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Abstract

This paper links deep inference proof theory, as studied bgli€mi et
al., to categorical proof theory in the sense of Lambekl. It observes how
deep inference proof theory is categorical proof theoryusithe coherence
diagrams/laws. Coherence yields a ready-made and wellestumbtion of
equality on deep inference proofs.

The paper notes a precise correspondence between the syendestp
inference system for multiplicative linear logic (the laxdragment o5KSg)
and the presentation efautonomous categories as symmetric linearly dis-
tributive categories with negation. Contraction and weaig in SKSg cor-
responds precisely to the presence of (co)monoids.

1 Introduction

This paper observes that deep inference proof theory, diedtby Guglielmiet al. [Bri104], fits nicely
into the tradition of categorical proof theory dating baglte late 1960’s [Lam69]. It illustrates how
deep inference proof theory is categorical proof theoryusithe coherence diagrams/laws.

Observing that deep inference proof theory is categoricabfptheory brings two immediate
benefits to the former. First, it places the subject withinadure and well-established area of math-
ematics, providing a broader audience and possibly prgjuiditure instances of ‘reinventing the
wheel’. Second, existing techniques in categorical proebty yield immediate results in deep in-
ference proof theory. For example, coherence, a well-ksiedol and integral part of category theory
[Mac71, Ch. VIl], yields a ready-made notion of equality aeg inference proofs. Conversely, syn-
tactic techniques used in the deep inference proof theammamity, such as normalisation proofs
and the medial rule dKS [Brii04], should hopefully map back into categorical prdwdory for new
results. Ideas can flow in both directions.

A key feature of categorical proof theory is that inferenapgply in any context. For example,
associativityAd ® (B ® C') — (A ® B) ® C applies in the contexf(—) ® X) ® Y to yield

(A BeC)0X)Y - (A®B)®C)®X) ®Y.

In other words, inferences are ‘deep’. This is due to funality (of ®, in the example above). The
property calledsymmetryby deep inference proof theorists corresponds to what cated) proof
theorists call @luality, a full and faithful contravariant endofunctor (thé 6f x-autonomous [Bar79]).
For example, applying the duality functor to the ‘left’ lexedistributivity natural transformation

(5,47370 AR (B"?C) — (A® B)’?C
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Figure 1: lllustrating the correspondence between caieg@roofs in ax-autonomous category and
proofs in the linear fragment of the deep inference sysi&8g. The left column is a categorical
proof, a composite of canonical maps. The right column ictreespondingKSg proof. The centre
column is to aid pattern matching. This example is explainedktail in the main text.

yields ‘right’ linear distributivity
EA,B,C :(ABB)®C — AB(B® ()

(up to isomorphism).

There is a precise correspondence between the symmetpérdesence system for multiplicative
linear logic (the linear fragment &KSg [Brii04]), and the presentation efautonomous categories
[Bar79] as symmetric linearly distributive categoriestwitegation [CS91, BCST96, CS97]. Figure 1
illustrates the correspondence. Contraction and wea§jeniBKSg corresponds to the presence of
(co)monoids in the-autonomous category [See89, Sel01, FP04]. See Figure 2.

2 Categorical proof theory

This section provides an overview of categorical proof thergetted at deep inference proof theo-
rists. Central ideas of categorical proof theory [Lam6@]unle:

proof = morphism
connective = functor
inference = natural map

For example, in the categorical proof theory approach tealifogic [Gir87, See89, CS91, CS97],
one has the proof gf ® ¢ from p ® ¢ in ax-autonomous categofy [Bar79] shown in the left column
of Figure 1. Tensor and its dual, pam, are functorsC x C — C, with units1 and_L respectively,

andduality A — A is a full and faithful contravariant endofunctor @h(i.e,, (—) : C°® — C). In
ax-autonomous category one has the isomorphidnts A, A® B = A%3B, A3B = A® B, and

1 = 1. We shall follow the standard (and convenient) approachneat logic and assume these
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Figure 2: lllustrating how contraction and weakeningSKSg corresponds to the presence of
(co)monoids in ax-autonomous category. The left column is a categorical fpobdPeirce’s law
((x—oy) —ox) —ox , whereA—o B abbreviatesdparB The right column is the correspondiSi<Sg
proof. This example is explained in detail in the main text.

isomorphisms are equalities [Gir87, Blu9M:= A, A® B = A8B, A%B = A® B, andl = L.
The inferences in the left column of Figure 1 are the natuigbsn

P A — A1 (tensor unit-right)
A 13 A — A (par unit-left)

v A® A — 1 (cut)

5 1 — ABA (axiom)

) A® (B8C) — (A® B)RC (lineardistributiv.)

The first two are isomorphisms. See [CS91, BCST96, CS97] toerdetails and exampléd.inear
distributivity is also known as weak distributivity. In Rigg 1 the identity morphisml — A is
denotedA.

Inference in any context. A central feature of categorical proof theory is that infexes apply in
any context. For example, linear distributivity

5:A® (B3C) — (A® B)3C

applies here:
(A® (BB8C))3X)®Y
l(a?sxmy
(A2 B)3C)3X)®Y

'[BCST96] uses the notation(tertium non datuy for axiom (herey), ® for 3, andA* for A. Also theiruz is' A, and

(uZ)~1 is p. Our choice of notation and terminology highlights the espondence with the deep inference sysi(fg.
(In particular, do not confuseuty : A ® A — L here with categorical composition.) Also remember that aeehmade

the usual assumption§ ® B = A% B, A=A etc, as in [Gir87, Blu91].




In the morphism6® X) ® Y, the X denotes the identity morphistd — X and theY denotes the
identity Y — Y. That inferences apply in context amounts to functoriglitythe example above,
of 3,® : C x C — C, yielding the context (compound functai)—)%X) ® Y : C — C). In the
notation ofSKSg [Brui04], the inference above is written thus:

([(4.[B,C]), X].Y)
([[(4,B),C], X].Y)

The in-context nature of inference in categorical logicas merely an aesthetic property. It has also
been found to be useful technically. In-context linearristivity 6 : A® (B3C) — (A® B)®3C'is
pivotal in the argument of full completeness for unit-freeIMmultiplicative linear logic) with MIX

in [AJ94, Lem. 2], and for unit-free MLL in [DHPP99]. The lattpaper axiomatised unit-free MLL
with systemsS, a subformula rewriting systemé., deep inference system) based on the natural maps
d: A® (B8C) — (A® B)BC etc; see Appendix A. The linear fragment 8KSg is an extension

of system$ with units.

Duality. Duality is an important feature of the categorical proofityeof linear logic. For example,
proof in Figure 1 can be ‘flipped’ from top to bottom, yieldiagdual proof ofp% ¢ from p=q:

p3q 1)
1
1® (pBq)
RELRZ)
(393 (P7) ® (p39)
15
(r29)3 (P27 © (pRq))
l(p’s’ )Ry
(pBq)B L
17
pRq

We have simply applied the duality funct@ : C°* — C to the original diagram; since con-
travaraince reverses the arrows, we have then drawn thiimgsoroof upside down. (We have also

exchanged the atoms— p andq < 7.)

Equalities on proofs (coherence). Categorical proof theory involves the formal assertioncpfadi-
ties between proofs. These equalities are calbbwrence laws or coherence diagrams. For example,



by coherence, the categorical proof in Figure 1 is formadjyas to the identity proop ® ¢ — p ® ¢:

P®q P®q (2)
1
r®q®l
l(p®q)®7
(r®q (P32 (P©q))

l(; = p®q

(p®q) @ (PB87)B(p©q)

lw®(p®q)
13 (p®aq)
15 !
P®q P®q

See page 4 of [BCST96] for the relevant coherence diagran{dad remember that we assumed
negation is strict, withd = A andA® B = A®B etc, as in [Gir87, Blu91]). In the notation of

SKSg, this corresponds to asserting the following formal edqudin all contexts):
pq)
((p,9)t)
(), [P 4], (0, 0)] .
[((p,9), [P,]) (P, 0)] "
[f,(,0)]
p:q)

il
= (p,q)

where the right-hand side could alternatively be written%i%‘%: , the ‘identity’ derivation of(p, q)
from itself.
Examples of coherence laws include the well-known asseitiapentagon diagram

A® (B®(C® D)) (3)
ARQa
A® ((B®C)® D) \
a = (A® B)® (C® D)

&)



and the assaciativity/linear-distributivity pentagon

A® (B3(CBD)) ()

(A® B)2C)3D

i.e., the equations
ida ® ap,c,p; @ABeC,D; @A,B,Cc ®idp

QA BCRD 5 XARB,C,D

and
ida ® @) 5.cp: dapmen; dascBidp

—\—1
6a.BcnD; (@) agpop
respectively. Ir6KSg notation, these coherence diagrams/laws assert the tegiali

(4. (B,(C, D)) (A.(B.C.D))

(A, (B,0).,D))  _
((4.(B.)).D) _ ((E( )( oD )))
(((4,B).C). D) o

and

(4, [B,[C,D]]) _
(Ay[ D))
(4 ]

D]’

: )
[[(4,B).c],

(respectively) in all contexts.
Coherence laws imply, for example, that all uses of cut amashaxeduce to the atomic case. The
uses of cut and axiom

(r®q) @ (pBq) 1 %)
1 (P39)3(p@q)



in the categorical proof in Figure 1 are formally equal, bheence laws, to the following, in which

each cuty and axion¥ is atomic (.e., they are applied to the atompsandq only):

(r®q)® (pB9)
L
p® (¢® (p37))
lp®(q®a)
p® (¢® (g3D))
\LP@&
p® ((¢®@q)B8D)
lp@a
p® (PR (¢®7))
l&
(r@p)®B(¢®7)
qug'Yq
131
lx

1

1
lA
1®1
bp &7,
(PBp) ® (7R q)
s
P32 (p @ (7%9))
lﬁ? -
P2 ([@®q) @p)
iﬁvs 5
3 (72 (¢ p))
a3
PR (73(p®q))
@

(P393 (P @ 9q)
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Hereo anda are the symmetry natural isomorphisms A%B — B3Aandg: AR B — B® A.
Note that, by duality of axiom and cut, the right diagram Hesstrom applying the duality functor

(—) : C° — C to the left one.

In SKSg notation, the cut-reducing equality above correspondbeddllowing derived equality

on proofs (in all contexts):



Abstract normal forms: proof nets. Proof nets for MLL [Gir87] provide a convenient graphical
representation of categorical MLL proofs. For example,gtaof in Figure 1 becomes:

P&eq

[/

pRq®1

Tz

r®q (P32 (P©q))

Vb g

(p®q) @ (PB87)B(p®q)

J_?8 (p®q)

[

P&eq

which, with the obvious path composition, becomes the idemtorphism (proof neth) @ ¢ — p®yq,

pPRq
. (®)
pRq

Aside from the ‘unit attachments’ [GSS91, Gir92, BCST96lpwn above as dotted lines, the un-
derlying graphs are Kelly-MacLane graphs, with the usuahgosition (path composition) [KM71,
Blu91].2 To obtain the proof net for the dual proof (1), one simply $liphe diagram of proof nets
upside down (dualising < ® and_L < 1). Proof nets are a convenient way to tell when two proofs
are equal with respect to coherence [BCST96]; for exampepath composition above shows that
the proof in Figure 1 is equal to the identijty® ¢ — p ® ¢.3

2Formal definition of proof netA link is a complementary pair of literal occurrenceslisking on an MLL formula
A (viewed as a labelled tree) is a partitioning of the literedwrrences ofd into links, together with a function from the
1 -occurrences ofl to the vertices ofd. A switching of a linking A on A is any subgraph of the graphu A obtained by
deleting one argument edge of es®h A proof net is a linking whose every switching is a tree. A proof ifet A — B
is a proof netf on AR B (drawn in the obvious two-sided manner in Figure (7)). Théfindtion is an amalgam of
[KM71, Gir87, DR89, GSS91, Gir92, BCST96, HGO03].

20ne defect of the proof net approach which remains unredadvbat, in the presence of units, MLL proof nets ace
quitenormal forms. To obtain coherendeg(, to characterise correctly the proof equalities ir@itonomous category) one
must permit al -attachment on the output side (eattachment on the input side) to ‘slide’ around its soezhémpirej.e.,
one can move the attachment point around so long as one dbbesaé the graphical correctness criterion [BCST96]. A
variation in [SLO4] permits a more complex attachment ofsuttieplacing the links and dotted lines above with secgndar
formula trees), but still suffers from the same problem: nmalrforms are defined only modulo a rewrite which, as in
[BCST96], is permissible when the correctness criteriamoisviolated. Normal forms for proof nets with units remadms
interesting open problem.



Reduction to atomic identity links. Analogous to the reduction for cytand axionyy, identities
also reduce to atomic identities. For example,

p®q p q )
lidp@)q = idpl & lidq
P®q p q

This is simply functoriality of tensorid,g, = id, ® id,; : p ® ¢ — p ® ¢). Graphically, in terms of
proof nets:
P®q P®q

= \ \ (10)
P®q PRQq

(The link on the left is the obvious generalisation of an atoaxiom link, between identical subfor-
mulas.)

Contraction and weakening. Intuitively, the six obvious candidates for contractiomaveakening
for a categorical proof theory of classical logic are:

c ARA — A (% -contraction)
w € — A (L-weakening)
w' A — A®B (®-weakening)

[ A — A®A (®-contraction)
w A — 1 (1-weakening)
w’ A®B — A (®-weakening)

The weakening maps andw’ are equivalent (viaL3X = X); dually, w andw’ are equivalent
(via X = X ® 1). Historically, the standard categorical approach to i@mtion and weakening(g.
[See89, Sel01, FP04]) has been to choose

c ARA — A (®-contraction)

w € — A (L-weakening)
[ A — A®A (®-contraction)
w A - 1 (1-weakening)

essentially becausg, w) provides a monoid structure o# with respect to® : C x C — C and
(¢,w) provides a comonoid structure ehwith respect tao : C x C — C.4°
As an example, here is a categorical proof of Peirce’s (&w—-oy)—oxz) -z , whereA— B

“Monoids were central in the early development of categoeptin For example, rings are monoids with respect to
tensor® in the category of abelian groups. For an introduction to ondssee Chapter VII of [Mac71].

5In the case of categorical linear logic [See89], with theamantial functor (cotriple/comonad) and its dual? , one
axiomatises comonoids only on obje&t4 and monoids only on objectsl. Thus contraction and weakening are restricted
t0!A—-1A®!4, 1A -1, 7AR?7A —?AandL — 7A.



abbreviatesA% B :
1 (11)
V2B
(T 7)B(z %)
(ZRT) B co
(T ®%)?8w

(ﬁﬁ@f) R

(z®L) ®7)B2

(@Bwy)2T) B2

~

(z®Yy) @ T)B2

A notion of proof net for classical logic is discussed in [@if° though promptly dismissed by Girard.
Proof nets involve almost as much ‘syntactic bureaucraggeguent calculus, since they have explicit
nodes corresponding to the non-logical rules of contraciiod weakening. Correspondingly, one is
forced to consider equivalences on proof nets [FP04] (spmeding to rule commutations involving
contraction and weakening) that suggest proof nets fairtwige a satisfactory notion of abstract
normal form for classical proofs.

The paper [Hug04] presents a notiorcoimbinatorial proofin which superposition is represented
mathematically (as graph homomorphisms), rather tharastioally using weakening and contrac-
tion nodes (as in a proof net). For example, the categorrcalff Peirce’s law above translates into
the following graph homomorphisi: G — G’:

D D\j

Y

The target (lower) graply’ is a cograph presentation of the Peirce’s law forrr(tqm??y) ® f)??x.
The source (upper) graphi is a coloured graph, each colour class (indicated by veyg, b or )
being an ‘axiom link’. The homomorphistis given by the arrows.

Reduction to atomic weakening. As with axiom, cut and identity links, weakening reduceshie t
atomic case, by coherence. For example,

1 1 1 1
e o
P&Rq = 1®l YpRgq = 131 (12)
\Lw,,@wcl \prag Wq
PXQq P®Qq pRq pRq

See [Rob03] for a detailed development, in a two-sided ptasen.
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and dually,

pRq pBq pRq pRq
\LEPQS’ Wq \prag Wq
WpR g = 131 w,n, = 131 (13)
\La lpl
1 1 1 1

3 Deep inference systerSKSg

The correspondence betwegiiSg and linearly distributive categories with negation plus)(aonoids
should be clear from the examples and discussion in thequedection. The correspondence is ab-
solutely precisé (i.e., the former is the latter, minus the coherence laws) exaeghe rules

(f,f) [f, ]

f t
Categorically, this corresponds to having isomorphisms

1l®l — 1
1891 — 1

The remainder of this section spells out in detail the semsehich SKSg is categorical classical
logic, minus coherence. Defingaw MLL category as a categor{ equipped with:

o five functors,

afunctor® : C x C — C,

afunctor® : C x C — C,

a constant object (nullary functol)e C,

a constant object (nullary functot) € C,

a full and faithfuf functor (—)* : C°? — C;

e eight natural isomorphisms

a : A®(B®C)— (A®B)®C a (ABB)®BC — AR (B3C)
c : AR B—B®A T ABB — BRA

p  A-AR®1 D Al — A

A A—-1RA A 14— A

"Pedantically, for the correspondence todimsolutelyprecise, sinc&sKSg hasn-ary tensor and par operations for
n > 1, denoted 4y, . .., A,) and[A4, ..., A,], one would defined ® B ® C as shorthand fol ® (B ® C) etc, for the
corresponding:-ary (derived) functors.

8A functor FF : C — D is full and faithfull if for all objects C,C” in C, the homsetT(C, C"), the homsets
D(F(C), F(C")) are isomorphic.

°Given functorsF, G : C — I, anatural transformation 7 from F' to G is a family of morphismsc : F(C) — G(O)
indexed by object§’ € C, such that for all morphismg: C — C’in C, holdsF(f); 7 = T¢; G(f). The transformation
is an isomorphism iff eachc is an isomorphism. A morphisrfi: A — B is anisomorphism if there existsf’ : B — A
with f; f/ = ida andf’; f = idp.
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¢ and three natural maps,

0 A® (BRC)— (A® B)BC
v i AQA— L
¥ 1—-A®A

such that for all objectsl, B € C,
ABB = A®B 1 1

Thus a raw MLL category is a symmetric linearly distributsetegory with negation [CS91, BCST96,
CS97], stripped of the coherence laws, and with strict negasatisfying the equalities in (14), as
usual in linear logic [Gir87, Blu91].

A Appendix: System S

The following is quoted from [DHPP99]. Systefhis based on the natural maps defining a linearly
distributive category [CS91]. The linear fragment deepiliefice systerBKSg [Brii04] is an exten-
sion of systemS with units. Systent’ was technically useful for proving full completeness of Chu
spaces for unit-free MLL.

The language of MLL consists of finite formulas built up froitedals (propositional
variablesP or P1) using connectivesensorA @ B andpar A3B. We expand the
abbreviation§ A ® B)* to A*® B+, (A3B)' to At ® B+, A—~oBto A3 B, A+ to
A,andA® B Cto(A® B)®C.

We axiomatize MLL with one axiom schema together with rules dssociativity,
commutativity, and linear or weak distributivity as follew

System S:

T, (Ii®0)®...0(LisL,), n>1
A (A9B)®C + A®(B®C)

A (ABB)3C F AB(BRC)

C A®B + B®A

C ABB + B3A

D (A%B)®C + AB(B®C)

E A®B + A'®B

E ARB + A'nB

RuleskE andE assumed - A’ andB + B/, i.e. the other rules may be applied not
only to formulas but to their subformulas.

In this passage, the; denote arbitrary literal&®

[DHPP99] refers to systerfi as “Hilbert-style”, which was perhaps an overly liberal e$¢he adjective.
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