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ABSTRACT

We introduce a technique that, given any text input system A and novice user
u, will predict the peak expert input speed of u on A, avoiding the costly process
of actually training u to expert level. Here, peak refers to periods of ideal perfor-
mance, free from hesitation, or concentration lapse and expert refers to asymp-
totic competence (e.g., touch typing, in the case of a two-handed keyboard). The
technique is intended as a feedback mechanism in the interface development
cycle between abstract mathematical modeling at the start (Fitts’ law, Hick’s
law, etc.) and full empirical testing at the end.
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The utility of the technique in iterative design is contingent on what we call the
monotonicity principle: For each user u, if our prediction of peak expert input
speed for u is higher on system A than on system B, continuous text input by u af-
ter training to expert level will be faster on A than on B. Here, continuous refers to
actual real-world use, subject to errors, physical fatigue, lapses of concentration,
and so forth. We discuss the circumstances under which monotonicity is valid.

The technique is parametric in the character map—that is, in the map from
actions (keystrokes, gestures, chords, etc.) to characters. Therefore, standard
heuristic algorithms can be employed to search for optimal character maps
(e.g., keyboard layouts). We illustrate the use of our technique for evaluation
and optimization in the context of stylus keyboards, first benchmarking a num-
ber of stylus keyboards relative to a simple alphabetic layout and then imple-
menting an ant algorithm to obtain a machine-optimized layout.

1. INTRODUCTION

As with any design process, the design of text input systems requires a feed-
back mechanism to iterate to better solutions. Full empirical evaluation of ex-
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pert performance on a new text input system is costly, due to the vast number
of hours required to train test participants to expert level. Furthermore, evalu-
ation is highly sensitive: Even a minor modification in the system (e.g., switch-
ing the position of a key on a keyboard layout, changing a chord on a chording
keyboard, or modifying a gesture of a glove input language) forces a repeat of
all experiments because participants must be retrained to expert level on the
modified system. Such high cost and sensitivity render the iterative design of
text input systems impractical; interface design becomes more of an art than a
science.

In certain cases, rules, models, or equations (e.g., Fitts’ law, Hick’s law, and
the power law; Card, Moran, & Newell, 1983) can be used to generate a feed-
back loop in the early stages of the design process. However, these techniques
are not without drawbacks. First, by the very nature of abstraction, there can
be problems of fidelity and resolution (Noel & McDonald, 1989). Second,
there is the problem of lack of generality: Some systems may be beyond the
scope of laws. For example, how does one model intricate gestures with a
glove or stylus, or the complex parallelism and interference between fingers at
a two-handed keyboard?

We introduce a technique intended as a tool in the interface design cycle
between abstract mathematical modeling at the start (Fitts’ law, etc.) and full
empirical user testing at the end. Given any text input system A and novice
user u, the technique predicts the peak expert input speed of u on A, avoiding
the costly process of actually training u up to expert level. Here, peak refers to
periods of ideal performance, free from hesitation or concentration lapse, and
expert refers to asymptotic competence (e.g., touch typing in the context of a
two-handed keyboard).

Our conceptual starting point is a strict separation of the text input system
into two parts:

• Physical aspect: The actions performable on the device—for example, a
keystroke of a two-handed keyboard, the articulation of a gesture with
a stylus or glove, or the depression of a chord on a two-handed key-
board.

• Logical aspect: The character map, specifying the interpretation of each
action as a character—for example, “striking the top left key” maps to
Q, “a vertical down-stroke with the index finger of the glove” maps to
I, “chording the two outermost keys” maps to Y.

For each (potentially novice) user u and text input system A we capture the
pure physical aspect of interaction between u and A, in total isolation from the
logical aspect, as an empirical bi-action table E. For each pair of actions i and j
(e.g., keystrokes on a two-handed keyboard, gestures with a stylus or glove,
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etc.), the table entry Eij is the aggregate result of experiments recording the time
to complete j having just completed i, in the absence of any character map.
Then, given an arbitrary character map, we obtain a prediction of peak expert
input speed by using a table of character bi-gram frequencies (see Figure 1).

It is crucial that the experiments are completely independent of the logical
aspect (i.e., are conducted in the absence of a character map). For example, in
the context of glove gestures we might ask a user to form a fist then flatten the
hand—without reference to any particular interpretation of these actions as
characters. In the case of stylus keyboards, we might place users at a com-
pletely blank grid of keys and ask them to tap the top left key followed by the
bottom right key. The reasoning behind our choice to conduct pure physical
experimental trials in the absence of a character map is as follows:

1. The experimental data capture physical coordination representative
of expert-level production of text during peak concentration. Pairs of
actions are executed fluently, as they would be by an expert user who
is completely familiar with an ambient character map—without actu-
ally having to train the user to expert level on a character map.

2. Once the empirical bi-action table is obtained, we can immediately
predict peak expert input speed for the device under any character
map.

3. Because predictions are obtained immediately for any character
map, we can employ standard heuristic algorithms to search for an
optimal character map (e.g., keyboard layout).

Our prediction of peak expert input speed is not intended to be an estimate
of real continuous performance. The latter is subject to errors, physical fatigue,
and lapses in concentration, factors that are highly unpredictable, varying not
only between users but also on a session-by-session basis for a single user.
However, in the absence of realistic predictions of continuous input speeds,
our technique is nonetheless a useful feedback mechanism for the iterative de-
sign of text-input systems if one accepts the validity of the monotonicity1 princi-
ple, which we present in a strong and a weak form:

Strong Monotonicity Principle: For any user u and any text input systems A and B,
if our prediction of peak expert input speed for u is higher on A than on B, con-
tinuous text input by u after training to expert level will be faster on A than on
B.
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1. The terminology derives from mathematics. A function f : X → Y between or-
dered sets X and Y is monotonic if and only if ∀ x, x′∈ X. [x ≤ x′ ⇒ fx ≤ fx’ ].



Weak Monotonicity Principle: For any user u and text input systems A and B
that differ only in character map (and hence have the same empirical bi-action
table), if our prediction of peak expert input speed for u is higher on system A
than on system B, continuous text input by u after training to expert level will
be faster on A than on B.

In Section 2 we outline why the strong form does not hold in general, partic-
ularly when A and B are physically very dissimilar. Therefore, when using our
predictions of peak expert input speed to benchmark one text input system A
against a very different system B (e.g., Morse code against handwriting recog-
nition), careful consideration is required on the part of the researcher before
the results can be deemed meaningful.

Also in Section 2, we argue that the weak monotonicity principle holds.
Consequently, it is valid to use the empirical bi-action technique to evaluate
and compare alternative character maps for the same device and to search for
optimal character maps using heuristic algorithms. We demonstrate this ap-
proach in Section 3 in the context of stylus keyboard layouts. We benchmark a
number of stylus keyboards relative to a simple alphabetic layout, then imple-
ment an ant algorithm to obtain a machine-optimized layout. In particular, we
validate our technique by successfully correlating predicted peak expert input
rates with previous results on two stylus keyboards: the OPTI (MacKenzie &
Zhang, 1999) and the FITALY (Textware™ Solutions, 2000). We summarize
this illustrative example later.

In Section 4, we discuss the strengths and weaknesses of our technique rela-
tive to full empirical testing and abstract mathematical modeling (Fitts’ law,
etc.). Having illustrated the approach in the context of stylus keyboards, we
note that empirical bi-action tables could be used in the analysis and design of
a wide variety of text input systems, such as two-handed keyboards, chording
keyboards, cell phones, glove gesture input, and forms of stylus input includ-
ing Graffiti®, Quikwriting (Perlin, 1998), and Unistrokes (Goldberg & Rich-
ardson, 1993).

In Section 3, we illustrate our technique in the context of stylus keyboard
design. A stylus keyboard is a graphical keyboard displayed on a touch screen,
on which users type by tapping with a stylus (pen). An example is the pop-up
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Figure 1. Predicting peak expert text input rates.



QWERTY available on many personal digital assistants (PDAs). Other meth-
ods of text entry with a stylus include handwriting recognition and gesture rec-
ognition.

It is a point of contention as to whether users of mobile devices spend
enough time entering text to be willing to expend the effort to acquire exper-
tise with a faster layout than the familiar QWERTY. We justify the search for
faster layouts as follows: (a) There is a market, as witnessed by sales of a com-
mercial layout called the FITALY (Textware Solutions, 2000); (b) although a
large volume of text will rarely be entered in a single session, high numbers of
short messages are likely; and (c) only after researchers have explored the
space of optimized keyboards and have understood what can be gained by
switching from QWERTY can we conclude that a majority of users would
continue using the QWERTY. We do not dwell on these issues in this article
because we are using stylus keyboard design as a domain to illustrate a more
general approach.

Both full empirical testing and abstract mathematical modeling have been
used in stylus keyboard design (Hunter, Zhai, & Smith, 2000; Lewis, LaLomia,
& Kennedy, 1999; MacKenzie, Nonnecke, McQueen, Riddersma, & Meltz,
1994; MacKenzie & Zhang, 1999; MacKenzie, Zhang, & Soukoreff, 1999;
Soukoreff & MacKenzie, 1995). Abstract approaches use an equational char-
acterization of human motion (known as Fitts’ law; Fitts, 1954) to simulate user
input at keyboards and hence obtain estimates of text entry rate. Then, with an
evaluation function at hand, one can apply off-the-shelf techniques to find op-
timized keyboard layouts. For example, Hunter et al. (2000) employed dy-
namic simulation and the Metropolis method (see also Zhai, Hunter, & Smith,
2000). A drawback of the pure analytical approach is that there is experimen-
tal evidence (Section 2.2 of MacKenzie, 1991) that small-scale hand motions
are not accurately characterized by the law.

Due to the inherently abstract nature of Fitts’ law, previous works have only
considered the distance between two keys as a predictor of the duration of the
motion between these keys. We show that this duration depends also on the
first key position and on the relative position of the second key. These depend-
encies, as well as any other more subtle dependencies that could be impossible
to model, are automatically taken into account by our empirical bi-action ta-
ble, supporting its use in the intermediate design phase between an initial use
of laws and the final full user testing.

In the context of stylus keyboards, an action is a tap of the stylus, so in Sec-
tion 3 we refer to bi-taps instead of bi-actions. In Section 3.9 we describe the
implementation of an ant algorithm to find an optimized stylus keyboard lay-
out, and in Section 3.11 we benchmark a number of keyboards against a naive
alphabetical layout ABC. The peak input rate of the layout produced by the
ant algorithm was 15.65% faster than the ABC, the FITALY was 13.35% faster,
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the OPTI was 11.63% faster, and a variant of the ABC with a center Space key
was 3.95% faster. Until a larger corpus of bi-tap data has been amassed, these
figures should not be considered final because only five participants were
tested in the original construction of the bi-tap table. Furthermore, the output
of the ant algorithm had the advantage of the coincidence of training data and
test data.

2. EMPIRICAL BI-ACTION TABLES

Given a text input system S, we perform experiments to capture the physi-
cal aspect of S in an empirical bi-action table E: For each pair of actions i and j
(e.g., keystrokes on a two-handed keyboard, gestures with a stylus or glove,
etc.), the entry Eij is the aggregate result of experiments recording the time to
complete j having just completed i. For the reasons outlined in Section 1, it is
crucial that the experiments be conducted in complete isolation from the logi-
cal aspect (i.e., completely independently of any character map). An illustra-
tion of how to perform such experiments is given in detail in Section 3, in the
context of stylus keyboards.

Given a character map K (i.e., an assignment of actions to characters), a ta-
ble of bi-gram probabilities P and an empirical bi-action table E,

Character map K: character a → action K(α)
Bi-grams P: (character α, character β) → probability P(α, β)
Bi-actions E: (action i, action j) → duration E(i, j) = Eij

the peak expert text input rate R(K, P, E), in characters per unit time, is given
by:

(1)

where α and β range over the character set.
This equation can be decomposed and understood as follows:

(α, β) bi-gram execution time

Mean bi-gram execution time

Peak expert text-input rate

(K, P, E) is the mean time taken to input an ordered pair of characters
(bi-gram) under the character map K, with text represented by the bi-gram
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probabilities P and motion modeled by the empirical bi-action table E. MP,E(α,
β) is the time taken to input the ordered pair of characters (α, β) under the char-
acter map K, with motion modeled by the empirical bi-action table E. Note
that this depends only on the character map K and empirical bi-action table E.

From this decomposition we observe that our Equation 1 for text-input rate
R(K, P, E) is similar to Equation 5 of MacKenzie et al. (1999) with (α, β) bi-gram
movement time set to E(K(α),K(β)).

The peak expert text input rate defined earlier is not intended to be an esti-
mate of real continuous performance. Actual text input, being subject to fac-
tors such as physical fatigue and lapses in concentration, will only reach peak
rate in short bursts. The peak expert text input rate is thus a useful mechanism
for the iterative design of text input systems only if one accepts the validity of
the monotonicity principle, which we present in a strong and a weak form:

Strong Monotonicity Principle: For any user u and any text input systems A and B,
if our prediction of peak expert text input rate for u is higher on A than on B,
continuous text input by u after training to expert level will be faster on A than
on B.

Weak Monotonicity Principle: For any user u and text input systems A and B
that differ only in character map (and hence have the same empirical bi-action
table), if our prediction of peak expert text input rate for u is higher on system
A than on system B, continuous text input by u after training to expert level
will be faster on A than on B.

The strong form does not hold in general, particularly when A and B are
physically very dissimilar. The sources of fatigue may be very different for dif-
ferent devices, as may be concentration levels required during use. Consider,
for example, the case of A, an optimized gesture language such as Unistrokes
(Goldberg & Richardson, 1993), and B, a hunt-and-tap stylus keyboard. Due
to the continuous visual scanning required during input at the stylus keyboard,
actual sustained input on B may be more prone to fatigue or errors, so a slightly
higher prediction of peak expert input speed for B than for A may not accu-
rately represent better real-world sustained performance on B than on A.
Therefore when using our predictions of peak expert input speed to bench-
mark one text input system A against a very different system B, careful consid-
eration is required on the part of the researcher before the results can be
deemed meaningful.

However, when A and B use the same device and set of actions and differ
only in character map, factors such as concentration laps and fatigue will be
similar. Therefore, continuous text entry rate will be a similar dilution of peak
text entry rate in each case, and the Weak Monotonicity Principle holds. Con-
sequently, it is valid to use the empirical bi-action technique to evaluate and
compare alternative character maps for the same device and to search for opti-
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mal character maps using heuristic algorithms. We demonstrate this approach
in Section 3 in the context of stylus keyboard layouts.

3. ILLUSTRATIVE EXAMPLE: STYLUS KEYBOARDS

We illustrate the use of an empirical bi-action table in the context of stylus
keyboard evaluation and optimization. We describe in detail the experiment
to generate the empirical bi-action table, benchmark various layouts against a
simple alphabetical layout, and then we implement an ant algorithm to search
for an optimal layout. We validate our technique by correlating predicted
peak expert input speeds with previous results on the OPTI and FITALY lay-
outs. Because actions are taps with a stylus, in this section we refer to bi-actions
as bi-taps.

3.1. Method

Participants. There were five participants, each right-handed. All
were students, familiar with desktop computing. Four were men. The youn-
gest was 20, the oldest was 32, and the mean age was 26.3. Of the 5, only 1
had previous experience with stylus text input. All were paid for their par-
ticipation in the study.

Apparatus. For the experiments we used several different PDAs:
Palm™ III, Palm IIIx, Palm VII (Palm, Inc.), and Visor (Handspring™). The
software was written in C++ using CodeWarrior™ for Palm OS®

(Metrowerks). The time measurements were gathered using the device
clock, in terms of time ticks. The operating system has a GetTimeTicks()
function that gives the time elapsed in milliseconds. This function is called
each time the user taps on the screen, and the time elapsed between two pen
taps is measured by taking the difference between two consecutive values.
The data were saved in a Palm OS database and later downloaded to a desk-
top computer for analysis.

Procedure. Each participant underwent five separate tests. The dura-
tion of a test was approximately 30 min. Participants worked on a 5-row,
6-column blank keyboard on a PDA (Figure 2). The dimensions of the grid
were as follows: width = 3.15 cm, height = 2.65 cm, square key width/height
= 5.25 mm.

Define a bi-tap to be any ordered pair of keys (k1, k2). A test consisted of pre-
senting a participant with all 900 possible bi-taps in random order. Each bi-tap
waspresentedby labeling twoof theblankkeys,1and2.Theparticipant triedas
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quickly as possible to tap key 1 followed by key 2. We recorded the time of each
such bi-tap (i.e., the time interval between tapping key 1 and tapping key 2).

Participants were aware of the fact that their time to find and hit key 1 is not
being recorded. Furthermore, they were instructed to absorb the positions of
both keys before undertaking any physical motion, so that the recorded inter-
val does not include scanning time for key 2. Should a participant be inter-
rupted or distracted after striking key 1, they are instructed to the cancel
button to be presented with the same bi-tap a second time. When an incorrect
key was tapped the application emitted an ugly BEEP, and the screen locked
for 3 sec. The irritation ensured an extremely low error rate.

An important aspect of the test was that all 900 bi-grams were carried out in
succession rather than in isolation. This was to simulate the fact that during
real typing, participants typically adopt a natural rest position with their wrist
on the side of the PDA. For consistency, all participants were asked to work the
PDA in hand rather than supported flat on a desk.

3.2. Results

We adopt the chess naming convention for keys as depicted in Figure 3,
row index A to F from left to right, column index 1 to 5 from bottom to top.
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Figure 2. Screen shots from the bi-tap experiment. The screen shots are in order of
bi-taps presented to a user during the test (observe the count in the top of the display).
The lower right shot shows the irritating 3-sec screen-lock incurred by committing an



The results of the experiment, aggregated across the 25 tests of the 5 partici-
pants, are shown in Figure 4, which we refer to as the empirical bi-tap table.
The entry at row k1 and column k2 represents the time taken by a generic user
between tapping key k1 and key k2. The largest entry in the table is .330 sec, for
the long diagonal bi-tap A1 to F5. The smallest entry is .147, for the double-tap
of F3.

Note that we use to denote the empirical bi-tap table of Figure 4. As de-
tailed in the next section, the overline is to remind us that is the mean of five
bi-tap tables, one per test participant. We write (k1, k2) for the entry at row k1

and column k2.

3.3. Calculating the Entries of the Empirical Bi-Tap Table

Having undergone the experiment five times, each user generated five data
points per bi-tap; hence, we have a total of 25 data points per bi-tap. During the
testing procedure we occasionally observed lapses of concentration by a user
in the middle of a bi-tap. Such instances result in anomalous data points that
are not in agreement with our objective of capturing the purely physical “mini-
mum transition time” between a pair of taps.

Outliers were discarded uniformly with the following procedure: For each
user, and for each bi-tap, discard the data points that are more than twice the
duration of the minimum bi-tap time in the user’s quintuple of recorded data
points. From a total set of 21,750 data points for bi-taps consisting of distinct
keys, this procedure discards 877 points (i.e., an outlier cutoff of 4%). Note that
we remove outliers on a per user basis to allow for the fact that some users are
uniformly faster and more coordinated than others.
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142 Figure 4. Empirical bi-tap table . The value (k1, k2) at row k1 and column k2 is the time taken to tap key k1 followed by key k2 in sec-
onds. (See Figure 3 for the naming convention for the keys on the 5 × 6 grid.) The value of (k1, k2) is the mean of the corresponding
values in the bi-tap tables of the 5 participants. Section 3.3 explains how the value is computed from the 25 experimental data points
for (k1, k2).
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After removing outliers, to obtain an entry for a given bi-tap in the em-
pirical bi-tap table representative of a generic user, one can no longer sim-
ply take the mean of the remaining data points. This would not give equal
weight to each of the users. For example, if there is one outlier in the set of
25, belonging to, say, Participant 3, then if we define the empirical bi-tap ta-
ble entry for that bi-tap as the mean of the remaining 24 points, Participant
3, having contributed only 4 points to the mean, will be underrepresented
by a factor 4/5.

The empirical bi-tap table entries are instead calculated giving equal weight
to each user: For a given bi-tap, take the mean time for each of the users on the
points remaining in their quintuple after removing outliers, then define the
empirical bi-tap table entry to be the average of those five means.

Formally, we calculate the entries as follows. First, we calculate individual
bi-tap tables Es for each test participant s, and then define as the mean of these
tables:

(2)

where k1, k2 are keys, S is the set of test participants, and is the cardinality
of S (in our case, 5). The (k1, k2)th entry Es(k1, k2) of the individual bi-tap ta-
ble Es of test participant s ∈ S is defined as the mean of the data points for s
that remain for the bi-tap (k1, k2) after removing outliers using the proce-
dure outlined earlier.

3.4. Interpreting the Empirical Data

Figure 5 is a scatterplot of bi-tap time against bi-tap length for the 900 bi-tap
times in the empirical bi-tap table (Figure 4). Distance is measured in key
widths. As one would expect, bi-tap time increases with distance.

The vertical spread of the clusters (a cluster is the set of bi-tap times of a
given length) is not random. Two patterns are lost in the projection of the data
onto a time-distance scatter: Although the time interval between successive
taps on a keyboard depends principally on the distance between them, it also
depends on position and trajectory.

These dependencies are illustrated in Figure 6. The left grid shows the three
top points of each of clusters b, c, and d, and the right grid shows the bottom
three points of the clusters. The fast bi-taps are around the middle columns C
and D, heading north/northeast/east; the slow bi-taps are around the left, bot-
tom, and lower boundaries of the grid, heading west/southwest.
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3.5. Relation With Fitts’ Law

Fitts’ law is a well-known model of human movement (Fitts, 1954; MacKen-
zie, 1991) that has been used in a number of papers on stylus keyboards
(Hunter et al., 2000; Lewis et al., 1999; MacKenzie et al., 1994; MacKenzie &
Zhang, 1999; MacKenzie et al., 1999; Soukoreff & MacKenzie, 1995) in the
following form:
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Figure 5. (Upper) Time-distance scatter plot of the 900 bi-tap times in the empirical
bi-tap table (Figure 4), the aggregated results from our experiments. (Lower) Chart il-
lustrating a typical relation (modulo rotation and reflection) between keys of bi-taps in
clusters a to g of the plot. For example, cluster a consists of double-taps on the same key
(30 data points), cluster b consists of bi-taps between immediate neighbors (98 data
points: 24〈, 24, 25◊, 25⇓), cluster c consists of bi-taps between diagonal neighbors (80
data points: 20™, 20, 20, 20∑), and so on. Cluster means are quoted above the corre-
sponding pictures (.154, .165, …).



(3)

where

MTij = mean time to move from key i to key j (in seconds)
Wj = size of key j
Aij = distance from key i to key j
b = 1/4.9 is a fitted constant (MacKenzie, Sellen, & Buxton, 1991).

Fitts’ law is somewhat inaccurate at a small scale (see, e.g., Section 2.2 of
MacKenzie, 1991). This observation is confirmed by the data collected in our
experiment: Figure 7 is the time-distance scatter of our empirical bi-tap table,
with Fitts’ law (in the aforementioned form) superimposed. Another difference
between Fitts’ law and our empirical results is the dependency of stylus dexter-
ity on position and trajectory, as depicted in Figure 6. Fitts’ law, as applied to a
rectangular grid of square keys, is a translation and direction invariant.

3.6. Peak Input Rates of Stylus Keyboards

In this section, we use the approach described in Section 2 to predict peak
expert input rates on various stylus keyboards. We begin with a simple illustra-
tive example, an ABC Keyboard.

Define KABC to be the ABC keyboard layout depicted in Figure 8. (Note
that keys D1, E1, and F1 are unused.) With the bi-gram probability table of the
Appendix and the empirical bi-tap table (Figure 4), our model predicts the fol-
lowing peak expert text-input rate for the ABC layout:
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Figure 6. Fast and slow bi-taps, showing how bi-tap time depends not only on the dis-
tance between source and target but also on position and trajectory. The left grid
shows the top three points of each of clusters b, c, and d of Figure 5 (time-distance scat-
ter plot), and the right grid shows the bottom three points of each of b, c, and d.
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Figure 7. Relation between Fitts’ law and our empirical data.

Figure 8. Four keyboard layouts. Shaded keys are unused keys.
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where wpm denotes words per minute, with a word defined as 5 characters
(including Spaces).

3.7. Validation of the Bi-Tap Table

In this section we compare our peak input rate predictions for two of the
keyboard layouts shown in Figure 8 (the OPTI and the FITALY) with previ-
ous measures of peak input rate, thus validating the user model described by
our empirical bi-tap table.

The OPTI Validation

In MacKenzie and Zhang (1999), users were trained over 20 sessions to tap
70 stock phrases on the OPTI layout depicted in Figure 8. Average text input
rates followed the power law of learning from 17 wpm (1.42 char/sec) in Ses-
sion 1 to 44.2 wpm (3.7 char/sec) in Session 20, and a regression (R2 = .997)
predicted a performance of 60.7 wpm (5.06 char/sec) on Session 50.

As can be seen in Figure 9, our predictions of peak text input rate corre-
spond nicely with the asymptotic predictions of MacKenzie and Zhang.
OPTIlower right denotes use of the OPTI with a fixed choice of Space key as the
lower right of the four alternatives, and OPTIlast denotes use of the OPTI
where the user chooses the Space key closest to the last letter tapped. The de-
tails of the calculations, including the construction of the 5 × 7 bi-tap table, can
be found in Section 3.1.

The FITALY Validation

The FITALY (Textware Solutions, 2000) is a commercially available stylus
keyboard, the layout of which is shown in Figure 8. Figure 10 reproduces the
results of a promotional competition held by the manufacturers in which con-
testants were timed tapping the following 181-character paragraph on the
FITALY:

What you need to do to have a chance to win the contest is to tap this
sentence as fast as you can without any error. One more thing you
need to have for a valid entry is a witness.

Our predictions of peak expert text input rate are interleaved in the table
(Figure 10). Video recordings of human performance (available on the
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FITALY Web site) are of individuals remarkably highly trained on entering
this 181-character sequence, and as such represent peak input speeds. The fact
that our predictions lie within the table adds to the validation of the bi-tap table
for measuring peak input speed. Note that the sample test for the competition
contains punctuation: two periods and two capitalizations. Hence, our predic-
tions will be marginally too high. However, they still fall in essentially the
same positions within Figure 10.
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Figure 9. Validating our bi-tap table by comparing peak expert text input rate predic-
tions with results of MacKenzie and Zhang (1999) on the OPTI keyboard depicted in
Figure 8. See Section 3.11 for details of the calculations.

Characters/Second Words Per Minute

MacKenzie and Zhang Session 50 5.06 60.7
R(OPTIlower right, , ) 5.10 61.2
R(OPTIlast, , ) 5.25 63.0

Figure 10. Validating our peak expert text input rate predictions using the commercial
FITALY keyboard, the layout of which is depicted in Figure 8. The table is reproduced
from the FITALY Web site (Textware Solutions, 2000), together with the interleaving of
our predictions Rq (for q indicating various different patterns of Space key choice, de-
tailed in Section 3.13) of peak expert text input rates. Shown are the performances of
the top 10 competitors in a June to July 2000 speed-tapping competition. The competi-
tion task was to tap the 181-character paragraph quoted in Section 3.7.

Competitor/Prediction Characters/Second Words Per Minute

1 6.165 73.98
2 5.803 69.64
3 5.798 69.47
4 5.607 67.38
Rbest 5.349 64.18
Rlast 5.329 63.95
5 5.288 63.46
Rright 5.255 63.06
Rrandom 5.223 62.68
6 5.191 62.29
Rleft 5.189 62.27
7 5.130 61.56
8 4.805 57.66
9 4.756 57.07
10 4.694 56.33

Note. Char/sec = characters per second; wpm = words per minute.
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3.8. Stability With Respect to Bi-Gram Table

Our chosen bi-gram probability table is a composite of three bi-gram fre-
quency tables B1, B2, and B3. These three tables are reproduced in the Appen-
dix. B1 is Soukoreff and MacKenzie’s (1995) extension of Mayzner and
Tresselt’s (1965) 26 × 26 table to include the Space character. B2 is the 26 × 26
bi-gram table of Konheim’s (1981) introductory cryptography textbook, to
which we have added the same space bi-gram extension.2 There are discrep-
ancies between B1 and B2, possibly due to the fact that they were built from
small text corpora. The following discrepancies3 are the most notable: OF (80
vs. 731), ON (598 vs. 1232), TI (252 vs. 865), OU (1115 vs. 533), TH (3774 vs.
2161), HE (3155 vs. 2053).

To reduce these discrepancies we created a third bi-gram table B3 of our
own from a corpus 10 times the size, a mixture of informal and formal English
(e-mail and classic novels). Stop-lists were used on proper nouns, and so forth.
See Manning and Schütze (1999) for techniques for sampling data from text
corpora. Then we defined as the normalization of the weighted mean of (ap-
propriate rescalings of) B1, B2, and B3 (see Appendix). Figure 11 shows predic-
tions of peak expert text input rate for the ABC keyboard with the four choices
of bi-gram table. The observed rates did not vary significantly with selection of
the bi-gram table.

3.9. Optimizing Stylus Keyboard Layout

The problem of finding the optimal layout for a stylus keyboard is equiva-
lent to the problem of minimizing the average time between tapping two keys.
Recall from Section 2 that the average time between tapping two keys on key-
board layout K with input text modeled by the bi-gram probability table P and
stylus dexterity modeled by the bi-tap table E, is

(4)

where α and β range over the character set. Fixing P = (see Appendix)
and E = (the empirical bi-tap table; Figure 4), our task is to minimize this
expression with respect to K, a function from characters to keys. This has the
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2. Because Konheim’s total count of A to Z bi-grams (67,227) is nearly identical to
that of Mayzner and Tresselt (67,320), we can conveniently add the Space bi-grams
with only minor renormalization.

3. Note that direct comparisons of bi-gram frequencies between the tables makes
sense because the sums of entries are nearly identical.
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form of a standard optimization problem called the quadratic assignment
problem (QAP).

The QAP (Koopmans & Beckman, 1957) has been shown to be an ex-
tremely hard problem. Not only is it NP-hard (Sahni & Gonzalez, 1976), but it
is NP-hard to approximate its optimal solution to within any constant factor
(Queyranne, 1986). There are a number of heuristics that can be employed to
find reasonable solutions to the QAP: genetic algorithms, the Metropolis
method, and dynamic simulation, to name but a few. We chose to implement
the hybrid ant system proposed by Gambardella, Taillard, and Dorigo (1997)
because it has been shown to find quality solutions quickly.

The best solution found by the hybrid ant system was the keyboard layout
depicted in Figure 12, with a predicted peak expert text input rate of

See Section 3.11 for a comparison with other keyboards.

3.10. Variation of Best Solution With Respect to Bi-Gram
Table

Figure 13 shows how the best solution produced by the hybrid ant system
varies with respect to the bi-gram table parameterizing the optimization prob-
lem. One can observe how the final layout is directly related to the idiosyncra-
sies of a particular bi-gram table. For example, recall the major discrepancies
between the frequency tables B1 (Mayzner and Tresselt) and B2 (Konheim):
OF (80 vs.731), ON (598 vs. 1232), TI (252 vs. 865), OU (1115 vs. 533), TH
(3774 vs. 2161), HE (3155 vs. 2053). Notice how the strong preference of B2 for
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Figure 11. Stability of peak expert text input rate prediction with respect to the
bi-gram table B, with the ABC keyboard. is the empirical bi-tap table shown in Fig-
ure 4.
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OF, ON, and TI over B1 (by an order of magnitude in the case of OF) is observ-
able in the layouts: the keys of the pairs OF and IT are directly adjacent, and
the keys O and D of ON are diagonally adjacent. These three bi-grams stretch
over distances of 3.2, 2, and 3.2 key widths, respectively. Figure 14 shows the
variation in peak input speed of the four optimized layouts under evaluation
with respect to each of the four bi-gram tables.

3.11. Benchmarking Various Keyboards

Usingourpredictionsofpeakexpert text input rate,webenchmark fourkey-
board layouts against the simple ABC layout: the OPTI, the FITALY, the best
solution to the keyboard layout optimization problem discovered by the
hybrid ant system, and a variant of the ABC with Space at the center, which we
callABC-center.The five layouts inquestionaredepicted inFigures8and12.

The results are shown in Figure 15. Observe that simply moving the Space
key to the center of the ABC already increases performance by nearly 4%. The
FITALY yields an additional 9.4% increase relative to the ABC. Our ant algo-
rithm solution gains yet another 2.3% above the FITALY. These results
are not definitive because a sample size of only 5 users was used to generate
our table of bi-tap data.

In the following sections we report in detail the calculations involved in do-
ing the simulations for the FITALY and OPTI. They were nontrivial because
the layouts have multiple Space keys.

3.12. Predicting the Peak Expert Text Input Rate of the
OPTI

Concerning their OPTI layout, MacKenzie and Zhang (1999) noted that
“having four SPACE keys is convenient; but, using the optimal SPACE key re-
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Figure 12. The keyboard layout , the best solution found by the hybrid ant system
to the quadratic assignment problem of optimal stylus keyboard layout. The predicted
peak expert text input rate is 5.438 char/sec = 65.26 wpm.
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quires extra judgment on-the-fly and this is not likely to occur—at least within
the confines of the limited practice in this study” (p. XXX).

Hence, for our predictions, we considered the two patterns of Space use ob-
served by MacKenzie and Zhang in the penultimate section of their paper: (a)
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Figure 13. Variation of best solution found by the hybrid ant system optimization with
respect to the bi-gram probability table.

Figure 14. Stability of the peak expert text input rate with respect to choice of bi-gram
table. Entries in the table are in words per minute. The row label is the bi-gram table
used in the ant algorithm search; the column label indicates the bi-gram table used in
the peak expert text input rate prediction R. Thus each row consists of four different
evaluations of a keyboard.

Bi-gram Table Used
for Ant Algorithm

Bi-gram Table Used for Prediction Rates

B1 B2 B3

B1 65.486 wpm 64.709 wpm 64.707 wpm 64.935 wpm
B2 64.650 wpm 65.443 wpm 64.643 wpm 64.869 wpm
B3 65.112 wpm 65.123 wpm 65.279 wpm 65.137 wpm

65.265 wpm 65.345 wpm 65.202 wpm 65.242 wpm

Note. wpm = words per minute.

B
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the closest Space key to the last character tapped, denoted OPTIlast; and (b) the
lower right Space key (of the four, chosen because right-handers may be natu-
rally inclined to pick the Space key that obscures their view of the grid the
least), denoted OPTIlower right.

Our empirical bi-tap table (Figure 4) was obtained for a 5 × 6 grid, but the
OPTI has a 5 × 7 grid. Rather than repeating our experiments in full with a 5 ×
7 grid, we constructed a 5 × 7 empirical bi-tap table from as follows:

• The bi-tap values in the left 5 × 6 subgrid of are taken directly from
.

• Making the simplifying assumption that the inner half of each Space
key is used, this leaves only two keys unaccounted for in column
7—Z and X.

• The bi-gram probabilities between characters of column 1 (Q, B, J)
and column 7 (Z, X) are all zero; hence, one can assign arbitrary times
to the bi-taps of between column 1 and column 7 (we chose 0 sec)
without any effect on the model.

• This leaves the bi-tap times between Z and X and columns 2–7. Be-
cause this is a 5 × 6 subgrid, we used (shifted right by one column).
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Figure 15. Benchmarking results for the five keyboard layouts depicted in Figures 8
and 12. The right column shows the percentage performance increase above the ABC.
The subscripts on the FITALY and OPTI indicate the pattern of space usage (see Sec-
tion 3.7 for details). Because on-the-fly calculations of optimal tri-character path are
somewhat unrealistic to expect from users (see MacKenzie & Zhang, 1999), we suggest
FITALYlast as the most representative of FITALY performance. Predictions of peak ex-
pert input speeds are not estimates of real continuous performance (see Section 2.1).

Predicted Peak Expert Text Input Rate

Keyboard K Char/sec wpm % > ABC

K 5.438 65.26 15.65
FITALYbest 5.349 64.19 13.77
FITALYlast 5.329 63.95 13.35
FITALYright 5.255 63.06 11.77
OPTIlast 5.248 62.98 11.63
FITALYrandom 5.223 62.67 11.08
FITALYleft 5.189 62.27 10.37
OPTIlower right 5.103 61.24 8.54
ABC-center 4.888 58.65 3.95
ABC 4.702 56.42 0.00

Note. char/sec = characters per second; wpm = words per minute.
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In essence, we are thinking of the OPTI as the 5 × 6 grid consisting of col-
umns 1–6, with the infrequently used X and Z “pasted” on the side. Note that
the use of this artificially constructed 5 × 7 table in peak expert input speed
prediction should be reasonably accurate because the only bi-grams that are
not covered by the 5 × 6 case are the 0 probability pairings between {Q, B, J}
and {Z, X}.

OPTI Prediction: Lower Right Space Choice

The prediction of peak expert text input rate in Fig-
ure 9 was based on the following data. The character set was C27 = {A–Z,
Space}. The bi-gram probability table is from the Appendix, and the bi-tap
table is that derived from (Figure 4) in the manner described earlier.

OPTI Prediction: Closest-to-Last Space Choice

The prediction of peak expert text input rate in Figure 9
was based on the following data. The keyboard function OPTIlast, assigning
keys to characters, was the same as OPTIlower right on characters A to Z, and
with the following assignment of Space characters (lower left, lower right, up-
per left, upper right) to keys:

where we use the key-naming convention of Figure 3 with an additional
right-hand column G1 to G5. The bi-tap table is that derived from in
the manner described at the beginning of Section 3.12.

The bi-gram probability table used is on A to Z, together with
bi-grams involving the four Space characters calculated as follows:

• The probability of consecutive spaces is zero.
• Given an A to Z character a and one of the four spaces σ, the probabil-

ity (α, σ) of the bi-gram (α, σ) is (α, Space) if the σ key is the closest
space to the α key on the grid (picking right-most and lowest in case of
tie-break), and 0 otherwise.

• Given an A to Z character α and one of the four spaces σ, the proba-
bility of the bi-gram (α, σ) is θσ (Space, α), where θσ is the pro-
portion of the time σ occurs as a trailing space:
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(5)

3.13. Predicting the Peak Expert Text Input Rate of the
FITALY

The cases FITALYlast, FITALYright, and FITALYleft in Figure 15 are analo-
gous to OPTIlast, OPTIlower right, and OPTIlower left, respectively. FITALYrandom

denotes a random choice of Space key: We used the bi-gram table derived
from that splits the probability of bi-grams of involving Space equally in
two.

The case FITALYbest was labor intensive. We considered by hand all
676-character tri-grams of the form (α, Space, β) for alphabet characters α and
β, and decided which of the two Space keys would be the optimal choice. Hav-
ing assigned left/right to each such tri-gram, the probability of the bi-gram (α,
Spaceleft) is

(6)

where β ranges over the character set, and L(α, β) is the subset of characters
for which the tri-gram (α, Space, β) was designated as using the left Space
key. The other space bi-gram probabilities work similarly.

Note that, in the absence of tri-gram data, one has to assume a uniform dis-
tribution of tri-grams with respect to bi-grams. The effect of this assumption
should be negligible.

3.14. Stylus Keyboards: Conclusion

We illustrated the empirical bi-action table technique in the context of sty-
lus keyboard design. A hybrid ant system yielded an optimized stylus key-
board layout (Figure 12) that outperformed the commercial FITALY layout.
This result, however, is not to be considered final due to the small number of 5
participants used to generate our table of bi-tap data and the coincidence of the
training data and test data.

There is an observation that stems from our experiments: All previous re-
lated work on stylus keyboard design has only considered distance between
two keys as a predictor of the duration of the motion between these keys. We
found that this duration depends also on the first key position and on the rela-
tive position of the second key (see Figure 6). These dependencies, and any
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other more subtle dependencies that could be impossible to model, are auto-
matically taken into account by the empirical bi-action table.

Within the realm of stylus keyboard design, the following topics are possi-
bilities for future work:

• Bi-tap corpus: Although 25 data points for each of 900 bi-taps is a con-
siderable amount of data, a clear route to improving our work would
be to obtain a much larger corpus of test data. Just as bi-gram tables
based on large corpora of text are publicly available to those who
which to use it (e.g., in cryptology or natural language processing), it
would make sense to make publicly available a bi-tap table built on a
considerable corpus of stylus dexterity test data. Researchers inter-
ested in benchmarking and optimizing their own layouts (e.g., with a
variety of different character sets, perhaps from a variety of lan-
guages) could make use of the corpus bi-tap table.

• Errors: It would be nice to incorporate a quantitative account of errors.
• Obscuration: As a right-hander, having just tapped a key in the top left

of the grid, when aiming for a key in the mid- or lower right, is there
any delay due to the fact that my hand is obscuring the target zone?

• Investigate position dependency: A possible explanation for the depend-
ency of bi-tap time on position (preference for the center; see Figure
6) is that the users rest on the side of the PDA with the wrist,
outer-palm, and/or outer edge of little finger. The natural resting po-
sition of the stylus is somewhere over the center of the grid. Motions
around the edges of the grid require either a cramped or over-
stretched position of the fingers and thumb, or a cocking of the wrist.

• Investigate trajectory dependency: A possible explanation for the de-
pendency of bi-tap times on trajectory (dislike for heading west; see
Figure 6) is that everyday handwriting is from left to right. Low-level
motor skills in the hand involved in moving against the direction of
writing are probably less well developed. To further investigate tra-
jectory dependency one could carry out the tests with left-handers
and/or people whose mother tongue is written from right to left.

• Optimization incorporating double-Space and/or double-E: The problem
of finding the optimal keyboard with two Space keys and/or two E
keys is much harder than the quadratic assignment problem. It would
be useful to determine whether having two Space keys can yield a
faster layout.

• Tri-taps: Although the extent of dependency of bi-taps on the preced-
ing tap is probably low, it may be useful to collect data for an empiri-
cal tri-tap table. However, with 27,000 possible triples (in the case of
30 keys), experiments would be impractical.
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• Keyboard shape: Hunter et al. (2000) and Zhai et al. (2000) considered
layouts on a hexagonal grid. One could also imagine a radial pattern,
a dartboard shape with Space as the “bull’s-eye.” Empirical bi-tap ta-
bles could be obtained for these shapes and used to produce opti-
mized key layouts. One observation of a rectangular grid
arrangement is that it maximizes the number of adjacent keys. Define
a neighbor of a key to be any other key that is reachable without having
to leap over an intermediate key. In a hexagonal grid, each key has
only six neighbors, whereas in a rectangular grid each key has eight.
Our empirical data (Figure 5) show an observable jump between
neighbor bi-tap times (clusters a, b, and c) and times of bi-taps involv-
ing leaps (cluster d and beyond). This neighborhood property may be
particularly important with regard to the number of neighbors of the
central Space key, by far the most frequently used key, in which case
a rectangular arrangement might confer an advantage over a hexago-
nal pattern.

• x/y-Scale: The commercial version of the FITALY has rectangular
keys that are longer in the horizontal direction. Does such a feature
speed up or slow down text input?

4. CONCLUSION

In this article we presented a technique for predicting peak expert input
speeds on text input systems. The technique is intended as a tool in the inter-
face development cycle between initial evaluations using abstract mathemati-
cal models (e.g., Fitts’ law, Hick’s law, and the power law) and final evaluations
by full empirical testing. We illustrated the approach in the context of stylus
keyboards. Empirical bi-action tables could be used in the analysis and design
of a wide variety of text input systems, such as two-handed keyboards,
chording keyboards, cell phones, glove gesture input, and forms of stylus input
including Graffiti, Quikwriting (Perlin, 1998), and Unistrokes (Goldberg &
Richardson, 1993).

Relative to full empirical testing, the independence of the empirical bi-ac-
tion table E from the logical aspect of the input system (the character map) con-
fers the following advantages: (a) A change in character mapping (e.g., a
change in a keyboard layout) does not demand fresh experimental trials; (b)
we avoid the cost of training participants up to expert level with a particular
character mapping (e.g., keyboard layout); and (c) having obtained E, we can
perform an algorithmic search for optimal character mappings. One disad-
vantage is the reduction in accuracy due to the higher level of abstraction.

Relative to mathematical modeling with laws we cite two advantages: (a)
greater generality in the sense of coverage of the full range of input systems, in-
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cluding those for which laws do not easily apply (e.g., glove gestures) and (b)
greater accuracy due to the higher specificity of empirical testing. Disadvan-
tages include the cost of empirical testing and the necessity of undertaking new
tests for each new input system, aside from the case of variations in character
map.

We have not discussed issues such as ease of use or repetitive strain injury.
The appropriate balance between such issues and the optimization of input
speed should be borne in mind by any researcher choosing to employ our
technique.
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APPENDIX

Bi-gram Frequency Tables

The bi-gram probability table used for peak expert text-input speed predic-
tions is the normalization of the bi-gram frequency table depicted in Figure
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A–1. The table in Figure A–1 is the equally weighted mean of the (appropriate
rescalings of) bi-gram frequency tables B1, B2, and B3 shown in Figures A–2,
A–3, and A–4. The composite table in Figure A–1 was constructed to soften
the idiosyncrasies of B1 and B2, as described in Section 3.8.
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Figure A–1. The composite bi-gram frequency table whose normalization B was used for predicting peak expert text input rates.
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Figure A–2. Bi-gram frequency table B1, Soukoreff and MacKenzie’s (1995) extension of Mayzner and Tresselt’s (1965) 26 × 26 table to
include the Space character. From “Theoretical upper and lower bounds on typing speed using a stylus and soft keyboard,” by R.
Soukoreff and I. MacKenzie, 1995, Behaviour & Information Technology, 14, p. XXX. Copyright 1995 by Taylor & Francis, Ltd. Reprinted
with permission.
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Figure A–3. Bi-gram frequency table B2, from Konheim’s introductory cryptography textbook, to which we have added the same space
bi-gram extensions of Figure A2. Because Konheim’s total count of A to Z bi-grams (67,227) is nearly identical to that of Mayzner and
Tresselt (67,320), we can conveniently add the space bi-grams with only minor renormalization.
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Figure A–4. Bi-gram frequency table B3, our own table generated from a corpus 10 times the size of that used for B1 and B2, consisting of
a mixture of informal and informal English (e-mail and classic novels).
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