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Abstract

Time can be understood as dual to information in extant models of
both sequential and concurrent computation. The basis for this duality
is phase space, coordinatized by time and information, whose axes are
oriented respectively horizontally and vertically. We fit various basic phe-
nomena of computation, and of behavior in general, to the phase space
perspective. The extant two-dimensional logics of sequential behavior, the
van Glabbeek map of branching time and true concurrency, event-state
duality and schedule-automaton duality, and Chu spaces, all fit the phase
space perspective well, in every case confirming our choice of orientation.

1 Introduction

Our recent research has emphasized a basic duality between time and informa-
tion in concurrent computation. In this paper we return to our earlier work
on sequential computation and point out that a very similar duality is present
there also. Our main goal here will be to compare concurrent and sequential
computation in terms of this duality.

First, we have previously analyzed a number of extant logics of sequential
behavior under the general heading of two-dimensional logic [Pra90, Pra94c].
Here we fit the individual models of such logics to the information-time phase
space framework of this paper.

Second, R. van Glabbeek has developed a comprehensive classification of
the basic models of concurrent behavior, which we here dub the “van Glabbeek
map.” The key feature of this classification is that it plots degrees of con-
creteness along two roughly independent axes. One axis is associated with the
passage from linear time to branching time, which adds to the basic model infor-
mation about the timing of decisions, whether a given decision is made earlier
or later relative to the events being decided between. Here we fit the whole van
Glabbeek classification to the phase space framework.
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Third, sequential nonbranching computation can be understand as the alter-
nation of events and states, like the alternation of moves of a game. We fit this
simplistic linear notion of behavior to our phase-space framework and obtain
the basic notions of automaton and schedule, as respectively the imperative and
declarative views of programs, by projection of phase space trajectories onto
respectively the information and time axes.

Fourth, the passage to concurrent and branching computation can be under-
stood as the relaxing of the linear structure on each of the axes of phase space
to something weaker. (In fact all structure can be dropped, and recovered later
from the phase space itself.) In this way we arrive at the notion of Chu space
as a basic notion of behavior. Chu spaces are mathematically universal in that
they realize all relational structures, from which we infer that there is unlikely
to be a more general basic notion of behavior.

2 Background

This section reviews some basic extant models of behavior. This will provide
some of the necessary background, and hopefully will also serve to orient the
reader’s perspective to align it with ours.

2.1 Sequential Behavior

Two basic widely used models of sequential behavior are binary relations and
formal languages.

The binary relation model begins with a set W of states or possible worlds
and associates with each program or activity α a set a of pairs (u, v) of states.
These pairs denote the possible state transitions of the program: the pair (u, v)
indicates that whenever the program is started in state u, the possibility exists,
at least when it starts, that it will eventually terminate, and that on that
termination it will be in state v.

The total interpretation is that for every u such that there exists at least one
v for which (u, v) ∈ a, the program is guaranteed to eventually reach some state
v′ such that (u, v′) ∈ a. This is the natural interpretation when identifying the
pairs with the possible computations or runs of α.

The more natural interpretation however is the partial one, whereby there
also exists the possibility of failure to reach any final state. In this interpretation
every pair (u, v) reflects a run (defined somehow, but other than as merely a
pair of states) which starts in state u and terminates in state v. Here more
than one run may give rise to a given pair, and, of greater concern, some runs
may lack a final state (or conceivably a starting state depending on the exact
definition of “run”) and hence give rise to no pair.

There is no natural encoding of this possibility in a binary relation on or-
dinary states, but it may be accommodated by adding a fictitious “bottom”
state ⊥. The presence of the pair (u,⊥) in a indicates the possibility that when
started in state u, program a will fail to reach a final state. A further distinction
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may be drawn here between two types of failure to terminate, namely blocking
and divergence. One convenient basis for this distinction is whether the run is
finite or infinite. When a nonterminating run is finite it is said to block, and
when it is infinite it is said to diverge. This further distinction may be repre-
sented in a binary relation by replacing the single state ⊥ with two states β
and δ indicating a blocked run and a diverging run respectively. Then (u, β)
and (u, δ) indicate the respective possibilities of blocking and diverging when
started in state u. when started in state u. A natural restriction is that (β, v) is
only permitted as a transition when v = β, and similarly (δ, v) requires v = δ;
this ensures that if a fails to terminate then so does a; b, and via the same size
of run.

The formal language model begins with a set or alphabet Act (sometimes Σ)
of actions, and interprets each program as a set of strings or traces u ∈ Act∗.
Each such trace denotes one of the possible sequences of actions the program
may perform.

Corresponding to the divergent state of the partial interpretation of binary
relations, the possibility of infinite traces may be permitted, achieved by ex-
tending Act∗ to Act∞ defined as Act∗ ∪Actω. Just as a finite string of length n
may be defined as a function from the initial segment 0, 1, . . . , n− 1 of the nat-
ural numbers to Act, collectively forming Act∗, so may an infinite string may be
defined as a function from the set ω of all natural numbers to Act, collectively
forming Actω (following the usual convention by which AB denotes the set of
all functions from B to A).

2.2 Mutex Concurrency

The advantage of the formal language model over the binary relation model
is that it admits various operations of parallel composition, none of which are
meaningfully definable for binary relations. Robin Milner has with tongue in
cheek referred to concurrency defined in this inherently sequential setting as
“false concurrency.” A less pejorative and more informative term would be
mutex (for mutual exclusion) concurrency, expressing the idea that when a and
b are atomic, their concurrent execution is no more than ab+ba, which excludes
their actual concurrent execution.

The basic such operation is independent or asynchronous parallel composi-
tion, realized by the shuffle or interleaving operation a‖b. We define a‖b to be
the set of all traces u1v1 . . . unvn, n ≥ 0, for which u1 . . . un ∈ a and v1 . . . vn ∈ b
and ui, vi ∈ Act∗. That is, the ui’s and vi’s are not actions but rather possibly
empty finite traces of actions (otherwise this would be the perfect shuffle, with
a going first). We imagine a scheduler first letting a run for a while (not just
one step), then b, these two turns being called a ply in game parlance. The
scheduler grants a total of n plies.

Whereas asynchronous parallel composition minimizes interaction, synchronous
parallel composition maximizes it by defining a‖b to be simply the intersection
a ∩ b, in the case that the programs have a common action set Act. This is the
appropriate operation for the case when the two programs are run in lock step
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performing the same actions.
Typical concurrent execution lies somewhere in between these two extremes.

A natural blend of the two operations is obtained when a and b have their own
action sets, respectively Acta and Actb. In this case a‖b behaves synchronously
on the common actions Acta ∩Actb and asynchronously on the rest. Formally,
a‖b consists of those traces u for which u ∩Act∗a ∈ a and u ∩Act∗b ∈ b.

2.3 True Concurrent Behavior

It is natural to regard sequential behavior as the special case of concurrent
behavior in which exactly one agent is behaving. This has proved to be harder
to formalize than it sounds. Our diagnosis is the the prior lack of appreciation
for the independent roles of time and information in this generalization.

The crucial issue for both time and information is locality of each. In mod-
elling a computation as the set of its possible traces, information resides in the
choice of the trace while time is indicated by the position within the trace. In
this model there is no connection between runs, whence we say that the informa-
tion is global; creating connections localizes choice information by associating
it with a particular point in a run. Dually there is complete connection within
runs (i.e. they are linearly ordered), making the associated time global; relaxing
linear orders to partial localizes time by dropping the premise that all pairs of
events have a well-defined temporal order.

We note in passing that we may refine this model by equipping the set of
traces with a real-valued probability measure, and by suitably timestamping
the events of each run with a real-valued time relative to the start of the trace.
This particular type of refinement does not change the global nature of either
the time or the information.

The oldest model of concurrency, Petri nets [Pet62], made both time and in-
formation local, at a time when there was very little modeling of even sequential
behavior in computer science.

Setting Petri nets to one side for the moment, the progression from sequential
to concurrent behavior began with the basic step of replacing binary relations,
as sets of state transitions (as used by Park and Hitchcock [HD73], DeBakker
and deRoever [dBdR72], Pratt [Pra76], etc.), by processes as sets of traces
[HL74]. This refinement permits the definition of concurrent composition as the
interleaving or shuffle of traces. However this model is global as noted above
with respect to both information and time.

The passage from sequential to concurrent behavior appears to have set off
warning bells for some about the unsuitability of the extant sequential models
for concurrent behavior. As is clear today there are two basic limitations of sets
of traces. In the beginning this was much less clear, and each objector tended
to focus on just one of these limitations. We now describe each of these types
of objection.
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2.4 Branching Time as Local Information

Milner [Mil80] was the first to spell out a notion of local information, which
soon became known as branching time to distinguish it from the linear time of
the trace model. Milner proposed synchronization trees as a model of behavior
more concrete than sets of traces in that it fails to validate ab+ac = a(b+c). A
rigid synchronization tree is a rooted directed (away from the root) unoriented
tree whose edges are labeled with actions from Act. Omitting “rigid” connotes
a partial labeling, with the unlabeled edges understood equivalently as labeled
with a “silent action” τ 6∈ Act. Whereas ab+ac denotes a 4-edge tree branching
at the root, i.e. having two a-labeled edges leaving the root, a(b + c) denotes a
3-edge tree branching only after a.

While the passage from linear to branching time can be understood as gener-
alizing a single linear order to a tree by permitting it to branch, this view misses
the point that a general behavior is not a single trace but a set of traces. The
passage is better understood as generalizing a set of linear orders to a synchro-
nization tree by permitting similarly labeled initial segments to be identified.
Such identifications localize choice information to the branch points of the re-
sulting trees. With disconnected traces no information can be communicated
about the timing of a choice: one may choose to understand all choices as being
made at the beginning of time, or dually at the last possible moment, but no
natural encoding of either a mixture of these or of intermediate timings has been
proposed for sets of traces by themselves. The possibility of identifying initial
segments of traces creates a degree of freedom that can be used to indicate when
during the behavior a particular choice was made. Connecting only at the start
means the choice is made at the start, connecting along some initial segment
means that the choice is made at the end of that segment.

2.5 True Concurrency as Local Time

The dual of local information is local time, popularly called true concurrency in
Europe starting around 1987. Local time was addressed early on by Mazurkiewicz
[Maz77], who realized it in the form of a symmetric binary relation on the al-
phabet Act indicating causal independence of occurrences of those actions. This
relation induces a congruence (with respect to Kleene’s regular operations plus
shuffle) on Act∗, and more generally on Act∞, whereby two traces are con-
gruent when they may be obtained from each other by interchanging adjacent
occurrences of independent actions. Mazurkiewicz called the quotient of Act∗

by this congruence a partial monoid; here partiality is understood to relax the
ordering of traces, now understood to be partial in contrast to Act∗’s linear
traces, rather than restricting the domain of concatenation as the term “partial
monoid” might lead one to expect.

Mazurkiewicz traces, as the elements of such a partial monoid have come
to be called, associate the independence information with the action alphabet
Act. A stronger notion of true concurrency associates it instead with the action
occurrences or events of a particular behavior. Viewing traces as linearly ordered
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sets of events in which each event is labeled with the action of which it is an
occurrence, one relaxes this linear order to a partial order to arrive at what has
been called a partial word [Gra81] and a partially ordered multiset [Pra82] or
pomset, the term now used.

In a pomset with two occurrences of action a, an occurrence of b may be
comparable with one of the a’s and incomparable with the other, not possible
with Mazurkiewicz traces as originally formulated (Mazurkiewicz subsequently
extended his notion to multitraces to achieve this effect). If for example a is
the action of writing a 1 into a memory and b that of reading 1, then a given
occurrence of b should be comparable with the responsible occurrence of a, but
not with subsequent occurrences of a, which having no causal relationship to
that occurrence of b can be performed independently of it. This distinction must
be expressible in order to distinguish a simple memory whose reads and writes
are interleaved, with the read returning the most recently written value, from a
more sophisticated one that permits simultaneous reading and writing with the
expectation that the read will return a previously written value.

3 Two-Dimensional Logic

We recently [Pra94c] defined a general notion of two-dimensional logic, into
which various logics of action could be fitted. The significance of two-dimensional
logics for the present paper is that their disjunction and conjunction operations
are the natural operations of accumulation for respectively information and
time. We return to this point after a walk around the domain of two-dimensional
logics to familiarize ourselves with the scope of such logics.

The following picture of the main two-dimensional logics should be under-
stood as a cube with appendages.
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Figure 1. Roadmap of 2D Logics

Starting from the top of this diagram, a semilattice is a set A with an asso-
ciative commutative idempotent binary operation a + b; SLat denotes the class
thereof. We write a ≤ b for a+ b = b, a binary relation that can be shown to be
partially order A. Semilattices form the models of a basic logic of disjunction.

A monoid is a set A with an associative binary operation ab and a constant
1 as that operation’s unit or neutral element, a1 = a = 1a; the associated class
is Mon. We shall use general monoids to model noncommutative conjunction.

A set with both these operations and satisfying a two-sided distributivity
principle a(b + c) = ab + ac and (a + b)c = ac + bc is called an idempotent
semiring, forming the class ISR. This combines conjunction and disjunction in
the one logic.

The three axes of the cube having ISR at its apex correspond to the following
constraints on ISR’s. The subclass ISRT of ISR consists of those ISR’s in which
for every element a there exists a least reflexive (1 ≤ a) transitive (aa ≤ a)
element a∗ such that a ≤ a∗. Logics with such an operation cater to iterated
conjunction or repetition.

The subclass RES of residuated ISR’s consists of those ISR’s in which for
all elements a, b there exists a greatest element a → b such that a(a → b) ≤ b,
and dually a greatest element b ← a such that b(b ← a) ≤ a; a → b is called
the right residual of b by a, while b ← a is dually called the left residual of b
by a. Such logics add implication to the language. These are the Ajdukiewicz
monoids [Ajd37], brought to greater prominence two decades later by Lambek
[Lam58]. The term residuation was coined by Ward and Dilworth [WD39]. That
the binary relations on a set formed a residuated ISR was first observed by De
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Morgan as his “Theorem K” [DM60].
The subclass BSR of Boolean semirings has the property that the semilat-

tice structure forms a Boolean algebra; for this it suffices for an antimonotone
operation of negation ¬a to exist and satisfy ¬¬a = a. This yields classical
logic with a second conjunction ¬(¬a + ¬b) distinct (in general) from the main
conjunction ab; pure Boolean logic obtains when these operations coincide.

The remaining classes ACT, BSRT, and RBM combine these conditions
pairwise, and BACT imposes all three conditions, see [Pra90, Pra94c] for de-
tails.

The class QNT of quantales consists of ISR’s for which the semilattice is
complete (has all suprema or joins Σiai including the empty supremum 0 and
infinite suprema). Residuals and transitive closures always exist in quantales,
being expressible as respectively infinite infima and infinite suprema.

The Jonsson-Tarski class RA of relation algebras is obtained from RBM
by identifying the left and right residuals of the Boolean complement 0’ of 1 by
any given value a: a→ 0’ = 0’← a. This class together with transitive closure,
RAT, was the subject of Judith Ng’s thesis [NT77, Ng84].

There are two basic models of two-dimensional logic that pervade computer
science, formal languages as sets of strings, and binary relations as sets of pairs.
For both, a + b is union. For languages, ab is concatenation, while for binary
relations it is composition or relative product. For a fixed set X, the algebra
of all binary relations on X, i.e. all subsets of X2, under a + b and ab, belongs
to both QNT and RAT. Likewise so does the algebra of all languages on X
treated as an alphabet, i.e. all subsets of the set X∗ of all finite strings on X.

Sometimes one does not want all languages or all binary relations but only
certain ones, which collectively then may not form an RAT or a quantale but
may nevertheless belong to one of the larger classes in the above classification.
In addition other structures closed under operations a + b and ab suitably in-
terpreted may satisfy enough conditions to locate them collectively in one or
another of these classes.

Now let us turn to the connection with information and time. Our intu-
itions as to how each of these accumulate are nicely captured by the two basic
operations of two-dimensional logic.

We understand information from an information theoretic perspective. Here
information is measured not by number of facts but by variety of choices. When
there is only one option no information can be conveyed by indicating that it
is the option. Two options permit one bit, four two bits, etc. The operation
a+b is taken to denote accumulation of choices. The order in which two choices
are presented does not matter, expressed by the commutativity of a + b. Being
presented with the same choice twice does not increase our options, expressed
by idempotence a + a = a.

We think of ab as the temporal conjunction a and then b, as in “open the
door and then walk through it.” This operation accumulates not facts but
rather events. Like a + b it is associative. However it is not commutative,
witness walking through the door and then opening it. Nor is it idempotent,
witness the action of paying a dollar, which when repeated becomes the action
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of paying two dollars. This in contrast to factual conjunction, where two facts
may be learned in either order (commutativity), and having learned a fact one
learns nothing new by learning it again (idempotence).

An ordered monoid in ISR may be understood as a monoidal category, and
as such, as a one-object 2-category. A 2-category has two compositions, conven-
tionally called horizontal (composing the 1-cells) and vertical (composing the
2-cells). These compositions correspond to respectively the monoid conjunction
and the semilattice disjunction. 2-cells are then naturally drawn with the orien-
tation as typified by the following diagram illustrating the interchange law for
2-categories.

Logical
Implication

INFOR-
MATION •

�
�

�
�-

R

⇑ aS

⇑ b

T

N•
�

�
�

�
�-

U

⇑ cV

⇑ d

W

N•
�

(Vertical
Composition)

6

-
TIME

(Horizontal Composition)

Figure 2. 2D Logic

This is the first of what will be four situations all fitting the same basic
information-time phase diagram. In all four cases the conventions that have
emerged favor orienting information vertically and time horizontally.

4 The van Glabbeek Map

In the previous section the individual logics were two-dimensional, forming a
landscape that was not itself two-dimensional. We pass now to the landscape
of concurrency models studied in the thesis of our colleague R. van Glabbeek.
Here the landscape itself is a two-dimensional logic. Van Glabbeek’s original
landscape, which he chose to orient as here, contained some 36 models of con-
currency; here we have cut it down for simplicity to an incompletely filled 3× 3
array of a mere half dozen models.
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Figure 3. A Van Glabbeek Map.

In the previous section the two axes measured respectively increasing number
of options (no choices at the bottom, many choices at the top) and increasing
time (early on the left, late on the right). Here the axes measure expressiveness.
The information axis measures the precision with which the timing of a branch
may be specified. At the bottom no information is conveyed as to when a
decision is made. At the synchronization tree level ab + ac can be distinguished
from a(b + c), which we associate with respectively early and late commitment
to the choice of b or c. At neither of these levels can it be specified when the
information represented by these choices is subsequently forgotten; it would
seem that all choices are remembered forever. At the automaton level we can
distinguish between ac+ bc and (a+ b)c as respectively long and short memory.
The former remembers the choice longer until after c, while the latter forgets it
before c, a distinction drawn by conventional (finite) state automata as well as
by Boudol’s flow event structures [Bou90].

The vertical axis therefore indicates the passage from global choice, where
choice commitment and forgetting has no specific location in the computation,
to local choice, that is, localized to specific points in the computation.

The time axis measures the precision with which we may distinguish the
truly concurrent execution a‖b of a and b from the “false concurrency” or mu-
tual exclusion ab+ ba. Traces fail to draw this distinction, for which Grabowski
[Gra81] and Pratt [Pra82] introduced pomsets, as labeled partial orders gener-
alizing the notion of trace as a labeled linear order. Indicating time by a single
global clock leads naturally to the trace model, in which all pairs of events have
a well-defined order. When time can only be measured by local clocks, this
linear order can no longer be guaranteed and it becomes natural to understand
time as only partially ordering events.

The horizontal axis therefore indicates the passage from global time to local
time.
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Petri nets achieve more locality in these two coordinates than any com-
peting model. They accomplish this by permitting in-degree and out-degree
greater than one at both places (state-holders) and transitions (event-holders).
The branching, both in and out, is disjunctive at places and conjunctive at
transitions. Branching at places increases the expressiveness of Petri nets in the
information domain while branching at transitions increases expressiveness in
the time domain.

An ordinary sequential automaton may be understood as a Petri net with no
branching at transitions, either in or out, only at places. In the “token game”
standardly used to equip Petri nets with a semantics, an automaton can neither
create nor destroy tokens. Sequential computation can then be understood as
the trajectory of a single token through the net.

A pomset process, as a set of pomsets analogous to a trace process as a set
of traces, may be understood as a Petri net with no branching at places.

5 Linear Automata and Schedules

We turn now to a point of view we developed recently [Pra92] as a simple setting
in which time and information were dual. There we gave up all branching in both
the time and information domains to reduce this duality to its simplest form.
The essence of this duality reduced to the self-duality of suitable categories of
chains, which we illustrated there with the category of finite chains with bottom
and their monotone functions; certain other categories of chains are also self-
dual.

Persisting with our two-dimensional phase space, we return to our original
understanding of the horizontal axis as indicating increasing time. We take the
vertical axis however to be decreasing options, whence we associate upwards
motion with learning as the process of narrowing the possible alternatives. For
simplicity we suppose that both axes order their respective domains linearly.

We now view computation, and more generally any behavior, as alternately
changing state and passing time, like a chess player making a move and then
awaiting her opponent’s move. Thus behavior may be depicted as a monotoni-
cally increasing trajectory as follows.
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Figure 4. A Linear Phase Space.

The horizontal moves are states, in which time passes while information
remains fixed. We use u− z to denote states, which we suppose are drawn from
a set X of states.

The vertical moves are events, which holds time fixed (events are ephemeral)
while changing information. We use a−e to denote events, drawn from an event
set A.

A trajectory in phase space constitutes a neutral view of behavior. We take
sides by projecting the trajectory onto one or the other axis. Projecting it
onto the information axis sends the states to points while preserving the spatial
extent of the events. The resulting graph can then be seen to be an automaton,
of the straightline kind associated with a completely nonbranching behavior.

Dually, projecting the trajectory onto the time axis sends events to points
and states to lines, recognizable as a schedule, again linearly ordered as with
the automaton.

Because the trajectory is simply a staircase, only the number of steps mat-
ters. Since this can be recovered from either the automaton or the schedule
(taking suitable care at the endpoints not to lose information), either one suf-
fices as our view of this admittedly very simple behavior.

We have represented the trajectory as a line, but it may equivalently be
understood as a partition of phase space into an upper and lower part, repre-
sentable by a function from phase space to {0, 1}. We may then recover the
trajectory as the common boundary of the two blocks of this partition of phase
space. This point of view leads naturally into the Chu space generalization of
linear computation. This generalization will retain the property that projection
onto either axis loses no information. That is, we can program general Chu
spaces with either schedules or automata with equal precision of specification.
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6 Chu Spaces

6.1 Concept

A Chu space is a structure of the kind considered in the previous section, less
the assumption of linearity for the two axes. Chu spaces are particularly simple
in that their axes are postulated with no particular structure, that is, they
are taken to be pure sets X of states (the vertical axis) and A of events (the
horizontal axis). In place of a trajectory of alternating states and events through
phase space, we associate with each pair (x, a) a value which may be interpreting
as either the truth of a in x (an information-theoretic view), or the time of a
relative to x (when in state x, how long ago did a happen?).

The simplest nontrivial Chu spaces have binary entries. A 1 at location (x, a)
may read as either that a is true in possible world x (the modal logic viewpoint),
or that in state x, a has already happened (the dynamic viewpoint). There is
no identifiable notion of “a happening during x,” in each state a either has or
has not happened.

1 1 1 1 1 1 1

1 0 1 1 1 1 1

1 1 1 0 0 1 1

1 0 0 1 1 1 1

0 1 0 0 0 1 1

0 0 0 0 0 0 0

X
State
Space

(Menu)

INFOR-
MATION

6

-
Event Space (Object) A

TIME

Figure 5. A Chu Space.

6.2 Example: Sets of Traces

It will be helpful to see how traditional formal languages as sets of strings fit in
here. To begin with, these Chu spaces are to formal languages as the real plane
is to the Mona Lisa: only the canvas is represented, the paint is omitted. For
languages this means that we regard an occurrence of a symbol in a string as a
point somewhere along the string, and the symbol of which it is an occurrence as
a mere label on that point indicating the “color” it has been painted, our palette
being the alphabet Σ. Our theory neglects these labels or colors and treats the
underlying geometry of the behavior of automata rather than the full notion
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of behavior corresponding to a finished work of art. In this respect it is just
like Hilbert space as it arises in quantum mechanics, which makes no attempt
to label either its dimensions or its points with anything concrete, this being
left to operators for extracting physical quantities from wavefunctions defined
as points of Hilbert space.

A formal language is then understood as just a set of anonymous finite
strings, the only feature of which that now matters is its length. The set A of
events is taken to be the set of all occurrences of symbols in strings, equivalently
the disjoint union of the strings, together with one additional point called ∞
(this point is added for the sake of a nice duality property of formal languages
that does not obtain in general for arbitrary Chu spaces). If two distinct strings
of the same language have the same length, they remain distinguished in A. In
particular if language L consists of two strings both of length three, e.g. abc
and aba, A will consist of seven points, namely the six occurrences of symbols
in L together with ∞.

We take the set X of states to be A, reflecting the above-mentioned pecu-
liarity of formal languages that they are self-dual. We define x |= a to be 1
(true) just when x and a are in the same string and x follows a (including the
case when x is a). Otherwise it is 0, the case when x and a come from different
strings, or from the same string but with x strictly preceding a, or when either
is ∞.

The underlying geometry of L can be recovered from this construction of
(X, A, |=) by defining an equivalence relation on A which makes two points
equivalent just when one precedes or equals the other. The strings are then the
equivalence classes, and ∞ is the element that is not related to any element,
even itself. The restriction of |= to a string linearly orders that string, allowing
us to reconstruct the position of each occurrence in its containing string. This
construction works even for languages with infinitely many strings, including
the duality property, which however does not hold in general in the presence of
infinitely long strings. This completes the account of how a language consisting
of finite strings can be represented as a Chu space.

6.3 Schedules and Automaton

We observed that in the linear case no information was lost in the projection of
a trajectory onto either axis. With suitable care in the definition of projection
we may accomplish the same for biextensional Chu spaces, namely those having
no repeated rows or columns, via a process we have previously described [GP93],
which we sketch briefly here.

We project onto the information axis to yield an automaton in two steps.
First close the rows of the Chu space under arbitrary union and intersection (OR
and AND of the rows as bit-vectors), by adding new rows as needed. Now draw
the poset of all resulting rows ordered by inclusion, and color the elements black
or white according to whether they were originally present or not. This poset
turns out to be a profinite distributive lattice, that is, a complete distributive
lattice (one having all meets and joins including the empty and infinite ones)
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whose maximal chains are nowhere dense: between any two distinct points of
the chain lie two distinct points with no other point between them. We recover
A as those elements of this lattice not the join of the lattice elements strictly
below them, X as the set of black points of the lattice, and x |= a as the
relation a ≤ x. The theorem [GP93] is that recovered space is isomorphic to
the originally projected space.

This construction works equally well when “row” and “column” are inter-
changed everywhere, dealing immediately with the case of projection onto the
time axis, yielding a schedule.

That these objects are recognizable automata and schedules respectively
(with loops and disjunctive confluences unfolded) can be appreciated from the
examples in [Gup93, GP93, Pra93b, Gup94, Pra94a].

6.4 Universality of Chu Spaces

The categories Strκ of κ-ary relational structures and their homomorphisms
where κ is any ordinal are universal categories for mathematics to the extent
that they realize many familiar categories: groups, lattices, and Boolean algebras
when κ = 3, rings, fields, and categories when κ = 4, etc. We say that a concrete
category D realizes a concrete category C when there exists a functor F : C → D
that is full and faithful and which commutes with the respective underlying-set
functors of C and D.

Elsewhere [Pra93b, pp.153-4] we proved that the self-dual category Chu2κ

of Chu spaces over the power set of κ = {0, 1, . . . , κ − 1} realizes Strκ. Re-
lational structures being universal, this makes Chu spaces at least as univer-
sal. The embedding being “sparse,” there are many other Chu spaces besides
those representing relational structures; in particular those Chu spaces dual to
some relational structure may prove as useful as that structure itself. We have
more recently streamlined our original argument, and it is presently available
by anonymous ftp as /pub/uni.tex.Z from boole.stanford.edu.

When a model of behavior at the same time forms a universal category for
mathematics, it is reasonable to infer that a more general model is not possible.
The one flaw in this argument is in the amount of structure preserved by the
functor doing the modeling. For the functor to destroy essential structure con-
stitutes an “incompleteness” in the universality of the model, in turn weakening
the claim to being a universal model of computation. This situation could be
resolved either way: Chu spaces could turn out to capture all the structure that
matters, or the category of Chu spaces over K as a whole may turn out to lack
essential structure that can be recovered only by giving up the appealing self-
duality of the category, or its completeness or cocompleteness, etc. This issue
most certainly deserves to be pursued further.

6.5 Duality

The duality of time and information is reflected for Chu spaces in a variety of
ways. Mathematically it is represented by how Chu spaces transform. A Chu
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transform from (A,X, |=) to (A′, X ′, |=′) consists of a pair (f, g) of functions
f : A → A′, g : X ′ → X, satisfying g(x) |= a = x |= f(a) for all a ∈ A and
x ∈ X ′. These have the evident composition as (f, g)(f ′, g′) = (ff ′, g′g) with
evident identies and thus constitute the morphisms of the category Chu(Set, 2)
of Chu spaces over the two-element set 2 = {0, 1}. Chu spaces have an equally
evident duality obtained by transposition, which has the side effect of reversing
the direction of the Chu transforms. As noticed by Barr [Bar91] and further
developed by several authors [dP89, BG90, LS91, BGdP91, Pra93b], Chu spaces
provide a straightforward interpretation of full linear logic; the fact that Set
(as well as Pos and other even larger cartesian closed categories) is comonadic
(cotripleable) in Chu gives a straightforward interpretation of Girard’s “bang”
operation !A as the functor of that comonad.

For those who are put off by the transformational view of duality, it is
possible to appreciate the duality of Chu spaces in entirely noncategorical terms.

The interpretation of each row of a Chu space as one of the possible “paint-
ings” of the underlying set A of points of the space is in agreement with the
basic theme of this paper, that the vertical axis of the information-time phase
diagram denotes a disjunctive space, and thereby constitute a menu. The basic
feature of a menu is that its entries are selected one at a time.

Likewise each column of a Chu space as the “identifier” of a point makes the
horizontal axis conjunctive: this point is identified in this way and that point is
identified in that way and so on. The points of the space coexist, and thereby
constitute an object. The basic feature of an object is that its points coexist.

With regard to orientation, menus normally list their selections vertically,
while the elements of an object such as a Lisp list or an APL array are usually
listed horizontally.

A set (of points), as a set transforming by functions, is a pure body or object.
An antiset (of states), as a set transforming by antifunctions (the converse of
a function), is a pure mind or menu. A Chu space (A,X, |=), as a binary
relation |= from an antiset X to a set A, denotes a more or less productive
blend of mind and body. The extremal Chu spaces are (A, 2A,3) and (2X , X,∈),
denoting respectively the object or pure body A and the menu or pure mind X.
The productive interaction of mind and body obtains for the squarer spaces in
between.

The idea that a menu is mental is reinforced by the observation that the
category of sets and antifunctions is equivalent to the category of complete
atomic Boolean algebras and their complete homomorphisms. Boolean logic is
the purest possible logic in that it has the maximum possible equations for its
signature: adding just one more equation to the equational theory of Boolean
algebras leads to inconsistency in the sense that x = y can be proved for all
terms x and y.

Menus and objects are analogous to your moves and your opponent’s moves.
The former are your opportunities, one of which you must select from, the latter
are your risks, all of which must be guarded against since any one might happen.

Computer scientists are chided by some mathematicians for their preference
for logic over algebra. Yet this preference is more deeply rooted than generally
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appreciated. Algebra transforms via functions, which up to isomorphism serve
to identify (not all functions are injective) and adjoin (not all functions are
surjective). Dually, antifunctions serve respectively to copy and delete. But in
computer science the natural operations are copy and delete, which are easily
implemented. Identification of existing elements and adjoining new elements
are more sophisticated operations that each require some effort to implement.

This bias makes antifunctions, alias complete Boolean homomorphisms but
more naturally understood as copy and delete operations, the natural side of the
set-antiset duality for computer scientists to gravitate towards. Mathematicians
on the other hand are above mere copying and deleting of individual points and
prefer to operate on whole spaces. This moves them “up one exponential,” and
their concern is therefore not surprisingly with the dual space.

We close by mentioning two striking similarities with quantum mechanics.
First, the rows and columns of a Chu space interfere in essentially the same
way that conjugate variables of a quantum mechanical system interfere to limit
their joint precision according to Heisenberg’s inequality ∆p.∆q ≥ h̄ expressing
the celebrated uncertainty principle of quantum mechanics. Second, residua-
tion of Chu spaces, from which the associated state transition matrix (which
makes no reference to events) may be recovered, amounts to their inner product
when binary relations are understood as the points of a sort of “logician’s Hilbert
space.” Furthermore the progression from automata to Chu spaces recapitulates
the progression from Langrangian mechanics retaining even some of the essen-
tial properties of the Legendre transform by which this passage is standardly
accomplished. Some of these connections are developed in [Pra93a, Pra94b],
although the details of this second point of contact have only become clear to
us since then.

These connections get considerably closer to the essence of quantum mechan-
ics than does quantum logic [BvN36], which abstracts away from complementar-
ity to capture just the underlying projective geometry of quantum mechanics.
Quantum logic is to Chu spaces as nonconstructive methods of mathematics are
to constructive, e.g. deciding whether one can get somewhere vs. exhibiting a
route. Nonconstructivity confines itself to the “pure mind” extreme of mathe-
matics, in the neighborhood of Boolean algebras and antisets. The full gamut of
mathematics, from pure body to pure mind, can only be spanned constructively.

I believe that with due care computer science and physics can be made
to look more like each other, and like mathematics, than they presently ap-
pear. Such connections would then broaden the role of constructivity to make
it equally essential for all three subjects. For computer science at least, the least
surprised by this will be the humble programmer, who would have great diffi-
culty imagining that much good could come of purely nonconstructive software
that indicated the end but not the means.
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