
stanfordlogo

Weiner’s Repetition Finder
(with simplifications suggested by the referee)

Vaughan Pratt

Computer Science Department
Stanford University

Combinatorial Pattern Matching 2013

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 1 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 2 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 2 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 2 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 3 / 31

stanfordlogo

Weiner’s starting point: Knuth’s 1970 conjecture

Knuth conjectured in 1970 that the longest common substring of
two strings could not be found in linear time [KMP].
Weiner set out to find a linear time algorithm for this problem.
Morphed into a data structures paper: bi-trees, prefix trees, and
associated algorithms.
These solved a more general problem: build the suffix tree of a
string in linear time, along with other applications.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 4 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 5 / 31

stanfordlogo

SWAT paper

Paper presented at SWAT’73.
(Switching and Automata Theory, renamed Foundations of
Computer Science, FOCS, in 1975.)

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 6 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 7 / 31

stanfordlogo

Journal submission

Submitted for journal publication in CACM in 1973.
Referee: VP

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 8 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 9 / 31

stanfordlogo

Accept or Reject?

I attended SWAT’73 and listened to Peter’s talk with great interest.
The universal reaction seemed to be that the arguments were very
intricate, and the question of correctness arose.
When John Hopcroft asked me to referee the paper for CACM, I
had no preconceptions about its correctness.
On the one hand, after two weeks I was unable to find any serious
error.
On the other I was also unable to “grok” the method.
Perhaps TOC is not my thing after all, and I should go back to
NLP...

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 10 / 31

stanfordlogo

Conditional Accept

Two more weeks and I was able to convince myself that something
like Peter’s bi-trees could be used to build tries in linear time.
So even if there were any errors, it was no longer necessary to
infer that they must be fatal errors.
But why ask each of the paper’s potential n readers (n = 10?
100? 1000?) to duplicate my effort if the author could somehow
reduce their burden?
Decision: Conditional accept.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 11 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 12 / 31

stanfordlogo

Condition: make more understandable

In its present form, even if the paper did contain errors, fixing them
wasn’t going to solve anything, as that would do nothing to clarify
the paper.
What was needed was to make it clearer why the paper was
correct.
My report offered one way of doing this, not as something the
author should follow however but merely as an existence proof
that much greater clarity was possible.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 13 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 14 / 31

stanfordlogo

Example

The string BANANAS has 7 symbols numbered 1 to 7 and 8
between-character positions numbered 0 to 7:
0B1A2N3A4N5A6S7.
At each between-character position i , denote the left-longest
repetition so far (i.e. ignoring text yet to come) by] at i and a
matching [at j ≤ i .

0. []BANANAS 0..0
1. B[]ANANAS 1..1
2. BA[]NANAS 2..2
3. BAN[]ANAS 3..3
4. BAN[A]NAS 3..4 4 repetitions: ε, A, AN, ANA
5. BAN[AN]AS 3..5 # occurrences: 8, 3, 2, 2
6. BAN[ANA]S 3..6 Left longest repetitions are one character
7. BANANAS[] 7..7 short of being a form of suffix identifier.

"[" advances monotonically in this example.
Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 15 / 31

stanfordlogo

Basic algorithm

while picture is ...[w]a... do
if wa is a repetition Move "]"
else Move "[" (and "]" in context "[]")

Theorem
"[" always advances monotonically.

Hence O(n) running time assuming O(1) time steps.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 16 / 31

stanfordlogo

Data structure

Realize the movements of [and] as movements along eges of a graph
G constructed as we go along.

Vertices denote the left-longest repetitions.

They are created as soon as the repetition is first bracketed.

The initial vertex is ε, being considered a repetition from the very
beginning.

Edges:

Link w to wa via an edge labeled a. Notation: w :a = wa.
These edges support] movement.
Link wa to its longest proper suffix u in G. Notation: S(w) = u.
These edges support [movement.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 17 / 31

stanfordlogo

Data structure (cont.)

•ε
@
@
@R

A

•A
@
@
@R

N

•AN
@
@
@R

A

•ANA

�

O

6

[]BANANAS
B[]ANANAS
BA[]NANAS
BAN[]ANAS
BAN[A]NAS
BAN[AN]AS
BAN[ANA]S
BANAN[A]S
BANANA[]S
BANANAS[]

Algorithm
Start at ε: []BANANAS
While picture is ...[w]a...

if wa is a repetition follow the a edge, creating wa if necessary
else if the dotted (S) edge exists follow it
else at ε: move [] (i.e. get next character)

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 18 / 31

stanfordlogo

Outline

1 Background
Weiner’s starting point: Knuth’s 1970 conjecture
SWAT’73 paper
Journal submission 1973

2 Referee’s Report
Conditional accept
Condition: make more understandable

3 Existence proof of possibility
Algorithm to find all left-longest repetitions so far
Suffix splitting as the only complication

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 19 / 31

stanfordlogo

Suffix splitting: BANANASNA

•ε
@
@
@R

A

•A
@
@
@R

N

•AN
@
@
@R

A

•ANA

�

O

6

BANANAS[]NA

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 20 / 31

stanfordlogo

Suffix splitting: Create node N

•ε
@
@
@R

A

?
N

•A
@
@
@R

N

•AN
@
@
@R

A

•ANA

•N

�

O

6

BANANAS[]NA
BANANAS[N]A

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 21 / 31

stanfordlogo

Suffix splitting: Split AN→ ε

•ε
@
@
@R

A

?
N

•A
@
@
@R

N

•AN
@
@
@R

A

•ANA

•N

�

Y

6

6

BANANAS[]NA
BANANAS[N]A

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 22 / 31

stanfordlogo

Suffix splitting: Create node NA

•ε
@
@
@R

A

?
N

•A
@
@
@R

N

•AN
@
@
@R

A

•ANA

•N
@
@
@R

A

•NA

�

Y

6

6

BANANAS[]NA
BANANAS[N]A
BANANAS[NA]

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 23 / 31

stanfordlogo

Suffix splitting: Split ANA→ A

•ε
@
@
@R

A

?
N

•A
@
@
@R

N

•AN
@
@
@R

A

•ANA

•N
@
@
@R

A

•NA

�

Y

6

Y

6

BANANAS[]NA
BANANAS[N]A
BANANAS[NA]

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 24 / 31

stanfordlogo

Suffix splitting: METHOD (outline)

Goal: Split x −→ wa −→ u
where u is the longest proper suffix of wa in G (always exists)
and x is the word in G if any such that S(x) = u before wa enters G
and S(x) = wa afterwards (x need not exist).

Theorem
If such an x exists it is unique, and is determined by the symbol c in
wa = vcu.

Hence every suffix link x → u can be equipped with an inverse link
u → x determined by u and the c such that x = v ′cu. This c can in
turn be determined as c = A[loc(wa)− len(u)] since S(x) = wa.
Method:

Find u using w and a.
Find x using u and c as in the theorem.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 25 / 31

stanfordlogo

Suffix splitting: Finding u and x

We must find u = S(wa) at the creation of each new node wa, whether
or not x exists. Do so as follows.

Before linking w to wa, set t = w and then repeatedly set t = S(t) (i.e.
follow dotted suffix links) until either ta exists or t = ε. Take u to be ta if
it exists, else ε.

This is still O(n) because the next w = S(w) skips over all the steps
taken by t = S(w) in a single step.

To find x we furnish every suffix edge x → u of the graph with its
inverse u → x . Although there may be multiple x satisfying S(x) = u,
only one can “factor through” wa. (Connection with Weiner’s algorithm:
these are the edges of a compacted suffix trie.)

To find x = v ′cu, determine c as A[loc(wa)− len(u)].

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 26 / 31

stanfordlogo

All fields of a vertex of G

We can now list all 6 fields of a vertex of G.
loc(w) location of 1st occurrence of w
len(w) length of w
S(w) longest proper suffix of w (as a vertex in G)

The above three fields are fixed at the time w is created as w = v : b.
loc(w) = v .b, len(w) = len(v) + 1, and S(w) = u (t : vb or varepsilon).

The remaining 3 fields are Σ-indexed sparse arrays.
For each symbol a ∈ Σ:

w .a Location of the first occurrence of wa (right end). Set at the
later of creating w or 1st occurrence of wa (next slide).
w :a Vertex of G denoting wa.
Set when wa is created (see next slide).
∗a:w Inverse suffix link.
Set when the corresponding suffix link is created (always paired).

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 27 / 31

stanfordlogo

Detecting repetitions

In the context ...[w]a..., wa is a repetition when w .a is defined, namely
as the location of the first occurrence of wa.

w .a is stored at node w in G either at creation of w or later.

At creation: When w is created in G, record for each symbol a the
location of the first occurrence of wa in node a. Notation: w .a. To
do this, either copy all x .a to w .a when x exists, otherwise set w .a
to loc(w) + 1 where a is the letter at that location.
Later: Whenever the repetition test for ...[w]a... fails, set w .a to be
the current position in the string.

Main theorem:

Theorem
For all w ∈ G, if wa occurs in the string then w .a = the location of the
first occurrence of w.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 28 / 31

stanfordlogo

Application: pattern matching

To find patterns in a string A.

Dumb method (how my referee’s report envisaged doing this):
Apply the algorithm to A.
For each pattern P continue the algorithm with input $P, where $
is a new symbol not in Σ. This produces a graph GA$P as though
having processed A$P in one pass.
When done with each P restore GA$P to GA (routine).

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 29 / 31

stanfordlogo

Relation to Weiner’s algorithm

Take VP* to be my variant reversed so both scan right to left.

Essential common feature of PW and VP*: both find prefix identifiers of
position.

The edges of PW’s compacted suffix trie (i.e. suffix tree) are VP*’s
∗a; w edges.

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 30 / 31

stanfordlogo

Corollaries

Corollary 1: Instead of the above dumb method, VP can do pattern
matching without modifying G, namely by scanning the patterns right
to left and navigating in G via the inverse suffix links ∗a : w instead of
the w : a links.

My report did not make that connection with PW and hence overlooked
that possibility.

Corollary 2: VP and PW differ only in implementation details. (This
was not clear to me until this morning.)

Vaughan Pratt (Computer Science Department Stanford University)Weiner’s Repetition Finder CPM 2013 31 / 31

	Background
	Weiner's starting point: Knuth's 1970 conjecture
	SWAT'73 paper
	Journal submission 1973

	Referee's Report
	Conditional accept
	Condition: make more understandable

	Existence proof of possibility
	Algorithm to find all left-longest repetitions so far
	Suffix splitting as the only complication

