Shorter proof of universality of Chu spaces

Vaughan Pratt

July 15, 1994

The categories \mathbf{Str}_{κ} of κ -ary relational structures and their homomorphisms where κ is any ordinal are universal categories for mathematics to the extent that they realize¹ many familiar categories: groups, lattices, and Boolean algebras when $\kappa = 3$, rings, fields, and categories when $\kappa = 4$, etc.

Elsewhere [LNCS 711, 153-4] we proved that the self-dual category $\mathbf{Chu}_{2^{\kappa}}$ of Chu spaces over the power set of $\kappa = \{0, 1, \dots, \kappa - 1\}$ realizes \mathbf{Str}_{κ} . Here we streamline that argument.

A κ -ary relational structure (A, ρ) consists of a set A, the carrier, and a κ -ary relation $\rho \subseteq A^{\kappa} = (\kappa \to A)$. A homomorphism $f : (A, \rho) \to (B, \sigma)$ of such structures is a function $f : A \to B$ such that $t \in \rho$ implies $f \circ t \in \sigma$. These structures and homomorphisms, with the usual composition, form the category \mathbf{Str}_{κ} .

A κ -ruple (for "relational tuple") over A is a binary relation R from κ to A, which we shall regard interchangeably as a set $R \subseteq \kappa \times A$ and a function $r : A \to 2^{\kappa}$ as appropriate, related by $r(a) = \{i \mid (i, a) \in R\}, R = \{(i, a) \mid i \in r(a)\}$. We partially order κ -ruples over A by inclusion, for this purpose representing them as subsets of $\kappa \times A$; we call a superset an *extension*. As a function from κ to A, a κ -tuple over A can be understood as a special case of a κ -ruple over A.

Fact 1. Distinct κ -tuples are incomparable under inclusion.

The composition $r \circ t$ of a ruple r with a tuple t assumes the representations $r: A \to 2^{\kappa}, t: \kappa \to A$. As $r \circ t: \kappa \to 2^{\kappa}$, this composite is itself a binary relation on κ ; $I \leq r \circ t$ ($r \circ t$ is reflexive) just when r extends t. For $r: B \to 2^{\kappa}$, $f: A \to B, t: \kappa \to A$ (the situation treated below), $r \circ f \circ t$ is usefully ambiguous as either the composition of the ruple $f \circ t$ over A with the tuple r over A, or the composition of the ruple t over B with the tuple $r \circ f$.

Define $\hat{\rho}$ as the set $\{r : A \to 2^{\kappa} \mid \exists t \in \rho : I \leq r \circ t\}$ of extensions of tuples of ρ , and $\overline{\hat{\rho}} = A^{\kappa} - \hat{\rho}$ as its complement. We realize (A, ρ) in **Chu**_{2^{\karked}} as the Chu space $(\overline{\hat{\rho}}, A)$, namely the normal Chu space with point set A whose states are those $r : A \to 2^{\kappa}$ extending no tuple of ρ .

Theorem 1 A function $f : A \to B$ is a Chu transform $f : (\overline{\hat{\rho}}, A) \to (\overline{\hat{\sigma}}, B)$ if

¹A concrete category D realizes a concrete category C when there exists a functor $F: C \to D$ that is full and faithful and which commutes with the respective underlying-set functors of C and D.

and only if it is a homomorphism $f: (A, \rho) \to (B, \sigma)$.

Proof: It suffices to show $\forall r: B \rightarrow 2^{\kappa} [r \circ f \in \hat{\rho} \Rightarrow r \in \hat{\sigma}]$ iff $\forall t: \kappa \rightarrow A[t \in \rho \Rightarrow f \circ t \in \sigma]$.

(If) Given $r: B \to 2^{\kappa}$, if $r \circ f \in \hat{\rho}$ then there must exist $t \in \rho$ such that $I \leq r \circ f \circ t$. But then $f \circ t \in \sigma$ (f is a homomorphism), whence $r \in \hat{\sigma}$.

(Only if) Given $t \in \rho$, take $r : B \to 2^{\kappa}$ to be $f \circ t$. Then $I \leq r \circ f \circ t$ (since $r(f(t_i)) = \{j \mid f(t_i) = f(t_j)\}$), so $r \circ f \in \hat{\rho}$ (definition of $\hat{\rho}$), whence $r \in \hat{\sigma}$ (f is a Chu transform). But then there must exist some $t' : \kappa \to B$ such that $t' \in \sigma$ and $I \leq r \circ t'$. Hence r extends t'. But by Fact 1, t' = r, so $f \circ t = t'$, whence $f \circ t \in \sigma$.