
Complexity Bounds for Sum-Product Logic

via Additive Proof Nets and Petri Nets

Willem Heijltjes

Department of Computer Science

University of Bath

Dominic J. D. Hughes

Department of Mathematics

Stanford University∗

Abstract—We investigate efficient algorithms for the additive
fragment of linear logic. This logic is an internal language
for categories with finite sums and products, and describes

concurrent two-player games of finite choice. In the context
of session types, typing disciplines for communication along
channels, the logic describes the communication of finite choice
along a single channel.

We give a simple linear time correctness criterion for unit-free
propositional additive proof nets via a natural construction on
Petri nets. This is an essential ingredient to linear time complexity
of the second author’s combinatorial proofs for classical logic.

For full propositional additive linear logic, including the units,
we give a proof search algorithm that is linear-time in the product
of the source and target formula, and an algorithm for proof net
correctness that is of the same time complexity. We prove that
proof search in first-order additive linear logic is NP-complete.

Index Terms—linear logic; proof complexity; Petri nets; sum–
product categories; additive linear logic

I. INTRODUCTION

Additive proof nets, as formulated in [21], provide an

intuitive yet completely formal diagrammatic presentation of

canonical maps such as:

P ×Q P ×Q
first

projection

second

projection

P Q

P Q
first

injection

second

injection

P +Q P +Q

P Q+Q

diagonal codiagonal

P × P Q

P ×Q P +Q

commute

Q× P Q+ P

P×(Q ×R) P + (Q + R)

associate

(P × Q)×R (P + Q) +R

∗ This research was conducted as a Visiting Scholar in the Mathematics
Department at Stanford. I am grateful to my host, Sol Feferman.

Composition is simply path composition (the standard com-

position of the underlying binary relations):

P ×Q P ×Q

commute

Q× P = identity

commute

P ×Q P ×Q

A proof net from a formula A to a formula B is a binary

relation from the leaves (atom occurrences P , Q, R,. . .) of A
to the leaves of B, satisfying the resolution condition [21].

In this paper we present a new correctness criterion for

additive proof nets which can be verified in linear time (in the

number of edges or links in the binary relation), via a natural

construction on Petri nets (cartesian product). We illustrate the

criterion on commutativity P ×Q → Q× P :

P ×Q

Q× P

Since P ×Q is a source, it is implicitly dualized. We unfold

this duality and place the two formulas side by side:

P +Q Q× P

Each formula determines a Petri net. The Petri net of P +Q
has three places (one per symbol “P ”, “+”, “Q”) and two

transitions :

P + Q

This Petri net N (P +Q) captures the disjunctive essence of

+ in the way it fires. Starting with a single token on P ,

P + Q

the Petri net can fire, moving the token to the central + :

P + Q

This firing sequence captures the logical disjunction rule “from

P infer P +Q”. The alternative firing sequence, starting with

a token on the Q place,

P + Q

captures “from Q infer P + Q”, as the token moves to the

central + :

P + Q

The Petri net N (Q × P) has three places (one per symbol)

and one transition:

Q × P

Starting from two tokens, one on each of Q and P ,

Q × P

the firing results in a central token on the × place:

Q × P

This corresponds to the logical conjunction rule “from Q and

P infer Q×P ”. Note that if we start with only one of the two

tokens, the Petri net is deadlocked: we cannot infer Q × P
(“Q AND P ”) from P alone, or from Q alone.

The next step in checking correctness is to build the

cartesian product N (P + Q) ∗ N (Q × P) and place the

links of the proof net as tokens on the corresponding places:

Q × P

Q
+

P

Each row is a copy of N (Q×P) and each column a copy of

N (P +Q). Each link in the commutativity proof net

P ×Q

Q× P

determines a token in the initial state: the top-left token, in

the “Q row” and “Q column”, represents the link Q Q,

and the bottom-right token, in the “P row” and “P column”,

represents the link P P. The proof net is correct if, upon

exhaustively firing the Petri net, we end up with a single token

in the center (and no other tokens).

An example firing sequence is shown in the top row of

Fig. 1. First the bottom-right token fires (upwards); then the

top-left token fires (downwards); finally the pair in the middle

row fires (horizontally). Because only a single central token

remains, we have verified that commutativity is a proof net.

Since in practice we do not have to write out the entire grid

of the cartesian product at the outset, the algorithm runs in

linear time in the number of tokens (i.e., linear time in the

number of links in the binary relation).

A. Relationship to Danos contractibility and top-down se-

quentialization

Danos’ contractibility criterion for multiplicative linear

logic [8] gradually produces a sequentialization by starting

with the axiom links (as axiom rules) at the top then flowing

downwards rule by rule until reaching the conclusion. Naively

quadratic, Guerrini observed that the criterion can be checked

in linear time [13]. Our Petri net condition is similar in spirit:

the initial tokens (corresponding to links) provide axiom rules

at the top of a sequentialization, and every Petri net firing

yields a proof rule, top-down from the axiom rules.

Fig. 1 shows how the sequentialization emerges from the

firing sequence presented above. It begins with two axiom

rules, corresponding to the two tokens in the initial state of

the Petri net (and in turn to the two links of the proof net).

When the first token fires, up the rightmost column, it

corresponds to “from P infer P + Q” (as discussed earlier

in the Introduction), and we write down the corresponding

rule of two-sided additive linear logic (the internal logic of

sum-product categories): “from P ⊢ A infer P × Q ⊢ A”.

When the second token fires, down the leftmost column, it

corresponds to “from Q infer P +Q”, and we write down the

corresponding rule. When the final pair fires, along the central

row, we write down the final ×-rule.

B. The coalescence criterion

As tokens fire (the top row of Fig. 1), or rules are written

(the middle row), an alternative view is to shuffle links, as

presented in the bottom row of Fig. 1. The first move shifts the

source of the link P P from P to the whole formula P ×Q,

i.e., to the symbol ×, or equivalently, to the root vertex × of

the parse tree of the formula:

P ×Q

Q× P

P ×Q

Q× P

Similarly, the second move (from the second to third column

in the bottom row of Fig. 1) shifts the source of the link Q Q

from Q to the whole formula P × Q. Finally, the two links

from P × Q, one to P and one to Q, coalesce into a single

link from P ×Q to Q× P .

Q × P

Q
+

P

Q × P

Q
+

P

Q × P

Q
+

P

Q × P

Q
+

P

Q ⊢ Q

P ×Q ⊢ Q

P ⊢ P

P ×Q ⊢ P

P ×Q ⊢ Q× P

Q ⊢ Q

P ×Q ⊢ Q

P ⊢ P

P ×Q ⊢ P

P ×Q ⊢ Q× P

Q ⊢ Q

P ×Q ⊢ Q

P ⊢ P

P ×Q ⊢ P

P ×Q ⊢ Q× P

Q ⊢ Q

P ×Q ⊢ Q

P ⊢ P

P ×Q ⊢ P

P ×Q ⊢ Q× P

P ×Q

Q× P

P ×Q

Q× P

P ×Q

Q× P

P ×Q

Q×P

Fig. 1. A tight three-way correspondence: firing the cartesian product Petri net, sequentializing top-down, and coalescing.

This forms the basis of the coalescence criterion: a proof

net from A to B is correct if, upon carrying out moves such as

those described above (each corresponding to a Petri net fire,

or to writing down a proof rule), the final result is a single

link from the root vertex of A to the root vertex of B.

Given the tight correspondence with additive top-down

sequentialization, one may consider the coalescence criterion

an additive analogue of Danos’ multiplicative contractibility.

C. Grid notation

To save space, we abbreviate cartesian product Petri nets in

a grid notation. For example, to verify associativity

P×(Q ×R)

(P × Q)×R

we construct the cartesian product Petri net N
(

P+(Q+R)
)

∗
N ((P×Q)×R) initialized with three tokens, one per link:

(P × Q) × R

R
)

+
(
Q

+
P

The goal place has been highlighted in grey. The reader may

verify that, upon exhaustively firing the Petri net, a single

token remains, on the goal (irrespective of firing order). We

abbreviate the Petri net to the following grid1

P
+

(Q
+

R
)

(P × Q)× R

The parse trees of the two labelling formulas determine the

legal firings. For example, the following firing is legal based

on the structure of (P ×Q)×R:

P
+

(Q
+

R
)

(P × Q)× R

P
+

(Q
+

R
)

(P × Q)× R

D. Efficient provability and proof search

Define spawning in a Petri net as the variant of firing

obtained by leaving consumed tokens in place. Here is an

example spawning sequence (in compact grid notation):

P
+

Q

P + Q

P
+

Q

P + Q

P
+

Q

P + Q

P
+

Q

P + Q

Spawning provides an efficient search for the provability of a

sequent A ⊢ B: initialize the Petri net N (A) ∗ N (B) with a

token on every place which has dual atomic labels (“row P

1Our two-dimensional grids for sequents ⊢ A,B generalise to n dimensions
for additive sequents ⊢ A1, . . . , An (given a notion of n-ary axiom).

and column P ”); spawn repeatedly; the sequent is provable iff

we spawn onto the goal place. The above spawning sequence

shows the provability of P × Q ⊢ P + Q. Upon reversing a

successful spawning sequence one can (non-deterministically)

extract a proof. Proof search for a sequent A ⊢ B can thus be

performed in time and space linear in |A|×|B|, the size of the

grid, and this remains true in the presence of the units—see

Sections III-D and IV-A.

In contrast, conventional bottom-up proof search adds a

logarithmic factor to this complexity, for the following reason.

By softness [22] a proof of a sequent A×B ⊢ C +D factors

through one of the four sequents

A ⊢ C+D B ⊢ C+D A×B ⊢ C A×B ⊢ D .

These overlap on four sub-sequents:

A ⊢ C B ⊢ C A ⊢ D B ⊢ D

Naive inductive proof search would (in the worst case) search

these sequents twice, whereas in our grid notation they are

represented and searched only once. Approaches such as

focusing [3], [5] reduce the number of instances of duplicated

search, but do not ultimately solve the problem. The authors

are not aware of an inductive, bottom-up search algorithm that

matches our complexity.2

E. Units

The categorical initial object 0 and terminal object 1, the

nullary coproduct and product, are characterised by unique

initial maps 0 → A and terminal maps A → 1. These are

naturally rendered in proof nets as follows.

0 A
initial

map

terminal

map

A 1

However, in this representation proof nets no longer corre-

spond 1–1 to categorical maps, and the uniqueness property

of initial and terminal maps forces an equivalence (⇔) on

proof nets. For terminal maps it is generated by:

A×B

1

⇔

A×B

1

⇔

A×B

1

A+B

1

⇔

A+B

1

To decide whether two proof nets with units are equivalent is

non-trivial, due to the interaction of initial maps and terminal

maps via occurrences of the map 0 → 1, which is both; e.g.:

A× 0

B + 1

⇔

A× 0

B + 1

⇔

A× 0

B + 1

⇔

A× 0

B + 1

⇔

A× 0

B + 1

Proof net equivalence can be decided by saturating proof nets

[14], [15]: instead of replacing one link by another in a rewrite

step, both links are kept. For example:

2It is possible to re-formulate our algorithms to search the grid bottom-up.

0

A+B

0

A+B

0

A+B

A+B

1

A+B

1

A+B

1

The resulting saturated nets correspond 1–1 to categorical

maps. Below are two example saturated nets, representing the

two morphisms from 0 × (0 + P) to 1 + (1 × P) (in grid

notation, to manage the link density).

1
+

(1
×

P
)

1 + (1 × P)

1
+

(1
×

P
)

1 + (1 × P)

The main result we present for sum–product logic with units,

in Section IV, is that correctness of a saturated net for a

sequent A ⊢ B can be decided in time linear in |A| × |B|.

F. Quantifiers

There is an interesting interaction between universal and

existential quantifiers, even in the absence of any other logical

connectives, or weakening and contraction [27]. In Section V

we take a brief look at first-order additive linear logic, which

combines the quantifiers with products and coproducts (but

without the units). We show that, unlike in the propositional

fragment, proof search is NP-hard.

G. Linear time combinatorial proofs for classical logic

Our result that an additive proof net can be verified in

linear time implies that combinatorial proofs for propositional

classical logic (Proofs Without Syntax [19]) can be verified in

linear time. A combinatorial proof of Peirce’s Law
(

(P ⇒ Q) ⇒ P
)

⇒ P =
(

(P ∨Q) ∧ P
)

∨ P

is shown below:

P

Q

P P

A combinatorial proof of A is a skew fibration (a particular

kind of undirected graph homomorphism) from a coloured

graph into the graph G(A) associated with A. In the example

above, each graph has four vertices, and the upper graph

has two colours. Such skew fibrations correspond [20] to

homomorphisms which preserve maximal cliques, hence a

skew fibration corresponds to a special kind of additive proof

net: one which is functional in the sense that every source

leaf is in one and only one link. Our theorem in this paper

that an additive proof net λ : C ⊢ A can be verified in linear

time in |λ| implies that a combinatorial proof, where |λ| is

linear in the size of C, can be verified in linear time. Work in

progress to extend combinatorial proofs to first-order classical

logic builds on the same linear time complexity result.

H. Related work

An early result is Whitman’s Theorem [30] on free lattices.

The theorem, which gives a factorisation of lattice inequalities,

corresponds closely to cut-elimination in sum–product logic.

The advent of linear logic [11], where categorical products

and coproducts are captured by the additive fragment, sparked

a wave of syntactic and semantic approaches, to capture

the multiplicatives and exponentials, and sometimes also the

additives. Joyal generalised Whitman’s Theorem to bicomplete

categories [22], categories with all limits and colimits, and

gave an interpretation of cut-elimination in game semantics

[23]. A canonical treatment of the additives, without the units,

was first given by Hu in terms of contractible coherence spaces

[17]. Canonical proof nets are a fragment of the MALL proof

nets of the second author and van Glabbeek [21].

In the presence of the units, proof equivalence was investi-

gated first by Cockett and Seely [7], and later by Cockett and

Santocanale [6]. The latter give an effective, intricate decision

procedure, based on a careful analysis of the structure of finite

sum–product categories. A canonical syntax for additive linear

logic with units, saturated nets, was given by the first author

[14], [15].

From the perspective of game semantics, the problem of rep-

resenting additive proofs canonically surfaced as the issue that

Blass games [4] were not associative [1]. The problem is one

of concurrency: in games, a map from A to B is interpreted

as a parallel game on A and B, where the coproducts and

products in A and B represent binary choice for Player and

Opponent respectively. This problem was addressed in detail

by Abramsky and Melliès [2].

A related interpretation of an additive sequent is as a

protocol for concurrent communication along a single channel

[6], which is finding its way into practial use in the idea of

session types (see e.g. [29]).

Many results in the paper have close analogues in the

multiplicative fragment, or other fragments of linear logic.

The coalescence condition is related to Danos’s contractibility

[8]. Like the latter, which was used by Guerrini to show

linear-time correctness of MLL proof nets [13], it provides an

effective correctness algorithm. Provability for MLL was first

shown to be NP-complete by Kanovich [24]. This and other

complexity results were compounded in an early overview

[25], which interestingly does not include any results for the

additive fragment. The correctness of MALL proof nets was

found to be NL-complete [9], but this appears not to impact

the (much more restricted) purely additive fragment. Proof

equivalence for MLL with units was recently shown to be

PSPACE-complete, by Robin Houston and the first author [16].

In one version of proof nets, the additives are treated using

monomial weights [12]. These have computational advantages,

but they are not canonical. While Danos’s contractibility

has been extended to these proof nets [26], the difference

in structure between weighted and non-weighted proof nets

means that this approach is not related to our coalescence.

ALL:

P ⊢ P

A ⊢ Bi

A ⊢ B0 +B1

A ⊢ B A ⊢ C
A ⊢ B × C

A ⊢ C B ⊢ C
A+B ⊢ C

Ai ⊢ B

A0 ×A1 ⊢ B

Units:

0 ⊢ A A ⊢ 1

Quantifiers:

A ⊢ B[t/x]

A ⊢ ∃x.B

A ⊢ B[y/x]

A ⊢ ∀x.B
y not free in A

A[t/x] ⊢ B

∀x.A ⊢ B

A[y/x] ⊢ B

∃x.A ⊢ B
y not free in B

Identity & composition:

A ⊢ A
A ⊢ B B ⊢ C

A ⊢ C

Fig. 2. Additive linear logic.

II. ADDITIVE LINEAR LOGIC

We will consider three fragments of additive linear logic:

propositional without units (ALL), propositional with units

(ALLU), and first-order without units (FOALL). Fix a set of

atoms {P,Q,R, . . . }, which in the first-order case includes

predicates P (t1, . . . , tn) over a first-order term language. We

take t, u, v to range over first-order terms and x, y, z to range

over term variables.

Formulas are generated by the following grammars:

A,B,C ····= P | A+B | A×B

| 0 | 1 ALLU only

| ∃x.A | ∀x.A FOALL only

A sequent A ⊢ B comprises a source formula A and a target

formula B. Sequent calculi for the three fragments are given

in Fig. 2. Each fragment includes the inference rules for ALL,

while ALLU adds the unit rules and FOALL adds the quantifier

rules. The rules for composition and identity are admissible in

each fragment.

Theorem 1. Cut-elimination and identity-elimination holds

for ALL, ALLU, and FOALL.

This result goes back to Whitman’s Theorem for free lat-

tices [30], which essentially states that the cut-free sequent

calculus for ALLU is complete; see also [23, Appendix].

III. ALL PROOF NETS

By a subformula of a formula A we mean an occurrence,

as distinguished by a rooted path in the formula tree of A.

We denote the size of A by |A|, measured in the number of

subformulae, or equivalently, connectives and atoms. Given a

sequent A ⊢ B, a link C D connects a source subformula

C in A to a target subformula D in B. An axiom link is a

link between occurrences of the same atom.

Definition 2. A linking on a sequent A ⊢ B is a set of links

on A ⊢ B. An axiom linking is a linking whose every link is

an axiom link.

We write λ : A ⊢ B to indicate that λ is a linking on A ⊢ B.

A resolution r for an additive formula A is a function

choosing one child for each subformula that is a product, i.e.

either B or C for each subformula B×C [21]. A subformula

C of A is retained (opposite: discarded) by r if whenever

C is a subformula of Bi in a subformula B0 × B1 of A,

then r chooses Bi. Dually, a co-resolution for A chooses on

coproducts, and a resolution for a sequent A ⊢ B is a pair

r = (rA, rB) where rA is a co-resolution for A and rB is a

resolution for B. A link in λ : A ⊢ B is retained by r if both

its source is retained by rA and its target is retained by rB .

Definition 3. A linking λ : A ⊢ B is discrete if every

resolution for A ⊢ B retains exactly one link in λ.

A proof net is a discrete axiom linking.

Definition 4. A proof Π of A ⊢ B translates to the axiom

linking JΠK = λ : A ⊢ B where λ collects the axioms in Π
as axiom links.

A proof of ×-associativity will provide a running example:

P ⊢ P
P×(Q×R) ⊢ P

Q ⊢ Q

Q×R ⊢ Q

P×(Q×R) ⊢ Q

P×(Q×R) ⊢ P×Q

R ⊢ R
Q×R ⊢ R

P×(Q×R) ⊢ R

P×(Q×R) ⊢ (P×Q)×R

It translates to the following proof net:

P×(Q ×R)

(P × Q)×R

Proposition 5 ([18], [21]). The translation JΠK of a proof Π
is a proof net. For any proof net λ : A ⊢ B there is a proof

Π of A ⊢ B such that JΠK = λ : A ⊢ B.

The proof Π is a sequentialisation of λ.

A. Petri Net criterion

A transition on a set P is pair 〈s, t〉 whose source s
and target t are subsets of P .3 A Petri net [28] (P ,)
is a set P of places and a set of transitions on P .

We abbreviate 〈 {p1, . . . , pm}, {q2, . . . , qn} 〉 ∈ to

p1, . . . , pm q1, . . . , qn . Example Petri nets were drawn in

the Introduction with places as circles and a transition 〈s, t〉
as a black square with an undirected edge from each place

in s and a directed edge to each place in t.
A marking is a subset M of P . Elements of M are tokens.

Firing is the rewrite relation on markings defined by

M (M \ s) ∪ t
whenever s ⊆ M , s t, and t and M are disjoint. The top

row of Fig. 1 shows a firing sequence, with tokens .

A root is a place r which is not in the source of any

transition. A Petri net is rooted if it has a unique root.

Henceforth assume every Petri net is rooted.

Every ALL formula A determines a Petri net N (A) upon

interpeting the symbols × and + as operations on Petri nets.

Let N1 = (P1, 1) and N2 = (P2, 2) be Petri nets with

respective roots r1 and r2. Define N1 ×N2 as disjoint union

plus a transition from the two roots to a new root r, and define

N1 +N2 as disjoint union plus two transitions to a new root

r, one from r1 and the other from r2.

r
1

N1

r
2

N2

r

N1 ×N2

r
1

N1

r
2

N2

r

N1 +N2

Formally, where ⊔ denotes disjoint union:

N1 ×N2 = (P1 ⊔ P2 ⊔ {r} , 1 ⊔ 2 ⊔ ×)

N1 +N2 = (P1 ⊔ P2 ⊔ {r} , 1 ⊔ 2 ⊔ +)

where × and + are defined by:

r1, r2 × r
r1 + r

r2 + r

Both Petri nets are rooted, with root r. Define the Petri net

N (P) of an atom P as a single place with no transitions,

define N (A×B) = N (A)×N (B) and define N (A+B) =
N (A) + N (B). Examples can be found in the Introduction.

By induction the places of N (A) are in bijection with the

subformulas of A, and A itself corresponds to the root place.

The cartesian product N1 ∗ N2 is (P1 × P2,) where

is defined by

{p1} × s2 {p1} × t2 for all p1 ∈ P1 and s2 2 t2

s1 × {p2} t1 × {p2} for all p2 ∈ P2 and s1 1 t1

3Some more general definitions take s and t to be multisets, and markings
to be multisets. We shall not require this level of generality.

Write A for the De Morgan dual of a formula A: P is

formally dual to P , A×B = A + B and A+B = A × B.

Define N (A ⊢ B) = N (A) ∗ N (B). (The Introduction has

examples.) Via the subformula-to-place bijections, every link

A′ B′ on A ⊢ B corresponds to a distinct place P(A′ B′)
in N (A ⊢ B), and P(A B) is the root.

The root marking contains only the root. Let λ : A ⊢ B be

a linking. The link marking of λ is the marking of N (A ⊢ B)
determined by the links of λ: {P(A′ B′) : A′ B′ ∈ λ}.

A run of λ is a maximal firing sequence starting from the link

marking of λ; the last marking of the sequence is the result.

Definition 6. The Petri net criterion is the following function

of a linking: choose a run; if the result is the root marking

return PASS, otherwise return FAIL.

The results below follow from the next section, in which we

recast the Petri net criterion as the coalescence criterion.

Theorem 7. The Petri net criterion is deterministic: its

PASS/ FAIL output is independent of the choice of run.

Theorem 8. An axiom linking is a proof net iff it satisfies the

Petri net criterion.

B. Coalescence criterion

We recast the Petri net criterion directly in terms of linkings

to define the coalescence criterion. Coalescence is analogous

to Danos’ contractibility for multiplicative proof nets [8]: it is

a simple rewriting procedure whose rewrite steps correspond

directly to ALL inference rules, which is confluent on proof

nets and reduces them to trivial form. The rewrite rules,

illustrated in Fig. 3, are as follows.

Definition 9. Coalescence is the rewrite relation on linkings

generated by the following rewrite rules:

• replace a link A B or one A C by one A B +C;

• replace two links A B and A C by one A B×C;

• replace two links A C and B C by one A+B C;

• replace a link A C or one B C by one A×B C.

A linking λ : A ⊢ B weakly coalesces if there is a sequence of

coalescence steps starting from λ and ending in a single link

A B. A linking λ : A ⊢ B coalesces if any coalescence

sequence terminates in a single link A B.

Fig. 4 illustrates the coalescence of our running example,

the associativity proof net. The coalescence rewrite steps of

Definition 9 correspond one-to-one to the inference rules of

ALL in Fig. 2, where the links in the left- and right-hand side of

the coalescence step correspond, respectively, to the premises

and conclusion of the inference rule. It is readily observed that

inference rules and coalescence steps preserve discreteness in

both directions. This leads to the following proposition.

Proposition 10. A linking is discrete iff it weakly coalesces.

Proof. By a minor generalisation of Proposition 5, a linking

λ : A ⊢ B is discrete if and only if it sequentialises to a deriva-

tion in ALL extended with arbitrary axioms C ⊢ D (which

A

B + C

A

B + C

A

B + C

A

B × C

A

B × C

A

C

× B

A

C

× B

A

C

× B A

C

+ B

A

C

+ B

Fig. 3. Coalescence rules.

P

(

× (Q×R)

P ×Q)×R

P

(

× (Q×R)

P ×Q)×R

P

(

× (Q× R)

P ×Q)× R

P

(

× (Q×R)

P ×Q)×R

P

(

× (Q×R)

P ×Q)×R

P

(

× (Q× R)

P ×Q)× R

P

(

× (Q×R)

P ×Q)×R

P

(

× (Q×R)

P ×Q)×R

Fig. 4. Coalescing the associativity example.

correspond to links). Using the correspondence between infer-

ence rules and coalescence steps, this sequentialisation may be

turned into a coalescence sequence terminating in the single

link A B, and vice versa.

Proposition 11. Coalescence is confluent on discrete linkings.

Proof. The critical pairs of the coalescence relation are the

pairs of rewrite steps where both replace the same link. At

most two rewrite rules apply to a link, one determined by the

parent formula of the source, and one by that of the target. It

will be shown that every critical pair can be resolved.

For a source with parent A×B and target with parent C+D,

a critical pair

A

C

×B

+D

A

C

×B

+D

A

C

×B

+D

resolves immediately:

A

C

×B

+D

A

C

×B

+D

A

C

×B

+D

The other cases, for links A C, B C, and B D, are

similar. For A×B and C ×D, a critical pair

A

C

×B

×D

A

C

×B

×D

A

C

×B

×D

resolves as follows.

A

C

×B

×D

A

C

×B

×D

A

C

×B

×D

A

C

×B

×D

Other cases are similar, as are those for A+B and C +D.

For A+B and C ×D, a critical pair is

A

C

+B

×D

A

C

+ B

×D

A

C

+ B

×D

To resolve the pair, a link B D is needed. We show that

further coalescence exposes this link.

Let the configuration above centre occur in a linking

λ : X ⊢ Y . Since coalescence preserves discreteness, this

linking is discrete, and any resolution r of X ⊢ Y retaining

B ⊢ D must retain exactly one link. This link must lie within

B ⊢ D, for the following reason. By changing r to choose

A rather than B in X , or C rather than D in Y , one of

the links A C, A D, or B C, is retained. Then by

discreteness, no link outside A+B ⊢ C×D may be retained

by r. The links in B ⊢ D thus form a discrete linking, which

by Proposition 10 coalesces to a single link B D.

With B D present, the critical pair is resolved as follows.

A

C

+ B

×D

A

C

+ B

×D

A

C

+ B

×D

A

C

+B

×D

A

C

+B

×D

The other cases are similar.

Our main theorem on coalescence is:

Theorem 12. A linking is discrete if and only if it coalesces.

Proof. By Proposition 10 a linking is discrete if and only if it

weakly coalesces, and by Proposition 11 it weakly coalesces

if and only if it coalesces.

Corollary 13. Correctness of an ALL proof net λ : A ⊢ B is

decidable in time O(|A| × |B|).

Theorem 14. Correctness of an ALL proof net λ : A ⊢ B is

decidable in time O
(

|λ|×(dA+dB)×max(log |A|+log |B|)
)

.

Here |λ| is the number of links in λ, |C| is the number size

of a formula C, and dC is the depth of C.

Proof. During coalescence the maximum number of times a

token (link) can fire before termination is dA + dB, since

each firing moves one step closer to the root of one of A or

B. After each firing we must check if a new two-token firing

becomes enabled. This requires maintaining a data structure to

retrieve candidates for the other token. Employing a balanced

binary tree (for example) provides worst case logn complexity

for look-up among n candidates. Since every candidate is

from either A or B, the look-up complexity is bounded by

max(log |A|+ log |B|).

A

B + C

A

B + C

A

B × C

A
×

B

C

A
+

B

C

A
+

B

C

Fig. 5. Inference rules in grid notation

P
+

(Q
+

R
)

(P × Q) × R

Fig. 6. The associativity proof in grid notation

C. Grid notation

In a discrete linking λ : A ⊢ B links are sparse, i.e. λ is

small relative to its potential maximal size of |A| × |B|. For

non-sparse sets of links, where the proof net representation

used thus far is not convenient, we will introduce the repre-

sentation used below right.

P×(Q ×R)

(P × Q)×R P
+

(Q
+

R
)

(P × Q)× R

Links are displayed as tokens on a grid. The source formula

is displayed up the left side (with dualization made explicit)

and the target formula along the bottom. Horizontal grid lines

correspond to source subformulas, and vertical gridlines to

target subformulas, so each crossing is a potential link.

To concisely represent proofs in a grid, an inference will

be drawn as one or two arrows between link tokens for its

premises and conclusion. Inference rules in grid notation are

given in Fig. 5, and the example associativity proof is given

in Fig. 6. Axiom links are drawn as black tokens, other links

are in grey, and the root link is circled.

D. Efficient proof search: spawning

We define spawning as a variant of coalescence which

performs efficient proof search. To establish provability of

A ⊢ B, a linking is generated in which a link C D indicates

the provability of a sub-sequent C ⊢ D of A ⊢ B. The initial

configuration is the linking λA,B : A ⊢ B comprising every

possible axiom link on A ⊢ B. The spawning rewrite relation

P
+

(Q
+

P
)

(Q × P) × Q

Fig. 7. Spawning a provability grid

that propagates provability is the variant of coalescence in

which links are only added, but never deleted.

Definition 15. Spawning is the rewrite relation generated by

the following rewrite steps:

• given a link A B or one A C add A B + C;

• given two links A B and A C add A B × C;

• given two links A C and B C add A+B C;

• given a link A C or one B C add A×B C.

The provability grid of a sequent A ⊢ B is the result of

exhaustive spawning on λA,BA ⊢ B.

Theorem 16. A sequent A ⊢ B is provable in ALL if and only

if its provability grid contains the root link A B.

Proof. By induction on the spawning relation, a link C D
exists in the provability grid iff there is a proof of C ⊢ D.

An algorithm implementing spawning need perform only a

single pass over the grid of A ⊢ B, by respecting the product

order over the subformula relation—i.e. C D ≤ C′ D′

if and only if C is a subformula of C′, and D one of D′.

Corollary 17. Provability for an ALL sequent A ⊢ B is

decidable in time O(|A| × |B|).

Fig. 7 shows a provability grid, as it is generated by spawning,

for the sequent P × (Q × P) ⊢ (Q × P) × Q. As the

illustration suggests, to obtain a witness—an actual proof—

from a provability grid, it suffices to (non-deterministically)

retrace the steps taken by the spawning relation.

IV. ALLU

Canonical nets for ALLU, saturated nets, were introduced

by the first author in [14]. They are obtained from ALL proof

nets extended with unit links by a saturation rewrite procedure.

Definition 18. A unit link is a link 0 A or A 1. An

ALLU proof net is a discrete linking in which every link is an

axiom link or a unit link.

Definition 19. Equivalence (⇔) of ALLU proof nets is the

equivalence relation generated by the rewrite steps:

• replace two links A 1 and B 1 by one A+B 1;

• replace a link A 1 or one B 1 by one A×B 1;

• replace a link 0 B or one 0 C by one 0 B + C;

• replace two links 0 B and 0 C by one 0 B × C.

Proof net equivalence is illustrated in Fig. 8.

A×B

1

⇔

A×B

1

⇔

A×B

1

A+B

1

⇔

A+B

1

0

A+B

⇔

0

A+B

⇔

0

A+B

0

A×B

⇔

0

A×B

Fig. 8. Equivalence of ALLU proof nets

A×B

1

A×B

1

A× B

1

A+B

1

A+B

1

A+B

1

0

A+B

0

A+B

0

A+ B

0

A×B

0

A×B

0

A×B

Fig. 9. Saturation (symmetric cases omitted)

Definition 20. Saturation is the rewrite relation on ALLU

linkings generated by:

• given A 1 and B 1, add A+B 1, and vice versa;

• given A 1 or B 1, add A×B 1, and vice versa;

• given 0 B or 0 C, add 0 B + C, and vice versa;

• given 0 B and 0 C, add 0 B ×C, and vice versa.

Saturation is illustrated in Fig. 9.

Definition 21. A saturated net is the normal form of an ALLU

proof net with respect to saturation.

Another characterisation of saturated nets is as follows: a

saturated net collects the links of all ALLU proof nets in an

equivalence class [15, Proposition 3.3.2].

The main theorem of the first author’s previous work on

additive linear logic is that saturated nets are canonical for

finite sum–product categories [14], [15].

Theorem 22 ([15, Theoreom 3.3.1]). ALLU proof nets are

equivalent if and only if they have the same saturation.

The time complexity of saturation is as follows. A single step

in the saturation process can be performed in constant time,

since placing a link token requires the inspection of only direct

neighbours (on the grid). A saturation algorithm that keeps a

stack of potential links to place, for each link placed pushing

(some of) its neighbours onto the stack, visits only a constant

number of new link positions for each link in the eventual

saturated net. This gives the following proposition.

Proposition 23 ([15, Section 3.5]). Saturation is linear-time

in the size of the saturated net.

Before moving on, we briefly remark on ALLU proof search.

A. Proof search

The proof search algorithm for ALL can be used to find

proof nets for ALLU simply by extending it with unit links.

To find a saturated net it is sufficient to saturate the proof net

found by proof search.

Proposition 24. Provability of a sequent A ⊢ B in ALLU is

decidable in time O(|A| × |B|).

B. Correctness

Neither of the two characterisations of saturated nets di-

rectly offers an effective algorithm to determine their correct-

ness. Here, we will introduce such an algorithm: a desaturation

procedure that given a linking σ : A ⊢ B, in time O(|A|×|B|)
returns a proof net λ : A ⊢ B whose saturation is σ if and

only if σ : A ⊢ B is a saturated net. The key ingredient to the

algorithm is a factorisation grid similar to the provability grid

used for ALL proof search, which makes the factorisation of

a saturated net (through projections, injections etc.) accessible

without costly backtracking.

Note that it is not sufficient for desaturation to simply pick

a subnet (a subset of its links, forming a net) of the saturated

net. This is illustrated by the two saturated nets below, where

the second is contained in the first.

1
+

1

1 + (0 × 0)

1
+

1

1 + (0 × 0)

The dynamics of saturated nets are dominated by the

interaction between initial and terminal maps, via the unique

map 0 → 1. A copointed map is one that factors through 0, a

pointed map one that factors through 1, and for any A → B
there is at most one bipointed map, that factors through both.

Definition 25. The pointed respectively copointed formulae

of ALLU are given by:

X ····= 1 | X +A | A+X | X ×X

Y ····= 0 | Y + Y | Y ×A | A× Y

A sequent X ⊢ Y is bipointed.

Definition 26. A linking λ : A ⊢ B is pointed if every

resolution of B retains a link A 1 in λ, and copointed

if every co-resolution of A retains a link 0 B. A linking

that is both pointed and copointed is bipointed.

Given a pointed formula X there is a canonical pointed

net, which is biased to factor through the first projection of an

object X1 ×X2 when both subformulae are pointed. Dually,

a canonical copointed net is biased to factor through the first

injection of any subformula Y1 + Y2 of the target formula.

Definition 27. A linking λ : A ⊢ B is full if λ contains every

unit link in A ⊢ B, but no axiom links (or other links).

The following proposition characterises the behaviour of

pointed and copointed proof nets. The uniqueness of bipointed

maps is captured simply by the saturated net being full.

Proposition 28 ([15, Lemma 4.2.3, Lemma 4.3.7]). The

saturation of the following nets is full:

• any net on a sequent 0 ⊢ A or A ⊢ 1;

• a net λ : X ⊢ Y that is copointed or pointed.

To allow inductive reasoning on saturated nets we formalise

when a linking factors through a projection or injection, or as

a pair or copair. Definition 30 is chosen to be uniform for

both proof nets and saturated nets. Given a linking λ : A ⊢ B
and subformulae C,D of A,B respectively, let λ|C⊢D be the

sub-linking obtained by restricting λ to the sequent C ⊢ D.

Definition 29. A linking λ : A ⊢ B is connected if it has a

sub-linking φ ⊆ λ such that φ : A ⊢ B is discrete.

Definition 30. A linking λ : A ⊢ B factors through:

• a projection πi if A = A0 ×A1 and λ|Ai⊢B is connected,

• an injection ιi if B = B0 +B1 and λ|A⊢Bi
is connected,

• a pair if B = B0 ×B1 and both λ|A⊢Bi
are connected,

• a copair if A = A0 +A1 and both λ|Ai⊢B are connected.

Proposition 31. If a saturated net factors through a projection

/ injection / pair / copair, it is the saturation of a proof net

that factors similarly.

Proof. The case for pairs is immediate: a net into A×B always

has an equivalent net that factors through a pair, obtained by

replacing each link 0 A×B by 0 A and 0 B. Dually,

also the case for copairs is immediate.

For a saturated net that factors both through a pair and

a projection, we split into a pair as above and reason by

induction on the components. The case for a copair and

injection is dual.

This leaves the case of a saturated net σ from A ×B into

C +D. If it factors through only one projection or injection,

any net λ of which it is the saturation must factor similarly,

since λ ⊆ σ. The remaining case, where Σ factors in multiple

ways, is exactly Lemma 4.5.2 of [15].

The above gives us the prerequisites to define the desatu-

ration procedure. It is non-deterministic, to allow for the fact

that a saturated net may factor in multiple ways.

Definition 32. A desaturation of a linking λ : A ⊢ B is a net

d : A ⊢ B obtained by the following procedure:

1) if λ is full, and A is copointed or B is pointed, d : A ⊢ B
is the canonical copointed or pointed net;

otherwise, d is generated by one of the following steps:

2) if A and B are atomic, d is {A B};

3) if A = A0+A1 then d = d0∪d1, where di is a desaturation

of λ|Ai⊢B for i = 0, 1;

4) if B = B0×B1 then d = d0∪d1, where di is a desaturation

of λ|A⊢Bi
for i = 0, 1;

5) if A = A0×A1 and λ factors through a projection πi, then

d is a desaturation of λ|Ai⊢B;

6) if B = B0+B1 and λ factors through an injection ιi, then

d is a desaturation of λ|A⊢Bi
.

The desaturation procedure is an inverse to saturation (mod-

ulo equivalence). This is expressed by the following theorem.

Theorem 33. A saturated net σ : A ⊢ B has a desaturation,

and any desaturation of it saturates to σ.

Proof. Omitted.

Two crucial properties of the desaturation procedure are

that 1) it recurses only by restricting links to a sub-sequent,

without deleting any, and 2) it relies only on how a linking

factorises, whether it is full, and whether its source and target

are (co)pointed. The point of 2) is that all three properties

can be pre-computed in a single pass of the proof grid or the

formula, and the point of 1) is that the pre-computed data

remain correct when recursively finding a desaturation.

Definition 34. The factorisation grid for a linking λ : A ⊢ B
is the linking obtained by exhaustive application of spawning

(Definition 15) on λ.

Definition 35. The fullness grid for a linking λ : A ⊢ B
contains the link C D if and only if λ|C⊢D is full.

As with provability search, by respecting the product order

over the subformula relation both grids may be computed in

a single pass. This brings us to the main result for ALLU.

Theorem 36. Correctness of a saturated net σ : A ⊢ B is

decidable in time O(|A| × |B|).

Proof. Desaturation gives a net d saturating to σ if and only if

σ : A ⊢ B is correct: from left to right is immediate (if any net

saturates to σ it is correct), the other direction is Theorem 33.

Desaturation can be performed by a single simultaneous walk

on the factorisation grid of σ, its fullness grid, and A and

B annotated with copoint/point information. Generating both

grids is in time O(|A|× |B|), as is saturating the desaturation

that is found (Proposition 23).

V. FOALL

The main result of this section is that the provability

problem for FOALL is NP-complete. Membership of NP is

immediate by the size of proofs. We will show NP-hardness

by a reduction from Boolean satisfyability (SAT; see [10]).

First, we will sketch how a Boolean formula A and an

assignment γ for A, a function from the propositional atoms

in A to truth values {⊥,⊤}, may be interpreted in FOALL.

The formula A is assumed to be in negation-normal form. We

will encode a Boolean atom (propositional variable) p and its

negation ¬p by two distinct, unrelated atomic formulae, P (⊤)
and P (⊥), constructed by instantiating a predicate P (x) with

two distinct first-order constants ⊤ and ⊥. Let the formula

⌊A⌋ be the direct additive interpretation of A, as follows.

⌊p⌋ = P (⊤) ⌊A ∨B⌋ = ⌊A⌋+ ⌊B⌋

⌊¬p⌋ = P (⊥) ⌊A ∧B⌋ = ⌊A⌋ × ⌊B⌋

The interpretation ⌊γ⌋ of the assignment γ is the product over

each atomic formula, instantiated with its assigned value:

⌊γ⌋ =
∏

{P (x) | γ(p) = x}

Provability of the sequent ⌊γ⌋ ⊢ ⌊A⌋ then encodes the

evaluation of A under the assignment γ.

Proposition 37. An assignment γ is satisfying for a Boolean

formula A if and only if ⌊γ⌋ ⊢ ⌊A⌋ is provable in FOALL.

Proof. For an atom p in A, the sequent ⌊γ⌋ ⊢ P (⊤) is

provable if and only if γ(p) = ⊤, and ⌊γ⌋ ⊢ P (⊥) is provable

if and only if γ(p) = ⊥. By induction on A it follows that

⌊γ⌋ ⊢ ⌊A⌋ is provable if and only if γ is satisfying for A.

The next step is to encode the possibility of assigning mu-

tually exclusive truth values to atomic formulae. The chosen

encoding of Boolean atoms p and ¬p, as a predicate P (x) over

distinct constants ⊥ and ⊤, means this can be expressed via

the formula ∀x.P (x), which quantifies over both truth values.

For example, the Boolean formula p∨¬p may be encoded as

∀x.P (x) ⊢ P (⊤) + P (⊥)

However, in this naive formulation the interpretation of the

contradiction p ∧ ¬p would become:

∀x.P (x) ⊢ P (⊤)× P (⊥)

which is provable, by the following proof.

P (⊤) ⊢ P (⊤)

∀x.P (x) ⊢ P (⊤)

P (⊥) ⊢ P (⊥)

∀x.P (x) ⊢ P (⊥)

∀x.P (x) ⊢ P (⊤)× P (⊥)

The problem is that the product rule appears below the univer-

sal quantifier rule in the proof, which means the quantifier may

be instantiated differently for both branches of the product. To

remedy this, we introduce a “lock” construction that forces

the universal quantifier to be instantiated first. The main lock

mechanism consists of two existential quantifiers, inserted

after the universal quantifier and before the product. Each

binds the variable y in a special predicate lock(y), with

occurrences in the antecedent and in the conclusion that must

in a proof become linked by an axiom. Then the existential

quantifier in the antecedent must be instantiated before that

in the consequent, as both must take the same value. The

interpretation of p ∧ ¬p then becomes as follows.

∀x∃y. lock(y)× P (x) ⊢ ∃y. lock(y)× P (⊤)× P (⊥)

The full construction is then the following.

Definition 38. Let TAU be the following sequent, for a

Boolean formula A with atoms p1, . . . , pn.

∀x1 . . . ∀xn∃y. lock(y)×
∏

1≤i≤n

Pi(xi) ⊢ ∃y. lock(y)× ⌊A⌋

Proposition 39. The Boolean formula A is satisfiable if and

only if TAU is provable in FOALL.

Proof. From left to right, let γ be a satisfying assignment

for A. A proof of TAU is constructed by first instantiating

each universally quantified variable xi with the constant

γ(ai) ∈ {⊥,⊤}, so that the antecedent becomes the formula

∃y. lock(y) × ⌊γ⌋. Next, there is the following derivation for

the lock construction.

lock(a) ⊢ lock(a)

lock(a)× ⌊γ⌋ ⊢ lock(a)

...
⌊γ⌋ ⊢ ⌊A⌋

lock(a)× ⌊γ⌋ ⊢ ⌊A⌋

lock(a)× ⌊γ⌋ ⊢ lock(a)× ⌊A⌋

lock(a)× ⌊γ⌋ ⊢ ∃y. lock(y)× ⌊A⌋

∃y. lock(y)× ⌊γ⌋ ⊢ ∃y. lock(y)× ⌊A⌋

The remaining sequent, ⌊γ⌋ ⊢ ⌊A⌋, is provable by Proposi-

tion 37, since γ is a satisfying assignment for A.

From right to left, let Π be a cut-free proof of TAU. Since

Π proves the consequent ∃y. lock(y)×⌊A⌋, it must contain an

axiom lock(a) ⊢ lock(a). By construction, there is only one

occurrence of the predicate lock in the antecedent of TAU, so

that Π must contain the following sub-derivation.

...
lock(a)×B ⊢ lock(a)× ⌊A⌋

lock(a)×B ⊢ ∃y. lock(y)× ⌊A⌋

∃y. lock(y)×B ⊢ ∃y. lock(y)× ⌊A⌋

Here, lock(a)×B is the (fully instantiated) propositional part

of the antecedent of TAU.

The side-condition on the left-introduction rule for the

existential quantifier, that the eigenvariable a may not occur

in the consequent ∃y. lock(y) × ⌊A⌋, means that the two

inferences above may not permute. The proof Π must then

instantiate each universal quantification below the existential

one, which means each is instantiated exactly once. Define an

assignment γ for A as follows: γ(ai) = ⊤ if xi is instantiated

to ⊤ in Π, and γ(ai) = ⊥ otherwise (note that this includes

those xi that are instantiated to anything other than ⊥ or ⊤).

As Π is cut-free, each inference in its propositional part

must either decompose ⌊A⌋, or project onto a smaller fragment

of the product B. By induction on this sub-proof it follows

that γ is a satisfying assignment for A.

Theorem 40. Provability for FOALL is NP-complete.

Proof. Since a proof for a sequent A ⊢ B has size no larger

than O(|A|×|B|), FOALL provability is in NP. Proposition 39

gives a polynomial-time reduction from the Boolean satisfia-

bility problem, proving that FOALL provability is NP-hard.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their insightful and

constructive remarks. This work was supported by EPSRC

Project EP/K018868/1 Efficient and Natural Proof Systems.

REFERENCES

[1] S. Abramsky and R. Jagadeesan. Games and full completeness for
multiplicative linear logic. J. Symb. Log., 59(2):543–574, 1994.

[2] S. Abramsky and P.-A. Melliès. Concurrent games and full complete-
ness. In Proc. 14th Annual IEEE Symposium on Logic in Computer

Science (LiCS’99), 1999.
[3] J.-M. Andreoli. Logic programming with focusing proofs in linear logic.

J. Logic Comput., 2(3):297–347, 1992.
[4] A. Blass. A game semantics for linear logic. Annals of Pure and Applied

Logic, 56:183–220, 1992.
[5] K. Chaudhuri, D. Miller, and A. Saurin. Canonical sequent proofs via

multi-focusing. In Fifth Ifip International Conference On Theoretical

Computer Science, pages 383–396, 2008.
[6] R. Cockett and L. Santocanale. On the word problem for ΣΠ-categories,

and the properties of two-way communication. In Proc. Computer
Science Logic (CSL’09), volume 5771 of LNCS, pages 194–208, 2009.

[7] R. Cockett and R. Seely. Finite sum-product logic. Theory and

Applications of Categories, 8(5):63–99, 2001.
[8] V. Danos. La Logique Linéaire appliquée à l’étude de divers processus

de normalisation (principalement du Lambda-calcul). PhD thesis,
Université Paris 7, 1990.

[9] P.J. De Naurois and V. Mogbil. Correctness of multiplicative additive
proof structures is nl-complete. In Proc. 23rd IEEE Symposium on Logic

in Computer Science, 2008.
[10] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[11] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.
[12] J.-Y. Girard. Proof-nets: the parallel syntax for proof-theory. Logic and

Algebra, pages 97–124, 1996.
[13] S. Guerrini. A linear algorithm for mll proof net correctness and

sequentialization. Theor. Comput. Sci., 412(20):1958–1978, 2011.
[14] W. Heijltjes. Proof nets for additive linear logic with units. In Proc.

26th Annual IEEE Symposium on Logic in Computer Science (LiCS’11),
pages 207–216, 2011.

[15] W. Heijltjes. Graphical representation of canonical proof: Two case
studies. PhD thesis, University of Edinburgh, 2012.

[16] W. Heijltjes and R. Houston. No proof nets for MLL with units: Proof
equivalence in MLL is PSPACE-complete. In CSL-LICS, 2014.

[17] H. Hu. Contractible coherence spaces and maximal maps. Elec. Notes
in Theor. Comp. Sci., 20, 1999.

[18] D.J.D. Hughes. A canonical graphical syntax for non-empty finite
products and sums. Technical report, Stanford University, 2002.

[19] D.J.D. Hughes. Proofs Without Syntax. Annals of Mathematics,
143:1065–1076, 2006.

[20] D.J.D. Hughes. Towards Hilbert’s 24th Problem: Combinatorial Proof
Invariants. In Proc. WOLLiC’06, volume 165 of LNCS, 2006.

[21] D.J.D. Hughes and R. van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. ACM Transactions on Computa-

tional Logic, 6(4), 2005.
[22] A. Joyal. Free bicomplete categories. C.R. Math. Rep. Acad. Sci.

Canada, XVII(5):219–224, 1995.
[23] A. Joyal. Free lattices, communication and money games. Proc. 10th

Int. Cong. of Logic, Methodology and Philosophy of Science, 1995.
[24] M.I. Kanovich. Horn programming in linear logic is NP-complete.

In Proc. 7th Annual IEEE Symposium on Logic in Computer Science

(LiCS’92), 1992.
[25] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems

for propositional linear logic. Annals of Pure and Applied Logic, 56:239–
311, 1992.

[26] Roberto Maieli. Retractile proof nets of the purely multiplicative and
additive fragment of linear logic. In Proc. 14th International Conference

on Logic for Programming, Artificial Intelligence, and Reasoning, 2007.
[27] S. Mimram. The structure of first-order causality. Mathematical

Structures in Computer Science, 21(1):65–110, 2011.
[28] C.A. Petri. Kommunikation mit Automaten. PhD thesis, University of

Bonn, 1962.
[29] P. Wadler. Propositions as sessions. ACM SIGPLAN Notices, 47(9),

2012.
[30] P.M. Whitman. Free lattices. Ann. Math., 42(1):325–330, 1941.

