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The paperProofs Without Syntax [Annals of Mathemat-
ics, to appear] introduced the notion of acombinatorial
proof for classical propositional logic. The present paper
uses combinatorial proofs to define a semantics for classi-
cal propositional sequent calculus, an inductive translation
from sequent proofs to combinatorial proofs. The seman-
tics is abstract and efficient: abstract in the sense that it
identifies many sequent proofs, and efficient in the sense
that combinatorial proofs are polynomial-time checkable
and the inductive translation is polynomial.

1 Introduction

This paper aims to solve the following problem for classical
propositional sequent calculus:

I DEAL SEMANTICS PROBLEM

Find an efficient representation of classical propo-
sitional sequent calculus proofs which identifies as
many proofs as possible.

We shall formulateefficiency to preclude contrived rep-
resentations which identify all proofs of a given sequent,
such as the function mapping every proof of a sequentΓ
to the truth table ofΓ, or the constant function mapping
every proof to the empty set. By “identify many proofs”
we shall mean, for example, that the following two proofs,
which differ only in the order of right-conjunction and left-
weakening, have the same representation.

p ` p p ` p
∧

p ` p ∧ p
w

q, p ` p ∧ p

p ` p
w

q, p ` p

p ` p
w

q, p ` p
∧

q, p ` p ∧ p

We shall represent a sequent proof as acombinatorial proof,
a notion introduced in [Hug04]. The presentation of combi-
natorial proofs in the current paper is more abstract.

Combinatorial propositions. We shall represent a se-
quent abstractly as abigraph, by which we mean a simple
undirected graph with two edge sets, rather than the usual
one. The leaves of the parse tree of a sequent or formula
become the vertices of its bigraph, the first edge set repre-
sents conjunctive relationships between leaves, and the sec-
ond represents duality between leaves. Rather than getting
bogged down in a formal definition here in the Introduction,

we sketch the idea behind the translation with a progression
of simple examples:

p ∨ q 7→ • •

p ∧ q 7→ • •

p ∨ ¬p 7→ • •

p ∧ ¬p 7→ • •

¬p ∨ (p ∧ p) 7→ •
•

•

(¬q ∨ ¬p) ∨ (p ∧ p) 7→
• •

• •

The bigraph of each formula is shown to its right. The first
edge set, representing conjunctive relationships, is shown
with solid edges; the second edge set, representing duality,
is shown with dotted edges. The bigraph of first example
p ∨ q has no edges: thep andq are neither conjunctively
related nor dual. The bigraph ofp ∧ q has a solid edge,
since thep andq are conjunctively related. The bigraph of
p ∨ ¬p has a dotted edge, sincep and¬p are dual. The
bigraph ofp ∧ ¬p has both a solid edge and a dotted edge,
since thep and the¬p are conjunctively related and dual.
And so on.

We shall call any bigraph derivable from a sequent or for-
mula acombinatorial proposition. Combinatorial proposi-
tions are characterisable non-inductively as theP4-free bi-
graphs whose second (dotted, duality) edge set has no odd
cycle.

Bigraph homomorphisms. Our semantics represents a
sequent proof as a bigraph homomorphism. For example,
the two proofs in previous column both translate to the fol-



lowing bigraph homomorphism:

• •
•

•
��
�

B
B
B
B
B
B
BN ?

?
?

• •
•

•
��
�

The vertex function, from a four-vertex bigraph to a four-
vertex bigraph, is shown by the downward arrows. Note that
this is indeed a bigraph homomorphism, since it preserves
both∧-edges (solid) and¬-edges (dotted).

The lower bigraph, the target, is the bigraph of the con-
cluding sequentq, p ` p ∧ p. (The isolated vertex comes
from q, the∧-edge (solid) models the conjunctionp ∧ p,
and the two¬-edges (dotted) model the duality between
the p on the left of the turnstile and the twop’s on the
right of the turnstile. Readingq, p ` p ∧ p as the formula
(¬q∨¬p)∨(p∧p), this translation to a bigraph should be fa-
miliar as the last of the six examples on the previous page.)
The four vertices of the upper bigraph, the source of the bi-
graph homomorphism, come from the four occurrences of
p in the two axioms at the top of the proofs.

Combinatorial proofs. Write G(Γ) for the bigraph of a
sequent or formulaΓ. We shall define a (cut-free)combi-
natorial proof of Γ as a bigraph homomorphism intoG(Γ)
satisfying two conditions. One demands that the source
of the homomorphism ismultiplicative, a property related
to multiplicative proof nets [Gir87, DR89, Ret03], and the
other demands that the homomorphism isstructural, a com-
binatorial analogue of a composite of structural sequent cal-
culus rules. Any bigraph homomorphism derived from a se-
quent calculus proof satisfies the conditions, hence is a com-
binatorial proof. For example, the bigraph homomorphism
displayed above, the translation of the two sequent proofs
on page 1, is a (cut-free) combinatorial proof ofq, p ` p∧p.

Efficiency. Returning to our formulation of the IDEAL

SEMANTICS PROBLEM at the beginning of the paper, com-
binatorial proofs are anefficient representation of sequent
proofs in the following sense.

EFFICIENT REPRESENTATION

• Correctness of combinatorial proofs is checkable in
polynomial time.

• The function from sequent proofs to combinatorial
proofs is polynomial time.

A proof complexity theorist would say that combinatorial
proofs constitute a formalproof system[CR79] which poly-
nomially simulates propositional sequent calculus. (For a
very readable introduction to propositional proof complex-
ity, see [Urq95].) This definition of efficient representation
precludes the contrived truth table function and constant
function mentioned at the beginning of the Introduction. By
incorporating complexity, the IDEAL SEMANTICS PROB-
LEM provides a very concrete formulation of the problem
of finding a semantics for classical proofs.

Improvement on proof nets and linkings. Like combi-
natorial proofs,proof nets[Gir91] (clarified in [Rob03])
are also an efficient representation of classical propositional
proofs. However, unlike combinatorial proofs, proof nets
fail to identify the two sequent proofs

p ` p p ` p
∧

p ` p ∧ p
w

p, q ` p ∧ p

p ` p
w

p, q ` p

p ` p
w

p, q ` p
∧

p, q ` p ∧ p

considered earlier. Both proofs map to the combinatorial
proof depicted at the top of the previous column. The re-
spective (one-sided) proof nets are:

�
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p ∧ p

c

w

c

w

��@@ ∧

q p p ∧ p

The failure to identify these proofs, and similar failures,
forces the use of rewiring rules (coherence laws) on proof
nets for cut elimination: see Table 8 of [FP06]. On com-
binatorial proofs, each of the rewiring rules in Table 8 be-
comes an equality.

One way to identify many sequent proofs is to follow the
standard approach to multiplicative proof nets [Gir87]: sim-
ply trace the axioms down to links on the conclusion. The
two sequent proofs above translate to the following linking:

q , p ` p ∧ p

This approach is studied in detail in [LS05]. Linkings fail to
form a propositional proof system, since correctness is not
polynomial.1 Indeed, verifying a linking onΓ is no faster
than verifyingΓ itself, so linkings are redundant in the same
way that an explicit truth table is redundant. Linkings fail to

1Were a polynomial-time correctness criterion ever to be found, it
would yield a propositional proof system in which every tautologyT can
be verified by a certificate of size polynomial in the size inT , implying the
remarkable complexity resultNP = coNP [CR79].
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be an efficient representation of propositional sequent cal-
culus proofs.

Combinatorial proofs are at an abstraction sweet spot be-
tween proof nets and linkings: they identify more proofs
than proof nets, but not to the point of failing to be a proof
system, as is the case for linkings.

Sequentialisation theorem. Analogous to Girard’s se-
quentialisation theorem for multiplicative proof nets
[Gir87], in Section 6 we obtain a sequentialisation theorem
for a (complete) subclass of combinatorial proofs, thebi-
narycombinatorial proofs.

Cut elimination. Standard Gentzen-style cut elimination
for sequent calculus adapts directly to proof nets (see
[Rob03, FP06]). Just as Gentzen’s original procedure is lit-
tered by transpositions of structural rules, the adapted pro-
cedure for proof nets is littered by rewiring rules [FP06,
Table 8]. Combinatorial proofs obviate the rewiring rules,
since the proof nets on either side of a rule are represented
by the same combinatorial proof. It would be interesting to
adapt Gentzen’s cut elimination procedure to combinatorial
proofs, in the hope of distilling the essence of the procedure,
untainted by transpositions of structural rules or rewiring
rules.

2 Preliminaries

Formulas. Fix a setV of variables. A formula is any ex-
pression generated freely from variables by the binary op-
erationsand ∧, or ∨, and implies⇒, and the unary oper-
ation not ¬. A valuation is a functionf : V → {0, 1}.
Write f̂ for the extension of a valuationf to formulas de-
fined by f̂(¬φ) = 1−f̂(φ), f̂(φ∧ρ) = min{f̂(φ),f̂(ρ)},
f̂(φ ∨ρ) = max{f̂(φ),f̂(ρ)}, f̂(φ ⇒ ρ) = f̂((¬φ)∨ρ). A
formulaφ is true, orvalid, or atautology, if f̂(φ)=1 for all
valuationsf . Variablesp ∈ V and their negationsp = ¬p
areliterals, and we say thatp andp aredual.2

Graphs. An edgeon a setV is a two-element subset ofV.
A graph (V,E) is a finite setV of verticesand a setE of
edges onV . Write V (G) andE(G) for the vertex set and
edge set of a graphG, respectively, andvw for {v, w}. The
complementof (V,E) is the graph(V,E c) with vw ∈ E c

iff vw 6∈E. Theunion G ∨ G′ of graphsG= (V,E) and
G′= (V ′, E′) with no common vertex is(V ∪V ′, E∪E′) and
thejoin G∧G′ is (V ∪V ′, E∪E′∪{vv′ : v∈V, v′∈V ′}).

2To streamline our presentation we have excluded the constants0 and
1 from the definition of formula. To recover constants, simply encode0 as
p ∧ p and1 asp ∨ p, wherep is a fresh variable for each occurrence of0
and1.

Theemptygraph is the graph with no vertices. A graph
is disconnectedif it is a union of non-empty graphs, other-
wise it isconnected. A componentis a maximal non-empty
connected subgraph.

A graph (V,E) is a cograph, or P4-free, if V is non-
empty and for any distinctv, w, x, y ∈ V , the restriction
of E to edges on{v, w, x, y} is not{vw,wx, xy} (seee.g.
[BLS99]). A graphG is bipartite if it has no odd cycle:
wheneverv1, . . . , vn are distinct vertices inG with n odd
andvivi+1 ∈ E(G) for 1 ≤ i < n, thenvnv1 6∈ E(G).

A homomorphismh : G→ G′ is a functionh : V (G) →
V (G′) such thatvw ∈ E(G) impliesh(v)h(w) ∈ E(G′).
An isomorphismis a bijective homomorphism whose in-
verse function is also a homomorphism. Two graphs are
isomorphicif there is an isomorphism between them.

A vertex setC ⊆ V (G) is aclique if vw ∈ E(G) for all
distinctv andw in C.

3 Combinatorial propositions and truth

Bigraphs. A bigraphG = (V,∧,¬) is a finite setV of
vertices together with sets∧ and¬ of edges onV . The no-
tation for the edge sets is chosen with a view to interpreting
formulas as bigraphs. WriteG∧ andG¬ for the∧-graph
(V,∧) and¬-graph (V,¬) of G, respectively. A∧-edgeof
G is an edge ofG∧, and a¬-edgeof G is an edge ofG¬.

Given a formulaφ, writeG(φ) for the bigraph obtained
from φ as follows. Without loss of generality, assumeφ is
generated by∧ and∨ from literals (by de Morgan duality,
θ ⇒ ψ 7→ (¬θ ∨ ψ) and¬¬θ 7→ θ ). The vertices of
G(φ) are the leaves of the parse tree ofφ, a pair of vertices
vw is a∧-edge iff the smallest subformula ofφ containing
v andw is a conjunction, andvw is a¬-edge iff v andw
are labelled by dual literals. Six examples can be found on
page 1.

A homomorphismh : G → G′ between bigraphs is a
functionh : V (G) → V (G′) which preserves∧-edges and
¬-edges,i.e., which is simultaneously a graph homomor-
phismG∧ → G′

∧ andG¬ → G′
¬. An isomorphismis a

bijective homomorphism whose inverse function is also a
homomorphism. Two bigraphs areisomorphicif there is an
isomorphism between them.

Given bigraphsG = (V,∧,¬) andG′ = (V ′,∧′,¬′)
with no common vertex, theunion G ∨G′ is (V ∪ V ′,∧ ∪
∧′,¬ ∪ ¬′) and thejoin G ∧ G′ is G ∨ G′ together with a
new∧-edge between every vertex ofG and every vertex of
G′. Join adds no¬-edges.

Combinatorial propositions. A bigraphG is acombina-
torial proposition if G∧ andG¬ areP4-free andG¬ is bi-
partite.
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PROPOSITION1 A bigraph is a combinatorial proposition
iff it is derivable from a formula.
Proof. P4-free graphs are precisely the graphs generated
from individual vertices by union and join [BLS99,§11.3].
See Section 4 of [Hug04]. �

Combinatorial truth. Translating a formula to a combi-
natorial proposition forgets the names of literals. For exam-
ple, each ofp ∨ q, q ∨ ¬p, ¬p ∨ ¬q andq ∨ ¬r translates
to the same combinatorial proposition• • . However,
as we shall see in the definitions and lemma below, no in-
formation about validity is lost.

A clausein a graph is maximal set of vertices not con-
taining an edge. Aclausein a bigraphG is a maximal set
of vertices not containing a∧-edge (i.e., a clause inG∧). A
clause inG is true if it contains a¬-edge, andG is true (or
valid) if each of its clauses is true.

PROPOSITION2 A formula is true iff its bigraph is true.
Proof. Exhaustively apply distributivityθ ∨ (ψ1 ∧ ψ2) →
(θ ∨ ψ1) ∧ (θ ∨ ψ2) to the formulaφ, modulo associativity
and commutativity of∧ and∨, yielding a conjunctionφ′

of syntactic clauses (disjunctions of literals). The lemma is
immediate forφ′ since its bigraphG(φ′) is a join of clauses
together with additional¬-edges, andG

(
θ ∨ (ψ1 ∧ ψ2)

)
is

true iff G
(
(θ ∨ ψ1) ∧ (θ ∨ ψ2)

)
is true since for non-empty

graphsG1 andG2, a clause ofG1∨ G2 (resp.G1∧ G2) is a
clause ofG1 and (resp. or) a clause ofG2. �

4 Structural homomorphisms

The key to our semantics of sequent proofs is to model
structural rules very precisely as certain bigraph homomor-
phisms, calledstructural homomorphisms. In this section
we prove theStructural Characterisation Theorem, which
takes the following form:

One formula is derivable from another by struc-
tural rules iff there is a structural homomorphism
between their bigraphs.

In Section 5 we shall define a combinatorial proof as a struc-
tural homomorphism from a suitable source. The Structural
Characterisation Theorem is the key to the Sequentialisation
Theorem, which in turn yields the Soundness & Complete-
ness Theorem.

Skeletons. A skeletal formula, or skeleton, is a formula
generated by∧ and ∨ from the symbol•, for example,
• ∧ (• ∨ •). Write C(s) for the cograph (P4-free graph)
of a skeletons, obtained by viewing• as a vertex and∨ and
∧ as union and join. Write' for skeleton equality modulo
associativity and commutativity of∧ and∨, and write∼= for
graph isomorphism. The following proposition is immedi-
ate.

PROPOSITION3 s ' t iff C(s) ∼= C(t) , for all skeletons
s and t.

One skeletonstructurally implies another if the latter is
derivable from the former by associativity and commutativ-
ity of ∧ and∨ together with the following rewrites applied
to subformulas (subskeletons):

s ∨ s 7→ s (contraction)
s 7→ s ∨ t (weakening)

wheret is an arbitrary skeleton. For example, the skeleton
(• ∨ •) ∨ (• ∧ •) structurally implies

(
(• ∨ •) ∧ •

)
∨ • :

(• ∨ •) ∨ (• ∧ •) → • ∨ (• ∧ •) (contract)
→ (• ∧ •) ∨ • (commute)
→

(
(• ∨ •) ∧ •

)
∨ • (weaken)

Below we shall characterise structural implication semanti-
cally, proving that a skeletons structurally implies a skele-
ton t iff there is a particular kind of graph homomorphism
C(s) → C(t), called askew fibration.

4.1 Cograph contraction and weakening

Given a cographC, a skeleton ofC is any skeletons such
thatC(s) ∼= C. Since cographs are generated from individ-
ual vertices by union and join [CLS81], every cograph has a
skeleton, which by Proposition 3 is uniquely determined up
to associativity and commutativity of∧ and∨. This allows
us to abandon skeletons in favour of working directly with
cographs.

For any skeletons and skeletons′ resulting from a weak-
ening rewrite applied insides, the canonical cograph ho-
momorphismC(s) → C(s′) is aweakening. Similarly, for
any skeletons and skeletons′ resulting from a contraction
rewrite applied insides, the canonical cograph homomor-
phismC(s) → C(s′) is a contraction. For convenience,
we shall also consider every graph isomorphism to be both
a contraction and a weakening.

4.2 Skew fibrations

We recall the following definition from [Hug04,§3]. A
graph homomorphismh : G→ G′ is askew fibrationif for
all v ∈ V (G) andh(v)w ∈ E(G′) there existsvŵ ∈ E(G)
with h(ŵ)w 6∈E(G′).

∀v ŵ(((

?
?

∃

h(v)
h(ŵ)
w

`̀
  

∀

The vertexŵ is askew lifting of w from v. If we demand
h(ŵ) = w and uniqueness of̂w, then we have a standard
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graph fibration (simultaneously a special case of a topolog-
ical fibration and a categorical fibration [Hug04,§3]).

Ignoring the dotted edges, the homomorphism displayed
on page 2 is a skew fibration.

It is immediate from the statement of the definition that
checking a functionh : V (G) → V (G′) is a skew fibration
is O(|G| × δ(G′) × δ(G)) where|G| is the size ofG (the
number of vertices inG) andδ(H) denotes the maximum
degree of a vertex inH. (The degree of a vertex is the num-
ber of edges containing it.) Thus the correctness of a skew
fibrationG→ G′ can be checked in polynomial time in the
sizes ofG andG′.

4.3 The Contraction-Weakening Theorem

A graph homomorphismh : G → G′ preserves maxi-
mal cliquesif for every maximal cliqueK of G, the image
h(K) = {h(v) : v ∈ K} is a maximal clique ofG′.

THEOREM 1 (CONTRACTION-WEAKENING) Let h be a
homomorphism between cographs. The following are
equivalent.

(1) h is a composite of contractions and weakenings.

(2) h preserves maximal cliques.

(3) h is a skew fibration.

Proof. (1)⇒(2). It is easy to verify that any contraction or
weakening preserves maximal cliques (by considering the
underlying skeletal formulas). Maximal clique-preserving
homomorphisms compose.

(2)⇒(3). A relatively routine graph-theoretic exercise.
(3)⇒(1). This is the tricky part of the theorem. The basis

of our argument is lifted from the proof of the Combinato-
rial Soundness Theorem [Hug04,§5]. That proof iteratively
decomposes a skew fibration usingshallowness(the prop-
erty that the inverse of every component is connected) and
surjectivity, via Lemmas 5 and 6 of [Hug04]. The conver-
sion to shallowness is readily observed to be a factorisation
through post-composed contractions, and conversion to a
surjection is a factorisation through post-composed weak-
enings (a result proved in Lemma 1 below). �

A skew fibration need not preserve maximal cliques if its
target is not a cograph. LetCn denote then-vertex cy-
cle, and letC+

5 beC5 with an additional edge. Inclusion
C4 → C+

5 is a skew fibration, but fails to preserve maximal
cliques.

One way to interpret (2)⇔(3) in the Theorem is as fol-
lows: between cographs, checking max-clique preservation,
which at first sight may seem exponential, can in fact be
checked in polynomial time.

One proof obligation remains. The conversion of a skew
fibrationh to a surjection in the proof of the Combinatorial

Soundness Theorem in [Hug04] post-composes with a full
inclusion homomorphismi, wherei is full if vw is an edge
wheneveri(v)i(w) is an edge. This inclusioni inherits from
h the property of being a skew fibration (a simple graph the-
oretic exercise). The proof of the Contraction-Weakening
Theorem relied on the following.

LEMMA 1 Any full inclusion homomorphism between
cographs which is a skew fibration is a composite of weak-
enings.

Proof. Let i : C → D be the inclusion. We proceed by
induction on the size ofD. If D is a vertex, the result is
trivial. (Remember that every isomorphism is considered to
be a weakening.)

SupposeD = D1 ∧ D2. Since i is a full inclusion,
C = C1 ∧ C2 with cograph full inclusionsiα : Cα → Dα

restricted fromi (α = 1, 2), which are skew fibrations by
Lemma 2 of [Hug04]. Sincei is a skew fibration, eachCα

is non-empty, hence is a cograph. By induction eachiα is a
weakening composite, hencei is a weakening composite.

A similar argument applies to the caseD = D1 ∨D2. �

4.4 The Structural Characterisation Theorem

To unify a combinatorial propositionP is to add¬-edges
to it so as to produce another combinatorial propositionP ′.
The canonical bigraph homomorphismP → P ′ is aunifi-
cation.

Let φ be a formula andφ′ the result of applying a con-
traction rewrite to a subformula ofφ, i.e., replacingθ∨θ by
θ somewhere inφ. The canonical bigraph homomorphism
C(φ) → C(φ′) is a contraction. If φ′ instead results by
a weakening rewrite,i.e., replacingθ by θ ∨ χ somewhere
in φ for some formulaχ, the canonical homomorphism is a
weakening.

For convenience, every isomorphism between combina-
torial propositions will be considered simultaneously a uni-
fication, a contraction and a weakening.

A structural homomorphismh : G → G′ is a bigraph
homomorphism which is a skew fibration on the underlying
∧-graphs,i.e., the graph homomorphismh∧ : G∧ → G′

∧
defined byh∧(v) = h(v) is a skew fibration. The bigraph
homomorphism displayed on page 2 is a structural homo-
morphism.

THEOREM 2 (STRUCTURAL CHARACTERISATION) A bi-
graph homomorphism between combinatorial propositions
is a composite of unifications, contractions and weakenings
iff it is a structural homorphism.

Since the¬-graph of a combinatorial proposition has a sim-
ple structure (bipartite cograph), the theorem derives with-
out too much difficulty from the Contraction-Weakening
Theorem.
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5 Combinatorial proofs

A setW of vertices in a graphG induces a matchingif it is
non-empty and for allw∈W there is a uniquew′∈W such
thatww′ ∈ E(G). A set of vertices in a bigraphG induces
a bimatchingif it simultaneously induces a matching inG∧
and inG¬. A combinatorial proposition ismultiplicative if
it has no induced bimatching and every vertex is in a¬-
edge. This property is related to multiplicative proof nets
[Gir87, DR89, Ret03]. We shall see later that checking a
combinatorial proposition is multiplicative can be done in
polynomial time in its size.

COMBINATORIAL PROOF (CUT-FREE DEF.)

A cut-free combinatorial proof of a combinatorial
proposition P is a structural homomorphism from a
multiplicative combinatorial proposition to P .

A cut-free combinatorial proof of a formula or se-
quent is a combinatorial proof of its combinatorial
proposition.

The source of a combinatorial proof is itsmultiplicative
core, or simplycore.

For example, letP be the following combinatorial propo-
sition (the last bigraph example on page 1):

• •

• •

Here is a combinatorial proof ofP (from page 2):

• •
•

•
���

B
B
B
B
B
BN ?

?
?

• •
•

•
��
�

It is a combinatorial proof of the sequentq, p ` p∧p, and of
the formula(q∨p)∨(p∧p), since both translate toP . Note
that the core is indeed multiplicative: all four vertices of
the upper graph are in a¬-edge (dotted), and no vertex set
induces a bimatching. Also note that the arrows do indeed
define a bigraph homomorphsim which is a structural ho-
momorphism,i.e., a skew fibration with respect to the solid
∧-edges, or equivalently (by (2)⇔(3) in the Contraction-
Weakening theorem), maximal∧-clique preserving.

Here is an illustration of the Structural Characterisation
Theorem, decomposing the structural homomorphism into

a contraction followed by a weakening:

•
•

•
���•

(contraction)S
SSw ?

?
?•

•
•

���

(weakening)
?

?
?•

•
•

��
�•

It also decomoses as a weakening followed by a contraction.

5.1 Colour depiction

Since the vertices of the bigraphG(φ) are the leaves of the
parse tree ofφ, we can abbreviate a combinatorial proof of
φ by targetting the arrows intoφ. For example, the above
combinatorial proof ofq, p ` p ∧ p becomes as shown
below-left:

• •
•

•
���

B
B
B
B
B
BN ? ? ?

q , p ` p ∧ p

◦ �

◦
�

��

B
B
B
B
B
BN ? ? ?

q , p ` p ∧ p

Depicting each¬-edge as a colour class (using colours◦
and�), we obtain the representation above-right. Finally,
by drawing the coloured vertices directly over the leaves of
the sequent, we can omit the arrows:

q ,
◦�

p ` ◦
p ∧

�

p

Later when we come to define the translation of a sequent
proof into a combinatorial proof, the compact colour nota-
tion will be convenient for presenting an inductive transla-
tion. For example, recall the sequent proofs ofq , p ` p∧ p
in the Introduction. Each becomes a tree of operations on
combinatorial proofs, starting from the identity homomor-
phism on the bigraph• • (

◦
p ` ◦

p in a colour depiction)
whose end product is the combinatorial proof above:

◦
p ` ◦p

�

p `
�

p
∧◦�

p ` ◦p ∧
�

p
w

q ,
◦�

p ` ◦p ∧
�

p

◦
p ` ◦p

w

q ,
◦
p ` ◦p

�

p `
�

p
w

q ,
�

p `
�

p
∧

q ,
◦�

p ` ◦p ∧
�

p

Below is another example in colour notation, a combinato-
rial proof of Peirce’s law((p⇒ q)⇒ p)⇒ p .

((
◦
p⇒q)⇒

�

p)⇒◦�

p
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Here is the inductive translation of a sequent proof into this
combinatorial proof:

◦
p `◦p

w◦
p `q, ◦p

⇒
`◦p⇒q,

◦
p

�

p `
�

p
⇒

(
◦
p⇒q)⇒

�

p `◦p,
�

p
c

(
◦
p⇒q)⇒

�

p `◦
�

p
⇒

`((
◦
p⇒q)⇒

�

p)⇒◦�

p

In the examples above, each colour class was binary (i.e.,
had two vertices), coming from a single edge of the¬-graph
which was isolated (in the sense that it did not share a ver-
tex with any other¬-edge). More generally, when the¬-
edges are not isolated, we depict each connected component
(a complete bipartite subgraph) of the¬-graph as a colour
class. For example, the bigraphG of the sequentp∨p ` p∧p
is shown below:

• •

• •

The identity bigraph homomorphismi : G → G is a com-
binatorial proof:G is multiplicative (since it has no induced
bimatching, and every vertex is in some¬-edge) and every
identity is a graph fibration (hence a skew fibration). De-
picting the combinatorial proofi in colour notation, we ob-
tain an example with a four-vertex colour class as the multi-
plicative core, since the¬-graph ofG has a single (complete
bipartite) component:

◦
p ∨ ◦

p ` ◦
p ∧ ◦

p

5.2 Semi-combinatorial depiction

Below-left we have reproduced one of the intermediate
steps of the colour abbreviation in our first example.

• •
•

•
���

B
B
B
BBN ? ? ?

q , p ` p ∧ p

(x ∨ y)∨(x ∧ y)
B
B
B
BBN ? ? ?

q , p ` p ∧ p

a , b ` a ∧ b

B
B
B
BBN ? ? ?

q , p ` p ∧ p

Since every combinatorial proposition is the translation of
a formula, we can choose a formula to represent the mul-
tiplicative core, as shown above-centre. Above-right, we
implement the same idea with a sequent instead.

The identity combinatorial proofG → G for G the bi-
graph ofp∨p ` p∧p, drawn in colour mode in the previous

subsection, can be presented in semi-combinatorial fashion
as follows:

p ∨ p ` p ∧ p

? ? ? ?
p ∨ p ` p ∧ p

5.3 Syntactic presentation

Encoding the structural homomorphism as a sequence of in-
tegers (wheren in ith position denotes that theith leaf above
maps to thenth leaf below), we obtain a syntactic notation:

a , b ` a ∧ b
2234

q , p ` p ∧ p

Alternatively,

a2 , b2 ` a3 ∧ b4

q , p ` p ∧ p

or perhaps

a , b ` a ∧ b .
2234

q , p ` p ∧ p

6 Sequentialisation Theorem

To contract (resp.weaken, unify) a combinatorial proof is
to post-compose it with a contraction (resp. weakening, uni-
fication). (See Section 4.4.)

A portion of a graphG is a union of components inG
(possibly empty). Given portionsX of G andY of H, the
partial join of G andH atX andY , denotedG X∧Y H, is
obtained from the unionG∨H by adding an edge between
every vertex ofX and every vertex ofY . Thus if either of
X orY is empty,GX∧Y H is the unionG∨H, and ifX=G
andY =H thenG X∧Y H is the joinG ∧H.

Given a graph homomorphismg : G′ → G the lift of a
portionX ofG (with respect tog) is the portion ofG′ which
maps intoX (i.e., the union of the componentsC ofG′ such
thath(V (C)) ⊆ V (X)). Given graph homomorphismsg :
G′ → G andh : H ′ → H and portionsX of G andY of
H, thepartial join of g andh atX andY , denotedg X∧Y h
is the homomorphismg ∪ h : G′ X′∧Y ′

H ′ → G X∧Y H
whereX ′ is the lift ofX ′ andY ′ is the lift ofY . The partial
join is a fusion if X andY arecoherent: their liftsX ′ and
Y ′ are either both empty, or both non-empty.

A portion of a bigraph is a portion of its∧-graph. Define
the partial join of bigraphs by forming the partial join on
the underlying∧-graphs, carrying the¬-edges along. Sim-
ilarly, define the partial join of bigraph homomorphisms by
forming the partial join with the underlying homomorphism
of ∧-graphs. Define fusion as before (a partial join between
coherent portions).
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A combinatorial proposition isbinary if every vertex is in
exactly one¬-edge, and a combinatorial proof is binary if
its multiplicative core is binary. WriteT, calledtrue, for the
identity homomorphism on the bigraph• • (the combi-
natorial proposition with two vertices, no∧-edge and one
¬-edge).

THEOREM 3 (SEQUENTIALISATION) A bigraph homo-
morphism is a cut-free binary combinatorial proof iff it is
derivable from T by fusion, contraction, weakening and uni-
fication.

Proof. Every derivable homomorphism is a combinatorial
proof sinceT is a combinatorial proof and a fusion of com-
binatorial proofs is a combinatorial proof.

Conversely, by the Structural Characterisation Theorem
(page 5), every combinatorial proof is derivable from (an
identity homomorphism on) a binary combinatorial axiom
by contraction, weakening and unification. Thus sequential-
isation reduces to showing that every binary combinatorial
axiom is derivable fromT = • • by partial join. This is by
Lemma 8 of [Hug04], since a binary combinatorial axiom is
a nicely coloured coloured cograph upon viewing¬-edges
as two-vertex colour classes, and partial join of bigraphs
corresponds to fusion of coloured graphs in [Hug04].�

Since fusion, contraction, weakening and unification all
preserve validity of the conclusion (target) of a combina-
torial proof, we have:

THEOREM 4 (CUT-FREEBINARY SOUNDNESS)
If a combinatorial proposition has a cut-free binary combi-
natorial proof, it is valid.

We extend soundness to all combinatorial proofs in Sec-
tion 8.

7 Semantics of sequent proofs

Without loss of generality (by preliminary translation if nec-
essary), we work with classical propositional sequent cal-
culus formulated as multiplicative linear logic [Gir87] to-
gether with contraction and weakening. Sequents (non-
empty sequencesφ1, . . . , φn of formulas generated from lit-
erals by∧ and∨) are proved using the following rules:3

p, p
Γ, φ ψ,∆

∧
Γ, φ ∧ ψ,∆

Γ, φ, ψ
∨

Γ, φ ∨ ψ

Γ, φ, ψ, ∆
x

Γ, ψ, φ, ∆
Γ, φ, φ

c
Γ, φ

Γ, φ
w

Γ, φ, ψ

Herep ranges over variables,φ andψ range over formulas,

3As remarked in footnote 2, constants0 and1 can be encoded if de-
sired. We add the cut rule in the next section.

andΓ and∆ range over sequence of formulas.
We interpret the axiomp, p (for any variablep) as the

combinatorial proofT (the identity homomorphism on the
bigraph • • ). Each single-hypothesis rule post-composes
with a structural homomorphism in the obvious way: the∨
andx rules by an isomorphism, thec rule by a contraction,
and thew rule by a weakening and a possible unification (if
ψ shares any variables withΓ or φ).

7.1 Garbage collection

The naive interpretation of the∧ rule is as a partial join
operation on the bigraph homomorphism derived from the
left branch and the bigraph homomorphism derived from
the right branch, with portions corresponding toφ andψ.
However, this fails to preserve the skew fibration condition
when a weak formula meets a strong formula in the rule
(i.e., when no variable traces down from an axiom in the left
branch down toφ, but one or more variables can be traced
ontoψ in the right branch, or vice versa). For example:

p, p
w

p, p, q r, r
∧

p, p, q ∧ r, r

The conjunction is between the weakq and the strongr.
With the naive interpretation of the∧ rule, the proof trans-
lates to the following tree of operations on bigraph homo-
momorphisms (using the colour notation of Section 5.1):

◦
p,
◦
p

w◦
p,
◦
p, q

�

r,
�

r ∧◦
p,
◦
p, q ∧

�

r,
�

r

The final bigraph homomorphism is not a combinatorial
proof, since it fails the skew fibration condition (since the
leaf q does not have a skew lifting from the square overr).

To address this situation we shall do some garbage col-
lection when interpreting the∧ rule. We consider two ap-
proaches: (a) collect garbage on the sequent proof, before
translation, to ensure that the above situation does not arise,
and (b) perform the translation first, yielding a bigraph ho-
momorphismh possibly failing to be a skew fibration, then
garbage collect onh, deleting vertices in its source until re-
ducing it to a skew fibration. The latter approach makes
more natural identifications on sequent calculus proofs, and
therefore we shall take it to be the definitive combinatorial
proof semantics. The differences between the translations
are interesting and subtle, and are the topic of a forthcom-
ing companion paper.

Garbage collection before translation. With reference
to the example above, if the portions corresponding toφ and
ψ are coherent (i.e., their liftsX andY are both empty or
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both non-empty), we shall perform a partial join (which will
be a fusion, because of the coherence); however, if the left
lift X is empty while the right liftY is not, we shall ignore
the combinatorial proof from the right branch, and interpret
the rule by weakening the combinatorial proof from the left
branch (and similarly with the roles ofX andY reversed).
Thus the sequent proof above translates to the following tree
of operations, concluding with a well-defined combinatorial
proof, satisfying the skew fibration condition:

◦
p,
◦
p

w◦
p,
◦
p, q

�

r,
�

r ∧◦
p,
◦
p, q ∧ r, r

Garbage collection after translation. Given a sequent
calculus proofπ of Γ, let hπ : G′ → G be the bigraph
homomorphism obtained by direct translation,i.e., with the
naive interpretation of the∧ rule which never deletes one of
its arguments. Thus the2n vertices ofG′ come from then
axioms at the top ofπ. By the discussion at the beginning
of this subsection,h in general fails to be a skew fibration.
Write |hπ| for the combinatorial proof obtained by exhaus-
tively performing the followinggarbage collectiononG′:
delete a vertexv if either (a)h lacks a skew lifting fromv
or (b)v is not in a¬-edge. Garbage collection is easily seen
to be confluent and terminating, and (by a simple induction)
sincehπ is translated from a sequent calculus proof,|hπ| is
non-empty.

Postponing garbage collection until after translation leads
to more natural identifications on sequent calculus proofs,
therefore we take this to be the definitive combinatorial
proof semantics. The subtle difference between collecting
garbage before and after translation is the subject of a sib-
ling paper. In the simple example onp, p, q∧r, r above, the
final combinatorial proof is the same, irrespective of when
garbage collection is performed.

7.2 Corollary: Completeness

The completeness of propositional sequent calculus com-
bined with either of the above translations from a cut-free
syntactic proof to a cut-free binary combinatorial proof
yields:

THEOREM 5 (COMPLETENESS) Every valid combinato-
rial proposition has a cut-free binary combinatorial proof.

8 Combinatorial proofs with cuts

A cut is a formula of formψ ∧ ¬ψ (where we treat¬ as
a derived operation on a∧∨-normal formulaψ). A cut-
extensionof a sequentΓ is any sequentΓ, χ1, . . . , χn for
n ≥ 0 and cutsχi; correspondingly, the bigraph translation

of Γ, χ1, . . . , χn is a cut-extensionof the bigraph trans-
lation G(Γ) of Γ. A combinatorial proof of a sequentΓ
(resp. combinatorial propositionG) is a cut-free combina-
torial proof of any cut-extension ofΓ (resp.G). Adding the
following form of the cut rule

Γ, ψ ∧ ¬ψ
Γ

to our sequent calculus allows us to place all cut rules, with-
out loss of generalty, at the end of the proof, hence the trans-
lation of a sequent calculus proof ofΓ with n instances of
the cut rule to a combinatorial proof ofΓ with n cuts is
immediate.

Since a cut extension ofΓ is a tautology iffΓ is a tau-
tology, we have the following corollary of cut-free binary
soundness (Theorem 4):

COROLLARY 1 (BINARY SOUNDNESS) If a combinatorial
proposition has a binary combinatorial proof, it is valid.

Finally, we obtain soundness for the full system of non-
binary combinatorial proofs by translation into binary com-
binatorial proofs.

THEOREM 6 (SOUNDNESS) If a combinatorial proposition
has a combinatorial proof, it is valid.

Proof. We map every non-binary combinatorial proofh :
G → G′ to a binary combinatorial proof with two-vertex
cuts. SupposeG¬ has a connected componentC with three
or more vertices, necessarily a complete bipartite subgraph
betweenm vertices inC1 andn vertices inC2. Let C ′ be
a copy ofC. Add C ′ (disjointly) to G∧, interpreting the
edges ofC ′ (which had been¬-edges) now as∧-edges; add
m parallel (i.e., disjoint)¬-edges betweenC1 in G and its
copyC ′

1 andn parallel¬-edges betweenC2 in G and its
copyC ′

2; add a two-vertex cut toG′, with vertices{v1, v2},
and unify as necessary to preserve the property of being
a combinatorial proposition (adding any requisite¬-edges
between thevi and the vertices ofG′); extendh toC ′ with
h(w) = vi for all w ∈ C ′

i. Iterate this process to obtain a
binary combinatorial proof ofG′, with two-vertex cuts. �

8.1 Modelling resolution proofs as cut-free combinato-
rial proofs.

The inverse of the translation in the proof above provides
a model of propositional resolution proofs as cut-free com-
binatorial proofs, as follows. Given a resolution proofπ
of Γ, first translate it to a sequent calculus proofS(π) of
Γ with atomic cuts, then (using the translation defined in
Section 7) translateS(π) to a binary combinatorial proof
h : G→ G(Γ∨ χ1 . . . χn), where theχi are the atomic cut
formulas obtained from the cut rules inS(π). By the nature
of the syntactic translationS(−), the combinatorial proofh
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will have the following property: at least one vertex of ev-
ery¬-edge inG maps to a leaf ofΓ (rather than to a leaf of
one the cutsχi). Thus we can delete each two-vertex cutC,
and the vertices mapping to it underh, and replace it with
m× n edges forming an bipartite complete graph in the¬-
graph ofG, wherem andn are the numbers of vertices of
G mapped byh to the two vertices ofC, respectively.

9 Complexity

Combinatorial proofs form aproof system[CR79], since
correctness is polynomial time. We have already seen that
checking a skew fibration is polynomial. Checking a binary
combinatorial axiom is polynomial by standard breadth-first
search on its modular decomposition tree [BLS99], and the
conversion of a non-binary combinatorial axiom to a binary
combinatorial axiom described just before the Soundness
Theorem is polynomial-time.

The translation from sequent proofs is clearly
polynomial-time if we represent the combinatorial
proofs in syntactic form during the translation (as defined
in Section 5.3). Via the translation, combinatorial proofs
inherit the sequent calculus property of having no obvious
superpolynomial lower bounds [Urq95]. Thus combinato-
rial proofs present an approach towardsNP ?= coNP and
P ?= NP which is logical, yet disencumbered of syntax.
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