.
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In contrast, the pair of linkings § = {1, A3}

Ar 1 N : bl o7 hL
N P-3o(QoP), (P&P)®(R®R), (R-®R)®R
9t | |

of Figure 10(e) (page 18), formed from A by shifting the end of just one link in As
to create A}, is sequentialisable: after writing down the rule introducing the central
tensor, choose the left-@ rule for R @ R, since both linkings A; and A, choose the
left argument of R @ R. In contrast to the case A = {A1, A2} above, there is no
communication across the tensor between the & and the @. Thus the graph Gy of
(Figure 10(f), page 18) does not possess a jump across the tensor, hence 6 satisfies
the toggling condition, and is a proof net (verified in Example 4.16, page 19).

4.6.1 The Gustave example. In the previous section we saw sequentialisation ham-
pered by a dependency across a tensor, and how this was captured by the tog-
gling condition. In this section we examine a case of dependency across the other
unswitched connective, the plus, yielding additional intuition for the toggling con-
dition.

The following remarkable non-sequential function v is due to Gustave, studied
by G. Berry in the context of sequential algorithms:

v(1,0,2) = u
7(0,y,1) = v
2(#,1,0) = w

for all z, y, and z, possibly divergent/halting. The actual outputs u,v,w are of
no concern, so long as they are non-divergent. Both ~(1,1,1) and ~(0,0,0) are
divergent. This partial function cannot be implemented sequentially. For exam-
ple, suppose our implementation inspects the argument z of y(z,y, z) first. If =
diverges, while y = 1 and z = 0, the equations for v dictate an output w; how-
ever, our implementation would diverge, having become stuck on the divergent zx.
By symmetry, we cannot choose to inspect y or z first either, hence there is no
sequential implementation of +.

Girard (e.g. [1999, sec. 5.5.4]) and Abramsky and Mellies [1999] have studied
a corresponding example in the context of models of linear logic. Analogous to
Girard/Abramsky/Melliés, in our setting one can capture the three equations spec-
ifying v as part of a set of five linkings on the sequent

(P&Q)® (P2 Q"), (Q&PreQM)®P, (P-eQM)&P)aQ,

satisfying the resolution and toggling conditions. To emphasise the rotational sym-
metry, write R for P+ ® Q=, so that the sequent becomes the more palatable

I = (P&Q)® R, (Q&R)® P, (R&P)& Q

and write the “triplet” linking
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to abbreviate a pair of links

1 —
P PteQt Q

The Gustave proof structure? G consists of the following five linkings on T,
three shown above, and two below.

From left to right, the three &s correspond to the arguments z,y, z of the Gustave
function v specified on page 23. Values 1/0 for z,y, z correspond to the &s being
left /right, respectively. Thus the eight possible (non-divergent) inputs to the Gus-
tave function correspond to the eight &-resolutions of the sequent. The top three
linkings correspond to the three Gustave equations, in order, from top to bottom.
For example, the top linking takes the first & left, the second & right, and is am-
bivalent to the third &; this corresponds to the equation for (1,0, 2). The two
underhanging linkings correspond to the divergent v(1,1,1) and (0,0, 0), and are
added so that the resolution condition holds. (One can readily verify the resolution
condition by working through each of the eight &-resolutions and checking that
exactly one linking fits in each case.) The MLL property holds since every linking
induces the same MLL proof net, the pair of links displayed immediately prior to
the five Gustave linkings.

The Gustave proof structure is not the translation of any cut-free proof: any
proof of T must end in a final ®-rule (a simple syntactic observation), hence any
translation of a proof of I' has at least one of the six ®-arguments uninhabited
(corresponding to softness [Joyal 1995]); G touches all six arguments. Thus, by the
sequentialisation theorem, we should be able to witness the failure of the toggling
condition. This is indeed the case, since every & is contained in the following
switching cycle of the graph of G:

— NS R
Q* Q © ®
AN / \ AN
& ® & P & Q
\/ \/ \/

(Note that we did not require jumps to forge this switching cycle.)

P

9The corresponding structure in Girard’s setting is not a proof structure. See the end of Section 6.3
(page 62) for a direct verification, or footnote 30 (page 63) which shows that every Girard proof
structure must be soft.
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4.6.2 Strong—but not too strong. We have seen from the previous two sections
that the toggling condition captures unwanted dependencies across ®s and @s by
finding switching cycles through &s. In this section we illustrate a subtle feature of
the toggling condition: it is possible to have switching cycles through &s without
obstructing sequentialisability. One has to be extremely discerning of those switch-
ing cycles through &s which are essential, in the sense that they represent intrinsic
parallelism, versus those which are harmless, and do not impair sequentialisation.

We shall define a proof net 6 on a sequent I' of three &s, with 23 = 8 linkings
(one per &-assignment of three independent &s). The graph Gy of € will have the

shape

®—&p— o —&g—®
|
&g

NN

® —&p &Q—®

with the portion

constituting a switching cycle of Gy between the &-occurrences & p and &g.
The underlying sequent will be

(131)® (P&P), (1®1)® (Q&Q), (P ®Q+)®Rt, R&R

where 1 denotes the tensor unit. (As with MLL proof nets, our MALL proof nets
extend trivially to the tensor unit 1: view each occurrence of 1 as (P®P1) for a
fresh atom P each time.!?) Links on the atoms P, Q, R are forced, so to determine
the eight linkings of 8 it suffices to specify how the @s choose their 1s:

(a) in (1® 1) ® (P&P) choose the right 1 iff R&R is left and Q& is right;
(b) in (1® 1) ® (Q&Q) choose the right 1 iff R&R is right and P&P is right.

The set of linkings 6 is sequentialisable. (Figure 12 shows a sequentialisation.) The
graph Gy of 8 contains the following switching cycle C:

jumpy
jumps

1

/ /
EB\®/& EB\®/&

Due to the way we defined the linkings in clauses (a) and (b) above, given a set A
of two or more linkings of 6:

10Similarly, one can define the plus unit 0 as PL ® P for a fresh atom P each time. Note the
interesting complementarity between 0 and 1, units which are not dual in the logic.
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(1) jump; exists in G5 only if & possesses its left argument in G4, and

2) jumps exists in G only if &g possesses its right argument in Gy .
J g g

Therefore C can be in Gy only if A toggles & . Since &g is outermost, it cannot
be in a switching cycle, hence C' cannot witness a failure of the toggling condition.
We deduce that 8 satisfies the toggling condition, and is therefore a proof net.
Thus C is harmless, in the sense that it does not represent any inherent lack of
sequentialisability in 6.

Here we witness the subtlety of the toggling condition at work: it must rule out
many switching cycles—but not too many.

Proof-theoretic analogue. Additional intuition for the toggling condition follows
from analysing the harmless switching cycle above at the proof-theoretic level. The
&-rule skeleton of the sequentialisation of 6 depicted in Figure 12 is:

&p — &p — &g — &q
: &g : - : &p
. &n
F(&Pa &Q7 &R)

Here each &-rule is marked with the &-vertex it introduces into I', e.g., each
& p introduces &p (the &-vertex of P& P) into (a subsequent of) T.

In the left branch of the proof, &p is forced to come above &g, and in the right
branch, &g is forced to come above &p, forced in the sense that every sequential-
isation of # must have exactly the same &-rule skeleton. The &-rules simply do
not commute past each other. Similarly, &g is forced to come below &p and &q.
Writing &p — & for & p is forced to come above &q”, we derive
the following precedence graph:

&P<—&Q

&g

The back-and-forth cycle between &p and &g in this graph is the direct analogue
of the switching cycle C of Gy analysed earlier. That C' is harmless corresponds to
the fact that the cycle here is a relic of the superposition of the two branches of
the proof: &p —> &g holds only in the left branch of the proof, and &g — &p
holds only in the right branch.

4.7 Alternative but equivalent definitions of proof net

This section considers alternative definitions of a proof net obtained by varying
(P1) RESOLUTION, (P2) MLL and (P3) TOGGLING.

4.7.1 Acyclicity, balance, and connectedness. Say that a linking A on a MALL
sequent I' is balanced if |ax| = |®| + 1, where |ax| denotes the number of links
in A and |®| the number of tensors in the additive resolution I' [ \. Consider the
following properties.



28 D.J.D. Hughes & R.J. van Glabbeek

(A) every ®-switching of A is acyclic (a) some %-switching of A is acyclic
(B) A is balanced
(C) every ®-switching of A is connected (c) some %-switching of A is connected

By definition, the MLL condition (P2) holds for a linking A precisely when X satisfies
(A)A(C).

PROPOSITION 4.20. The following conditions are all equivalent to the MLL condi-
tion (P2) on a linking A: (A)A(C), (A)A(c), (a)A(C), (A)A(B) and (B)A(C).

The proof is essentially due to the simple combinatorial relationship between the
number of vertices and the number of edges of a tree. See Appendix B.

4.7.2 Switching acyclicity and switching connectedness. It is immediately clear
that (A) above is equivalent to G being switching acyclic, that is, containing
no switching cycle. In the presence of (A), condition (C) is equivalent to Gy being
switching connected, that is, any two vertices of Gy are connected by a switch-
ing path, a path that does not traverse two switch edges of any given %. Switching
connectedness is clearly implied by (C); the equivalence with (C) follows from the
observation that one can carry out sequentialisation (specifically, the MLL restric-
tion of the proof of the sequentialisation theorem) with this condition in place of
(C).!! Thus we have proved:

PROPOSITION 4.21. The MLL condition (P2) on a set of linkings 6 is equivalent to:

(S) For every linking X € 8, the graph Gy is switching acyclic and switching con-
nected.

4.7.3 Illegal unions of switching cycles. We provide an alternative formulation of
the toggling condition (P3), assuming the MLL condition (P2). Call a union S of
switching cycles of Gy #llegal if it is non-empty and for some A C 6 with S C G,
every & toggled by A is in S.

(P3!) Gy contains no illegal union of switching cycles.

Note that this condition implies condition (A) for each linking (every #-switching
is acyclic). The proof of equivalence with (P3) follows from simple manipulation
using Proposition 4.20 above. Details are in Appendix C.

CONJECTURE 4.22 SINGLE SWITCHING CYCLE CONJECTURE. Property (P3!) is
equivalent to:

(P37) Gy contains no illegal switching cycle.
In other words, the original toggling condition (P3) is equivalent to:

(P37) For any set A of two or more linkings of 8 and any switching cycle C of
Ga, A toggles a & that is not in C.

1 The three subcases of the primary induction step on page 38 use the fact that [0 satisfies (P2)]
implies [8; (or § on I, in case (a)) satisfies (P2)]. This implication also holds for the variant of
(P2) with switching connectedness instead of (C). There are three other places in the primary
and secondary induction of the sequentialisation proof where (C) is used, listed in Footnote 21 on
page 39; in each case, the property derived is also a consequence of switching connectedness.
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4.7.4  Additional jumps. We shall use the following variation of the MLL condition
(P2) in comparing Girard’s proof nets to ours in Section 6.4. Given a set of linkings
6 on a sequent I and a subset A C 8, let G§ be defined as G5 but with jump edges
between every &-vertex w € Gp and the leaves of every link a € Gy depending on w
in @ (rather than in A, as in the definition of G). Note that Gy = gﬁ. Define the
variant (P2*) of (P2) by using G? {x} in place of Gy in the definition of a %-switching
of A, and in taking the switching c{elete in addition all but one switch edge of each
& (1 e., we move from %-switchings to “%/&-switchings”). Clearly (P2*) implies
(P2), since it involves more switchings. In fact, (P2*) is strictly stronger than (P2):
for § = {A1, A2} of Example 4.6 (page 14), the graph ggl has a switching cycle
(cycle C in Figure 10(c), page 18), whereas G, (Figure 9(e), page 16) does not.
However, (P2*) is implied by the MLL condition (P2) and the toggling condition
(P3) together:

ProprosSITION 4.23. (P2) A (P3) = (P2%).

PRrOOF. Let 6 be a set of linkings satisfying (P2) and (P3), and let A € 6. By (P2),
A is balanced. It suffices to show that g§ has no switching cycle, for this implies
that every %/&-switching of A within gg is acyclic, and hence also connected, by
(the proof of) Proposition 4.20.

Towards a contradiction, assume C is a switching cycle of Qf\. If C does not
contain a jump edge, it is a switching cycle of Gy, contradicting (P2). Otherwise,
let A be the largest set of linkings in 6 containing A and toggling only &s occurring
in C. For every jump edge in C from a leaf to a &-vertex w, there is a linking A’ € 0
such that w is the only & toggled by {A,A'}. Hence X' € A. Thus, all jumps in C
are also present in Gy, so C' is a switching cycle of G5 containing all &s toggled by
A. Since |A| > 2, this contradicts (P3). O

We could also define a variant (P3*) of (P3) with more jumps, using G instead of
Ga. By an argument similar to the one above, this variant is equivalent to (P3).

4.7.5 Other variations. In Section 6.3 we develop a correspondence between the
resolution condition (P1) and Girard’s so-called technical condition [1996]. We also
present alternative formulations of (P1) and the technical condition, and note that,
without monomials, the Abramsky-Melliés reformulation [1999] of the technical
condition is no longer valid.

4.8 Weights

This section describes how to encode any proof structure (hence any proof net)
as a single set of links labelled with predicates, called weights (c.f. [Girard 1996]).
Figure 5 (page 7) conveys the idea informally with an example.

Recall from Section 4.4 that a &-assignment of a sequent I' is a function from
its &-vertices to {l,r} (I=left, r=right), and that every &-assignment ¢ defines
a &-resolution 'Y by restricting each & to the argument dictated by ¢. Mul-
tiple &-assignments can determine the same &-resolution. For example, if T' =
(P&1Q)&2 R, then the assignments &1 + [, &2 — r and &; — r, &z — 7 both
determine the &-resolution (P&;@Q)&2R retaining only R. See also Figure 11
(page 22) for more on the relationship between &-assignments and &-resolutions.

Let 8 be a proof structure on I'. Given a &-assignment ¢ of I', write A, for the
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unique linking of 6 which is on the &-resolution I'? of ¢ (existence and uniqueness
due to the resolution condition (P1)). Every link a of § determines a predicate on
&-assignments, its weight p(a), by ¢ € p(a) iff a € A,. One can then represent 6
by its links labelled with weights, as in Figure 5 (page 7), for example.

Weights can be expressed succinctly as follows. First, mark each &-vertex with
a distinct subscript, x, y, ... . Write z as shorthand for {¢ : ¢(&;) =1} (all
&-assignments that take &, to the left) and T as shorthand for { ¢ : ¢(&;) =1}
(all &-assignments that take &, to the right); V and A are union and intersection,
respectively. Again, see Figure 5 for an example.

The set of linkings of a proof structure is recoverable from its weight presentation
as follows. Every &-assignment ¢ determines a linking A, by deleting each link a
whose predicate does not hold, i.e. A, = {a : ¢ € p(a)}. Taking each &-assignment
in turn produces the full set of linkings.

4.9 Mix nets
Let MALL™* denote the extension [Girard 1987] of MALL with the additional rule

and define the following variant of the MLL condition on a set of linkings 6 by
relaxing connectedness:

(P2™x) mMLL™*. Every %-switching of every linking of 6 is acyclic.

A cut-free miz net is a cut-free MALL proof net but for relaxing connectedness
of B-switchings, i.e., a set of linkings satisfying (P1) RESOLUTION, (P2™*) MLL™*,
and (P3) TOGGLING.

THEOREM 4.24 CUT-FREE MIX SEQUENTIALISATION. A set of linkings is the
translation of a cut-free MALL™ proof iff it is a cut-free miz net.

We prove this theorem concurrently with the main sequentialisation theorem. Only
very minor modifications are necessary.

Proof nets for MLL with mix and weakening were discovered prior even to linear
logic [Ketonen and Weyhrauch 1984]. (Bellin and Ketonen [1992] correct a bug in
the proof of the sequentialisation theorem.)

4.10 The resolution condition suffices for pure additive proof nets

The RESOLUTION condition, on its own, suffices as a correctness criterion for pure
additive proof nets. Let additive linear logic, ALL, be MALL without ® and 7.
Every ALL sequent has exactly two formulas. When a cut-free ALL proof translates
into a set of linkings, every linking is merely a single link between the two formulas
of the sequent. Thus every cut-free ALL proof II of the sequent I' = A,B
translates into a set L of links between A and B, a binary relation between the
leaves of A and the leaves of B. In this simple pure additive case, the RESOLUTION
condition for L on T' reduces to:

— RESOLUTION'. For any &-resolution T'* of T, a unique link of L is on T™*.
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I II3 11 11> 11 II3
M B,A,X B,AY A B,A,X T,A BAY
_ & — ® 624
I, A B, A, X&Y IMA® B,A,X T,A®B,A,Y
® &
I,A® B,A, X&Y IA® B,A, X&Y
11 11y 1I3 114 15} 113 1Ly 114
IA,X I,B,X T,AY T,BY A, X T,AY T,B,X T,BY
& & — & &
T, A&B, X T,A%B,Y T, A, X&Y T,B, X&Y
& &
T, A&B, X&Y T, A&B, X&Y

Fig. 13. Two examples of rule commutation. The commutations can be read in either direction.

This yields a proof net for cut-free ALL: by a simple induction, the condition char-
acterises the image of the translation from cut-free ALL proofs.!? The category
of cut-free ALL proof nets is the free (binary) product-sum category generated
by the set of literals [Hughes 2002; 2005]. Relaxing uniqueness in RESOLUTION’
characterises free distributive lattice categories'® [Hughes 2005], and (also relax-
ing the inter-formula restriction on links) captures the image of proofs in classical
propositional sequent calculus with mix (translated in the obvious way) [Lamarche
and Straflburger 2005]. For abstract classical proofs with a richer graph-theoretic
structure on axiom links, rather than simply a set (or multiset) of axiom links, see
[Hughes 2004].

4.11 Representation of cut-free proofs modulo rule commutation

The kernel of our function from cut-free MALL proofs to sets of linkings coincides
precisely with equivalence modulo rule commutation. A rule commutation is a local
conversion on a proof that retains the subproofs of its hypotheses, with possible
duplication/identification. Figure 13 shows two examples of rule commutation.

In a sibling paper we prove that two cut-free MALL proofs translate to the same
proof net if and only if they can be converted into each other by a series of rule
commutations. The same paper explores other aspects of rule commutation in
MALL (with/without the mix rule, with/without the cut rule).

4.12 Proof of the Separation Lemma

This section proves the Separation Lemma (Lemma 4.19, page 20), the key to the
Sequentialisation Theorem.
Throughout this section 6 is a cut-free proof net on a sequent I'. For vertices x

12Using softness: given an ALL proof net on A @ B,C @ D one can apply a @-rule; otherwise
there are edges A-C and B-D (or A-D and B-C), contradicting uniqueness in RESOLUTION'.
Composition (see Section 5.2, page 43) is also simple in the special case of ALL proof nets: it
reduces to the standard path composition of binary relations.

13Dosen and Petrié define a distributive lattice category as a product-sum category with a distri-
bution, equipped with certain coherence laws [DoSen and Petri¢ 2004].
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and y of the graph Gy, write z —y if there is an edge between x and y, and write
r — y iff z is an argument of y, {z,y} is a link'*, or there is a jump from z to y
(i-e., = is a leaf of a link depending on a &-vertex y of ).

Henceforth “%/&” abbreviates “% or &”. A path from z¢ to z, in Gy is a
sequence of distinct vertices zoz1 . ..x, (n = 0 permitted) such that x; —z;yq for
0 < i < n. (Note that a path cannot intersect itself.) A path switches or is
switching if it does not traverse two switch edges of any ®/& (i.e., z;—1 = z; +
ziy1 only if x; is not a B/&.) A strong path xy ...z, is a switching path which
does not start from a /& along one of its switch edges (i.e., zg + 1 only if g is
not a ®/&).

Suppose paths 7 = zg...z, and 7' = yg...y,, are disjoint but for =, = yo,
so that the composite m;7' = zg...ZY1...ym is a well-defined path (non self-
intersecting). If 7 and #’ switch:

— ;7' need not switch (namely if 2, = yo is a &/%® and z,—1 = , = yo + v1),
even if 7 is strong.

— if 7' is strong, then m; 7' switches.
— if 7 and 7' are strong then ;7' is strong.

Let X be a set of vertices in Gy. A path is in X if each of its vertices is in X.
Write £ = x y (and/or y <x z) if there is a strong path in X from z to y.

Ezample 4.25. If C is a switching cycle then x =¢ y for all z,y € C (case z = y
included), by going round C' one way or the other to avoid departing along a switch
edge of z, if z is a B/&.

Note that the relation = x is reflexive, but in general not transitive.'® We shall
sometimes overload the notation z = x y, using it to denote a specific choice of
strong path in X from z to y. For example, if x = x y and y =y 2z, with X and YV
disjoint but for y, then we may speak of the strong path x = x y =y zin X UY
from z to z.

A set X of vertices in Gy is an z-zone if, for all y € X, there exists z € X with
Yy=>xz— .

Example 4.26. Let x be a vertex in a switching cycle C. Then C' is an z-zone: let
z be a vertex adjacent to z on C' with z — x (uniquely determined if z is a /&,
since C switches), then y =¢ z for any y € C (see Example 4.25).

Given a %/&-vertex = and a vertex y, define x dominates y, denoted z J y, if y
is in an z-zone. If z is not dominated, it is free.'®

LEMMA 4.27 PROPERTIES OF DOMINATION.

— SWITCH. If x < y is a switch edge then x 1 y.
— TRANSITIVITY. Domination is transitive.

4 Note that if {z,y} is a link then z <> y, i.e., 2 — y and T + y.

BIfy »p<yandp—t,paBandta®,and X = {z,p,y,t},thenz =>x t =x y yet = Ax y.
16The union of all z-zones is itself an z-zone, which we call the realm of z, a concept reminiscent
of the notion of empire of [Girard 1996], but different in an essential way. The realm of z is the
set of all vertices dominated by .
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— SELF. A B/&-vertex dominates itself iff it is in a switching cycle.

— JUMP-CYCLE. If w + 1 is a jump and | is in a switching cycle C, then w
dominates every vertezx of C'.

— EXTEND. If z O yo and there is a path yo . .. yn which never enters a /& from
above (i.e., yi_1 — y; only if y; is not a B/&), then x 1 yy.

— FORK. Let x be a B/& and let yo . ..yn be a switching path with yo — = < yn.
Then z 1 y; for each i.

— MEET. Ifx Jy C z for distinct free B/&-vertices  and z, then there exists a
switching path zyo . ..ynz with x < yo and y, — 2.

PROOF. SWITCH. {y} is an x-zone.

TRANSITIVITY. We show that if X is an z-zone, y € X and Y is a y-zone, then
X UY is an z-zone. Take z € Y\ X. We have z =y ¢y - y =x 2’ — z for
some z' € X and y' € Y. If the strong path z =y 3’ does not intersect X, then
z =y y' =y =>x x' is a strong path, so we are done. Otherwise let " be the first
vertex along z =y ¥’ that is in X. Since 3" € X we have y" = x 2" — z for some
2", and the initial sub-path of 2 =y ¢’ from 2z to 3" is a strong path z =y y"; the
composition of these paths yields 2z = xy 2" — z, since the only common vertex
is y".

SELF. If x O x then © = x z — x for some z-zone X, hence z is in a switching cy-
cle. Conversely, every switching cycle containing x is an z-zone (see Example 4.26).

JUMP-CYCLE. C is a w-zone. (See Example 4.25.)

EXTEND. Let X be an z-zone containing yo, and let y; be the last vertex of
Yo---Yn in X. Then y, =x 2z — x for some z. Now Y = X U {yg+1,...,Yn} is an
z-zone, since for each i > k the composite y;y; 1 ... Yk+1Yx = x 2 is a strong path
inY.

FORK. {yo,---,Yn} iS an z-zone.

MEET. Let X be an z-zone containing y, so there is a strong path 7, = zg ... 2,
in X with g =y and z,, — x. Let x; be the last vertex of m, with z 3 2. Since
z 7 xy, there is a strong path 7, in a z-zone from zj to some 2z’ with 2’ — 2. Now
TLpTp_1 .. Tp417,2 iS the desired switching path, well-defined because: (a) every
vertex is distinct (none of the included z; is in 7, since z 7 z; and z dominates all
of m, (because 7, is in a z-zone); none of the x; equals z or z, since z 1 x; (because
T, 18 in an z-zone) and z and z are free; neither z nor z is in 7, since every vertex
of 7, is dominated by z, and z and z are free), and (b) the path x,z,_1 ... Tpr17,
switches (since ,%n—1 . ..Zr switches and =, is strong). O

Figure 14 shows the dependency between the above domination properties and
the forthcoming lemmas (and one corollary) en route to the Separation Lemma.
We do not use any properties of domination other than the seven shown in the
figure (those of Lemma, 4.27).

A subset A C 0 is saturated if any strictly larger subset of 8 toggles more &s
than A. Clearly 8 itself is saturated. For A a set of linkings and w a & of I let A%
denote the set of all linkings in A whose additive resolution does not contain the
right argument of w. Write A = X if linkings A, \’ € @ are either equal or w is the
only & toggled by {A, X'}. It is straightforward to check that:

(S1) If A is saturated and toggles w then A is saturated.
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4.31
4
4.32
{ 431 Gr215¢G0x = |l = winGa
JUMP- _ 433 . TRANSI- 4.32 3 jump out of U switching cycles
CYCLE TIVITY 433 r3Jz = JyAy3dz
1 v 4.34 every /& is free or C by free
Va st 435 3 %/& = 3free B/&
) SO TEND 436 x free, msep. = YT —2
SELF e d N Sep. 3 ®/& = I separating B /&

4.35 4.36 < MEET

N,

FORK — Sep.

Fig. 14. Dependency between domination properties and lemmas (and Corollary 4.35) en route
to the Separation Lemma, denoted “Sep.” above. A rough mnemonic guide is shown to the right
of the diagram.

(S2) If A is saturated and toggles w and A € A then A\ = \,, for some \,, € A¥.
(S3) If A is saturated and toggles w and A = X for A, \' € A then

T

)\I

€z !
A

w

A
Aw

for some Ay, Al € AV,
Examples below illustrate (S2) and (S3).

Ezample 4.28. (S2). Let A be the following set of three linkings, each having just
one link:
,?\
(P&P)&, P, Pt
| I—

Two linkings are shown above and one below, and w is the second &. AY is the top
pair of linkings. If A is the bottom linking, either of the top two linkings suffices
for Ay in (S2).

Ezample 4.29. (S3). Let A be the following set of four linkings, each having just
one link:

]
P &,P, P &,P*
‘I—l—,
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Call the linkings rr,rl,Il,lr, from top to bottom. The left & is x, and the right &
is w, thus A¥ = {rl,1l}. Here are two possible instances of the square in (S3):

€T T

rr Ir rr rr
€T

rl =11 rl == rl

Example 4.30. Let A be the same set of three linkings as in example 4.28:
,?\
(P&, P)&, P, P*
[ I—

Let A\, X', )" be the three (single-link) linkings, from top to bottom. Thus A¥ =
{\, \'}. Here is a degenerate instance of the (S3) square, in which the (suppressed)
bottom edge is \'' = A"

T

A=——==X

This illustrates why the definition of A; = A, includes equality A; = As.

LEMMA 4.31. Let w be a & toggled by a saturated set A C 6, and let e be an edge
in Ga originating from a leaf I, such that e € Gaw. Then the jump | — w is in Gy .

PROOF. Let e bel — x. If e is not a jump, e € Gaw implies | € Gaw. Choose A € A
with [ a leaf of some link a € X\. By (S2) A 2 \,, for some A\, € A”. Since a &€ A,
(for | & Gaw), the jump I — w is in Gy.

If e is a jump, we have \,\' € A with a € A\, a € X', [ aleaf of a, and A = )\'. By
(S3) A Z Ay £ A, Z X for A\, A, € A¥. Either a & A\, or a € X, else e € Gpu;
either way, the jump | - wisin Gy. O

LEMMA 4.32. Every non-empty union S of switching cycles of Gy has a jump out
of it: for some leaf 1€ S and &-vertex w¢ S, there is a jump |- w in Gy.

PrOOF. Let A be a minimal saturated subset of § with G containing S. By (P2),
Z-switchings of singleton subsets of 8 are acyclic, so A contains at least two linkings.
Let w be a & toggled by A that is not in any switching cycle of G5 (existing by
(P3)), so w ¢ S. Since A is minimal, S € Gaw (using (S1)), so some edge e of S is
in Gp but not in Gaw. Without loss of generality e is an edge from a leaf [, because
for any other edge y - z in S we havel - 2y —» ... = 2,, =y = z in § for some
leaf I, and y — z is in Gpw whenever [ — 2; is in Gpw. By Lemma 4.31 the jump
I - wis in Gy, hence also in Gg. O

LEMMA 4.33. If x Oz then y O x for some &-vertexry A y.

ProOF. By domination property SELF, x is in a switching cycle. Iterate Lemma
4.32, adding switching cycles until jumping to a &-vertex y not in a switching cycle.
Then y 3z by JUMP-CYCLE and TRANSITIVITY, and y Ay by SELF. [
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LeMMA 4.34. Every B/& of Gy is either free or is dominated by a free /& .17

PROOF. If z( is neither free nor dominated by a free %/&-vertex, then we can
build an infinite chain z¢ C z; C ... of distinct vertices with the same property.
If ; O z;, obtain z;41 A x;41 3 z; from Lemma 4.33; x;y; is fresh otherwise
Zir1 O Tiy1 by TRANSITIVITY. If z; Z x;, then ;1 exists since z; is not free; x; 1
is fresh otherwise x; 1 z; by TRANSITIVITY. [

COROLLARY 4.35. If Gy has o B/& then it has a free B/&.

Distinct % /&-vertices z and y or Gy are face-to-face, denoted x +— y, if there is
a switching path zzy ... 2,y in Gy such that x < 2y and 2, — y, and are back-to-
back, denoted x —¢ y, if there exists a path xzg...2,y in Gy such that z — 2
and z, < y, and none of the z; are %/&-vertices (so in particular zzp...z,y is a
strong path).

Recall that a % /&-vertex = of Gy separates if it is not an argument (i.e., is an
outermost connective), or it is the argument of y and deleting the edge between x
and y disconnects'® Gy.

LEMMA 4.36. If o B/&-vertex x is free and does not separate, then © —<+ y and
T +— z for free y and z.

ProOF. Since z does not separate, it is in a cycle C' (say clockwise) whose first
(resp. last) edge is oriented out of (resp. into) z. Take y to be the first /&
reached clockwise along C from xz. Then x —<« y (otherwise y 1 z by SWITCH
then EXTEND) and y is free since y' 1 y implies y' 1 x by EXTEND, contradicting
the freedom of z.

By SWITCH, the anti-clockwise neighbour of z in C' is dominated by z. Let v be
the first vertex reached anti-clockwise from z that is not dominated by z, and let
v' be its predecessor. Since z 3 v', we have v a 8/& and v — v, otherwise x J v
by EXTEND. Let z = v if v is free, otherwise let z be a free /& dominating v
provided by Lemma 4.34; in the first case z 1 v' by SWITCH, in the second case by
EXTEND.

8

(/e

Note that z # z since either v # z (case z = v) or z J v [ x (otherwise). Apply
MEET to z Jv' C 2. O

17This lemma is not specific to proof nets, but is a general observation about binary relations .
Say that = is >-dominated if y > x for some y, and >-free otherwise. For any finite transitive
binary relation > such that > x implies y > z for some y ¥ y (c.f. Lemma 4.33), every z is
either »-free or y > = for some >~-free y.

181n the case with mix, read “disconnects” as “increases the number of connected components of”.
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All the auxiliary material is in place for us to prove the Separation Lemma (if Gy
has a %%/& then it has a separating!® % /&, page 20).

PROOF OF LEMMA 4.19 (SEPARATION LEMMA).  If G had no separating % /&
then zg +— =1 =4 2 <— 23 =+ ... for free B /&-vertices z; with ;41 # z;
by Lemma 4.36, and xg existing by Corollary 4.35. By finiteness, the composite m
of the paths witnessing the «+—— and —« relations eventually intersects itself at a
vertex z, yielding a path 7' = zyo ...y, such that {z,yo,... ,yn} is a cycle. Each
witness is a switching path, so 7' is a switching path (since by design, composition
at each z; avoids introducing consecutive switch edges of z;). Furthermore, one
of the z; must be among the y; (since each witness is a path of distinct vertices).
Using SELF if {z,yo,...,yn} is a switching cycle, and FORK otherwise, this z; is
dominated, a contradiction (since z; is free). [

4.13 Proof of the cut-free sequentialisation theorem

With the Separation Lemma in hand, the proof that every cut-free proof net is the
translation of a cut-free proof reduces to simple induction.

Let 6 be a proof net on I'. We proceed by induction on the sum of the number
of @s and &s of Gy.

Base case (primary induction) I' is %/&-free, hence 6 comprises a single linking
A on I'. We proceed by induction on the number of connectives of T'.

e Base case (secondary induction). T’ contains no connectives, so I has the form
P, Pi, ..., P,, P for n > 0 and propositional variables Py, ... , P,, and X links
P, and Pt for i = 1,..,n. By (P2) n = 1. The axiom rule with conclusion
Py, Pt is a sequentialisation of 6.

e Induction step (secondary induction). With no &s, G, is the only B-switching of
A, so by (P2) G, is a tree.

— Suppose I' = A, A @ B, with ®-vertex x € Gy corresponding to A @ B. Since
T' [\ is an additive resolution, x is unary in Gy, i.e., there is a unique y € Gy
with y — z. Depending on whether y is the left/right argument of z, let p
be a left /right ®-rule, with conclusion A, A® B and hypothesis I = A, A or
A, B, correspondingly. The linking X on T also constitutes a linking A’ on T,
since no leaves of the deleted G-argument were incident with a link of A. The
graph Gy is a tree, because G, is a tree. Hence 8' = {)\'} is a proof net on
I'. By induction, 8’ is the translation of a cut-free MALL proof of IV, which
when followed by p constitutes a cut-free MALL proof of I' whose translation
is 6.

— Suppose I' = A, Ag ® Ay, with ®-vertex z € Gy corresponding to Ag ® Aj.
Deleting x separates the tree Gy into a left tree Ty and right tree 77 whose
respective conclusions define sequents Ay and Ay, a partitioning of A. Let p
be a ®-rule with conclusion T' and hypotheses Ag, Ag and Ay, A;. Since Gy
is a tree, no link of A goes between Ag, Ag and A, A1, hence A partitions to
form linkings A¢g and Ay on Ay, Ag and Ay, A;, respectively. Each 6; = {\;}
is a proof net on A;, A; since each Gy, = T; is a tree. Appeal to the induction
hypothesis with §y and 61, in the manner of the @& case above.

19We actually prove a stronger result, that if Gy has a %8 /& then it has a separating free % /&.
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Induction step (primary induction) I' has a /&. By (P2) Gy is connected.

(a) Suppose I' = A, AB B, with B-vertex x € Gy corresponding to A%B. Let p be
a %-rule with conclusion I and hypothesis I = A, A, B. The sequents I" and
I'" have the same leaves and (aside from the presence/absence of z) the same
&- and additive resolutions, so § constitutes a proof structure on I'V. On IV, the
Z-switchings of the linkings of § are trees, since they are obtained from those
on I' by deleting z. Any subset A C 6 toggles the same &s in ' as it does in
I, and Ga has the same switching cycles with respect to I’ as with respect to
I'. Therefore 6 is a proof net on I''. Appeal to the induction hypothesis with
the proof net 6 on I'; follow the resulting proof with p.

(b) Suppose I' = A, Ap& A, with vertex w € Gy corresponding to Ag&A;. Let p
be a &-rule with conclusion I' and hypotheses Tg = A, 4g and I'; = A, A;.
Define the sets of linkings 6; on T'; to comprise those linkings of § which are on
I'; C T'. Trivially, each 6; is a proof net. Appeal to the induction hypothesis
with each 8;; combine the resulting proofs with p.

(¢) Suppose Gp has no —-terminal (i.e. concluding) % or &. By the Separation
Lemma Gy has a ®/&-vertex = such that the deletion of the edge z — y
disconnects Gy into Gg and Gy.

Let Go be the component containing z, and let I'g comprise the formulas
corresponding to the —-terminal vertices of G (some formulas of T' together
with the subformula A& B corresponding to x). Define®® §y = {\ [Ty : A € 6}
on Iy (each A[Tg is well-defined since no a € A goes between Go and G1).

Let T'; be the subsequent of ' containing the formulas corresponding to the
—-terminal vertices of G;. In G, y is —-initial. Form G} from G; by adding
literals P and P+ with a link edge a between them. Let fl be I'y with P
substituted for the subformula A& B corresponding to x, and let T'” = I'y, P+.
Define 6; = {\ Ty U{a}: X €6} on T}.

Claim: © € T[X for all X € 6.

Proof. If not, there is A € 6 and a &-vertex w with z in I'[ A but not in T' [ A,
for some \,, € 6 such that A 2 \,,. Thus there is a jump ! — w in Gy for some
I € Go with [ in a link of A\ A,. Since linkings are total on additive resolutions
there is a leaf I’ in a link of A, \ A connecting to the formula containing z, but
not satisfying I' — --- — x, so there is a jump I’ — w in Gy. If w € Gy then
I' = wis a jump from G; to Gy, and if w € G; then | — w is a jump from G
to G1; either case violates the disconnectedness of Gy from G;. m

The claim implies that 6, and 6 are sets of linkings on I'y and '}, respec-
tively. Moreover, Gy, = G and Gy, = Gf. We now check that 8y and 6, are
proof nets, i.e., satisfy (P1)—(P3). Since 0 satisfies (P1), 6y (resp. 61) has at
least one linking on every &-resolution of T'y (resp. T'). Had 6; two distinct
linkings on the same &-resolution, there would be a jump from a link in G; to
a & in G;_;, violating the disconnectedness of Gy from G;. Thus 6; satisfies
(P1). (P2) is trivially inherited from . Finally, (P3) holds since any set A’ of

20This instance A [T'g of restriction is a normal instance of restriction, and should not be confused
with the notation I' [ for the additive resolution of a linking A on T".
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linkings in 6y or 6; corresponds to a set A of linkings in 8 toggling the same
&s, such that any switching cycle of Gy: is a switching cycle of Gy .

Since T'p has an outermost &, by case (b) above 6y is the translation of a
cut-free proof Iy of I'g. Since Gy, has less s and &s than Gy, by induction
0, is the translation of a cut-free proof IIy. Substituting Iy for the axiom rule
with conclusion P, P+ in II; yields a proof whose translation is 6. O

In the case of MALL™* the connectedness requirement of (P2) does not apply.
In each of the cases (a)—(c) of the primary induction step above we check that
satisfying (P2) implies 6; (or # on I, in case (a)) satisfies (P2); note that this also
works for (P2™X). Additionally, connectedness is used three times in the above
proof.2! To prove that a set of linkings is the translation of a cut-free MALL™*
proof if it is a cut-free mix net, in each part of the inductive proof above, the case
that Gy is not connected can be dealt with by partitioning I' into a number of non-
empty subsequents I';, each harbouring a connected component of Gyp. The mix
net 6 projects to mix nets §; on I';, which by induction are translations of cut-free
MALL™ proofs IT;. By the mix rule these combine into a sequentialisation of 8.

5 Cut

This section extends proof nets with cuts. Section 5.1 defines a simple and strongly
normalising cut elimination on proof nets, which can be executed in a single step
(turbo cut elimination, Section 5.1.1). Normalisation yields an associative compo-
sition of cut-free MALL proof nets, whence a category N of cut-free MALL proof
nets which is semi (i.e. unit-free) star-autonomous with products and sums (Sec-
tion 5.2). Section 5.3 defines a translation from MALL proofs to sets of linkings,
and proves the Sequentialisation Theorem: a set of linkings is a translation of a
MALL proof iff it is a MALL proof net.

A cut pair is a formula Ax A+ where A is any MALL formula. The connective x
is called cut. By definition, we take * to be unordered, i.e., Ax A+ = A+xA. This is
in contrast to MALL formulas, where connectives are ordered, e.g., AQ B # B® A
when A # B. We continue to identify a formula with its parse tree (including a
cut pair, whose root is a #labelled vertex with two unordered children). A cut
sequent is a disjoint union of a MALL sequent and zero or more cut pairs. (Recall
that a MALL sequent is a non-empty disjoint union of MALL formulas.) Given a
(possibly empty) disjoint union ¥ of cut pairs and a MALL sequent T, write [X]T'
for the cut sequent which is the disjoint union of ¥ and I'.

A cut-additive resolution of a cut sequent A is any result of deleting zero or
more cut pairs from A and one argument subtree of every additive connective (&
or @). Thus every remaining & and @ is unary.

Ezxample 5.1. Here is a cut sequent followed by one of its cut-additive resolutions:
P®P, Q+Q*, PraQ, (R®S)*(R &S )
PP, Q*Q*, PraQ, (ReS)* (R &S

m case of the secondary induction, to conclude n = 1; in the secondary induction step,

to conclude that (P2) can be reformulated as G being a tree; and in the primary induction step,
to conclude that Gy is connected.
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— Definition: MALL proof net

Cut pair: formula Ax A+ (= AL % A) for any MALL formula A.

Cut sequent A: disjoint union of a MALL sequent and any number of cut pairs.
&-resolution: deletion of one argument subtree of each &.

Cut-additive resolution: deletion of some cuts and one argument subtree of each ©/&.
(Aziom) link on A: edge between complementary leaves (literal occurrences) in A.

Linking X on A: partitioning of the leaves of an additive resolution A [ of A into links.

A set A of linkings on A toggles a & w if both arguments of w are in ATA = Uycp ATA
Graph Ga: ATA+ UA + jump edges I—w—1" if {I,I'} € A\ XN and {\, X'} CA toggles w only.
Switching cycle: cycle with < 1 switch edge (= jump or argument edge) of each % /&.

A set 8 of linkings on A is a proof net if it satisfies:

cuT: Every cut pair has a leaf in 4.

RESOLUTION: Exactly one linking of 6 is on any given &-resolution of A.

MLL: Every Z-switching of every linking in 8 is a tree (acyclic and connected).?2

TOGGLING: Every set A of >2 linkings of  toggles a & that is in no switching cycle of G5 .23

A link on a cut sequent A is a pair of complementary leaves in A, i.e., a pair of
leaves in A labelled with complementary literals P and P+. A linking A on A
is a set of disjoint links on A such that UX is the set of leaves of a cut-additive
resolution of A; this cut-additive resolution is denoted A [ A.

Example 5.2. Here are two examples of sets of linkings on cut sequents:

[ 1
6: P, P'«P, PLxP, P &P+ & Q)
L ] L ]

1 1
é: P, P-xP, PL&(P+ @ Q)
L 1

Each of 8 and ¢ has two linkings, one shown above the cut sequent, the other below.
Each linking has two links. Note that each linking takes the leaves of a cut-additive
resolution.

In the presence of cut, we update all the auxiliary definitions of Section 4 (&-
resolution, Ga, switching cycle, etc.) by substituting cut sequent for sequent and
cut-additive resolution for additive resolution throughout.

Definition 5.3. A set 6 of linkings on a cut sequent A is a proof net if it satisfies:

(P0) cuT. At least one leaf of every cut pair is in 6 (i.e., in some link of some
linking of 6).

(P1) rRESOLUTION. For any &-resolution A*of A, exactly one linking of 6 is on A*.

(P2) MLL. Every ®-switching of every linking in 6 is a tree (acyclic and con-
nected).??

(P3) TOGGLING. Every set A of two or more linkings of 6 toggles a & that is not
in any switching cycle of G.23

22By dropping connectedness, we obtain a proof net for MALL augmented by the mix rule.

231n fact, it suffices to verify TOGGLING merely for saturated sets of linkings A, namely, such
that any strictly larger subset of 8 toggles more &s than A. There is exactly one saturated set of
linkings in 8 for each partial &-resolution of A, the latter being any result of deleting at most
one argument subtree of each & of A.
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The definition is summarised in the box on page 40. Note that (P1)—-(P3) are
inherited from the cut-free case. We say that 0 is a proof structure if it satisfies
(P0) and (P1).

Alternative definitions of proof net. The material in Section 4.7 still applies now
that we have extended proof nets with cut, with one small change: in the equation
defining balance, add the number of cuts to the number of tensors. The equivalence
proofs (appendices B and C) extend verbatim once a cut is viewed as a tensor.

5.1 Cut elimination

Let @ be a set of linkings on a cut sequent A, and let A% A+ be a cut pair in A.
Define the elimination of Ax AL (or, of the cut x between A and AL) as follows.

(a) If Ais aliteral, delete A*AL from A, and replace any pair of links {I, A}, {45 1"}
in a linking of § (I and I’ being other occurrences of AL and A respectively)
with the link {I,1'}.

(b) If A= A; ® A; and A+ = A A (or vice versa), replace Ax AL with two cut
pairs 4; % A{ and A, * A5. Retain all the original linkings.

(c) If A= A& A, and A+ = A{ @ Ay (or vice versa) replace Ax AL with two cut
pairs A xAj- and AoxA5 . Delete the inconsistent linkings, namely those A € 6
such that in A [ A the children & and @ of the cut take opposite arguments
(i-e., such that the right argument of the & is in A\ and the left argument of
the @ is in A\, or vice versa). Finally, ‘garbage collect’ by deleting A; * A
if no leaf of A;* A7 is in any of the remaining linkings.

An example of cut elimination was presented in Figure 3 (page 5).
PROPOSITION 5.4. Eliminating a cut from a proof net yields a proof net.?*
PROOF. Section 5.4. O

THEOREM 5.5. Cut elimination of proof nets is strongly normalising.?*

Proor. Confluence is immediate from the definition; cut elimination reduces the
size of the cut sequent, and is therefore strongly normalising. [

5.1.1 Turbo cut elimination. Cut elimination can be completed in a single step.
For [ the i*? leaf of A in a cut pair Ax AL, let I+ denote the 3t leaf of A1.25 A
linking A on a cut sequent A matches if, for every cut pair AxA in A, any given
leaf [ of Ax AL isin ATX iff [+ isin AT

Ezxample 5.6. The first linking below matches, the second does not:
1 1
Qe P, [P &(@Q*aoPl)]+[P®(Q&4P)], PLoQ*t

1 1
Qe P, [P &@Q"oP)]*[Po(Q&P)], ProQ"
Note that, although not matching, this second linking is consistent (the opposite
of inconsistent, defined above).

24Proposition 5.4 and Theorem 5.5 also hold for mix nets: that elimination preserves (P2M*) is
part of the argument (page 53) that it preserves (P2).
25Remember that cut * is unordered, i.e., Ax AL = AL xA; thus I11 =, as one would expect.
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A linking matches iff it is hereditarily/iteratively consistent: when (non-turbo) cut
elimination is carried out, the linking never becomes inconsistent in the sense of
case (c) in the definition of (non-turbo) cut elimination above.

Suppose a linking A on a cut sequent A matches. The reduction A of A is the
result of deleting all cut pairs from A. The reduction X of X is the linking on A
obtained by replacing every set of links {lo, 1}, {Ii,l2}, {313}, ..., {l1 1, 0.} in A
in which only Iy and l,, occur in A by the single link {lo,1,}.

Example 5.7. Here is an example of the reduction of a matching linking. The
informal intermediate step is for visualisation only.

| ] — |
P&Q, [Ro(Q"2Q)]*[R&@Q3QM)], Q"

J
P&gz, clf

P&clz, CIQL

Let 6 be a set of linkings on the cut sequent A. The normal form of 6 is the
set of linkings 6 on A obtained from 6 by deleting every non-matching linking and
reducing every linking which remains. By a simple structural induction on the size
of the cut pairs in A, the set of linkings 6 is precisely the normal form obtained by
(non-turbo) cut elimination.

Ezample 5.8. Let 0 be the following proof net with four linkings (two shown on
each of two copies of the sequent):

1 1
Qo P, [Pr&(Q*oPh)]*[Pa(Q&P)], ProQ*
| | I—

1 1
Qe P, [Pr&(QoPh)]+[Pe(Q&P)], ProQ*
| I— | I—

Only the first of the four linkings is consistent:

1 1
QP [P&Q-aPY)]x*[Pa(Q&P)], P-eQ"

Reducing this linking yields the following one-linking normal form of 6:

[ 1

QaP, PtaQ*t
Note that turbo cut elimination operates independently on each linking: a given
linking is either deleted (if non-matching) or reduced using path composition (if

matching), without reference to any other linking. This is similar to the situation
in proof nets for polarised linear logic [Laurent and Tortura de Falco 2004].
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5.2 The category of proof nets

Non-categorists can skip to Section 5.3 without loss of continuity.

Cut elimination yields a category N of MALL proof nets. Objects are MALL
formulas, and a morphism A — B is a cut-free proof net on the sequent A+, B.
The composition of # : A — B and 8’ : B — C is the normal form of the proof net
{AUX : X€8,) €6} on AL, BxB*,C. See Figure 4 (page 6). Composition is
associative, since cut elimination is strongly normalising.2® The identity morphism
ida : A = A is defined as follows. An identity link on the sequent A+ A is a link
between the ! leaf of A+ and the i'" leaf of A, for some i. An identity linking
is one whose every link is an identity link. The set id4 comprises every identity
linking on A+, A.

Define a sem: star-autonomous category as a category C equipped with the
following structure of a star-autonomous category [Barr 1979], not involving units:

— Tensor. A functor — @ —:CxC = C.
— Associativity. A natural isomorphism aagc : (AQB)®C - AQ (B® ()
natural in objects A, B, C € C such that the following pentagon commutes:

(A®B)®C)®D —— (A®B)® (C®D) —— A® (B® (C ® D))

a®idl Tid@a

(A (B®C))®D A® (B®C)® D)

a

Symmetry. A natural isomorphism c4,p : A® B - B ® A natural in objects
A, B € C such that cp .4 o ca,p = idagp and the following hexagon commutes:

(A®B)®C 2+ A® (Be(C)——= (Bo(O)® A

c@i{ J

(B@A)@CT>B®(A®C)WB®(C®A)

Involution. A functor (—)* : C°® — C with a natural isomorphism A — A++.
An isomorphism C(A® B, C+) — C(A, (B®C)1) natural in all objects 4, B, C.

The category N has a very simple semi star-autonomous structure. Tensor — ® — :
N x N = N acts symbolically on objects (i.e., the tensor of formulas A and B is
the formula A ® B), and the tensor 0 ®60' : AQC - B D of § : A —» B and
0" : C — D is obtained as follows, using the notation of Table I (page 12):

6 > AL, B ¢ > D,Ct
&
{AUN :X€ebNeb} > A BeD,Ct ?g
06 > At®CH,B® D

Duality /negation (—)% : A°® — A on objects is as already defined on formulas
(i.e. (A® B)t = AL®B* etc., page 7). On morphisms it is trivial, since a proof

26 Associativity is also straightforward with turbo cut elimination as the primary definition, since
linking reduction is path composition.
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net on A, B can be read equally well as a morphism A+ — B or B+ — A. Tensor
associativity is immediate since the formula graphs A® (B® C) and (A® B)® C
are topologically equivalent, in particular having the same leaves. Symmetry, and
the natural isomorphism N (A ® B,C+) = N(4, (B ® C)1), are similarly trivial.

A semi star-autonomous category, as axiomatised above, is but a very rudimen-
tary notion of “unitless” star-autonomous category. For example, the axiomatisa-
tion does not appear to provide a map A — A ® (B%®B~), which is present in the
proof net category N.

Products and sums. The category N of MALL proof nets has products and sums
(coproducts). (By duality, the one yields the other.) Product is & and sum is
@, each acting syntactically on objects and defined on morphisms in a manner
analogous to tensor above. The universal property of & holds because it takes the
disjoint union of non-empty sets of linkings; @ is dual.

Softness. The category N of proof nets is soft [Joyal 1995], that is, any morphism
®1<i<m(Ai&A}) = B1<j<n(B;® B}) factorises through either a product projection
on the left or a coproduct injection on the right. This is immediate, via sequential-
isation, from the corresponding observation at the level of proofs. (Alternatively,
it is straightforward to verify softness directly.)

5.3 Sequentialisation

This section defines a translation from MALL proofs to sets of linkings, and proves
the Sequentialisation Theorem: a set of linkings on a cut sequent is a translation of
a MALL proof iff it is a proof net. The translation goes via a technically convenient
variant MALL of MALL in which cuts are retained in sequents.

5.3.1 A function from MALL®" derivations to sets of linkings. Cut sequents are
derived in MALL®"* using the rules in Table II. Example MALL®" derivations are
shown in Figure 15. Every MALL" derivation projects to a MALL proof in the
obvious way, by deleting the cut pairs. For example, the MALL" derivations of
Figure 15 project to the MALL proofs of Figure 16, as follows:

The system MALL®"® is an extension of cut-free MALL. The function taking a
cut-free MALL proof to a set of linkings on a MALL sequent (defined in Section 4.2,
page 12) extends in the obvious way to a function taking a MALL®® derivation D
to a set Op of linkings on a cut sequent A. Define a &-resolution R of D to be
any result of deleting one branch above each &-rule of D. By downwards tracking
of formula leaves, the axiom rules of R determine a linking Agr on A. Define
0p = {Ar : Ris a &-resolution of D}. Alternatively, Table III defines the same
function by induction, a direct extension of the cut-free case in Table I (page 12).
Figure 17 (page 48) shows how each derivation D; in Figure 15 (page 45) translates
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[QT,A,B Qr,A [Q]ANA [QT, A
n ax - 7? n cut — D
P, P [T, A%B [Q,Q, AxAY T,A [T, A®B
[£,QT,4 [3,Q]T,B N QT,A [Q]B,A [QT,B
D2
[Z,9Q,Q1T, A&B [Q,QT, A®QB, A [QIT,AeB

Table II. Rules for deriving cut sequents in MALLt, Here P ranges over propositional variables,
A, B range over MALL formulas, I', A range over (possibly empty) disjoint unions of MALL
formulas, and %, 2, range over (possibly empty) disjoint unions of cut pairs. Note that the
&-rule may superimpose one or more cut pairs from its two hypotheses (if ¥ is non-empty), or
may leave all cut pairs separate (if ¥ is empty).

ax ax
p, Pt p, Pt
ax ax cut
(Dy) p, pt p, Pt P, Ptxp, Pt
cut —_— D
P, P-xP, P+ P, P xP, Pt aQ
P, PY«P, P*«P, P & (P Q)
ax
P, Pt
ax ax ax — D
(D2) P, Pt P, Pt P, Pt P, PtaQ
cut cut
P, Pt«p Pt P, P*xP, (P ®Q)
1 L 1 L &
P, P*%P, P* %P, P~&(P~®Q)
ax
P, Pt
ax ax ax — D1
(Ds) p, P+ p, P+ p, P+ P, PtaQ
cut cut
P, Pt«p P+ P, P*xP, (P ®Q)
1 L 1 &
P, P* %P, P & (P 9Q)
ax
P, Pt
ax —_—
(Da) P, P+ P PreQ
ax
p, pt P, P & (P aQ)
cut

P, P*+P, P & (P aQ)

Fig. 15. Examples of derivations of cut sequents in MALL®. The only difference between
derivations D; and Dy is a commutation of the cut and @; rules in the right branch. Both
derivations yield the same cut sequent. The only difference between derivations D2 and D3 is the
final &-rule: the application in Dy keeps the cut pairs in the hypotheses separate (an instance
of the Table II &-rule taking ¥ empty and Q = Q' = PL % P), whereas the application in D3
superimposes the two cut pairs (¥ = PL# P and each of Q and Q' empty). Derivation D4 yields
the same cut sequent as D3, but with the cut and & rules commuted.
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ax ax
P, Pt P, Pt
ax ax cut
() P, Pt P, Pt P, Pt
n cut ] D1
P, P P, PtoQ
P, P& (P @Q)
ax
P, Pt
ax ax ax — @1
() p, p* P, pt P, pt P, PtaQ
T cut T cut
P, P P, PToQ
P, P& (P aQ)
ax
P, P+
ax —®
(H”) P,PJ_ P,PJ_@Q&
ax
P, pt P, P &(PTaQ)
cut

P, P*&(PToQ)

Fig. 16. The MALL proofs projected from the MALL* derivations D1, D2, D3, D4 in Figure 15.
Derivation D; projects to II, derivations D2 and D3 project to II’, and D4 projects to IT”. All
three proofs yield the same MALL sequent. The only difference between proofs II and II' is a
commutation of the cut and @ rules in the right branch. The only difference between I’ and 11"
is a commutation of the cut and & rules.

6 >[QT,A g > [Q] AT, A
1 J_ax ! ! 1 ! 1 cut
{pPt} > PP {AUXN :xef, XN ed} > [0, AxAT) T, A
6> [Z,QT,A §>[%Q) P,B& 6> QT A 6 > [] B,A
ouUl > [2,0,Q0]T,A&B {AUXN A€, Neb}> [Q,Q]T,A®B, A
6> [QT,A 6>[QT,B 6> [Q T, AB
— & —_— % _
6> [QT,A®B 6> [QT,A®B 6 >[QT,A%B

Table III. Inductive definition of the function from MALL®"* derivations to sets of linkings. Here
6 > A isthe judgement “§ is a set of linkings on the cut sequent A”. We use the implicit tracking
of formula leaves downwards through rules. The base case ax is a singleton set of linkings whose
only linking comprises a single link, between P and P-L. Here, as in the presentation of the rules
of MALL® in Table II (page 45), P ranges over propositional variables, A, B range over MALL
formulas, T, A range over (possibly empty) disjoint unions of MALL formulas, and %, Q, Q' range
over (possibly empty) disjoint unions of cut pairs. This table is a direct extension of the inductive
translation of cut-free MALL proofs, Table I (page 12); every cut-free MALL proof is in particular
a MALL® derivation.
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into a set of linkings.

By structural induction, each linking is well-defined (i.e., takes the leaves of a cut-
additive resolution); thus the translation is well-defined. The fact that the above
procedures yield the same set of linkings follows from a simple structural induction
on derivations. A set of linkings A on a cut sequent A is cut-sequentialisable
if it is the translation of a MALL®* derivation of A; any such derivation is a
cut-sequentialisation of A.

5.3.2  Translating a MALL proof into a set of linkings. We have seen that every
MALL®?® derivation D of a cut sequent [X]T' projects to a MALL proof IIp of
the underlying MALL sequent I', and also translates into a set of linkings 8p on
[Z]T. For example, the MALL®"" derivations D; in Figure 15 (page 45) project and
translate as follows:

D, — 1
o e T~ 9 = P, PL+P, P1«P, PL&(PJ‘GBQ)
D2/ | | | ]
H//
™ D3\ — —
. __ b — ¢ = I\Q_IPL*P, P& (Pt e Q)
4

The leftward arrows show projection to the MALL proofs II; of Figure 16 (page 46),
and the rightward arrows show translation into the sets of linkings § and ¢ of
Example 5.2 (page 40), with translations shown in Figure 17 (page 48).

Let 6 be a set of linkings on a cut sequent. A MALL proof II translates into
0, or is a sequentialisation of 0, if II is the projection of a MALL®" derivation
translating to 6; we say that 0 is sequentialisable®”, and write I -s> 6. For
example, the projection/translation diagram above yields

H [ 1

TS g = P, PL«P, PY«P, Pr&(Pt 0 Q)
H,/s/" L ] L |

S _ o0 N
H”/s»qﬁ = P, PY+P, PY&(PT @ Q)

(the composite of the previous diagram of relations: from left to right, the inverse
of projection, followed by translation). Restricted to the cut-free case, the sequen-
tialisation relation —s is a function taking a proof to a set of linkings on a MALL
sequent, exactly the cut-free translation defined in Table I (page 12). In the pres-
ence of cuts, more than one set of linkings on a cut sequent may correspond to
the same MALL proof. In the diagram above, the MALL proof II' of Figure 16
(page 46) is a common sequentialisation of § and ¢ .

Our definition of proof net (Definition 5.3, page 40) characterises the image of the
-5+ sequentialisation relation on MALL proofs (i.e., the image of the function on
MALL®"* derivations defined in Table III). Section 5.3.4 considers two alternative
notions of sequentialisation, one in which the &-rule superimposes no cuts, the other
in which it superimposes as many cuts as possible. It finishes with a variation of
sets of linkings in which each linking has its own local set of cut pairs.

27Thus, by definition, 8 is sequentialisable iff it is cut-sequentialisable.
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ax

BEt pE

ax cut

— — 1 n
D) P, P+ p pt 1\3,_1,3 *P, P
! cut —_— o

1 1 1 L
Iy P P*eP, Pr6Q

ax

&

1

P, PP, II-"J‘*IID, PL&(JIDL@Q)

ax
PPt
[
ax — P
1 1
P, Pt P, P+ PP b ProQ
cut cut
L 1
P,PJ_*P,PJ_ P,P *P,P @Q

(D2)

&

1

. PP, PL+P, PL&(PtaQ)
| L J

ax
p Pt
L1
[ [N 1 ax 1 1
(D) P,P* P,P* ikt b Pred
8 cut cut
[ [ 1 1
P, P*xP, P* P, P7xP, PToQ

&
P, P1«P, PL&(PraQ)

N O —

ax
PPt
L
ax — &
PPt P\’_,PL ©Q
(D4) &
1
b pL P, PT&(ProQ)
S

cut

[ [
P, PL«P, P & (Pt ®Q)
L e —|

Fig. 17. Translating each MALL* derivation D; of Figure 15 into a set of linkings on a cut
sequent, using the function defined inductively in Table III.
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5.3.3 The Sequentialisation Theorem

THEOREM 5.9 SEQUENTIALISATION. A set of linkings on a cut sequent is a trans-
lation of a MALL proof iff it is a proof net.

PROOF. Section 4.12, the proof of the Separation Lemma, applies verbatim when
0 is a proof net on a cut sequent I'. We adapt the proof of Theorem 4.18 (Cut-
free Sequentialisation) in three places to deal with cut. First, in the base case
of the primary induction, treat a cut as an outermost tensor. Second, in the case
' = A, Ap& A, garbage collect to ensure that 6; and 6, satisfy (P0): delete from T';
every cut pair without a leaf in ;. Finally, if the appeal to the Separation Lemma
in case (c) of the primary inductive step (page 38) yields a separating %/ &-vertex z
inside a cut pair AxA', immediate separation would destroy the complementarity of
the cut (since in Gy a strict subformula of either A or A+ will have been removed).
The following claim will allow us to substitute a tensor A ® AL for Ax AL, so that
lack of complementary is no longer a problem.

Claim: If a cut pair A* AL contains a free % /&-vertex y, then every linking in 6
visits leaves in Ax A+,

Proof. If not, there is A € 8 and a &-vertex w with the cut ¢ in T'[ A but not in
T'[ A, for some A, € @ such that A = \,,. Thus there are jumps [ - w and I' —» w
in Gy for leaves I € A and I’ € AL. By domination property FORK (page 33, with
Yo - - - Yn as the path from [ down to ¢ and back up to '), w 1 ¢, and hence, by
EXTEND (travelling up from ¢ to y), w J y, contradicting the freeness of y. m

The Separation Lemma always yields a separating free %/& (see footnote 19,
page 37), thus z is free, and the claim with y = z implies every linking in 6
visits Ax AL. Therefore § remains a proof net upon replacing A« A+ by A ® At
and the argument in the proof of Theorem 4.18 yields a sequentialisation. This
sequentialisation remains a MALL proof upon replacing the tensor by a cut, and
that MALL proof is a sequentialisation of 8. [

5.3.4 Alternative notions of sequentialisation. This section explores two alterna-
tive definitions of sequentialisation. It concludes with a variation on sets of linkings
in which each linking has its own local set of cut pairs.

For reference, recall the projection/translation diagram from page 47 involving
the MALL proofs of Figure 16 (page 46) and the MALL"* derivations of Figure 15
(page 45), and the resulting sequentialisation —s— relation:

D,
e S~
II 0 II ————
D, TSw g = ,,_\PL*P, PP, P & (Pt @ Q)
11 - r _sv ] L ]
- ~Ss. i —
Y = ¢ T BPR PPt e Q)
~— _
D,

Superimposing no cuts. To obtain a deterministic translation (i.e., a function) from
MALL proofs (including the cut rule) to sets of linkings, we can force X to be empty
in the &-rule in Table IT (page 45), i.e., “never superimpose cuts”. Let MALLgS
(with sep standing for “keep cuts separate”) be the restriction of MALL®"* obtained
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by replacing the &-rule in Table IT with
[Qr,A [Q]T,B
[Q,QT, A&B
The restriction to MALLS of the projection from MALL“t derivations to MALL

sep

proofs is a bijection: every MALL proof II is the projection of a unique MALL_E:;
derivation. Thus the translation becomes a function. For example, of the deriva-
tions D; in Figure 15, only D3 is not in MALLS™ so the projection/translation

sep
diagram above restricts to:

m— "
Dy~

H// 2

HII d)

yielding a function from MALL proofs to sets of linkings:

H\g
1

" — d)

By keeping cuts separate, never superimposing them (i.e., by going via MALLS

rather than MALL"), we have obtained a function from MALL proofs to sets of
linkings. However, the notion of proof net defined above, which was a simple and
natural extension of our cut-free definition, producing a nice category of proof nets,
does not characterise the image of this function; rather, it characterises the image
of the original MALL*-based —s— relation (or equivalently, the image of the
translation function from MALL derivations to sets of linkings on cut sequents,
Table III (page 46)). For example, the following proof net can be derived only via
an instance of the &-rule in Table III which superimposes cuts (X non-empty in
the rule)

1 1
PP, JIDL*JID, PL&JIDL

and is therefore the translation of a MALL" derivation, but not a translation of a
MALLSC:FE derivation; thus it is a proof net beyond the image of the cut-separating
function defined above.

Characterising the image of the cut-separating function would require additional
conditions in the definition of proof net. For example, that every cut must have
monomial weight is necessary (though not sufficient, as witnessed by the proof net
above, in which the cut has monomial weight). The kernel of the cut-separating
function does not include the commutation of the cut rule with the & rule. For
example, the function maps the MALL proofs II' and II" (Figure 16, page 46) to
distinct proof nets 8 and ¢, yet the proofs differ only by a commutation of cut- and
&-rules (the first rule commutation in Figure 13 (page 31), with cut in place of ®).
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ax ax ax ax
P, P+ P, pt P, pt P, pt
cut ax cut ax
(D) P, PL«p, Pt P, Pt P, Pt«p, Pt P, Pt
P, Pt«P, P1HP, Pt P, Pt«P, PP, P+
&
P, PL«P, PLEP, PL&P+
ax ax ax ax
P, Pt P, Pt P, Pt P, P+
cut ax ax
(D' P, PL«p, Pt P, Pt P, PL®P, P+ P, pt
cut
P, PL«p, PP, P+ P, PL«P, PLHP, Pt
&
P, PL«pP, PlEP, PL&Pt
ax ax ax ax
P, pt P, pt p, pt P, pt
cut ax cut ax
(1) p, Pt p, pt p, Pt P, Pt
cut cut
P, Pt P, Pt
&

P pP&PL

Fig. 18. Derivations D and D' in MALLGY, the restriction of MALL®® in which the &-rule
superimposes as many cuts as possible, followed by the MALL proof II to which both D and D’
project. In each derivation, one cut occurrence, together with the rule that introduces it, has
been marked, so that that the two derivations can be distinguished. The difference between the
derivations is that in D the marked cut [¥] is the last cut introduced in each branch of the &-rule,
whereas in D’ the marked cut is the last cut introduced in the left branch but the first cut

introduced in the right branch.

Superimposing as many cuts as possible. We discussed above the possibility of tak-
ing ¥ in the &-rule of Table II (page 45) minimal, i.e., empty, yielding a function
from MALL proofs to sets of linkings. The alternative of taking ¥ maximal, i.e.,
“superimpose as many cuts as possible”, does not define a function, since there may
be a choice of how to identify cuts.

Let MALLG) (with sup standing for “superimpose as many cuts as possible”) be
the restriction of MALL®" obtained by limiting the &-rule in Table II with the side
condition that €2 and Q' have no common cut pair. Two MALLG derivations D
and D' are shown in Figure 18, followed by their common projection to a MALL
proof II. The derivations differ only in how they choose to superimpose two equal
cuts. Figure 19 (page 52) translates each derivation into a set of linkings on a cut
sequent. Let 8 and 6’ be the translations of D and D’ respectively. Then we have

the following projection/translation relationship:
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ax ax ax ax
P,'_I'JL P,'_J'JL IB’L I\D,_IIDJ-
cut ax cut ax
1 1 [l 1 n N
oy~ PEPRPt PP hptep P PP
cut cut
[l 1 1 1 1 n
P, PL«p, PLEP, PL P, P=+P, PTAP, P
&
1 1 1
P, PL«P, PP, PL&pPL
J L |
ax ax ax ax
P, PL P, PL
1 i s s
P, Pt p,pt [ [
cut ax P, PLFEP, PL p,pL =
1 — 1 s s )
(D’) P, PJ'*P, pL P, pL [ [ ] ut
—/ — —/ P, PL«P, PLlHP, P
P, PL«P, PL@P, P =1 |
&
1 [ 1
P, P-«P, P-HP, P &P+
ax ax
P, Pt P, Pt
L
ax ax ax
P, PLHP, P+ PPt
[ [} f s :
p,pt P, Pt (] ] ] e
cut ax N 1 N
D’ 1 1 — P, P-x]P, P-xP, P
(D) P, PLxp, Pt P.PL [ [ [
’ ’ ’ equals
— — — cut P, PL«pP, PLHP, P+
P, PLaP, PGP, P =]
&
1 1 1
P, PL«P, PLEP, PL&P+
= 1 @ |

Fig. 19. Translating each MALLGY derivation D and D’ of Figure 18 (page 51) into a set of
linkings on a cut sequent. The second of the two depictions of the inductive translation of D’

includes an equality, to help the reader track the superposition of literals and cuts.

1 [ 1
D— 0 = p,pLt«P, PL«P PLgPL
H/ [ ] [
[ [ [
~p ¢ = P, PL«P, PL«xP, PL&pPt
\_‘:._,—I—,

yielding the following relation between the MALL proof and the two sets of linkings:

[ [ [
0 P, PL«p, PLyxp, PL&PL
H/ = L= | ——
1 [ 1
T ¢ = P, PL«P, PL+P, PL&PL

)



Proof Nets for Unit-free Multiplicative-Additive Linear Logic 53

Girard was aware of this issue in the context of monomial proof nets; see Appendix
A.1.6 of [1996].

Local cuts. A final variation is to depart from sets of linkings on a fixed cut se-
quent, and permit each linking its own set of cut pairs. This yields a deterministic
translation (function) from MALL proofs. Define a cut linking on a MALL se-
quent T" as a linking on a cut sequent [X]T" with X a disjoint union of cut pairs. In
order to abstract from the identity of the cut pairs we consider ¥ (but not I') up
to isomorphism.

Every MALL proof II of T yields a set of cut linkings on I" in the obvious way:
each &-resolution R of II (any result of deleting one branch above each &-rule of
II) yields a cut linking Ag on I' by downwards tracking of leaves; the axiom (resp.
cut) rules of R are in bijection with the axiom links (resp. cut pairs) of Ag. This
translation identifies more proofs than the translations discussed above. All three
MALL proofs in Figure 16 translate to the same set of cut linkings, the pair

1 1

P, PLxP, P &Pt @ Q)
1 1

P, PP, PL&(P+ 9 Q)

Since there is no information indicating how to identify cuts between different
cut linkings it is not immediately clear how to define a meaningful correctness
criterion to characterise the image of the translation. All we have is that a set
of cut linkings is the translation of a proof iff if can be obtained from a proof
net as in Definition 5.3 by localising the cut pairs to the linkings in whose cut-
additive resolution they occur. Note that this localisation erases the differences
between the superposition variants of sequentialisation discussed above. (In other
words, translation to a set of cut linkings factorises through any of the translations
considered above to a set of linkings on a cut sequent.)

5.4 Proof that eliminating a cut from a proof net yields a proof net

In this section we establish that cut elimination preserves (P0)—(P3). Preservation
of (P0) is trivial. Preservation of (P1) for a literal or multiplicative cut is also
trivial; for an additive cut it is an immediate consequence of the following lemma.

LEMMA 5.10. Let AxA' be an additive cut pair in a cut sequentT with A = Ag& A,
and At = Ag ® A (or vice versa), and let \, X' be linkings of a proof net on T
such that the cut & is the only & toggled by {\,\'}. Then A and X' take the same
argument of AL, i.e., exactly one of Ay and Ai is in both T\ and TTN'.

ProoF. If A and A took opposite arguments of AL, a leaf of At would depend
on the cut &. The resulting jump yields a switching cycle of Gy x/} containing the
only & toggled by {A, X'}, violating (P3). O

Preservation of (P2) is straightforward for a literal or additive cut, since #-switch-
ings correspond before and after the elimination. For the multiplicative case, con-
sider a linking A on T, and let T be T" after eliminating a multiplicative cut. Any
switching cycle C' of XA on I induces a switching cycle C of A on I': if C' doesn’t
traverse both new cuts of I'', obtain C' by re-routing a possible passage through a
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cut of TV to go through the cut of T instead; if it does, a portion of C’ yields a
switching cycle via the cut or cut tensor of I'. Thus switching acyclicity is preserved.
Balance (see Section 4.7.1, page 27, but counting a cut as a tensor) is preserved
(for we lose a tensor and gain a cut), so (P2) is preserved.

The remainder of this section proves that cut elimination preserves (P3).

Fix a proof net 6 on a cut sequent I'. We localise the notion of domination of
Section 4.12 from € to any saturated set of linkings A C §. Write £ —, y if the
edge z — y of Gy is in Go. A set X of vertices in Gy is an z-zone under A if for
all y € X there exists z with y =x 2z = z. Given a ®¥/&-vertex z € G5 and a
vertex y € Gu, define x dominates y in A, denoted z TIp vy, if y € X for some
z-zone X under A. The domination properties of Lemma 4.27 localise from 6 to
any saturated set of linkings A C 6, as follows:

LoCALISED LEMMA 4.27 PROPERTIES OF LOCALISED DOMINATION.

— L-SWITCH. If x <A y is a switch edge then x Jp y.28

— L-TRANSITIVITY. Localised domination JIp 4s transitive.

— L-SELF. Let « be a B/&. Then x Jp x iff x is in a switching cycle of Gy .

— L-JUMP-CYCLE. Ifw < [ is a jump in Go and l is in a switching cycle C of Ga,
then w Jp y for all vertices y € C'.

— L-EXTEND. If x Jp yo and there is a path yg ...y, in Gy which never enters a
B/& from above (i.e., yi—1 —a y; only if y; is not a B/&), then x Jp yn.

— L-FORK. Let x be a B/& and yq . . . yn, a switching path in G with yo —A T <A Yn.
Then x Ja yi for each i.

— L-MEET. If x Jp y Ca 2z for distinct free B /&-vertices x and z, there exists a
switching path Tyo ... yYnz in Gy with T <4 yo and y, —a 2.28

Proor. Make the following substitutions in the proofs of the original domination
properties in Lemma 4.27 (page 32): A for 6, 1 for 1, —4 for —, and zone under
A for zone. O

Lemmas 4.32 and 4.33 of Section 4.12 localise similarly.

LocALISED LEMMA 4.32. For every non-empty union S of switching cycles of Ga
there is a jump l—pw from a leaf 1 € S to a &-vertex wg S toggled by A.

PROOF. A relatively straightforward adaptation of the proof of the original Lemma,
4.32 (page 35). Let A,, be a minimal saturated subset of A with Ga, , containing
S. Switchings of singleton sets of linkings are cycle-free by (P2), so A, contains at
least two linkings. Let w be a & toggled by A,, that is not in any switching cycle
of Gy, (existing by (P3)), so w & S. Since A, C A, w is certainly toggled by A.
Since Ay, is minimal, S G (using (S1)), so some edge e of S is in G4, but not
in Gaw . Without loss of generality e is an edge from a leaf I, because for any other
edge y —» z in S we havel - 21 —» ... = 2z, =y = = in S for some leaf [, and
y — x is in Ga» whenever | — z; is in Gyw . By Lemma 4.31 the jump / — w is in
Ga,,, hence also in Go. [

28We shall not actually use this localised property in the proof that cut elimination is well defined
on proof nets; we include the property here to maintain the correspondence with the original
Lemma 4.27.
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LOCALISED LEMMA 4.33. Ifx 1 x theny Ja x for some &-vertexy Zia y toggled
by A.

ProoOF. We essentially repeat the original proof of Lemma 4.33 (page 35). By dom-
ination property L-SELF, z is in a switching cycle of Gp. Iterate Localised Lemma
4.32, adding switching cycles until jumping to a &-vertex y not in a switching cy-
cle of Go. Then y Jp x by L-JUMP-CYCLE and L-TRANSITIVITY, and y Zix y by
L-SELF. O

Proof that cut elimination preserves the toggling condition (P3)

Preservation is immediate for the elimination of a literal cut pair P P+, since for
every set A of linkings on T, the &-vertices toggled by A and the switching cycles of
G correspond before and after the elimination. Thus consider the elimination of an
additive cut pair (Ag& A1 )*(Ag®AT) or multiplicative cut pair (4o Ay )*(Ag®AL).

Let 6’ on the cut sequent I be the result of eliminating (Ag&A;)*(Ag & Af) or
(A9 A;)*(Ag ® AT) from the proof net 6 on I'. Let = be the & or % and y the &
or ® of the cut, let zg,z; and yg,y; be the arguments of z and y respectively, and
let ¢ be the cut vertex x between = and y.

wo(Ao)\ /331(141) yo(Ag) y1 (A7)

z(B/&) y(@/e)
(¥

Thus in I" each of ¢, ¢ and y have been deleted, and cut vertices ¢y between zg
and yo and ¢; between x; and y; have been added,

z0(Ao) z1 (A1) yo(Ag) y1(Af)

Co (*) C1 (*)

unless one of Ag, A or A;, A{- disappeared in the ‘garbage collection’ phase of
additive elimination, in which case only one of ¢y or ¢; is present.

Suppose 6’ fails (P3), i.e., there exists a set of two or more linkings A’ C 6’ such
that every & in I" toggled by A’ is in a switching cycle of Ga:.

LEMMA 5.11. There exists a saturated set of linkings A C 0 on T' such that A on
T toggles the same &s as A' on I, except perhaps x in addition; x is toggled by A
on T iff the cut is additive and there are \j, A, € A’ such that xo is present in T'[ )
and x1 s present in T' [ \,..

PROOF. Since eliminating an additive or multiplicative cut at most deletes linkings,
A’ can also be viewed as a set of linkings on I, and A’ C . Furthermore, A’ on T
toggles exactly the same &s as A’ on I, except perhaps x in addition (in the case
indicated in the lemma). Let A be a minimal saturated set of linkings of § on T
containing A’. By minimality, A on T toggles the same &s as A’ on T'. [

LEMMA 5.12. The vertex y is not in a switching cycle of Gy.

PRroOF. Ifyisin aswitching cycle, by L-SELF then Localised Lemma 4.33, A toggles
a &-vertex w Jp y with w Ziy w. By L-SELF w is in no switching cycle of G4, and
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w A & by L-EXTEND. Necessarily w # z, otherwise w 1 w, a contradiction. By
Lemma, 5.11, w is toggled by A’ on I, hence?? is in a switching cycle C of Ga:.

Suppose C' does not go through both ¢y and ¢;. Then C induces a switching
cycle of Gy, still containing w, obtained by re-routing a possible passage through
¢o or ¢ to go through c instead, a contradiction.

Suppose C' goes through both ¢y and ¢;. Re-routing both passages to go through
c instead either yields two switching cycles through ¢ with w in one of them, a
contradiction, or yields a switching cycle Cy through y and a switching path m, =
20...2p in Gp with zp —a 2 and 2z, —a x, such that w is either in Cy or n,. The
first possibility immediately yields a contradiction, so assume w € 7,. By L-FORK
 Jp w, SO by L-TRANSITIVITY w p w, a contradiction. [

LEMMA 5.13. Every &-vertex v#£x toggled by A on T is in a switching cycle of Ga.

PROOF. By Lemma 5.11, v is toggled by A’ on I, hence?® is in a switching cycle
C of Gar. Suppose C goes through ¢y and/or ¢;. By re-routing the passage(s)
through ¢g and/or ¢; to go through c instead, C induces a switching cycle of Gy
that contains y, contradicting Lemma 5.12. Thus C avoids ¢y and ¢;. Hence C' is
also a switching cycle of G4, containing v. O

COROLLARY 5.14. If the cut is multiplicative, every & toggled by A on T is in a
switching cycle of Ga .

Thus if the cut is multiplicative, 8 fails to be a proof net, a contradiction. Henceforth
we assume the cut is additive.

LEMMA 5.15. The &-vertex © is the unique & toggled by A that is not in any
switching cycle of Ga.

PRrROOF. Since 0 is a proof net, A toggles a &-vertex v in no switching cycle of Gj.
By Lemma 5.13, necessarily v = z. [

Since A toggles z, by Lemma 5.11 there are A\;, A\, € A’ such that zo € T'[ A\; and
z1 € T'[A.. On T, every linking of A’ is consistent, so yg € T'[\; and y; € T' [\,
No linking in A has an additive resolution containing both yo and y1, so yo € T' [ A
Since A is saturated on I', there must be a &-vertex u in I" and Ag, A\; € A such
that yo € I'T Ao, yo € I'[ A1 and u is the only & toggled by {Ao, A1 }-

If y; € T'[ A1 then for i = 0,1 there are leaves [; above y; with jumps l; —a u;
otherwise y; € T'[A1 soc € T'[ A and ¢ € T'[ Ag and there are leaves [y above y and
Iy above z with jumps I; = u. In either case y lies on a switching path from [ to
l1, so we have u 5 y by L-FORK. Using L-EXTEND we obtain u Ty .

If u = z, then by L-SELF z is in a switching cycle in G4, a contradiction. Thus
u # x, so by Lemma, 5.13 u is in a switching cycle of Gy, hence u 4 u by L-SELF,
so £ Ja u by Localised Lemma 4.33, Lemma 5.15 and L-SELF. Thus z Jp x by
L-TRANSITIVITY, so by L-SELF z is in a switching cycle of G4, a contradiction.

This completes the proof that eliminating a cut preserves the toggling condi-
tion (P3), and hence the proof that cut elimination is well-defined on proof nets
(Proposition 5.4, page 41).

29Recall that A’ was chosen as a witness to the failure of (P3) for #’: any & in I toggled by A’
is in a switching cycle of Gx:.
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6 Girard’s monomial proof nets

In this section we relate our MALL proof nets to the monomial proof nets of Girard
[1996], whose definition is recalled in Appendix A. We begin in Section 6.1 with a
detailed explanation of why monomial proof nets are unsatisfactory. (The reader
unfamiliar with monomial proof nets should be able to follow the general shape
of the discussion.) In Section 6.2 we settle the open question of whether Girard’s
criterion becomes insufficient without partitioning weights into monomials, by pre-
senting a non-monomial proof structure which is not sequentialisable, yet satisfies
Girard’s criterion. In Section 6.3 we examine the similarities between Girard’s
proof structures and our own. In particular, we show that the resolution condi-
tion (P1) corresponds to Girard’s so-called technical condition. We show that this
characterisation of Girard’s technical condition, and several others, remains valid
when not requiring Girard’s dependency condition, demanding the partitioning of
weights into monomials. By contrast, without partitioning weights into monomials
the reformulation of the technical condition by Abramsky and Melliés [1999] is no
longer valid. In Section 6.4 we define a map collapsing Girard’s proof structures
to our own which preserves the property of being a sequentialisation of any given
MALL proof. Hence this mapping also collapses Girard’s proof nets to ours, in the
cut-free case providing a surjection from the former to the latter.

6.1 Why monomial proof nets are unsatisfactory

We give a detailed account of how monomial proof nets [Girard 1996] fail to provide

abstract representations of cut-free MALL proofs modulo rule commutation. A

single cut-free proof may correspond to a host of monomial proof nets, and there

is no natural map from cut-free MALL proofs onto monomial proof nets.
Consider the following pair of cut-free monomial proof nets:

Pq>

Pq2

Prq1

‘|

— q G ‘ ‘ Pqy
e | P ol l—pa |
P P Pt @t @ @ P P P Q@ @ Q@ @ Q@
\ N/ N/ \ N/ N/ N/
&y ® &,y &y ® &gy &gy
| | | | | ~N S

P&P PL Q@+ Q&Q P&P PL Q@+ Q&Q
Eigenvariables associated with &s are shown as subscripts; we omit implied weights.
These two monomial proof nets correspond to the same proof. The second mono-
mial proof net has two forms of redundancy relative to the first: (i) the & with
eigenweight ¢ has been replaced by two similar ‘copies’, and (ii) the axiom link with
weight p has been split into two.

Even if one attempts to fix a choice of representation (e.g. favouring the first
monomial proof net above over the second), one still runs into difficulty. As a
concrete illustration, we exhibit cut-free proofs I, and monomial proof nets 8z for
which the binary relation of sequentialisation is the “zig-zag” shown in Figure 20.
Define II;,, to be the proof shown in Figure 21, where A = (R® R) ® (Rt ® R*),
id denotes the identity proof (in which the left R of A descends from the left axiom
rule) and tw denotes the twist proof (in which the left R of A descends from the
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piq ¢pq Itgp Hgtp

N AN S

eﬁ,ﬁq 0? ,Pq,Pq P,pq

Fig. 20. The “zig-zag” sequentialisation relation between four proofs II, and three monomial
proof nets 8z, demonstrating that monomial proof nets fail to provide canonical representations
of proofs. The proofs and nets are defined in the main text. (By redundancies of type (i) and (ii)
described at the beginning of Section 6.1, there are in addition a host of other monomial proof nets
63 which parody the three above, and also sequentialise to the II,.) By contrast, we represent
all the II, by the same proof net. Thus the surjection from cut-free Girard proof nets to ours
(defined in Section 6.4) is not injective.

id tw tw tw

P,Q,QtePt 4 P,Q,QtePt A P,Q.Q*®Pt A P.Q,QtePt A
t t t t

P,Q,(Q*oPt)®A P,Q,(Q*®Pt)®A P,Q,(Q*®P-)®A P,Q,(Q*®Ph)®A
q q

P,Q&Q,(Q ®P")®A P,Q&Q,(Q P )®A

P&P,Q&Q,(Q ®P)®A

Fig. 21. The proof Ig,. (We omit the unique cut-free proof of P,Q,Q+ ® PL.)

right axiom rule). Let Il;,, be the result of commuting rules ¢ and p in I, let
144, be the result of commuting ¢ and g in the right half of II;,,, and let IL,;, be the
result of commuting ¢ and p in the right half of II;;,. Define the monomial proof
nets 83 as follows. To specify 6z it suffices to present a configuration of weighted
axiom links. On P and @ literals, fix the configuration as below-left:

(idw) w
]

R R R!Y Rt

p

' ‘

]
P P Q Q Q+ pt

N/ N/ \/ o)
&p &, ®

| | | —w |

P&P Q&Q Qt® Pt R R R: Rt
We have taken as eigenweights the labels of the &-rules of the II,,. The configuration
of axiom links on A will be a disjoint union of axiom links in the identity and twist
configurations: id,, and tw,, (above-right) denote a pair of axiom links of weight
w in the identity and twist configurations, respectively. We specify the 6z by the
following disjoint unions of weighted identity and twist configurations on A:

0p.pg: idpg L twp L twyg
aq,ﬁq: idpq [N tWa L thq
05 a.03.p0° 1dpg L tWpg L twpg LI twpg
The sequentialisation relation between the II, and the 63 is as indicated in Fig-

ure 20. Since the II, are equivalent modulo rule commutation, any satisfactory
theory of proof nets should provide a canonical representation uniting all of them.
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With monomial proof nets one would have to close under the “zig-zag” sequen-
tialisation relation between proofs and monomial proof nets depicted in Figure 20,
thereby matching the set of proofs II, and the set of monomial proof nets 8z, and
then artificially choose a representative from amongst the 63.

In contrast, in our setting each II, maps to the same proof net: the four-linking
proof net in Figure 5 (page 7). Thus we preserve the spirit of MLL proof nets by
providing an abstract representation of all of the I, in one.

6.2 Girard’s criterion is insufficient without monomials

A key stepping-stone towards our formulation of a new definition of proof net was
to first settle the open question of whether Girard’s proof net correctness criterion
[1996] becomes insufficient upon relaxing the dependency condition, demanding that
weights be monomial. The answer is yes: in Figure 22 we present a cut-free non-
monomial Girard proof net 6 which is not sequentialisable. By non-monomsial
Girard proof net we mean a proof net as in [Girard 1996] but for the omission of
the dependency condition.

Figure 22 also encodes one of our proof structures 6, via the notion of weight
described in Section 4.8. It is not a proof net, since (P3) fails: Gy contains a
switching cycle passing through all four &s (follow the four jumps R;y1 — &,
(mod 4)).

6.3 The resolution condition is equivalent to Girard’s technical condition

Define an elementary Girard proof structure as a proof structure © as in
[Girard 1996] (reproduced in Appendix A, Definition 3 on page 66) but for the
omission of the dependency condition, the requirement that weights be non-zero,
and Girard’s technical condition (T):

(T) If v is any element of the boolean algebra generated by the weights occurring
in O, and z is a &-link, then v.—w(z) does not depend on p,, where w(zx) is
the weight of z and p, is the eigenweight of x (see Definition 2 on page 66).

Note that the weights in an elementary Girard proof structure © are completely
determined by the weights of the axiom links of ©: every weight occurring in O is
a (disjoint) sum of weights on axiom links. The weights in © are also completely
determined by the function allocating a slice of © to each valuation of © (see Defi-
nition 6 in Appendix A). Each slice is completely determined by the set of axiom
links of © that occur in that slice: it consist of the formulas and links “below” these
axiom links. The axiom links of a slice partition the set of literal occurrences in
that slice.

Define a &-resolution of an elementary Girard proof structure © as any result
of deleting one premise of every &-link of ©, as well as, recursively, all links with
a deleted conclusion and all premises of deleted links. For any O-valuation ¢
(see Definition 6) let ©¢ be the &-resolution of © obtained by deleting, for every
&-link z, its left premise if p(p,) = 0 and its right premise if p(p,;) = 1. A
cut-additive resolution of O is any result of deleting any number of cut links
(possibly zero) from a &-resolution of ©, and for every formula A, all but one link
with conclusion A, as well as, recursively, all links with a deleted conclusion and all
premises of deleted links. It is not hard to see that the three conditions involving
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Fig. 22. Girard’s correctness criterion is insufficient without monomials: this abbreviated non-
monomial Girard proof net is not sequentialisable. Expand the abbreviation as follows: view each
p; as an eigenvariable and split each @ into a separate @1 and @2; formulas and remaining weights

are implied.



Proof Nets for Unit-free Multiplicative-Additive Linear Logic 61

weights in the definition of an elementary Girard proof structure © are equivalent
to requiring that for every ©-valuation ¢:
» the slice p(0) is a cut-additive resolution of ©, and
> ¢(0) C 0% ie., p(0) resolves &s consistently with .
In the context of elementary Girard proof structures ® we reformulate our con-
ditions (P0) cuT and (P1) RESOLUTION as follows.
(P0)¢ Every link of © appears in a slice of ©.
(P1)¢ For any &-resolution ©* of ©, exactly one slice of © is contained in ©*.
Obviously, (P0)¢ is equivalent to Girard’s condition that weights must be non-zero.
Next we will show that Girard’s technical condition (T) is equivalent to (P1)g.
For brevity, write w /A p, if the weight w does not depend on the eigenweight p,,
i.e., belongs to the boolean algebra generated by the eigenweights distinct from p,.
Write w A, p, if in the slice p(©) the weight w does not depend on p,, i.e., if

p(w) = pz(w), where ¢, is the valuation obtained from ¢ by toggling the 0/1 value
of ¢(pz) (see Definition 7 in Appendix A, page 68). Thus

w A py iff w A, p, for all valuations . *)
To prove (T) <= (P1)g we shall use the following stepping-stone conditions.
(T7) If v is any weight occurring in ©, and z is a &-link, then v.—~w(z) A py.

This is simply the relaxation of (T) obtained by restricting to weights in ©, rather
than ranging over all weights generated by weights in ©.

(SELF-INDEP) No & depends on itself, i.e., for all &-links z of ©, w(x) A py.
(PRESENCE) For any &-link 2 and any valuation ¢, if z ¢ ¢(©) then ¢(0) = ¢, (0).

PRESENCE says that a link or formula in © can depend on a &-link z in a slice p(©)
only if x € p(0). Clearly this is equivalent to

(PRESENCE-AX) An axiom link can depend on a &-link z in a slice ¢(©) only if
z € p(0).

PROPOSITION 6.1.
(T) <= (T7) and (SELF-INDEP) <= (PRESENCE) <= (Pl)g

Proor. (T) = (SELF-INDEP) follows by taking v = —w(z) in (T), since z /A p,
iff 2 A py; (T) = (T7) is trivial.
(T7) and (SeLF-INDEP) = (T) follows because, for all u /A p,, and any weights
w and w':
(1) [w.u A ps] and [w'w A p;] = (wVw')u A pa;
(2) [wu A py] and [w'u A p,] = (waw')u A py;
3) wu A p, = (~w)u A py.
In turn, (1) and (2) follow from:

(a) [xV&’pm] and [y%’pz] = VYA D
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(b) [z A pe] and [y A ps] = 2.y /A Po;

respectively, since (wVw').u = (w.u)V (w'.u) and (w.w').u = (w.u).(w'.u). Finally,
for (3): since u ¢~ p, (by hypothesis), using (*) above, for any ©@-valuation ¢ we
have ¢p(u) = ¢, (u); thus

plwau) = pe(wau) i pw) =p(w)Veu)=0 i p(-wu)=p(~wu).
(PRESENCE) =—> (SELF-INDEP): If (SELF-INDEP) fails, then, using (*), for some
valuation ¢ we have z & p(0) and = € ¢, (0), contradicting (PRESENCE).

(T~) <= (PRESENCE), given (SELF-INDEP): Below, z ranges over the &-links
of ©, y over all links and formulas in O, ¢ over the ©-valuations, and p, is the
eigenweight of z.

(T7) <= (Vz) (Vy) w(y).~w(x) A p.
= (Vz) (Vy) (V) p(w(y).~w(z)) = @z (w(y).~w(z)) (by (¥))
< (Vz) (Vy) (Vo) [y € p(©) Az & p(O)] iff [y € p2(O) Az & ¢ (O)]
< (Vz) (Vy) (Vo) = & ¢(©) implies [y € p(O) iff y € ¢, (O)]
using [z & ¢(0O) iff z & p,(0)] (by (SELF-INDEP))
< (Vz) (Vo) = & (©) implies p(O) = ¢, (O)
<= (PRESENCE) O

(PRESENCE) => (P1)q: Existence follows immediately from the observation that
©(0@) C ©¥ for each valuation ¢. For uniqueness, let ¢, ¢’ be @-valuations such
that ¢(©) and ¢'(0) are contained in the same &-resolution @*. We must show
that p(0) = ¢’'(0). Let z be a &-link for which ¢(p,) # ¢’ (pz)- We show (below)
that ¢(0©) = ¢, (0); hence by induction on the number of eigenweights on which ¢
and ¢' differ, we have () = ¢'(©).

Claim: x & ¢(0O) or z & ¢'(0).

Proof: If z is in both ¢(0®) and ¢'(©), then z is in ©*. This is impossible,
since ©* chooses (say) left for x, and one of O(y) and ©(¢') chooses right (since
©(p2) # ¢'(ps)). ®

Without loss of generality, € ¢(©). Thus, by (PRESENCE), ¢(0) = ¢;(0).

(P1)¢ = (PRESENCE): Suppose z & ¢(0), yet ©(0)# ¢,(0). Now ¢,(0) C O¢=
and ¢(0©) C ©¢, but since = & ¢(0) also p(O) C O¢=, contradicting (P1l)g. O

This completes the proof of Proposition 6.1. Thus Girard’s technical condition (T)
is equivalent to our own resolution condition (P1), expressed in Girard’s setting as
(P)g-

The Abramsky-Melliés reformulation of Girard’s technical condition is valid only
with monomials. Recall Girard’s technical condition [1996], and its reformulation
by Abramsky and Mellies [1999]:

(T) If v is any element of the boolean algebra generated by the weights occurring
in O, and z is a &-link, then v.—w(z) A ps.

(AM) If v is a weight occurring in © and z is a &-vertex, if v ~ p, then v < w(x).
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Here v ~ p, denotes that the weight v depends on the eigenweight p,. By (¥*)
in Section 6.3, this holds iff v depends on p, in some slice p(©). However, using
Girard’s dependency (monomial) condition, it also holds iff v depends on p, in any
slice ¢(O) containing a link or formula of weight v in ©. Using this, it is not hard
to see that (AM) is equivalent to (PRESENCE), formulated in Section 6.3.

Unlike the characterisations of (T) presented above, (AM) is an adequate char-
acterisation of (T) only for proof structures in which all weights are monomials.
The following is a simple non-monomial example which satisfies (T) but not (AM):

p
o
ﬁVEPJ_ Pt P P P
N/ \/
@ &,
&y

(We draw only the axiom links and literals; compound formulas and remaining
weights are implied.) Similarly, the Gustave example (page 24) fails (AM), but
satisfies (T). To see that the Gustave example satisfies (T), observe that it satisfies
(PRESENCE-AX), formulated on page 61.

Condition (T) implies softness®® only in conjunction with the monomial condi-
tion, since the Gustave proof structure is not soft, yet satisfies (T).

6.4 Collapsing monomial proof structures to our own

Let a non-monomial Girard proof structure be a proof structure as in [Girard
1996] but for the omission of the dependency condition, i.e., an elementary Girard
proof structure satisfying (P0)g and (P1)g. Define a non-monomial Girard proof
structure to be compact if (a) any non-literal formula occurrence is the conclusion
of exactly one link, except that a formula A @ B may be the conclusion of both a
@1- and a @»-link, and (b) any two literal occurrences constitute the conclusions
of at most one axiom link. Each non-monomial Girard proof structure, and thus
also each monomial one, can be collapsed into a compact non-monomial Girard
proof structure by identifying, along with their premises, links of the same type

30Let © be a Girard proof structure in which every concluding connective is a @, with at least
one connective. The dependency (i.e. monomial) and technical conditions together imply that
© is soft: there exists a concluding formula C = A @ B with just one @-link as its child (c.f.
[Joyal 1995]). Proof. Suppose the concluding formulas of ©, aside from literals, are Ci,...,Ch,
with C; = A; @ B;. Suppose O is not soft. For each ¢ choose a child @-link L; of C;. For all
¢ we have w(L;) < 1, so for each ¢ we can choose a &-link &; on which L; depends. Without
loss of generality, assume &; is above L;41[mod n]. Thus, by the (AM) condition (equivalent
to the technical condition (T), given the dependency (monomial) condition), and the fact that
w(parent) < w(child), we have w(L1) < w(&1) < w(L2) < w(&2) < ... < w(Ln) < w(&n) <
w(L1), a contradiction (since w(L1) is at either end). QFED. See [Hamano 2004] for more on
softness of Girard’s monomial proof structures.
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with the same conclusion(s)3!, and summing the weights of links and formulas

so identified. Clearly this collapse does not preserve the dependency condition.
A straightforward case distinction shows that if a link in a non-monomial Girard
proof structure © is terminal, respectively removable, in the sense of Definition 4
in Appendix A (page 67), it retains this property upon collapsing ©. Moreover,
the removal of such links commutes with the collapse. Therefore, collapsing a proof
structure preserves the property of having a given sequentialisation.

Compact non-monomial Girard proof structures are in bijection with our proof
structures: as explained in Section 6.3, Girard’s condition that weights must be
non-zero corresponds to our cut condition (P0), and Girard’s technical condition
(T) corresponds to our resolution condition (P1). The bijection between compact
non-monomial Girard proof structures and our proof structures can be further
refined: it is not too hard to see that compact non-monomial Girard proof nets are
in bijection with sets of linkings in our sense which satisfy (P0), (P1) and (P2*),
where (P2*) is the strengthening of (P2) defined in Section 4.7.4 (page 29). (To
obtain the correspondence, note that it suffices to jump to axiom links in Girard’s
setting.)

A straightforward induction on the size of proof structures shows that a compact
non-monomial Girard proof structure has a proof IT as a sequentialisation (in the
sense of Appendix A.2) if and only if its counterpart as one of our proof structures
has II as a sequentialisation (in the sense of Section 5.3). Thus sequentialisable
compact non-monomial Girard proof structures are in bijection with our proof nets.

6.4.1 Surjection from cut-free monomial proof nets to our own. The map f from
(monomial) Girard proof structures to our proof structures obtained by composing
the collapse (to compact non-monomial Girard proof structures) and the bijection
(between compact non-monomial Girard proof structures and our proof structures)
preserves the property of having a given sequentialisation (since both the collapse
and the bijection do), and hence of being a proof net. Thus the restriction of f to
cut-free (monomial) Girard proof nets is a surjection onto our cut-free proof nets,
and the diagram of binary relations in Figure 23 commutes. On proof nets, the
map f is surjective since it is the composite of Girard’s surjective sequentialisation
relation and the surjective translation function from cut-free MALL proofs to our
cut-free proof nets (Section 4.2, page 12).

Although surjective from cut-free (monomial) proof nets, the function f is not
surjective from cut-free (monomial) proof structures in general. The Gustave ex-
ample G on page 24 cannot be the f-image of a monomial proof structure®?: G is
not soft (in the sense that the proof structure inhabits both arguments of each out-
ermost @), while all monomial proof structures are soft (footnote 30), and softness
is preserved by f (since it is preserved by both the collapse and the bijection).

31'When two &-links z and y with the same conclusion collapse, their eigenweights p,, and Dy are
identified. This is done by syntactic substitution of p, for p; (or vice versa) in any weight w
occurring in the proof structure, which is similar to replacing w by w A (pz < py). It amounts to
ignoring all slices in the uncollapsed proof structure for which z and y choose opposite arguments.
This is unproblematic, since by (PRESENCE) on page 61, given that no slice can contain both z
and y, any ignored slice is identical to one that is not ignored.

32We are very grateful to Masahiro Hamano for pointing this out.
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Girard’s
Cut-free sequentialisation Cut-free
monomial relation MALL
proof nets (surjective) proofs
(surjection) f = translation function
(surjection)
Our
cut-free
proof nets

Fig. 23. Relationship between Girard’s monomial proof nets and our own proof nets. This triangle
of binary relations commutes in both directions, i.e., both from the top-left vertex and from the
top-right vertex to the bottom vertex. Note that Girard’s sequentialisation relation is surjective
in both directions: every cut-free MALL proof and every cut-free monomial proof net is in the
relation.

Appendices

A Girard’s definition of monomial proof net (verbatim reproduction)
The following definition of monomial proof net for MALL is copied essentially
verbatim from Girard’s paper [Girard 1996).

A.1 Proof-structures

Definition 1. A link L is an expression

P,...,P,
Q17 R Qm
involving n formulas (the premises of L) Py,...,P, and m formulas (the con-
clusions of L) Q1,...,Qmn
ID—Ilinks : 0 premises 2 conclusions : A, A+
CUT—links : 2 premises : A, AL 0 conclusions
®—Tlinks : 2 premises : A, B 1 conclusion : A® B
Z—links : 2 premises : A, B 1 conclusion : AZ®B
@®;—links  : 1 premise : A 1 conclusion : A® B
@®o—links  : 1 premise : B 1 conclusion : A® B
&—Ilinks : 2 premises : A, B 1 conclusion : A&B

The premises of ®, %, &-links are ordered: this means that we can distinguish a
left premise (here A) and a right premise (here B). On the other hand the premises
of a CUT-link and the conclusions of an ID-link are unordered.

Remark. — It is convenient to consider generalized axioms F Ay,..., A, (n > 0),
which are interpreted by generalized axiom links (no premise, but ordered conclu-
sions Aj,...,A,). Such generalized axioms will occur in the proof of our main

theorem 2; they also occur when one wants to accommodate other styles of syntax,
which are foreign to the proof-net technology, in which case they are called bozes.
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The idea of a box is that from the outside it looks like a generalized axiom, whereas
it has an inside which can be in turn another proof-net. A box freezes n formulas,
and can therefore be seen as a sequent, the conclusion of a rule, whose premises are
proven in the box. Traditional sequent calculus is therefore a system of proof-nets
in which the only links are boxes, and all the improvement made in 9 years consist
in progressively restricting the use of boxes: in this paper boxes are limited to the
exponential connectives (and to the neutral T).

Remark. — One should never speak of formulas, but of occurrences, which is ex-
tremely awkward. We adopt once and for all the convention that all our formulas
are distinct (for instance by adding extra indices). In particular ID, ®, %, @ and
&-links are determined by their conclusion(s), and a CUT-link is determined by its
premises.

Definition 2.

» If L is a &-link, with A& B its conclusion, we introduce the eigenweight py,
which is a boolean variable. The intuitive meaning of pr is the choice I/r
between the two premises A and B of the link, py for “left”, i.e. A, -pp for
“right”, i.e. B; we use epy, to speak of pr, or —py.

» If O is a structure involving the &-links Ly,...,L; (with associated eigen-
weights p1, ... ,pr), then a weight (relative to ©) is any element of the boolean
algebra generated by p1,... ,pk-

Definition 3. A proof-structure © consists of:

> A set of formulas (see the previous remark);

> A set of links; each of these links takes its premise(s) and conclusion(s) among
the formulas of ©;

» For each formula A of ©, a weight w(A), i.e. a non-zero element of the boolean
algebra generated by the eigenweights py, ... ,p, of the &-links of ©;

» For each link L of O, a weight w(L).
satisfying the following conditions:

» Each formula is the premise of at most one link and the conclusion of at least
one link; the formulas which are not the premises of some link are called the
conclusions of O;

» w(A) =Xw(L), the sum being taken over the set of links with conclusion A;

» if A is a conclusion of O, then w(4) = 1;

» if w is any element of the boolean algebra generated by the weights occurring
in ©, and L is a &-link, then w.—w(L) does not depend on pyr, i.e. belongs to
the boolean algebra generated by the eigenweights distinct from py;

» if w is any weight occurring in O, then w is a monomszal €1pr, ... €xpL, of
eigenweights and negations of eigenweights33;

» w(L) # 0; moreover if L is any non-identity link, with premises A and (or) B
then

33This is the dependency condition.
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— if L is any of ®, %, CUT, then w(L) = w(A) = w(B);

— if L is @3, then w(L) = w(A);

— if L is @2, then w(L) = w(B);

— if L is a &-link, then w(A) = w(L).pr and w(B) = w(L).—pr, (hence w(L) =
w(A) + w(B)).

Remark. —

|

Weights are in a boolean algebra, and therefore both algebraic and logical
graphism can be used; here we decide to use the product notation (instead of
the intersection), but we keep —w (instead of 1 — w); when we use the sum,
we of course mean the disjoint union, i.e. when I write w(L) = w(A) + w(B), I
implicitly mean that w(A).w(B) = 0.

The technical condition “w.—w(L) does not depend on pr,” says that the boolean
variable py, has no real meaning “outside w(L)”; applying the condition to
—w(L), we see that w(L) does not depend on pr,, in particular w(L).epr, # 0.

There are two ways to think of the dependency condition: either as a technical
restriction needed for the sequentialisation theorem (all our efforts to get rid
of it failed) or as a nice companion to the previous condition, since both are
very natural when a proof-structure is seen as a coherent space, see A.1.1. [of
[Girard 1996]].

A.2 Sequent calculus and proof-nets

Definition 4. Let © be a proof-structure and let L be either a CUT-link, or a link
with only one conclusion, which is in turn a conclusion of ® and such that w(L) = 1;
we say that L is a terminal link of ©. Given such a link, we define the removal of
L in © which consists (provided it makes sense) in one or two proof-structures.

>

If L is a ®-link (resp. a CUT-link) with premises A, B, and I'; A ® B (resp.
T') is the set of conclusions of ©: the removal of L consists in partitioning (if
possible) the formulas of © distinct from A ® B (resp. the formulas of ©) into
two subsets X and Y, one containing A, the other containing B, in such a way
that, whenever a link L' distinct from L has a premise or a conclusion in X
(resp. in Y'), then all other premises and conclusions of L' belong to X (resp.
to Y). The restrictions ©/X and ©/Y are defined in an obvious way, and
are proof-structures with respective conclusions I'', A and I'"’, B. Observe that
r=r.,1".

If L is a ®-link with premises A, B, and I'; A® B is the set of conclusions of ©:
the removal of L consists in removing the conclusion A% B and the link L; this
induces a proof-structure with conclusions I, A, B.

If L is a @;-link with premises A, B, and T'; A ® B is the set of conclusions of
©: the removal of L consists in removing the conclusion A @ B and the link L;
this induces a proof-structure with conclusions T'; A.

If L is a @2-link with premises A, B, and I'; A ® B is the set of conclusions of

©: the removal of L consists in removing the conclusion A @ B and the link L;
this induces a proof-structure with conclusions I'; B.
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» If Lis a &-link with premises A, B, and I', A& B is the set of conclusions of O:
the removal of L consists in first removing the conclusion A& B and the link L

(to get ©') and then forming two proof-structures ©® 4 and Op:
— In ©" make the replacement p;, = 1, and keep only those links L' whose
weight is still non-zero, together with the premises and conclusions of such
links: the result is by definition © 4, a proof-structure with conclusions T, A.
— In ©' make the replacement p;, = 0, and keep only those links L' whose
weight is still non-zero, together with the premises and conclusions of such
links: the result is by definition © g, a proof-structure with conclusions I', B.

Definition 5. A proof-structure O is sequentialisable when it can be reduced, by
iterated removal of terminal rules, to identity links. In more pedantic terms:

» An identity link is sequentialisable;

» If the result of removing the terminal link L in © yields sequentialisable proof-
structures, then © is sequentialisable.

Remark. —

» The removal of a given terminal link is not always possible, and its result is
not necessarily unique (however, for proof-nets, it would be easy to show, by a
connectivity argument, that the removal of a ®- or CUT-link is unique).

» Each removal step consists in the writing down of a rule of MALL; therefore a

sequentialisable proof-structure has a sequentialisation, which consists in a
proof in MALL.

[Rest of subsection not reproduced.]

A.3 A wrong answer: slicing

Definition 6. Let ¢ be a wvaluation for ©, i.e. a function from the set of eigen-
weights of © into the boolean algebra {0, 1}, which induces a function (still denoted
) from the weights of © to {0,1}. The slice ¢(©) is obtained by restricting to
those formulas A of © such that p(w(A)) = 1, with an obvious modification for the
remaining &-links: only one premise is present.

[Rest of subsection not reproduced.]

A.4 Proof-nets

Our basic idea will be to mimic our criterion of [Girard 1990]; in this paper, certain
switchings for V-links were induced by the dependency of some formula upon the
eigenvariable of the link.

Definition 7. Let ¢ be a valuation of ©, let p;, be an eigenweight; we say that the
weight w (in ©) depends on pr (in ¢(0)) iff p(w) # L (w), where the valuation
pr is defined by:

> ¢r(pr) = ~(e(pr))
» or(pr) =¢(pr) if L' # L.

A formula A of © is said to depend on py, (in ¢(0)), if A is the conclusion of a link
L' such that ¢(w(L')) = 1 and ¢r(w(L')) = 0. This basically means that A and
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L' are present in ¢(©), but that changing the value of the valuation for p;, would
make A (or at least L') disappear from the slice.

Definition 8. A switching S of a proof-structure © consists in:

» The choice of a valuation s for ©;
» The selection of a choice S(L) € I, r for all B-links of ¢s(0);

» The selection for each &-link L of ¢ps(0©) of a formula S(L), the jump of L,
depending on py, in ¢s(©). There is always a normal choice of jump for L,
namely the premise A of L such that ¢s(w(A4)) = 1.

Definition 9. Let S be a switching of a proof-structure ©; we define the graph Og
as follows:

» The vertices of O are the formulas of ¢s(0);
» For all ID-links of ¢5(0), we draw an edge between the conclusions;

» For all generalized axiom links with conclusions Ay, ..., A,, we draw an edge
between A; and A, etc., A,_1 and A,;

» For all CUT-links of ¢s(0), we draw an edge between the premises;

» For all ®-links of ps(0©), we draw an edge between the conclusion and the
premise;

» For all ®-links of ps(0®), we draw an edge between the left premise and the
conclusion, and between the right premise and the conclusion;

» For all #-links L of ps5(0), we draw an edge between the premise (left or right)
selected by S(L) and the conclusion;

» For all &-links L of ps(0), we draw an edge between the jump S(L) of L and
the conclusion.

Definition 10. A proof-structure O is said to be a proof-net when for all switch-
ings S, the graph Og is connected and acyclic.

B Reformulations of the MLL condition
This appendix proves Proposition 4.20 (page 28).

Proor. To streamline the proof, without loss of generality we may consider A in
the statement of the proposition as a linking on an MLL sequent (after collapsing
the unary additives).

Define an abstract switching as the graph Gy of a linking A on a sequent in
the variant of MLL in which ® is a binary connective and % is unary. An abstract
switching s is balanced if |ax| = |®| + 1, where |ax| and |®| are the numbers
of links and tensors in s, respectively. Clearly, any #-switching of a linking on
an MLL sequent I' induces an abstract switching, namely by abstracting from the
underlying structure of T', regarding any subformula reached by a deleted argument
edge of a B®-vertex as a separate formula in the sequent. Moreover, a linking on
an MLL sequent is balanced iff any of the induced abstract switchings is balanced.
We now show the following;:

(i) If an abstract switching is acyclic and connected, it is balanced.
(ii) If an abstract switching is acyclic and balanced, it is connected.
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(iii) If an abstract switching is balanced and connected, it is acyclic.

From this we obtain:
(A)A(c) = (B) by (i)
(a)A(C) = (B) by (i)
(AA(B) = (C) by (ii);
(OAB) = (A) by (iii);
(A)=(a) because every linking has at least one #-switching;
(C)=(c) because every linking has at least one #-switching.

?
?

These six implications yield the statement of the proposition.

Proof of (i), by structural induction on the abstract switching s:

Induction base: If s has no connectives, it must be the disjoint union of n pairs
of complementary literals, each connected by a link. Since sequents are non-empty
and s is connected, n = 1. Hence s is balanced.

Induction step: Suppose s has an outermost %-vertex p. Deleting p yields an
abstract switching s’ which is a tree, hence balanced by induction. Thus s is
balanced.

Suppose s has an outermost ®-vertex ¢t. Deleting ¢ yields an abstract switching
s' comprising two disjoint abstract switchings so and s1, both trees. By induction
so and s; are balanced, so s’ satisfies |ax| = |®| + 2, and s is balanced.

Proof of (i), by structural induction on s:

Induction base: If s has no connectives, |®| =0, so |ax| = 1, and s is connected.

Induction step: Suppose s has an outermost #-vertex p. Deleting p yields an
abstract switching s’ which is still acyclic and balanced, and hence connected by
induction. Thus s is connected.

Suppose s has an outermost ®-vertex t with argument vertices tg and t;. Deleting
t yields an abstract switching s’ satisfying |ax| = |®| + 2. Since s is acyclic, in s’
the vertices to and #; are not connected. Let sy be the part of s’ connected to tg
and let s; be the remainder of s'. Because sg is acyclic and connected, it must be
balanced by (i). Thus s; must be balanced, since any surplus in links in s; would
be compensated by a shortage in sy and vice versa. Hence, by induction, s; is
connected. Thus s is connected.

Proof of (#i): We prove the stronger statement that if an abstract switching s
is connected and satisfies |ax| > |®| + 1, it is acyclic. We proceed by structural
induction on s.

Induction base: If s has no connectives, |®| = 0, |ax| = 1, and s is acyclic.

Induction step: Suppose s has an outermost #-vertex p. Deleting p yields an
abstract switching s’ which is connected and satisfies |ax| > |®| + 1. Hence it is
acyclic by induction. Thus s is acyclic.

Suppose s has an outermost ®-vertex ¢t with argument vertices ¢ and ¢1. Deleting
t yields an abstract switching s’ satisfying |ax| > |®|+ 2. In s’ the vertices to and #;
are not connected, otherwise s’ would be connected, therefore acyclic by induction,
hence balanced by (i), a contradiction. Let so be the part of s’ that is connected
to to and s; the remainder, connected to t;. As least one of so and s; must satisfy
lax| > |®| + 1. Hence it is acyclic by induction, and thus balanced by (i). This
implies that the other also satisfies |ax| > |®| + 1, and thus is acyclic by induction.
Hence s is acyclic. [
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C Illegal unions of switching cycles

This appendix proves that condition (P3'), defined in Section 4.7.3, is equivalent to
the toggling condition (P3). Employing Proposition 4.20 (page 28), condition (P2)
in our definition of a MALL proof net § can be partitioned into

(P2a) every %-switching of every linking X\ € 6 is acyclic, and
(P2b) every linking A € 6 is balanced.

As remarked in Section 4.7.2, the former is equivalent to
(P2a’) for no linking A € 8 does Gy contain a switching cycle.
Therefore, conditions (P2a) and (P3) can be combined into

(P2a3) every set A C 0 with a switching cycle in G5 toggles a & that is not in any
switching cycle of G, .

This condition is in turn equivalent to:

(P2a3') for any A C 6 and any non-empty union of switching cycles S of Gx, A
toggles a & that is not in S.

Now (P2a3’) can be reformulated as:

(P3!) Gy contains no illegal union of switching cycles.
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