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We show that the proof nets introduced in [4] for MALL (Multiplicative Additive Linear Logic)

identify proofs modulo rule commutation: two proofs translate to the same proof net if and only if

one can be obtained from the other by a succession of rule commutations.

1 Introduction

The proof nets for MALL (Multiplicative Additive Linear Logic [2]) introduced in [4] solved numerous

issues with monomial proof nets [3], for example:

• There is a simple (deterministic) translation function from cut-free proofs to proof nets.

• Cut elimination is simply defined and strongly normalising.

• Proof nets form a semi (i.e., unit-free) star-autonomous category with (co)products.

A proof net is a set of linkings on a sequent. Each linking is a set of links between complementary

formula leaves (literal occurrences). Figure 1 illustrates the translation of a proof into a proof net.

In this paper we prove that the translation precisely captures proofs modulo rule commutation: two

proofs translate to the same proof net if and only if one can be obtained from the other by a succession

of rule commutations. A rule commutation is a local conversion on a proof that retains the subproofs of

its hypotheses, with possible duplication/identification, for example

P⊥,P

Q,Q⊥

⊕2
Q, R⊕Q⊥

⊗
P⊥, P⊗Q, R⊕Q⊥

−→
P⊥,P Q,Q⊥

⊗
P⊥, P⊗Q ,Q⊥

⊕2
P⊥, P⊗Q, R⊕Q⊥

in which the lower ⊗-rule commutes over the ⊕-rule, or

P⊥,P
⊕1

P⊥,P⊕R

Q⊥,Q Q⊥,Q
&

Q⊥, Q&Q
⊗

P⊥, (P⊕R)⊗Q⊥, Q&Q

−→

P⊥,P
⊕1

P⊥,P⊕R Q⊥,Q
⊗

P⊥,(P⊕R)⊗Q⊥,Q

P⊥,P
⊕1

P⊥,P⊕R Q⊥,Q
⊗

P⊥,(P⊕R)⊗Q⊥,Q
&

P⊥, P⊗Q⊥, Q&Q

illustrating duplication (of the⊗-rule and subproof
P⊥,P

⊕1
P⊥,P⊕R ) as the⊗-rule commutes over the &-rule.

∗Visiting Scholar, Mathematics Department, Stanford University. I gratefully acknowledge my host, Sol Feferman. This

work began while I was in the Computer Science Department.

1



ax

P, P⊥

ax

P, P⊥

⊗

P⊗P, P⊥, P⊥

ax

P, P⊥

⊕1

P, P⊥⊕Q

ax

P, P⊥

⊗
P⊗P, P⊥, P⊥⊕Q

&

P⊗P, P⊥, P⊥&(P⊥⊕Q)

&

(P⊗P)

&

P⊥, P⊥&(P⊥⊕Q)

Figure 1: Example of the inductive translation of a MALL proof into a proof net. The concluding proof

net has two linkings, one drawn above the sequent, the other below. Each has two links. The proof nets

further up in the derivation have one or two linkings, correspondingly above/below the sequent.

2 MALL

Let MALL denote cut-free multiplicative-additive linear logic without units [2].1 Formulas are built

from literals (propositional variables P,Q, . . . and their negations P⊥, Q⊥, . . .) by the binary connectives

tensor ⊗, par

&

, with & and plus ⊕. Negation (−)⊥ extends to arbitrary formulas with P⊥⊥ = P on

propositional variables and de Morgan duality: (A⊗B)⊥ = A⊥

&

B⊥, (A
&

B)⊥ = A⊥⊗B⊥, (A⊕B)⊥ =
A⊥&B⊥, and (A&B)⊥ = A⊥⊕B⊥. We identify a formula with its parse tree, labelled with literals on

leaves and connectives on internal vertices. A sequent is a disjoint union of formulas. Thus a sequent is

a labelled forest. We write comma for disjoint union. For example,

P⊥, (P⊗P⊥)

&

P

is the labelled forest

P⊥ P

⊗

P⊥

&

P

❙❙ ✓✓

❙
❙

✓
✓
✓
✓✓

Sequents are proved using the following rules:

ax
P,P⊥

Γ,A B,∆
⊗

Γ,A⊗B,∆

Γ, A, B &

Γ, A

&

B

Γ,A Γ,B
&

Γ,A&B

Γ, A
⊕1

Γ, A⊕B

Γ, B
⊕2

Γ, A⊕B

Γ ∆
mix (optional)

Γ,∆

1We treat cut in Section 6.
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ax
{

P,P⊥
}

⊲ P,P⊥

θ ⊲ Γ, A θ ′ ⊲ Γ, B
&

θ ∪θ ′ ⊲ Γ, A&B

θ ⊲ Γ, A θ ′ ⊲ B,∆
⊗

{λ ∪λ ′ : λ ∈ θ ,λ ′ ∈ θ ′} ⊲ Γ, A⊗B,∆

θ ⊲ Γ, A,B &

θ ⊲ Γ, A

&

B

θ ⊲ Γ, A
⊕1

θ ⊲ Γ, A⊕B

θ ⊲ Γ, B
⊕2

θ ⊲ Γ, A⊕B

θ ⊲ Γ θ ′ ⊲ ∆
mix

{λ ∪λ ′ : λ ∈ θ ,λ ′ ∈ θ ′} ⊲ Γ,∆

Table 1: Alternative but equivalent definition of the function from MALL proofs to linking sets. Here

θ ⊲ Γ signifies that θ is a set of linkings on Γ. We use the implicit tracking of formula leaves downwards

through rules. The base case is a singleton linking set whose only linking comprises a single link,

between P and P⊥.

The mix-rule is optional and absent by default. Our treatment is valid for MALL with and without mix.

Throughout this document P,Q,R range over propositional variables, A,B, . . . over formulas, and

Γ,∆,Σ over sequents. Each of the proof rules above yields an implicit tracking of subformula occurrences,

mapping the vertices in the hypotheses to the ones in the conclusion. A formula occurrence in the

conclusion of a rule ρ is generated by ρ if it is not in the image of this map.

3 Function from proofs to proof nets

A link on Γ is a pair (two-element set) of leaves in Γ. A linking λ on Γ is a set of links on Γ.2 Every

MALL proof Π of Γ defines a set θΠ of linkings on Γ as follows. Define a &-resolution R of Π to be

any result of deleting one branch above each &-rule of Π. By downwards tracking of formula leaves, the

axiom rules of R determine a linking λR on Γ. Define θΠ = {λR : R is a &-resolution of Π}.

Table 1 defines the same function by induction. See Figure 1 for an example. The fact that this

yields the same linking set as the resolution-based function follows from a simple structural induction

on proofs. Note that ⊗ (resp. &) is multiplicative (resp. additive): multiply (resp. add) the number of

linkings in θ and θ ′ to obtain the number of linkings on the conclusion.3

A linking set is a proof net if it is the translation of a proof.Mention topological defn; used below TODO

4 Rule commutations

Tables 2, 3 and 4 exhaustively list the rule commutations of MALL. Each commutation may be applied

in context, i.e., to any subproof. This collection of rule commutations is not ad hoc: they are generated

systematically from a general broad definition of commutation. The general definition is presented in

Appendix A. (The definition is more liberal than the one analyzed by Kleene [5] and Curry [1] in the

context of sequent calculus [6, Def. 5.2.1].)

We say that a β -rule commutes over an α-rule, if there is a valid rule commutation where a proof

fragment in which the β -rule occurs right below one or more α-rules is replaced by a proof fragment

in which this order is reversed. Using either the definition of rule commutation from Appendix A or

the enumeration of Tables 2, 3 and 4, it is not hard to check that this happens if and only if one of the

2The paper [4] imposed additional conditions in the definition of a linking. We do not need these conditions here.
3This observation relies on θ and θ ′ having no common linking, which follows (by structural induction) from the fact

that in any proof net on Γ, every linking touches every formula in Γ (i.e., for every linking λ in the proof net, and every

formula(-occurrence) A in Γ, some link of λ contains a leaf of A).
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Π

Γ,A1,A2,B1,B2 &

Γ,A1

&

A2,B1,B2 &

Γ,A1

&

A2,B1

&

B2

C

&
&

←→

Π

Γ,A1,A2,B1,B2 &

Γ,A1,A2,B1

&

B2 &

Γ,A1

&

A2,B1

&

B2

Π

Γ,Ai,B j
⊕i

Γ,A1⊕A2,B j
⊕ j

Γ,A1⊕A2,B1⊕B2

C
⊕
⊕

←→

Π

Γ,Ai,B j
⊕ j

Γ,Ai,B1⊕B2
⊕i

Γ,A1⊕A2,B1⊕B2

Π1

Γ,A1

Π2

A2,∆,B1

Π3

B2,Σ
⊗

A2,∆,B1⊗B2,Σ
⊗

Γ,A1⊗A2,∆,B1⊗B2,Σ

C
⊗
⊗

←→

Π1

Γ,A1

Π2

A2,∆,B1
⊗

Γ,A1⊗A2,∆,B1

Π3

B2,Σ
⊗

Γ,A1⊗A2,∆,B1⊗B2,Σ

Π1

Γ,A1,B1

Π2

Γ,A2,B1
&

Γ,A1&A2,B1

Π3

Γ,A1,B2

Π4

Γ,A2,B2
&

Γ,A1&A2,B2
&

Γ,A1&A2,B1&B2

C&
&

←→

Π1

Γ,A1,B1

Π3

Γ,A1,B2
&

Γ,A1,B1&B2

Π2

Γ,A2,B1

Π4

Γ,A2,B2
&

Γ,A2,B1&B2
&

Γ,A1&A2,B1&B2

Table 2: Homogeneous rule commutations. In the last conversion, note the reversal of Π2 and Π3.

4



Π

Γ,Ai,B1,B2
⊕i

Γ,A1⊕A2,B1,B2 &

Γ,A1⊕A2,B1

&

B2

C
⊕&

−→
←−
C

&

⊕

Π

Γ,Ai,B1,B2 &

Γ,Ai,B1

&

B2
⊕i

Γ,A1⊕A2,B1⊕B2

Π1

Γ,Ai,B1
⊕i

Γ,A1⊕A2,B1

Π2

Γ,Ai,B2
⊕i

Γ,A1⊕A2,B2
&

Γ,A1⊕A2,B1&B2

C
⊕
&

−→
←−
C&
⊕

Π1

Γ,Ai,B1

Π2

Γ,Ai,B2
&

Γ,Ai,B1&B2
⊕i

Γ,A1⊕A2,B1&B2

Π1

Γ,A1,A2,B1 &

Γ,A1

&

A2,B1

Π2

Γ,A1,A2,B2 &

Γ,A1

&

A2,B2
&

Γ,A1

&

A2,B1&B2

C

&

&

−→
←−
C

&&

Π1

Γ,A1,A2,B1

Π2

Γ,A1,A2,B2
&

Γ,A1,A2,B1&B2 &

Γ,A1

&

A2,B1&B2

Π1

Γ,A1

Π2

A2,∆,Bi
⊕i

A2,∆,B1⊕B2
⊗

Γ,A1⊗A2,∆,B1⊕B2

C
⊕
⊗

−→
←−
C
⊗
⊕

Π1

Γ,A1

Π2

A2,∆,Bi
⊗

Γ,A1⊗A2,∆,Bi
⊕i

Γ,A1⊗A2,∆,B1⊕B2

Π1

Γ,A1

Π2

A2,∆,B1,B2 &

A2,∆,B1

&

B2
⊗

Γ,A1⊗A2,∆,B1

&

B2

C

&

⊗

−→
←−
C
⊗&

Π1

Γ,A1

Π2

A2,∆,B1,B2
⊗

Γ,A1⊗A2,∆,B1,B2 &

Γ,A1⊗A2,∆,B1

&

B2

Π1

Γ,A1

Π2

A2,∆,B1

Π3

A2,∆,B2
&

A2,∆,B1&B2
⊗

Γ,A1⊗A2,∆,B1&B2

C&
⊗

−→
←−
C
⊗
&

Π1

Γ,A1

Π2

A2,∆,B1
⊗

Γ,A1⊗A2,∆,B1

Π1

Γ,A1

Π3

A2,∆,B2
⊗

Γ,A1⊗A2,∆,B2
&

Γ,A1⊗A2,∆,B1&B2

Table 3: Heterogeneous rule commutations. The last three commutations have symmetric variants, ob-

tained by switching A2⊗A1 for A1⊗A2 and exchanging hypotheses of rules from left to right, corre-

spondingly. (The hypotheses are not ordered; however, we apply the convention that a hypothesis that

contributes to one side of a ⊗ or & connective is drawn on that side.) Note that there are two copies of

the subproof Π1 on the right side of the final conversion.
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Π1

Γ

Π2

∆

Π3

Σ
mix

∆,Σ
mix

Γ,∆,Σ

Cmix

mix

←→

Π1

Γ

Π2

∆
mix

Γ,∆

Π3

Σ
mix

Γ,∆,Σ

Π1

Γ

Π2

∆,B1

Π3

B2,Σ
⊗

∆,B1⊗B2,Σ
mix

Γ,∆,B1⊗B2,Σ

C
⊗
mix

−→
←−
Cmix
⊗

Π1

Γ

Π2

∆,B1
mix

Γ,∆,B1

Π3

B2,Σ
⊗

Γ,∆,B1⊗B2,Σ

Π1

Γ

Π2

∆,Bi
⊕i

∆,B1⊕B2
mix

Γ,∆,B1⊕B2

C
⊕
mix

−→
←−
Cmix

⊕

Π1

Γ

Π2

∆,Bi
mix

Γ,∆,Bi
⊕i

Γ,∆,B1⊕B2

Π1

Γ

Π2

∆,B1,B2 &

∆,B1

&

B2
mix

Γ,∆,B1

&

B2

C
&

mix

−→
←−
Cmix&

Π1

Γ

Π2

∆,B1,B2
mix

Γ,∆,B1,B2 &

Γ,∆,B1

&

B2

Π1

Γ

Π2

∆,B1

Π3

∆,B2
&

∆,B1&B2
mix

Γ,∆,B1&B2

C
&
mix

−→
←−
Cmix

&

Π1

Γ

Π2

∆,B1
mix

Γ,∆,B1

Π1

Γ

Π3

∆,B2
mix

Γ,∆,B2
&

Γ,∆,B1&B2

Table 4: Mix rule commutations. The second conversion also has a symmetric variant, in which, at the

right-hand side, the mix rule applies to the hypothesis contributing to the right argument of the tensor.

Since sequents are unordered, we do not need symmetric variants obtained by exchanging the hypotheses

of the mix rule. Our general definition of rule commutation in Appendix A also allows a version of Cmix

mix

with three applications of mix, two above and one below. However, this conversion can be generated by

the simpler one listed above and therefore is not listed explicitly.
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β\α mix ⊗ ⊕

&

&

mix X X X X X

⊗ X X X X X

⊕ X X X X X

&

◦ ◦ X X X

& • • ◦ ◦ ◦

Table 5: Rule commutations. The check marks flag pairs
α
β where a (lower) β -rule always commutes

over an α-rule. The marks ◦ indicate situations where β -rules commute over α-rules only under certain

syntactic restrictions, which can be found by studying the results of commuting α- over β -rules. The •
denotes commutation under certain syntactic restrictions.

following cases applies (cf. Table 5):

• β ∈ {⊗,⊕,mix};

• β =

&

and α 6=⊗,mix;

• β =

&

, α = ⊗ or mix, and both arguments of the formula generated by the

&

-rule occur in the

same hypothesis of the α-rule;

• β = &, α 6= ⊗,mix, the β -rule generates a formula B1&B2, and its right hypothesis is an α-rule

analogous to its left hypothesis (just having B2 in place of B1, or vice versa); or

• β = &, α = ⊗ or mix, the β -rule generates a formula B1&B2, its right hypothesis is an α-rule

analogous to its left hypothesis (just having B2 in place of B1, or vice versa), and the subproofs of

Π of the two hypotheses of these two α-rules that do not include the Bi are identical.

This, in turn, yields exactly the rule commutations of Tables 2–4.

5 Rule commutation theorem

In this section we prove that the kernel of our function from MALL proofs to proof nets coincides

precisely with equivalence modulo rule commutations:

THEOREM 1 Two MALL proofs translate to the same proof net if and only if they can be converted into

each other by a series of rule commutations.

Proof. If Π′ can be obtained from Π by commuting rule occurrences, then Π and Π′ translate to the same

linking set: taking a &-resolution on either side of a commutation (Tables 2–4) induces essentially the

same &-resolutions (or deletions) of the subproofs Πi. For example, in the last commutation in Table 3,

if we choose right for the distinguished &-rule, we delete subproof Π2 from both sides, and induce

corresponding &-resolutions of Π1 and Π3. The converse is proved in the remainder of the section. �

Given a set of linkings Λ on a sequent Γ, let Γ↾Λ be obtained from the forest Γ by deleting all vertices

that are not below a leaf of Γ that occurs in Λ (i.e., in a link in a linking of Λ). A &-vertex w in Γ is

toggled by Λ if both arguments of w occur in Γ↾Λ. A link a depends on w in Λ if there exists λ ,λ ′ ∈ Λ

such that a ∈ λ , a 6∈ λ ′, and w is the only & toggled by {λ ,λ ′}. Construct the graph GΛ [4] from Γ↾Λ

by adding the edges of
⋃

λ∈Λ λ , as well as all jump edges from leaves ℓ and ℓ′ to any &-vertex on which
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the link {ℓ,ℓ′} depends in Λ. Below we will need the following properties of a proof net θ on a MALL

sequent Γ, established in [4].

Any set of two linkings in θ toggles a &-vertex of Γ. (1)

Each root vertex (formula occurrence) in Γ occurs in Gθ . (2)

For every λ ∈θ and each root &-vertex w in Γ

there is a λ ′∈θ such that w is the only & toggled by {λ ,λ ′}.
(3)

A formula occurrence A = A1αA2 in a MALL sequent Γ separates a proof net θ on Γ if (i) α ∈ {

&

,&},
(ii) α =⊕ and one of the Ai does not occur in Gθ , or (iii) α =⊗ and Gθ has no cycle through this ⊗.

LEMMA 1 If the last rule of a proof Π of Γ generates A, then A separates the proof net associated with

Π.

Proof. The only non-trivial case is α =⊗. Let Γ1 and Γ2 be the hypotheses of the last rule ρ of Π, let Πi

be the branch of Π above ρ proving Γi, let θ be the proof net associated with Π and θi the one associated

with Πi. Gθ could have a cycle through α only when in θ a link a in Γ1 depends on a &-vertex w in Γ2

(or vice versa). In that case there exists λ ,λ ′ ∈ θ such that a ∈ λ , a 6∈ λ ′, and w is the only & toggled

by {λ ,λ ′}. Hence there must be λ1,λ
′
1 in θ1 and λ2,λ

′
2 in θ2 such that a ∈ λ1, a 6∈ λ ′1 and w is the only

& toggled by {λ1∪λ2,λ
′
1∪λ ′2}. However, by (1) there must be another &-vertex of Λ that is toggled by

{λ1∪λ2,λ
′
1∪λ ′2}, namely one occurring in Γ1 that is toggled by {λ1,λ

′
1}. �

LEMMA 2 If a formula occurrence A = A1αA2 in a MALL sequent Γ,A separates a proof net θ of Γ,A

for which Gθ is connected, then there is at most one instance σ of an α-rule that could generate A in the

last step of a proof Π of Γ,A with proof net θ .

Proof.

• Case α =

&

: the hypothesis of σ must be Γ,A1,A2.

• Case α = &: the hypotheses of σ must be Γ,A1 and Γ,A2.

• Case α =⊕: exactly one of the Ai, say Ad, is in Gθ (2). Hence the hypothesis of σ must be Γ,Ad.

• Case α = ⊗: let Γ,A1,A2 be the sequent resulting from deleting the ⊗ in A from Γ,A. Since A

separates θ , and Gθ is connected, the restriction of Gθ to Γ,A1,A2 falls apart in two disconnected

components, one on a sequent Γ1,A1, the other on a sequent Γ2,A2, where Γ1∪Γ2 = Γ. Now, also

using (2), the hypotheses of σ must be Γ1,A1 and Γ2,A2. �

In each case the proof nets on the hypotheses of σ , induced by the branches of Π that prove these

hypotheses, are completely determined by θ .

For Π a proof, let GΠ abbreviate GθΠ
. We shall prove the following four lemmas by simultaneous struc-

tural induction.

LEMMA 3 Let Π be a proof of a MALL sequent ∆,A1⊗A2,Σ such that in GΠ any path between (ver-

tices in) ∆,A1 and A2,Σ passes through the indicated occurrence of ⊗. Then Π can, by means of rule

commutations, be converted into a proof Π′ whose last step is the⊗-rule with hypotheses ∆,A1 and A2,Σ.

LEMMA 4 Let Π be a proof of a MALL sequent Γ whose proof net θ is separated by a formula occur-

rence A in Γ. Then, by means of a series of rule commutations, Π can be converted into a proof Π′′ of Γ

that generates A in its last step.
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LEMMA 5 Let Π be a proof of a MALL sequent ∆,Σ for nonempty sequents ∆ and Σ, such that in GΠ

there is no path between (vertices in) ∆ and Σ. Then Π can, by means of rule commutations, be converted

into a proof Π′′ whose last step is the mix-rule with hypotheses ∆ and Σ.

LEMMA 6 If two proofs Π and Π′ of a MALL sequent Γ translate to the same proof net on Γ, then Π

can be converted into Π′ by a series of rule commutations.

Lemma 6 is the converse direction of Theorem 1 that has to be established.

Proof. We prove Lemmas 3–6 by a simultaneous structural induction on Π (or equivalently, on Γ).

Induction base (applies to Lemma 6 only). The induction base is trivial, as a MALL sequent that can be

proven in one step has at most one proof, a single application of ax.

Induction step for Lemma 3.

• First consider the case that the last step ρ of Π is an application of mix, say with hypotheses Γc

and Γd,A1⊗A2.

Let Πd be the branch of Π above ρ proving Γd,A1⊗A2. Let ∆d := ∆∩Γd and Σd := Σ∩Γd. Since

GΠd
is a subgraph of GΠ, any path in GΠd

between (vertices in) ∆d ,A1 and A2,Σd passes through

the indicated occurrence of ⊗. Hence, by induction, Πd can, by means of rule commutations, be

converted into a proof Π′d whose last step is the ⊗-rule with hypotheses ∆d,A1 and A2,Σd .

Let Πc be the branch of Π above ρ proving Γc. Let ∆c := ∆∩Γc and Σc := Σ∩Γc. Since GΠc
is

a subgraph of GΠ, there is no path in GΠc
between (vertices in) ∆c and Σc. If ∆c or Σc is empty,

let Π′c := Πc. Otherwise, by induction, using Claim 5, Πc can, by means of rule commutations, be

converted into a proof Π′c whose last step is the mix-rule with hypotheses ∆c and Σc.

Let Π′ be the proof obtained from Π by replacing Πd with Π′d and Πc with Π′c. Let Π′′ be the

proof with the same 3 or 4 subproofs yielding ∆c, Σc, ∆d,A1 and A2,Σd that first combines ∆c

with ∆d,A1 into ∆,A1 using mix (provided ∆c is nonempty), and likewise combines Σc with A2,Σd

into A2,Σ using mix (provided Σc is nonempty), and then applies ⊗ to yield ∆,A1⊗A2,Σ. By

means of a few simple rule commutations, Π′ can be converted into Π′′.

• Next consider the case that the last step ρ of Π is an application of ⊗ generating the same formula

A1⊗A2. Let the hypotheses of ρ be Γi,Ai for i = 1,2.

Let Πi be the branch of Π above ρ proving Γi,Ai. Let ∆i := ∆∩Γi and Σi := Σ∩Γi. Since GΠ1
is

a subgraph of GΠ, there is no path in GΠ1
between (vertices in) ∆1,A1 and Σ1. In case Σ1 is empty,

let Π′1 := Π1. Otherwise, by induction, using Claim 5, Π1 can, by means of rule commutations, be

converted into a proof Π′1 whose last step is the mix-rule with hypotheses ∆1,A1 and Σ1.

In case ∆2 is empty, let Π′2 := Π2. Otherwise, by means of rule commutations, Π2 can be converted

into a proof Π′2 whose last step is the mix-rule with hypotheses ∆2 and A2,Σ2.

Let Π′ be the proof obtained from Π by replacing Πi with Π′i for i ∈ {1,2}. Let Π′′ be the proof

with the same 2, 3 or 4 subproofs yielding ∆1,A1, Σ1, ∆2 and A2,Σ2 that first combines ∆1,A1

with ∆2 into ∆,A1 using mix (provided ∆c is nonempty), and likewise combines Σc with A2,Σd into

A2,Σ using mix (provided Σc is nonempty), and then applies ⊗ to yield ∆,A1⊗A2,Σ. By means of

a few simple rule commutations, Π′ can be converted into Π′′.

In the remaining cases let the last step of Π be a a β -rule ρ , generating the formula B = B1βB2 6= A =
A1⊗A2. We treat the case that B occurs in Σ; the other case follows by symmetry. Let Σ = Σ′,B1βB2.

9



• Suppose β = ⊕. Let Πd be the part of Π above ρ , proving the hypothesis ∆,A,Σ′,Bd of ρ (where

d is 1 or 2). Since GΠd
is a subgraph of GΠ, any path in GΠd

between (vertices in) ∆,A1 and

A2,Σ
′,Bd passes through the indicated occurrence of ⊗. Thus, by induction, by a series of rule

commutations Πd can be be converted into a proof Π′d of ∆,A1⊗A2,Σ
′,Bd whose last step is the

⊗-rule with hypotheses ∆,A1 and A2,Σ
′,Bd. Let Π′ be the proof obtained from Π by replacing Πd

by Π′d . In Π′, ρ commutes over the ⊗-rule generating A, thereby yielding the required proof Π′′.

• Suppose β =⊗. Let Π1 and Π2 be the branches of Π above ρ , proving the hypothesis ∆1,A,Σ1,B1

and ∆2,Σ2,B2 of ρ , respectively. Here ∆ = ∆1∆2 and Σ′ = Σ1,Σ2. We assume that A sides with B1;

the other case proceeds symmetrically. Since GΠ1
is a subgraph of GΠ, any path in GΠ1

between

(vertices in) ∆1,A1 and A2,Σ1,B1 passes through the indicated occurrence of ⊗. Thus, by induc-

tion, by a series of rule commutations Π1 can be be converted into a proof Π′1 of ∆1,A1⊗A2,Σ1,B1

whose last step is the ⊗-rule with hypotheses ∆1,A1 and A2,Σ1,B1.

In case ∆2 is empty, let Π′2 := Π2. Otherwise, by induction, using Claim 5, Π2 can be be converted

into a proof Π′2 of ∆2,Σ2,B2 whose last step is the mix-rule with hypotheses ∆2 and Σ2,B2.

Let Π′ be the proof obtained from Π by replacing Πi by Π′i, for i ∈ {1,2}. Let Π′′ be the proof

with the same 3 or 4 subproofs yielding ∆1,A1, A2,Σ1,B1, ∆2 and Σ2,B2 that first combines ∆2

with ∆1,A1 into ∆,A1 using mix (provided ∆2 is nonempty), and likewise combines Σ2,B2 with

A2,Σ1,B1 into A2,Σ
′,B using ⊗, and then applies ⊗ to yield ∆,A,Σ′,B. By means of a few simple

rule commutations, Π′ can be converted into Π′′.

• Let β =

&

. Let Πρ be the part of Π above ρ . Then Πρ proves the hypothesis ∆,A,Σ′,B1,B2 of ρ .

Since GΠρ is a subgraph of GΠ, in GΠρ any path between (vertices in) ∆,A1 and A2,Σ
′,B1,B2 passes

through the indicated occurrence of ⊗. Hence, by induction, using by Claim 3, Πρ can, by means

of rule commutations, be converted into a proof Π′ρ whose last step is the ⊗-rule with hypotheses

∆,A1 and A2,Σ
′,B1,B2. Let Π′ be the proof obtained from Π by replacing Πρ by Π′ρ . In Π′ the

&

-rule ρ commutes over the ⊗-rule generating A, thereby yielding the required proof Π′′.

• Let β = &. The rule ρ has hypotheses ∆,A,Σ′,B1 and ∆,A,Σ′,B2. Let Πi be the branch of Π above

·
·
·
·

Π1

∆,A1⊗A2,Σ
′,B1

·
·
·
·

Π2

∆,A1⊗A2,Σ
′,B2

&(ρ)
∆,A1⊗A2,Σ

′,B1&B2

ρ proving ∆,A,Σ′,Bi. Since GΠi
is a subgraph of GΠ, in GΠi

any path between (vertices in) ∆,A1

and A2,Σ
′,Bi passes through the indicated occurrence of ⊗. Hence, by induction, using Claim 3,

Πi can, by means of rule commutations, be converted into a proof Π′i whose last step is the ⊗-rule

with hypotheses ∆,A1 and A2,Σ
′,Bi. So the left hypotheses of Π′1 and Π′2 are both ∆,A1, and we

claim that the proof nets on them induced by the subproofs Π′11 and Π′21 of Π leading up to these

hypotheses must be the same.

·
·
·
·

Π′11

∆,A1 A2,Σ
′,B1
⊗

∆,A1⊗A2,Σ
′,B1

·
·
·
·

Π′21

∆,A1 A2,Σ
′,B2
⊗

∆,A1⊗A2,Σ
′,B2

&(ρ)
∆,A1⊗A2,Σ

′,B1&B2
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For if not, let λ be a linking in the proof net of Π′11 but not in the proof net of Π′21. (The symmetric

case goes likewise.) Then, using (2) and Table 1, for some linking µ on A2,Σ
′,B1, the linking

ν := λ ∪ µ must be in θ . Using (3), let ν ′ ∈ θ be such that β is the only & toggled by {ν ,ν ′}.
Again using Table 1, ν ′ = λ ′∪µ ′ for some linking λ ′ in the proof net of Π′21. Since there must be

a link a = {ℓ,ℓ′} such that a ∈ λ but a 6∈ λ ′ (or vice versa), in Gθ there is a jump edge from ℓ to β .

This contradicts the assumption that in Gθ any path between (vertices in) ∆,A1 and A2,Σ
′,B1

&

B2

passes through the indicated occurrence of ⊗.

Therefore, by induction, using Claim 6, Π′11 can be converted into Π′21 by a series of rule commu-

tations. Let Π′′2 be obtained from Π′2 by replacing its subproof Π′21 by Π′11, and let Π′ be the proof

obtained from Π by replacing Π1 by Π′1 and Π2 by Π′′2. In Π′, the ⊗-rules generating A commute

with the &-rule ρ , thereby yielding the required proof Π′′.

Induction step for Claim 4. Suppose that Π does not generate A = A1αA2 in its last step. The case that

α =⊗ is implied by Claim 3. Therefore we assume here that α ∈ {⊕,

&

,&}.

• First consider the case that the last step of Π is the application of a mix-rule ρ . Then Γ = ∆,A and

A occurs in a hypothesis ∆d,A of ρ (where ∆d ⊆ ∆). Let Πd be the branch of Π above ρ proving

∆d,A. Its proof net is separated by A in ∆d, for otherwise the proof net θ of Π would not be

separated by A in Γ. Thus, by induction, by a series of rule commutations Πd can be be converted

into a proof Π′d of ∆d ,A that generates A in its last step. Let Π′ be the proof of Γ obtained by

replacing Πd by Π′d in Π. In Π′, ρ commutes over the α-rule generating A, thereby yielding the

required proof Π′′.

In the remaining cases let the last step of Π be the application of a β -rule ρ , generating the formula

B1βB2. Thus Γ = ∆,A,B1βB2.

• Suppose β ∈ {⊗,⊕}. Then A occurs in a hypothesis ∆d ,A,Bd of ρ (where d is 1 or 2, and of

course ∆d = ∆ in the case β =⊕). Let Πd be the branch of Π above ρ proving ∆d,A,Bd . Its proof

net is separated by A in ∆d ,A,Bd, for otherwise the proof net θ of Π would not be separated by A

in Γ. Thus, by induction, by a series of rule commutations Πd can be be converted into a proof Π′d
of ∆d ,A,Bd that generates A in its last step. Let Π′ be the proof of Γ obtained by replacing Πd by

Π′d in Π. In Π′, ρ commutes over the α-rule generating A, thereby yielding the required proof Π′′.

• Let β =

&

. Let Πρ be the part of Π above ρ . Then Πρ proves the hypothesis ∆,A,B1,B2 of ρ , and

its proof net is separated by A, for otherwise θ would not be separated by A. Thus, by induction, by

a series of rule commutations Πρ can be be converted into a proof Π′ρ of ∆,A,B1,B2 that generates

A in its last step. As above, a rule commutation finishes the proof.

• Let β = &. Then ρ has hypotheses ∆,A,B1 and ∆,A,B2. Let Πi be the branch of Π above ρ

proving ∆,A,Bi. The proof nets of Π1 and Π2 are separated by A in ∆,A,Bi in exactly the same

way, i.e., in case α = ⊕ choosing the same argument Ad, for otherwise θ would not be separated

by A. Thus, by induction, by a series of rule commutations the Πi can be converted into proofs Π′i
of ∆,A,Bi that generate A in their last steps. The last step of Π′2 must be analogous to the last step

of Π′1, just having B2 in place of B1—the argument is similar to the proof of Lemma 2. Let Π′ be

the proof of Γ obtained by replacing Πi by Π′i in Π, for i = 1,2. In Π′, the &-rule ρ commutes

over the α-rules generating A, thereby yielding the required proof Π′′.

Induction step for Claim 5.

• First consider the case that the last step ρ of Π is an application of mix, say with hypotheses Γ1

and Γ2. Let Πi be the branch of Π above ρ , proving Γi (for i = 1,2). Since GΠi
is a subgraph of
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GΠ, in GΠi
there is no path between ∆i := ∆∩Γi and Σi := Σ∩Γi. In case ∆i or Σi is empty, we

let Π′i := Πi. Otherwise, by induction Πi can, by means of rule commutations, be converted into a

proof Π′i whose last step is a mix-rule with hypotheses ∆i and Σi. Let Π′ be the proof obtained from

Π by replacing Πi with Π′i for i = 1,2. In Π′, ρ commutes over the 0, 1 or 2 mix-rules introduced

right above it, thereby yielding the required proof Π′′.

In the remaining cases let the last step of Π be the application of a β -rule ρ , generating the formula

B = B1βB2. We treat the case that B occurs in Σ; the other case follows by symmetry. Let Σ = Σ′,B1βB2.

• Suppose β = ⊗. The hypotheses of this rule are ∆i,Σi,Bi, for i ∈ {1,2}, where ∆ = ∆1,∆2 and

Σ′ = Σ1,Σ2. Let Πi be the branch of Π proving ∆i,Σi,Bi. Since GΠi
is a subgraph of GΠ, in GΠi

there is no path between ∆i and Σi,Bi. In case ∆i is empty, we let Π′i :=Πi. Otherwise, by induction

Πi can, by means of rule commutations, be converted into a proof Π′i whose last step is a mix-rule

with hypotheses ∆i and Σi,Bi. Let Π′ be the proof obtained from Π by replacing Πi with Π′i for

i = 1,2. In Π′, ρ commutes over the 1 or 2 mix-rules introduced right above it, thereby (possibly

using Cmix

⊗ twice and Cmix

mix once) yielding the required proof Π′′.

• Suppose β =⊕. The hypothesis of this rule is ∆,Σ′,Bd , where d is 1 or 2. Let Πd be the subproof

of Π proving the latter sequent. Since GΠd
is a subgraph of GΠ, in GΠd

there is no path between

∆ and Σ′,Bd . By induction Πd can, by means of rule commutations, be converted into a proof Π′d
whose last step is an application of the mix-rule with hypotheses ∆ and Σ′,Bd. Let Π′ be the proof

obtained from Π by replacing Πd with Π′d. In Π′, ρ commutes over the mix-rule introduced right

above it, thereby yielding the required proof Π′′.

• Suppose β =

&

. The hypothesis of this rule is ∆,Σ′,B1,B2. Let Πρ be the subproof of Π proving

the latter sequent. Since GΠρ is a subgraph of GΠ, in GΠρ there is no path between ∆ and Σ′,B1,B2.

By induction Πρ can, by means of rule commutations, be converted into a proof Π′ρ whose last step

is a mix-rule with hypotheses ∆ and Σ′,B1,B2. Let Π′ be the proof obtained from Π by replacing

Πρ with Π′ρ . In Π′, ρ commutes over the mix-rule introduced right above it, thereby yielding the

required proof Π′′.

• Suppose β = &. The hypotheses of this rule are ∆,Σ,Bi, for i ∈ {1,2}. Let Πi be the branch of Π

proving ∆,Σ,Bi. Since GΠi
is a subgraph of GΠ, in GΠi

there is no path between ∆ and Σ,Bi. By

induction Πi can, by means of rule commutations, be converted into a proof Π′i whose last step is

a mix-rule with hypotheses ∆ and Σ,Bi. So the left hypotheses of Π′1 and Π′2 are both ∆, and we

claim that the proof nets on them induced by the subproofs Π′11 and Π′21 of Π leading up to these

hypotheses must be the same. The argument goes just as in the proof of Claim 3.

Therefore, by induction, using Claim 6, Π′11 can be converted into Π′21 by a series of rule commu-

tations. Let Π′′2 be obtained from Π′2 by replacing its subproof Π′21 by Π′11, and let Π′ be the proof

obtained from Π by replacing Π1 by Π′1 and Π2 by Π′′2 . In Π′, the mix-rules generating A commute

with the &-rule ρ , thereby yielding the required proof Π′′.

Induction step for Claim 6. For the induction step, suppose Π and Π′ are two proofs of a MALL sequent

Γ that have the same proof net θ .

First assume that Gθ is connected. In that case the last steps of Π and Π′ cannot be mix. Let A be

the formula occurrence in Γ that is generated by the last step of Π′. By Lemma 1, A separates θ . Hence,

using Claim 4, by means of a series of rule commutations, Π can be converted into a proof Π′′ of Γ that

generates A in its last step. By Lemma 2, the last step σ of Π′ is the same as the last step of Π′′. Thus

each hypothesis Γd of σ is proven by a subproof Π′d of Π′, and by a subproof Π′′d of Π′′. As Π′d and Π′′d
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have the same proof net, by induction they can be converted into each other by means of a series of rule

commutations. If follows that also Π and Π′ can be converted into each other by means of a series of

rule commutations.

Next assume that Gθ is disconnected; let Γ = Γ1,Γ2 with the Γi nonempty sequents, such that in Gθ

there is no path between (vertices in) Γ1 and Γ2. Using Claim 5, Π can, by means of rule commutations,

be converted into a proof Πmix whose last step is the mix-rule with hypotheses Γi; let Πi be the branch

of Πmix proving Γi. Its proof net is simply the restriction of (the linkings in) θ to Γi. Likewise, Π′

can, by means of rule commutations, be converted into a proof Π′
mix

whose last step is the mix-rule with

hypotheses Γi; let Π′i be the branch of Πmix proving Γi. Since Πi and Π′i have the same proof net, by

induction one can be converted into the other by a series of rule commutations. Consequently, Π can be

converted into Π′.

�

6 TODO: cut
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A A general concept of rule commutation

In order to properly define rule commutations in a sequent calculus, we consider rules—called abstract

rules—that contain variables ranging over formulas and over sequents. The rules for MALL in Section 2

are of this form. Thus, rather than seeing the rule for ⊗ as a template, of which there is an instance

for each choice of A, B, Γ and ∆, we see it as a single rule containing four variables. When applying

such a rule in a proof, formulas and sequents are substituted for the variables of the corresponding type.

Here we study rule commutations only for sequent calculi whose abstract rules satisfy two properties:

(1) the premises of a rule are free of literals and connectives and thus are built from variables only, and

(2) each of these variables occurs exactly once in the conclusion.

This use of variables is a way of formalising the implicit tracking of subformula occurrences de-

scribed in Section 2 and utilized in Section 3: a subformula occurrence within an occurrence of a formula

or sequent substituted for a variable A or Γ appearing in the premises of an abstract rule, tracks to the

corresponding subformula occurrence within the occurrence of the same formula or sequent substituted

for A or Γ in the conclusion of the rule.

Formally, a formula expression is built from formula variables, literals and connectives; it is a for-

mula if it contains no variables. A sequent expression is a multiset of sequent variables and formula

expressions; it is a sequent if it does not contain any variables. Here a multiset of objects from a set S is a

function M : S→ IN, telling for each object in S how often it occurs in M. An object x ∈ S with M(x)> 0

is called an element of M. Let C(M) := {x ∈ S | M(x) > 0} denote the set of elements of M. In case

M(x) ∈ {0,1} for all x ∈ S, the multiset M is usually identified with the set C(M).

An abstract rule is a pair H
Γ

of a set H of sequent expressions—the premises—and a single sequent

expression Γ—the conclusion. An abstract rule is pure if it satisfies conditions (1) and (2) above. A

concrete rule—simply called rule outside of this appendix—is a pair H
Γ of a multiset H of (variable-

free) sequents and a single sequent Γ.

A substitution σ maps formula variables to formula expressions and sequent variables to sequent ex-

pressions; it extends to a map from formula expressions to formula expressions and from (sets of) sequent

expressions to (multisets of) sequent expressions. A substitution is closed if it maps formula variables to

formulas and sequent variables to sequents. If H
Γ is an abstract rule and σ a (closed) substitution, then

σ(H)
σ(Γ) is a (closed) substitution instance of H

Γ ; its collapse
C(σ(H))

σ(Γ) is again an abstract rule.

Given a collection of connectives to determine the valid formulas, a sequent calculus—such as

MALL—is given by a set of abstract rules. It induces a set of concrete rules, namely the closed substitu-

tion instances of the abstract rules.

A proof Π in a sequent calculus is a well-founded, upwards branching tree of which the nodes are

labelled by sequent expressions and some of the leaves are marked “hypothesis”, such that (1) the labels

of the hypotheses are free of literals and connectives and thus built from variables only, and (2) if ∆ is

the label of a node that is not an hypothesis and K is the multiset of labels of the children of this node

then K
∆

is a substitution instance of one of the rules of that sequent calculus. Such a proof derives the

abstract rule H
Γ

, where H is the set of labels of the hypotheses, and Γ the label of the root of Π. A proof

of a sequent Γ can be regarded as a proof of the abstract rule H
Γ with H = /0.

It is not hard to show that any abstract rule derivable in a sequent calculus containing pure rules only

can be obtained as a collapsed substitution instance of a pure rule derivable in that sequent calculus.

Although we do not make use of this insight in our proofs, it helps to motivate the following definitions.

A proof Π deriving a pure rule H
Γ , together with a substitution σ and proofs of σ(∆) for each ∆ ∈H ,

composes into a proof Π′ of σ(Γ); in case Π′ is a subproof of a proof Π′′ we say that Π occurs in Π′′.

The object obtained from Π by applying σ to all its node labels is called a proof fragment of Π′′.
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For α and β two abstract proof rules in a sequent calculus, an αβ -proof is a proof of a pure rule in

which each non-hypothesis node is either the root, and an application of β , or a child of the root, and an

application of α . A rule commutation is the replacement in a proof Π of an αβ -proof occurring in it by

a (different) βα-proof that derives the same rule. Thus, a rule commutation is a local conversion on a

proof that retains the subproofs of its hypotheses, with possible duplication/identification.

We leave it to the reader to check that this definition, applied to MALL, generates exactly the rule

commutations presented in Section 4.

Based on the above, we say that a concrete β -rule commutes over a concrete α-rule, if these rules

occur in a proof fragment obtained as a substitution instance of an αβ -proof for which there exists a

βα-proof deriving the same rule. This definition of rule commutation is more liberal than the standard

definition of rule commutation for a Gentzen sequent calculus [6, Def. 5.2.1], analysed by Kleene [5]

and Curry [1]. That definition only covers the case where each β rule commutes over each α-rule,

corresponding with the check marks in Table 5. Moreover, [6] requires—translated in our terminology—

the source proof fragment to have two non-leave nodes only (one of β and only one for α), thereby ruling

out the commutation of & over any α .
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