Weiner's Repetition Finder
 (with simplifications suggested by the referee)

Vaughan Pratt

Computer Science Department
Stanford University

Combinatorial Pattern Matching 2013

Outline

(1) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973

Outline

(1) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable

Outline

(9) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

Outline

(1) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

Weiner's starting point: Knuth's 1970 conjecture

- Knuth conjectured in 1970 that the longest common substring of two strings could not be found in linear time [KMP].
- Weiner set out to find a linear time algorithm for this problem.
- Morphed into a data structures paper: bi-trees, prefix trees, and associated algorithms.
- These solved a more general problem: build the suffix tree of a string in linear time, along with other applications.

Outline

(9) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

SWAT paper

- Paper presented at SWAT'73.
- (Switching and Automata Theory, renamed Foundations of Computer Science, FOCS, in 1975.)

Outline

(9) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

Journal submission

- Submitted for journal publication in CACM in 1973.
- Referee: VP

Outline

(1) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

Accept or Reject?

- I attended SWAT'73 and listened to Peter's talk with great interest. The universal reaction seemed to be that the arguments were very intricate, and the question of correctness arose.
- When John Hopcroft asked me to referee the paper for CACM, I had no preconceptions about its correctness.
- On the one hand, after two weeks I was unable to find any serious error.
- On the other I was also unable to "grok" the method.
- Perhaps TOC is not my thing after all, and I should go back to NLP...

Conditional Accept

- Two more weeks and I was able to convince myself that something like Peter's bi-trees could be used to build tries in linear time.
- So even if there were any errors, it was no longer necessary to infer that they must be fatal errors.
- But why ask each of the paper's potential n readers $(n=10$? $100 ? 1000$?) to duplicate my effort if the author could somehow reduce their burden?
- Decision: Conditional accept.

Outline

(1) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

Condition: make more understandable

- In its present form, even if the paper did contain errors, fixing them wasn't going to solve anything, as that would do nothing to clarify the paper.
- What was needed was to make it clearer why the paper was correct.
- My report offered one way of doing this, not as something the author should follow however but merely as an existence proof that much greater clarity was possible.

Outline

(1) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

Example

- The string BANANAS has 7 symbols numbered 1 to 7 and 8 between-character positions numbered 0 to 7 : 0B1A2N3A4N5A6S7.
- At each between-character position i, denote the left-longest repetition so far (i.e. ignoring text yet to come) by] at i and a matching [at $j \leq i$.

0. []BANANAS $0 . .0$
1. B[]ANANAS $1 . .1$
2. BA[]NANAS $2 . .2$
3. BAN[]ANAS $3 . .3$
4. BAN[A]NAS $3 . .4 \quad 4$ repetitions: ε, A, AN, ANA
5. BAN[AN]AS 3..5 \# occurrences: 8, 3, 2, 2
6. BAN[ANA]S 3..6 Left longest repetitions are one character 7. BANANAS[] 7..7 short of being a form of suffix identifier.
"[" advances monotonically in this example.

Basic algorithm

while picture is ...[w]a... do if wa is a repetition Move "]" else Move "[" (and "]" in context "[]")

Theorem

"[" always advances monotonically.
Hence $O(n)$ running time assuming $O(1)$ time steps.

Data structure

Realize the movements of [and] as movements along eges of a graph G constructed as we go along.

Vertices denote the left-longest repetitions.
They are created as soon as the repetition is first bracketed.
The initial vertex is ε, being considered a repetition from the very beginning.

Edges:

- Link w to wa via an edge labeled a. Notation: $w: a=w a$. These edges support] movement.
- Link wa to its longest proper suffix u in G. Notation: $S(w)=u$. These edges support [movement.

Data structure (cont.)

[]BANANAS
B[]ANANAS
BA[]NANAS
BAN[IANAS
BAN[A]NAS
BAN[AN]AS
BAN[ANA]S
BANAN[A]S BANANA[]S BANANAS[]

Algorithm
Start at ε : []BANANAS
While picture is ...[w]a...
if wa is a repetition follow the a edge, creating wa if necessary else if the dotted (S) edge exists follow it
else at ε : move [] (i.e. get next character)

Outline

(1) Background

- Weiner's starting point: Knuth's 1970 conjecture
- SWAT'73 paper
- Journal submission 1973
(2) Referee's Report
- Conditional accept
- Condition: make more understandable
(3) Existence proof of possibility
- Algorithm to find all left-longest repetitions so far
- Suffix splitting as the only complication

Suffix splitting: BANANASNA

BANANAS[]NA

Suffix splitting: Create node N

BANANAS[]NA BANANAS[N]A

Suffix splitting: Split AN $\rightarrow \varepsilon$

BANANAS[]NA BANANAS[N]A

Suffix splitting: Create node NA

BANANAS[]NA BANANAS[N]A BANANAS[NA]

Suffix splitting: Split ANA \rightarrow A

BANANAS[]NA BANANAS[N]A BANANAS[NA]

Suffix splitting: METHOD (outline)

Goal: Split $x \longrightarrow w a \longrightarrow u$
where u is the longest proper suffix of wa in G (always exists) and x is the word in G if any such that $S(x)=u$ before wa enters G and $S(x)=$ wa afterwards (x need not exist).

Theorem

If such an x exists it is unique, and is determined by the symbol c in $w a=v c u$.

Hence every suffix link $x \rightarrow u$ can be equipped with an inverse link $u \rightarrow x$ determined by u and the c such that $x=v^{\prime} c u$. This c can in turn be determined as $c=A[\operatorname{loc}(w a)-l e n(u)]$ since $S(x)=$ wa. Method:

- Find u using w and a.
- Find x using u and c as in the theorem.

Suffix splitting: Finding u and x

We must find $u=S(w a)$ at the creation of each new node wa, whether or not x exists. Do so as follows.

Before linking w to $w a$, set $t=w$ and then repeatedly set $t=S(t)$ (i.e. follow dotted suffix links) until either ta exists or $t=\varepsilon$. Take u to be ta if it exists, else ε.

This is still $O(n)$ because the next $w=S(w)$ skips over all the steps taken by $t=S(w)$ in a single step.

To find x we furnish every suffix edge $x \rightarrow u$ of the graph with its inverse $u \rightarrow x$. Although there may be multiple x satisfying $S(x)=u$, only one can "factor through" wa. (Connection with Weiner's algorithm: these are the edges of a compacted suffix trie.)

To find $x=v^{\prime} c u$, determine c as $A[l o c(w a)-\operatorname{len}(u)]$.

All fields of a vertex of G

We can now list all 6 fields of a vertex of G.

- loc(w) location of 1st occurrence of w
- len (w) length of w
- $S(w)$ longest proper suffix of w (as a vertex in G)

The above three fields are fixed at the time w is created as $w=v: b$. $\operatorname{loc}(w)=v . b, \operatorname{len}(w)=\operatorname{len}(v)+1$, and $S(w)=u(t: v b$ or varepsilon $)$.

The remaining 3 fields are Σ-indexed sparse arrays.
For each symbol $a \in \Sigma$:

- w.a Location of the first occurrence of wa (right end). Set at the later of creating w or 1st occurrence of wa (next slide).
- w:a Vertex of G denoting wa.

Set when wa is created (see next slide).

- *a:w Inverse suffix link.

Set when the corresponding suffix link is created (always paired).

Detecting repetitions

In the context ...[w]a..., wa is a repetition when w.a is defined, namely as the location of the first occurrence of wa.
$w . a$ is stored at node w in G either at creation of w or later.

- At creation: When w is created in G, record for each symbol a the location of the first occurrence of wa in node a. Notation: w.a. To do this, either copy all x.a to w. a when x exists, otherwise set $w . a$ to $\operatorname{loc}(w)+1$ where a is the letter at that location.
- Later: Whenever the repetition test for ...[w]a... fails, set w.a to be the current position in the string.

Main theorem:

Theorem

For all $w \in G$, if wa occurs in the string then $w . a=$ the location of the first occurrence of w.

Application: pattern matching

To find patterns in a string A.
Dumb method (how my referee's report envisaged doing this):

- Apply the algorithm to A.
- For each pattern P continue the algorithm with input $\$ P$, where $\$$ is a new symbol not in Σ. This produces a graph $G_{A \$ P}$ as though having processed $A \$ P$ in one pass.
- When done with each P restore $G_{A \$ P}$ to G_{A} (routine).

Relation to Weiner's algorithm

Take VP* to be my variant reversed so both scan right to left.
Essential common feature of PW and VP*: both find prefix identifiers of position.

The edges of PW's compacted suffix trie (i.e. suffix tree) are VP*'s *a; w edges.

Corollaries

Corollary 1: Instead of the above dumb method, VP can do pattern matching without modifying G, namely by scanning the patterns right to left and navigating in G via the inverse suffix links $* a: w$ instead of the w : a links.

My report did not make that connection with PW and hence overlooked that possibility.

Corollary 2: VP and PW differ only in implementation details. (This was not clear to me until this morning.)

