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The papelProofs Without Syntax [Annals of Mathemat- we sketch the idea behind the translation with a progression
ics, to appear] introduced the notion of @mmbinatorial of simple examples:
proof for classical propositional logic. The present paper
uses combinatorial proofs to define a semantics for classi-
cal propositional sequent calculus, an inductive translation pVygq = o o
from sequent proofs to combinatorial proofs. The seman-
tics is abstract and efficient: abstract in the sense that it
identifies many sequent proofs, and efficient in the sense pAg = —e
that combinatorial proofs are polynomial-time checkable
and the inductive translation is polynomial.

pV —p = @ L J
1 Introduction
. . . . A% — o« 9
This paper aims to solve the following problem for classical pamp
propositional sequent calculus:
IDEAL SEMANTICS PROBLEM
-p V(pA — e
Find an efficient representation of classical propo- PV (pAp) -
sitional sequent calculus proofs which identifies as
many proofs as possible.
@
We shall formulateefficiency to preclude contrived rep- (=qV —p)V (pAp) — ;
resentations which identify all proofs of a given sequent, °

such as the function mapping every proof of a sequént

to the truth table ofl", or the constant function mapping

every proof to the empty set. Byidentify many proofs” The bigraph of each formula is shown to its right. The first
we shall mean, for example, that the following two proof€dge set, representing conjunctive relationships, is shown
which differ only in the order of right-conjunction and leftwith solid edges; the second edge set, representing duality,

weakening, have the same representation. is shown with dotted edges. The bigraph of first example
p V ¢ has no edges: the andg are neither conjunctively
pFp  php A pFp ptp related nor dual. The bigraph @fA ¢ has a solid edge,
pEPAP w ap Fp ap Fp A since thep andq are conjunctively related. The bigraph of
¢&p FpAp q,p FpAp p V —p has a dotted edge, singeand —p are dual. The

We shall represent a sequent proof @asmbinatorial proof Pigraph ofp A —p has both a solid edge and a dotted edge,
a notion introduced irf [Hug04]. The presentation of combiince thep and the—p are conjunctively related and dual.

natorial proofs in the current paper is more abstract. ~ And so on. _ _
We shall call any bigraph derivable from a sequent or for-

. . . mula acombinatorial proposition Combinatorial proposi-
Combinatorial propositions. We shall represent a se- brop brop

quent abstractly asligraph, by which we mean a simple“ons are characterisable non-inductively as fhefree bi-

undirected graph with two edge sets, rather than the us%[’%?ehs whose second (dotted, duality) edge set has no odd

one. The leaves of the parse tree of a sequent or form@fa
become the vertices of its bigraph, the first edge set repre-

sents conjunctive relationships between leaves, and the &graph homomorphisms. Our semantics represents a
ond represents duality between leaves. Rather than getSeguent proof as a bigraph homomorphism. For example,
bogged down in a formal definition here in the Introductiotthie two proofs in previous column both translate to the fol-



lowing bigraph homomorphism: A proof complexity theorist would say that combinatorial
proofs constitute a formaroof systenfCR79] which poly-
8- ./0 nomially simulates propositional sequent calculus. (For a
""" very readable introduction to propositional proof complex-
ity, see [Urg95].) This definition of efficient representation
precludes the contrived truth table function and constant
function mentioned at the beginning of the Introduction. By
incorporating complexity, theDEAL SEMANTICS PROB-
LEM provides a very concrete formulation of the problem
O‘/o of finding a semantics for classical proofs.

The vertex function, from a four-vertex bigraph to a foutmprovement on proof nets and linkings. Like combi-
vertex bigraph, is shown by the downward arrows. Note tHiatorial proofs,proof nets[Gir91] (clarified in [Rob03])
this is indeed a bigraph homomorphism, since it presenf§ also an efficient representation of classical propositional
both A-edges (solid) ane-edges (dotted). proofs. However, unlike combinatorial proofs, proof nets
The lower bigraph, the target, is the bigraph of the cofil to identify the two sequent proofs
cluding sequent,p - p A p. (The isolated vertex comes
from ¢, the A-edge (solid) models the conjunctignA p,
and the two—-edges (dotted) model the duality between
the p on the left of the turnstile and the twds on the P4 = pAPp P:q EPAP
right of the turnstile. Reading,p - p A p as the formula considered earlier. Both proofs map to the combinatorial
(mqV—p)V (pAp), this translation to a bigraph should be faproof depicted at the top of the previous column. The re-
miliar as the last of the six examples on the previous pagepective (one-sided) proof nets are:
The four vertices of the upper bigraph, the source of the bi-
graph homomorphism, come from the four occurrences of

p in the two axioms at the top of the proofs. K
avERYy
C w w
A X A
Cc Cc

p
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Combinatorial proofs. Write G(T") for the bigraph of a

sequent or formuld’. We shall define a (cut-free&ombi- w
natorial proof of I' as a bigraph homomorphism inf&(T") q/ \p
satisfying two conditions. One demands that the source

of the homomorphism isultiplicative a property related The failure to identify these proofs, and similar failures,
to multiplicative proof nets [Gir87. DR89. Ret03], and theyrces the use of rewiring rules (coherence laws) on proof
other demands that the homomorphisrstisictural a com- nets for cut elimination: see Table 8 6f [FP06]. On com-

binatorial analogue of a composite of structural sequent Gginatorial proofs, each of the rewiring rules in Table 8 be-
culus rules. Any bigraph homomorphism derived from a sggmes an equality.

quent calculus proof satisfies the conditions, hence is a comone way to identify many sequent proofs is to follow the
binatorial proof. For example, the bigraph homomorphisgtandard approach to multiplicative proof néts [Gir87]: sim-
displayed above, the translation of the two sequent progf§ trace the axioms down to links on the conclusion. The
on page 1, is a (cut-free) combinatorial proof;op - pAp.  two sequent proofs above translate to the following linking:

PAp q

PApP

Efficiency. Returning to our formulation of theDEAL [—
SEMANTICS PROBLEM at the beginning of the paper, com- ap - pPAP
binatorial proofs are anfficient representation of sequent

proofs in the following sense This approach is studied in detail [n [LS05]. Linkings fail to

form a propositional proof system, since correctness is not
— EFFICIENT REPRESENTATION ponnomiaE] Indeed, verifying a linking o is no faster
than verifyingl" itself, so linkings are redundant in the same
way that an explicit truth table is redundant. Linkings fail to

e Correctness of combinatorial proofs is checkable in
polynomial time.

. . . lwere a polynomial-time correctness criterion ever to be found, it
e The function from sequent proofs to combinatorial would yield a propositional proof system in which every tautoldggan

proofs is polynomial time. be verified by a certificate of size polynomial in the siz&irimplying the
remarkable complexity resuP = coNP [CR79].




be an efficient representation of propositional sequent calThe emptygraph is the graph with no vertices. A graph
culus proofs. is disconnectedf it is a union of non-empty graphs, other-
Combinatorial proofs are at an abstraction sweet spot bése it isconnected A componenis a maximal non-empty
tween proof nets and linkings: they identify more proofsonnected subgraph.
than proof nets, but not to the point of failing to be a proof A graph (V, E) is acograph or Ps-free, if V is non-
system, as is the case for linkings. empty and for any distinct, w,z,y € V, the restriction
of E to edges o{v, w, x,y} is not{vw, wz, zy} (Seee.g.

Sequentialisation theorem. Analogous to Girard’'s se- [BLS99]). A graph( is b_lpgrtlte i 'T[ has_ no Qdd cycle:
whenevervy, ..., v, are distinct vertices ird¥ with n odd

guentialisation theorem for multiplicative proof nets .
[Gir87], in Sectiorj § we obtain a sequentialisation theore?ﬁ]dvlv”l € B(G)forl < i <n, thenu,v, ¢ E(G)

for a (complete) subclass of combinatorial proofs, e A t]omomorphisrr‘h : G — G'isafunction : V(G) -
nary combinatorial proofs. V(G’) such thaww € E(G) impliesh(v)h(w) € E(G").

An isomorphismis a bijective homomorphism whose in-
verse function is also a homomorphism. Two graphs are
Cut elimination.  Standard Gentzen-style cut eliminatioisomorphicif there is an isomorphism between them.
for sequent calculus adapts directly to proof nets (see vertex setC C V(G) is acliqueif vw € E(G) for all
[Rob03/FPOB]). Just as Gentzen'’s original procedure is istincty andw in C.
tered by transpositions of structural rules, the adapted pro-
cedure for proof nets is littered by rewiring rulés [FP06,
Table 8]. Combinatorial proofs obviate the rewiring ruleg  Combinatorial propositions and truth
since the proof nets on either side of a rule are represented
by the same combinatorial proof. It would be interesting Bigraphs. A bigraph G = (V, A, ) is a finite setV of
adapt Gentzen’s cut elimination procedure to combinatorigrtices together with sets and— of edges ori/. The no-
proofs, in the hope of distilling the essence of the procedutgtion for the edge sets is chosen with a view to interpreting
untainted by transpositions of structural rules or rewirirfgrmulas as bigraphs. Writ€', andG-, for the A-graph
rules. (V,A) and—-graph (V, =) of G, respectively. A\-edgeof
G is an edge of7 », and a—-edgeof G is an edge ofr_.
Given a formulagp, write G(¢) for the bigraph obtained
from ¢ as follows. Without loss of generality, assumés

Formulas. Fix a setV of variables A formula is any ex- generated by\ andV from literals (by de Morgan duality,
pression generated freely from variables by the binary ghb= ¥ — (=0 V¢) and——6 — ). The vertices of
erationsand A, or v, andimplies =, and the unary oper- G(¢) are the leaves of the parse treeiofa pair of vertices
ationnot —. A valuationis a functionf : V — {0,1}. vw is aA-edge iff the smallest subformula @fcontaining

Write f for the extension of a valuatiofi to formulas de- ¢ @dw is a conjunction, andw is a—-edge iffv andw
fined by f(—¢) = 1— f(¢), f(¢Ap) = min{f(¢),f(p)}, @€ labelled by dualliterals. Six examples can be found on

F(@vp) =max{f(9).f(0)}, (& = p) = f((=¢) vp). A PAGEL . , | .
formulag is true, orvalid, or atautology, if f(¢)=1forall A homomorphism# : Cf — G’ between bigraphs is a
valuationsf. Variablesp € V and their negationg = —p functionh: V(G) — V(G’) which preserves-edges and
areliterals, and we say thap andp areduaIE] ﬁ-t_adges,l.e., which is S|multane0usly_a graph homomor-
phismG, — G/, andG_ — G’,. Anisomorphismis a

bijective homomorphism whose inverse function is also a
homomorphism. Two bigraphs asomorphicif there is an
isomorphism between them.

Given bigraphsG = (V,A,—) andG' = (V/, N, =)
with no common vertex, thenion GV G’ is (VU V' AU
A, = U =") and thejoin G A G’ is G Vv G’ together with a
new A-edge between every vertex @fand every vertex of
G’. Join adds ne--edges.

2 Preliminaries

Graphs. Anedgeon a sel/ is a two-element subset ot
A graph (V, E) is a finite setl of verticesand a set of
edges orV/. Write V(G) and E(G) for the vertex set and
edge set of a grap@, respectively, andw for {v, w}. The
complementof (V, E) is the graphV, E°) with vw € E©
iff vw ¢ E. Theunion G v G’ of graphsG = (V, E) and
G'= (V’, E") with no common vertex i§V UV EUE’) and
thejoin GAG'is VUV, EUE'U{v':veV, v eV'}).

2To streamline our presentation we have excluded the consiaartd : : . : : :
1 from the definition of formula. To recover constants, simply endbde Combinatorial propositions. A blgrath Is acombina

p Apandl asp v p, wherep is a fresh variable for each occurrencepof torial propositionif G, andG-, are P;-free andG-, is bi-
and1. partite.



PROPOSITIONL A bigraph is a combinatorial proposition PROPOSITION3 s ~t iff C(s) = C(t), for all skeletons
iff it is derivable from a formula. sandt.

Proof. P,-free graphs are precisely the graphs generats
from individual vertices by union and joih [BLSB9911.3].
See Section 4 of [Hug04]. O

ﬂe skeletorstructurally implies another if the latter is
derivable from the former by associativity and commutativ-
ity of A andV together with the following rewrites applied
Combinatorial truth. ~ Translating a formula to a combi-t0 subformulas (subskeletons):

natorial proposition forgets the names of literals. For exam-
ple, each op Vv q, ¢V —p, =pV =g andq Vv —r translates

to the same combinatorial propositior® e . However,

as we shall see in the definitions and lemma below, N0 {reret is an arbitrary skeleton. For example, the skeleton

sVs — s (contraction)
s — sVt (weakening)

formation about validity is lost. _ (e #) V (o Ae) structurally implies((s \/ ¢) A o) Vo :
A clausein a graph is maximal set of vertices not con-

taining an edge. Alausein a bigraphGi is a maximal set (¢ \/ ¢)\/ (e A 6) — eV (s A\ 6) (contract)

of vertices not containing a-edge {.e., a clause irG,). A — (eNe)Ve (commute)

clause inGG is true if it contains a—-edge, and is true (or — ((eve)Ae) Ve (weaken)

valid) if each of its clauses is true.
Below we shall characterise structural implication semanti-

PROPOSITION2 A formula is true iff its bigraph is true. ; R
Proof. Exhaustivelv applv distributiving \ A cally, proving that a skeletosistructurally implies a skele-
roof. Exhaustively apply distributivity v (1 A 2) = 41% iff there is a particular kind of graph homomorphism

(@Vr) A (0 \/_w_g) to the formul_agb, modulo a_ssocilativi/ty C(s) — C(t), called askew fibration
and commutativity ofA andV, yielding a conjunctionp

of syntactic clauses (disjunctions of literals). The lemmais1 Cograph contraction and weakening

immediate forp’ since its bigraplt(¢’) is a join of clauses .

together with additionah-edges, amd’;(e V (1 A wz)) is Givena cograpk;‘, askeleton ofC' is any skeletors s.uch .
true iff G((6 v 1) A (6 V 12)) is true since for non-emptythatc(sl) =C. Slnce cogr_aphs are generated from individ-
graphsG; andG, a clause o1V G (resp.G1 A Go) is a ual vertices by union and joi [CLSB1], every cograph has a

clause of; and (resp. or) a clause Gf. ] skeleton, which by Propositign 3 is uniquely determined up
to associativity and commutativity @f andV. This allows

us to abandon skeletons in favour of working directly with
cographs.

The key to our semantics of sequent proofs is to modelFor any skeletor and skeleton’ resulting from a weak-
structural rules very precisely as certain bigraph homomering rewrite applied inside, the canonical cograph ho-
phisms, calledstructural homomorphismsin this section momorphismC(s) — C(s’) is aweakening Similarly, for

we prove theStructural Characterisation Theorenwhich any skeletors and skeletors’ resulting from a contraction
takes the following form: rewrite applied inside, the canonical cograph homomor-
phismC(s) — C(s') is acontraction For convenience,
we shall also consider every graph isomorphism to be both
a contraction and a weakening.

4  Structural homomorphisms

One formula is derivable from another by struc-
tural rules iff there is a structural homomorphism
between their bigraphs.

In Sectior}  we shall define a combinatorial proof as a strut2  Skew fibrations

tural homomorphism from a suitable source. The Structural

Characterisation Theorem is the key to the Sequentialisatfdf recall the following definition from| [Hug0433]. A

Theorem, which in turn yields the Soundness & Complet@(@Ph homomorphisrh : G — C/*” is askew fibrationif for
ness Theorem. allv e V(G) andh(v)w € E(G’) there existaw € E(Q)

with h(@)w ¢ B(G").

Skeletons. A skeletal formulg or skeleton is a formula Yov } w
generated by\ and Vv from the symbole, for example, l
o A (o o). Write C(s) for the cograph P,-free graph) l

of a skeletory, obtained by viewing as a vertex and and ()= h(w)
A as union and join. Write- for skeleton equality modulo T w

associativity and commutativity of andv, and write= for
graph isomorphism. The following proposition is immediFhe vertexw is askew lifting of w from v. If we demand
ate. h(w) = w and uniqueness ab, then we have a standard



graph fibration (simultaneously a special case of a topol&@pundness Theorem in [Hud04] post-composes with a full

ical fibration and a categorical fibratign [HugG4]). inclusion homomorphism, wherei is full if vw is an edge
Ignoring the dotted edges, the homomorphism displayetienevert(v)i(w) is an edge. This inclusiohinherits from
on pag¢ P is a skew fibration. h the property of being a skew fibration (a simple graph the-

It is immediate from the statement of the definition thatretic exercise). The proof of the Contraction-Weakening
checking a functiorh : V(G) — V(G’) is a skew fibration Theorem relied on the following.
is O(|G| x 6(G") x §(@)) where|G]| is the size ofG (the
number of vertices i) andd(H) denotes the maximumLEMMA 1 Any full inclusion homomorphism between
degree of a vertex il . (The degree of a vertex is the numeographs which is a skew fibration is a composite of weak-
ber of edges containing it.) Thus the correctness of a skemings.
fibrationG — G’ can be checked in polynomial time in tthDroof Let i

sizes of and(’. : C — D be the inclusion. We proceed by

induction on the size ob. If D is a vertex, the result is
4.3 The Contraction-Weakening Theorem trivial. (Remember that every isomorphism is considered to
_ ~ be aweakening.)
A graph homomorphisnk : G — G’ preserves maxi-  SupposeD = D; A D,. Sincei is a full inclusion,
mal cliquesif for every maximal cliquek” of G, the image ¢ = ¢, A €, with cograph full inclusions,, : C., — D,
h(K) = {h(v) : v € K} is a maximal clique o+". restricted fromi (o = 1,2), which are skew fibrations by
Lemma 2 of|[Hug04]. Sinceéis a skew fibration, eacty,
THEOREM 1 (CONTRACTION-WEAKENING) Let  be a is non-empty, hence is a cograph. By induction eacis a
homomorphism between cographs. — The following are \eakening composite, hencés a weakening composite.

equivalent. A similar argument applies to the caBe= D; V D,. [J
(1) h is a composite of contractions and weakenings. 4.4 The Structural Characterisation Theorem
(2) h preserves maximal cliques. To unify a combinatorial propositio® is to add—-edges

to it so as to produce another combinatorial proposifion

The canonical bigraph homomorphisth— P’ is aunifi-

Proof. (1)=(2). It is easy to verify that any contraction ocation.

weakening preserves maximal cliques (by considering thd_et ¢ be a formula and)’ the result of applying a con-

underlying skeletal formulas). Maximal clique-preservingaction rewrite to a subformula @f, i.e., replacing? v 6 by

homomorphisms compose. # somewhere ip. The canonical bigraph homomorphism
(2)=(3). A relatively routine graph-theoretic exercise. C(¢) — C(¢’') is acontraction If ¢’ instead results by
(3)=(1). This is the tricky part of the theorem. The bas& weakening rewritd,e., replacingd by 6 v x somewhere

of our argument is lifted from the proof of the Combinatdn ¢ for some formulay, the canonical homomorphism is a

rial Soundness Theorein [HugdG%]. That proof iteratively weakening

decomposes a skew fibration usisigallownesqthe prop-  For convenience, every isomorphism between combina-

erty that the inverse of every component is connected) dndal propositions will be considered simultaneously a uni-

surjectivity, via Lemmas 5 and 6 df [Hug04]. The convefication, a contraction and a weakening.

sion to shallowness is readily observed to be a factorisatiorA structural homomorphismi : G — G’ is a bigraph

through post-composed contractions, and conversion tbamomorphism which is a skew fibration on the underlying

surjection is a factorisation through post-composed weakgraphs,i.e., the graph homomorphisi, : Gn — G/,

enings (a result proved in Lemra 1 below). O defined byh(v) = h(v) is a skew fibration. The bigraph

homomaorphism displayed on 2 is a structural homo-
A skew fibration need not preserve maximal cliques if Wﬁorphism[.) Pay page

target is not a cograph. Le&f,, denote then-vertex cy-

cle, and letC;" be Cs with an additional edge. Inclusiont,,corem 2 (STRUCTURAL CHARACTERISATION) A bi-

L o ) .
C;fl — Cg’ is a skew fibration, but fails to preserve maXIm%lraph homomorphism between combinatorial propositions
cliques.

. . ) is a composite of unifications, contractions and weakenings
One way to interpret (2»(3) in the Thegrem is as fo",iffit i a structural homorphism.
lows: between cographs, checking max-clique preservation,
which at first sight may seem exponential, can in fact IS#nce the--graph of a combinatorial proposition has a sim-
checked in polynomial time. ple structure (bipartite cograph), the theorem derives with-
One proof obligation remains. The conversion of a skesut too much difficulty from the Contraction-Weakening

fibration h to a surjection in the proof of the Combinatorialheorem.

(3) h is a skew fibration.



5 Combinatorial proofs a contraction followed by a weakening:

A setWV of vertices in a grapliz induces a matchingf it is ... L GRS

non-empty and for allv € W there is a uniquey’ € W such { J (contraction)
thatww’ € E(G). A set of vertices in a bigrap&¥ induces \

a bimatchingif it simultaneously induces a matchingd#, ® ...

and inG—,. A combinatorial proposition imultiplicative if - ]

it has no induced bimatching and every vertex is im-a { \ (weakening)
edge. This property is related to multiplicative proof nets

[Gir87,[DR89,[Ret03]. We shall see later that checking a ° ‘./’
combinatorial proposition is multiplicative can be done in

olynomial time in its size. . .
oy It also decomoses as a weakening followed by a contraction.

—— COMBINATORIAL PROOF (CUT-FREE DEF)

5.1 Colour depiction

A cut-free combinatorial proofof a combinatorial Since the vertices of the bigraiih(¢) are the leaves of the
proposition Pisa S{mCtU{al homomf{fphlsm from a parse tree of, we can abbreviate a combinatorial proof of
multiplicative combinatorial proposition to P. ¢ by targetting the arrows intg. For example, the above
A cut-free combinatorial proof of a formula or se- combinatorial proof ofg,p - p A p becomes as shown
quent is a combinatorial proof of its combinatorial below-left:

roposition.
prop @ ... O

The source of a combinatorial proof is itsultiplicative
core, or simplycore

For example, leP be the following combinatorial propo-
sition (the last bigraph example on page 1):

@ .. g, pEpAp ¢, pFEpAp
Depicting each--edge as a colour class (using colouars

° ’ and0), we obtain the representation above-right. Finally,

by drawing the coloured vertices directly over the leaves of

the sequent, we can omit the arrows:

® ... od, o—0O
® ... ./' g, p FpAp

Later when we come to define the translation of a sequent
proof into a combinatorial proof, the compact colour nota-
tion will be convenient for presenting an inductive transla-
tion. For example, recall the sequent proofg;ofp - p A p
° ./o in the Introduction. Each becomes a tree of operations on
’ combinatorial proofs, starting from the identity homomor-
. . O o . . .
. ) . phism on the bigraphe.-e (p - p in a colour depiction)
Itis a combinatorial proof of the sequepi - pAp, and of \\h4se end product is the combinatorial proof above:
the formula(gvp) vV (p Ap), since both translate t8. Note

Here is a combinatorial proof d? (from pagd P):

- inli H . i o o O O e} o [m] O
that the core is indeed multiplicative: all four vertices of 1, pEp pkp
the upper graph are in-a-edge (dotted), and no vertex set —————— A 5 oV Ea—_—
induces a bimatching. Also note that the arrows do indeed p FpAp w q,pkp q,ptp A
define a bigraph homomorphsim which is a structural ho- oo o—o oD

¢, p FpAp

momorphismi.e. a skew fibration with respect to the solid ¢ ? = PP
A-edges, or equivalently (by (2)(3) in the Contraction- Below is another example in colour notation, a combinato-

Weakening theorem), maximalclique preserving. rial proof of Peirce’s law (p = q) = p) =p.
Here is an illustration of the Structural Characterisation
. . . o——=0 o
Theorem, decomposing the structural homomorphism into (p=q)=p)=»p



Here is the inductive translation of a sequent proof into trsbsection, can be presented in semi-combinatorial fashion

combinatorial proof: as follows:
pVpEDPAp

O o
pkp

] ] w

pra,p

'_O o} = O }_D

P=4qp PP pVphkE DpAp

o———-1a o g
(r=q)=p Fp7pc

5.3 Syntactic presentation

o—0 oQd
(P=9)=pFp Encoding the structural homomorphism as a sequence of in-
- ((m) =% tegers (Where in i!" position denotes that th# leaf above
maps to the:™ leaf below), we obtain a syntactic notation:
In the examples above, each colour class was biriay (

a,bFaAnbd

had two vertices), coming from a single edge of thgraph D7 P T 9934
which was isolated (in the sense that it did not share a ver- ¢pFEpAP
tex with any other--edge). More generally, when the  Alternatively,
edges are not isolated, we depict each connected component
(a complete bipartite subgraph) of thegraph as a colour az, bz - as A bs
class. For example, the bigraphof the sequentVp - pAp ¢, pEpAp
is shown below: or perhaps
II a,bkFaAnb 2?34 g, pFpAD

The identity bigraph homomorphisin ¢ — G'isacom- 6 Sequentialisation Theorem
binatorial proof:G is multiplicative (since it has no induced

bimatching, and every vertex is in someedge) and every TO contract (resp.weaken unify) a combinatorial proof is

identity is a graph fibration (hence a skew fibration). D& Post-compose it with a contraction (resp. weakening, uni-

picting the combinatorial proafin colour notation, we ob- fication). (See Sectidn 4.4.)

tain an example with a four-vertex colour class as the multi-A portion of a graphG is a union of components i@

plicative core, since the-graph ofG has a single (complete(Possibly empty). Given portion&” of G andY of H, the

bipartite) component: partial join of G andH at X andY’, denoted> *AY H, is

obtained from the uniot¥ v H by adding an edge between

0—0 0——o0 every vertex ofX and every vertex o¥. Thus if either of

X orY is empty,G *AY H is the unionG'v H, and if X =G

andY = H thenG XAY H is the joinG A H.

5.2 Semi-combinatorial depiction
P Given a graph homomorphispn: G/ — G thelift of a

V(T A a, bk aA

FpA -

Below-left we have reproduced one of the intermediag@rtion.X of G (with respect tg) is the portion ofz” which
steps of the colour abbreviation in our first example. maps intaX (i.e., the union of the componentsof G’ such
thath(V(C)) C V(X)). Given graph homomorphismgs:
[ SELELIEPRS — A = G' — G andh : H' — H and portionsX of G andY of
RS RS / (@VyvE Ay brant H, thepartial join of g andh at X andY’, denotedy XAY h
is the homomorphismp U h : G/ X'A\Y' H' — G XA\YH
whereX’ is the lift of X’ andY” is the lift of Y. The partial
join is afusion if X andY arecoherent their lifts X’ and
g, pEpPpAD g, pEpAD q,pF P AP Y’are either both empty, or both non-empty.
A portion of a bigraph is a portion of ita-graph. Define
Since every combinatorial proposition is the translation tife partial join of bigraphs by forming the partial join on
a formula, we can choose a formula to represent the mihle underlying\-graphs, carrying the-edges along. Sim-
tiplicative core, as shown above-centre. Above-right, vilarly, define the partial join of bigraph homomorphisms by
implement the same idea with a sequent instead. forming the partial join with the underlying homomorphism
The identity combinatorial proof; — G for G the bi- of A-graphs. Define fusion as before (a partial join between
graph ofpVvp = pAp, drawn in colour mode in the previouscoherent portions).



A combinatorial proposition ibinary if every vertexisin andI’ andA range over sequence of formulas.
exactly one—-edge, and a combinatorial proof is binary if We interpret the axionp, p (for any variablep) as the
its multiplicative core is binary. Writ&, calledtrue, for the combinatorial proofl (the identity homomorphism on the
identity homomorphism on the bigrapk---e (the combi- bigraph e--e ). Each single-hypothesis rule post-composes
natorial proposition with two vertices, ne-edge and one with a structural homomorphism in the obvious way: the
—-edge). andx rules by an isomorphism, therule by a contraction,

and thew rule by a weakening and a possible unification (if

THEOREM 3 (SEQUENTIALISATION) A bigraph homo- 1) shares any variables wilhor ¢).
morphism is a cut-free binary combinatorial proof iff it is
derivable from T by fusion, contraction, weakening and uni-

fication. The naive interpretation of the rule is as a partial join

Proof. Every derivable homomorphism is a combinatori@Peration on the bigraph homomorphism derived from the
proof sinceT is a combinatorial proof and a fusion of comleft branch and the bigraph homomorphism derived from
binatorial proofs is a combinatorial proof. the right branch, with portions correspondinggtand ).
Conversely, by the Structural Characterisation Theordfgwever, this fails to preserve the skew fibration_ condition
(page[), every combinatorial proof is derivable from (éﬁhen a weak formula meets a strong formu.la in the rule
identity homomorphism on) a binary combinatorial axiori-€. when no variable traces down from an axiom in the left
by contraction, weakening and unification. Thus sequentiifanch down taj, but one or more variables can be traced
isation reduces to showing that every binary combinator@{ito? in the right branch, or vice versa). For example:

7.1 Garbage collection

axiom is derivable frorT = e--e by partial join. Thisis by P, p

Lemma 8 of|[[Hug04], since a binary combinatorial axiom is 0 q 7oy

a nicely coloured coloured cograph upon viewirgedges - A
as two-vertex colour classes, and partial join of bigraphs Py Dy AT, T

corresponds to fusion of coloured graphg in [HUg04]0 The conjunction is between the weakand the strongr.

ith the naive interpretation of the rule, the proof trans-
tes to the following tree of operations on bigraph homo-
omorphisms (using the colour notation of Secfior} 5.1):

Since fusion, contraction, weakening and unification
preserve validity of the conclusion (target) of a combingﬁ
torial proof, we have:

o o
PP
THEOREM4 (CUT-FREEBINARY SOUNDNESS 5o 0 g
If a combinatorial proposition has a cut-free binary combi- p. P4 A
) . . o o oo
natorial proof, it is valid. 5P gAT T
We extend soundness to all combinatorial proofs in Seghe final bigraph homomorphism is not a combinatorial
tion[8. proof, since it fails the skew fibration condition (since the
leaf ¢ does not have a skew lifting from the square aver
7 Semantics of sequent proofs To address this situation we shall do some garbage col-

) ) o o lection when interpreting the rule. We consider two ap-
Without loss of generality (by preliminary translation if NeGsroaches: (a) collect garbage on the sequent proof, before

essary), we work with classical propositional sequent cglangjation, to ensure that the above situation does not arise,
culus forr_nulated as _muItlpI|cat|ve Imgar logic [Gi87] toy g (b) perform the translation first, yielding a bigraph ho-
gether with contraction and weakening. Sequents (NQRgmorphism: possibly failing to be a skew fibration, then

empty sequences, . . ., ¢, of formulas generated from lit- o hage collect oh, deleting vertices in its source until re-

erals by/ and\V) are proved using the following rulgh: ducing it to a skew fibration. The latter approach makes
B o oA T, ¢, ¢ more natural identificati(_)ns on sequenF c_a_lculus pr_oofs, gnd
D, p = therefore we shall take it to be the definitive combinatorial

Lony, A LoV

Lov,A  L1.oo Lo
L9, 0, A L, ¢ L, ¢4
Herep ranges over variableg,andy range over formulas, Garpage collection before translation. With reference

3As remarked in footnotE] 2, constaritsand 1 can be encoded if de- tO the example fibovev !f the portions corresponding and
sired. We add the cut rule in the next section. 1) are coherentif., their lifts X andY are both empty or

proof semantics. The differences between the translations
are interesting and subtle, and are the topic of a forthcom-
ing companion paper.




both non-empty), we shall perform a partial join (which wilbf T, x1, ..., x» iS a cut-extensionof the bigraph trans-
be a fusion, because of the coherence); however, if the lafton G(T") of I". A combinatorial proof of a sequenl’
lift X is empty while the right lify” is not, we shall ignore (resp. combinatorial propositioi) is a cut-free combina-
the combinatorial proof from the right branch, and interpragrial proof of any cut-extension af (resp.G). Adding the
the rule by weakening the combinatorial proof from the Iefibllowing form of the cut rule

branch (and similarly with the roles df andY reversed). T4 A )

Thus the sequent proof above translates to the following tree -

of operations, concluding with a well-defined combinatorial r
proof, satisfying the skew fibration condition: to our sequent calculus allows us to place all cut rules, with-
out loss of generalty, at the end of the proof, hence the trans-

o o
pP lation of a sequent calculus proof Bfwith n instances of
%7 2’ q %, 2 the cut rule to a combinatorial proof a&f with n cuts is
B A immediate.
D P QAT T Since a cut extension df is a tautology iffT" is a tau-

tology, we have the following corollary of cut-free binary
Garbage collection after translation. Given a sequent soundness (Theorgm 4):
calculus proofr of I, let b, : G’ — G be the bigraph
homomorphism obtained by direct translatioa,, with the COROLLARY 1 (BINARY SOUNDNESS If a combinatorial
naive interpretation of the rule which never deletes one ofproposition has a binary combinatorial proof, it is valid.

its arguments. Thus thn vertices ofG’ come from then )
axioms at the top of. By the discussion at the beginningg'na"y' we obtain soundness for the full system of non-

of this subsections in general fails to be a skew fibration2in&ry combinatorial proofs by translation into binary com-
Write || for the combinatorial proof obtained by exhaudinatorial proofs.
tively performing the followinggarbage collectioron G:
delete a vertex if either (a)h lacks a skew lifting fromv
or (b)v is not in a—-edge. Garbage collection is easily se
to be confluent and terminating, and (by a simple inductiopjoof. We map every non-binary combinatorial prdof:
sinceh, is translated from a sequent calculus probf,| is G — G’ to a binary combinatorial proof with two-vertex
non-empty. cuts. Supposé&— has a connected componéntvith three
Postponing garbage collection until after translation leagsmore vertices, necessarily a complete bipartite subgraph
to more natural identifications on sequent calculus proofstweenm vertices inC; andn vertices inCs. Let C’ be
therefore we take this to be the definitive combinatoriglcopy of C. Add C’ (disjointly) to G, interpreting the
proof semantics. The subtle difference between collectisgges of”’ (which had beer-edges) now as-edges; add
garbage before and after translation is the subject of a sipparallel {.e., disjoint) --edges betweed; in G and its
ling paper. In the simple example @np, g A7, r above, the copy €} andn parallel --edges betweef, in G and its
final combinatorial proof is the same, irrespective of Wth’@pyCé; add a two-vertex cut t6, with vertices{v;, vo },
garbage collection is performed. and unify as necessary to preserve the property of being
a combinatorial proposition (adding any requisiteedges
between the; and the vertices of’); extendh to C”’ with
The completeness of propositional sequent calculus cohiw) = v; forall w € Cj. Iterate this process to obtain a
bined with either of the above translations from a cut-fréénary combinatorial proof of’, with two-vertex cuts. [J

syntactic proof to a cut-free binary combinatorial progf y Modelling resolution proofs as cut-free combinato-
yields: rial proofs.

THEOREM 6 (SOUNDNESS If a combinatorial proposition
e]ﬁs a combinatorial proof, it is valid.

7.2 Corollary: Completeness

THEOREMS5 (COMPLETENESY Every valid combinato- The inverse of the translation in the proof above provides
rial proposition has a cut-free binary combinatorial proof. ~ a model of propositional resolution proofs as cut-free com-
binatorial proofs, as follows. Given a resolution proof

of T, first translate it to a sequent calculus prdtifr) of

I with atomic cuts, then (using the translation defined in
A cutis a formula of formy A -4 (where we treat- as Section| ¥) translaté(r) to a binary combinatorial proof

a derived operation on av-normal formulay). A cut- h:G — G(T'V x1 ... xn), Where they; are the atomic cut
extensionof a sequent’ is any sequenk, x1, ..., x, for formulas obtained from the cut rules${r). By the nature

n > 0 and cutsy;; correspondingly, the bigraph translatiof the syntactic translatiof(—), the combinatorial proof

8 Combinatorial proofs with cuts



will have the following property: at least one vertex of eJRet03] Retog, C. Handsome proof-nets: perfect matchings and co-

ery —-edge inG maps to a leaf of' (rather than to a leaf of graphs. Th. Comp. Sci. 294 2003 473-488.

one the cuty;). Thus we can delete each two-vertex €yt [Rob03] Robinson, E. P.Proof Nets for Classical Logic.J. Logic &
and the vertices mapping to it underand replace it with Computation 13(5) 777-797 2003.

m x n edges forming an bipartite complete graph inthe [Urq95] Urquhart, A. The complexity of propositional proofsull.
graph ofG, wherem andn are the numbers of vertices of Symb. Logic 1(4) 425-467 1995.

G mapped by, to the two vertices of”, respectively.

9 Complexity

Combinatorial proofs form groof systen]CR7S], since
correctness is polynomial time. We have already seen that
checking a skew fibration is polynomial. Checking a binary
combinatorial axiom is polynomial by standard breadth-first
search on its modular decomposition triee [BLIS99], and the
conversion of a non-binary combinatorial axiom to a binary
combinatorial axiom described just before the Soundness
Theorem is polynomial-time.

The translation from sequent proofs is clearly
polynomial-time if we represent the combinatorial
proofs in syntactic form during the translation (as defined
in Section[5.B). Via the translation, combinatorial proofs
inherit the sequent calculus property of having no obvious
superpolynomial lower bounds [Urg95]. Thus combinato-
rial proofs present an approach towafdB Z coNP and
P 2 NP which is logical, yet disencumbered of syntax.
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