

Token-controlled place refinement in hierarchical
Petri nets with application to active document

workflow

David G. Stork1 and Rob van Glabbeek2

1 Ricoh California Research Center
2882 Sand Hill Road Suite 115
Menlo Park, CA 94025-7022

stork@rii.ricoh.com

2 Department of Computer Science
Stanford University
Stanford, CA 94305

rvg@cs.stanford.edu

Abstract. We propose extensions to predicate/transition nets to allow
tokens to carry both data and control information, where such control can
refine special “refinable place nodes” in the net. These formal extensions
find use in active document workflow, in which documents themselves
specify portions of the overall processing within a workflow net. Our ap-
proach enables the workflow designer to specify which places of the target
predicate/transition net may be refined and it enables the document au-
thor to specify how these places will be refined (via attachment of a token-
generated “refinement net”). This apportionment of the overall task al-
lows the workflow designer to set general constraints within which the
document author can control the processing; it prevents conflicts between
them in foreseeable practical cases. Refinable places are augmented with
a permission structure specifying which document authors can refine that
place and which document tokens can execute a node’s refinement net.
Our refined nets have a hierarchical structure which can be represented
by bipartite trees.

1 Introduction

Document process workflow — such as the sequence of operations on documents
in a loan application, employment application, insurance claim, purchase requisi-
tion, online credit verification at purchase, processing of patient medical records,
distribution and sign-off on memos in an office, or editorial steps in the produc-
tion of a magazine — is an increasingly important application of concurrency
theory. While a number of ad-hoc high-level languages and commercial systems
such as COSA, Visual Workflow, Forte Conductor, Verve Workflow, iFlow, In-
Concert, and SAP R/3 Workflow have been developed to serve such applications
[16], there is nevertheless a need for a formal language that would allow workflow

properties to be derived, for example halting, reachability, invariances, deadlock,
and livelock. Further, if various high-level workflow languages can be expressed
in a common formal language, their functional differences and similarities can
then be exposed and analyzed in that formal language. Finally, a unifying formal
language would enable business partners to merge their workflows (for instance
through chaining or synchronization) even though they use different high-level
workflow languages [2].

Wil van der Aalst and his colleagues [1] have argued persuasively that Petri
nets (of which predicate/transition nets form a subclass) provide such a formal
foundation for document workflow for these and other reasons, specifically:

Formal semantics: Petri net formalism provides precise definitions and clear
semantics of both basic systems and those enhanced with attributes such as
color, time, and hierarchy.

Graphical nature: Petri nets have natural graphical representations and are
thus intuitive, easy to learn, and admit natural human-machine interfaces
supporting drag and drop, click and link, and other operations on icons
representing processes and documents.

Expressiveness: Basic Petri nets can support the functional primitives needed
to model existing document workflow systems.

Management systems can be modeled: Local states in Petri nets are rep-
resented explicitly and this allows for the modeling of implicit choices and
milestones.

Reasoning about properties: Petri-net-based process algebra rests on firm
mathematical foundations, and this facilitates reasoning about network prop-
erties.

Analysis: A wealth of formal Petri net analysis techniques have been developed
for proving properties (safety, invariance, deadlock, ...) and for calculating
performance measures (response times, waiting times, occupation rates, ...).

Vendor independence: Petri nets are a tool- and vendor-independent frame-
work and as such they will not vanish amidst inevitable turmoil in the
marketplace.

Rather than model or analyze existing workflows, in the below work we build
upon and extend Petri nets to provide a foundation for more powerful, enhanced
future workflow systems. While basic Petri nets are indeed attractive as a foun-
dation for current workflow systems, Petri net theory as it stands is incapable
of expressing properties we seek in such expanded workflows. In particular we
explore the properties of active document workflow and introduce extensions to
Petri net theory that enable them. In Section 2 we review the use of Petri nets
in traditional document workflow, sketch what functionality we want in active
document workflow, and mention analogies in other areas of computer science.
Then, in Section 3 we review several Petri net and related formalisms and show
that they are insufficient to express such active document workflow. In Section 4
we give the formal definition of token-controlled place refinement and we con-
clude in Section 5 with some future directions.

2 Document workflow

2.1 Traditional workflow

In traditional document workflow, a workflow designer specifies the processing
steps to be applied to a (passive) document. If the workflow is implemented as
a Petri net, then tasks or transitions (represented by squares) specify the opera-
tions to be performed, and local states or places (represented as circles) specify
the status. The causal flow through the Petri net is indicated by arrows or arcs
linking transitions to states and states to transitions (but never states to states
or transitions to transitions). Documents are often represented as structureless
tokens that flow through the network. States or conditions within the workflow
— such as “copier tray empty,” “return receipt sent,” and so forth — are repre-
sented by place nodes, and the status is indicated by the presence or absence of
structureless tokens.

Figure 1 shows a simple document workflow that might be used by a news-
paper publisher. Ignore for the moment the bold circle, and consider how such a
network implements a traditional workflow. Reporters in the field submit drafts
of articles to the newspaper editorial office either by fax or by email; if an article
is faxed, then the transmitted document is electronically scanned at the office to
create an electronic version. The submission is logged, and then the electronic
document is passed to an editor who makes corrections and passes the edited
document to the typesetter.

R
ep

or
te

r
1

re

ad
y

to
 s

ub
m

it

email

se
nd

fa

x
se

nd

fa
x

sc
an

fa

x

el
ec

tr
on

ic

te
xt

 a
va

il
ab

le

lo
g

su
bm

is
si

on ed
it

ar
ti

cl
e

co
m

pl
et

e

ty
pe

se
t/

pr
in

t

pr
oc

es
si

ng
 s

pe
ci

fi
ed

by

 a
ct

iv
e

do
cu

m
en

t

reporters in the field

newspaper editorial office

ar
ti

cl
es

 p
ri

nt
ed

R
ep

or
te

r
2

re

ad
y

to
 s

ub
m

it

email

re
ad

y
to

 s
en

d
re

ad
y

to
 s

en
d

pl
ac

e
fa

x
pl

ac
e

fa
x

fa
x

re
ce

iv
ed

Fig. 1. A workflow implemented as a Petri net specifies the tasks (squares) and states
(circles) linked by arcs. In this schematic example, two newspaper reporters can submit
articles to the editorial office either by fax or by email, ultimately leading to typeset
articles in the newspaper. In the current state, the draft of an article is being faxed by
Reporter 1 (but has not yet been scanned); Reporter 2 is ready to submit an article.
This state is shown by the dots (tokens), constituting a “marking.” (Because this
network has two input places, it differs slightly from workflow nets as defined in [1].)
Active document workflow exploits processing in the bold circle (see Sect. 2.2).

2.2 Active document workflow

Consider now how the full network in Fig. 1 (i.e., with the bold circle) can rep-
resent active document workflow in the case of a single article submitted by
Reporter 1. As before, Reporter 1 submits a draft article, but in this case the
reporter has added special control instructions to the document. After the sub-
mission has been logged in the workflow network, this special control information
is read and executed at the state node indicated by the bold circle. The control
information in the document must be in a machine-readable form, and could
specify tasks such as “translate paragraph 2 from French to English,” “convert
the entries in Table 5 from Japanese yen into U.S. dollars using last October’s
exchange rate,” “send a copy of this document to every person in the inter-
national news division,” or combinations of such operations. This processing is
invoked much like function or library calls to a set of resources made available
by the editorial office and known by the reporter. These are operations that for
any number of reasons can be done more easily and rapidly in the office than
in the field. For instance, the relevant extra information to be incorporated or
processing software may reside behind a firewall of the editorial office; resources
such as a translator or image processing systems may be available only within
the office; and so forth.

In other applications, active documents might contain the following control
information:

– “send a return receipt to the sender”
– “print this letter on corporate letterhead and mail it to the following address”
– “crop photograph 3 to be square”
– “encrypt this document text using PGP”
– “determine the name of the recipient’s corporate president and replace every

occurrence of ‘president’ in this document with his or her name”
– “change the text from one column to two column, except for tables and the

appendix”
– “route this document to the CFO and request an acknowledgment; if an ac-

knowledgment is received, pass the document to the next stage in the target
workflow, otherwise encrypt the document and then pass the document to
the next stage”

– “create a PDF duplicate of this document and send it to the internal docu-
ment archive”

We stress that this enhancement is not merely the token-controlled selection
of pre-existing operations anticipated by the workflow designer. Instead, it is the
putting together of operations in an arbitrarily large number of unanticipated
ways. Up to now, when workflow designers or users have specified such control
tasks they have done so in an ad-hoc or informal way. For instance, in our
example the reporter might have telephoned or sent a separate message to a
secretary at the editorial office specifying the alterations to be performed on the
submitted draft article.

The increase in electronic workflow — office intranets, networked office appli-
ances, business-to-business nets, the world wide web — presents an opportunity
for automating these processes and scaling them to large workflow systems. Our
research goal is thus to provide a formal foundation for workflow that includes
methods and protocols for automating the processing of active documents. Thus
in the newspaper example, active document workflow would automate the pro-
cessing and thereby ensure the editor and others receive a document in a form
the author wishes, rapidly and with a minimum of direct human intervention.
Standards for such active document workflow — specification in a formal lan-
guage, conventions for calls to libraries of resources, acknowledgement protocols,
and so on — would facilitate interorganizational active document workflows as
well.

In our proposed extension to traditional workflow, the workflow designer
specifies which places in the network can support token-specified processing, as
well as the resources available for such processing; the document author specifies
how those resources will be used for document processing. This apportionment
of the overall document processing and routing allows flexibility to different ap-
plications. In fixed or rigid applications, the workflow designer retains absolute
control and does not permit any document-controlled processes in the workflow
network. That is, there would be no nodes such as the bold circle in Fig. 1, just
as in traditional (passive) document workflow. In other applications, the work-
flow designer may permit some limited flexibility or freedom to the document
author, perhaps only after important workflow processes have been completed,
such as logging or archiving a copy of the original document. Moreover, the
workflow designer provides a set of resources (libraries) and this set implicitly
limits the operations that can be invoked by the document author. Finally, in
networks serving multiple or highly variable operations, the workflow network
can have multiple places where the author can specify processing, and provide
large libraries of basic operations that can be invoked by the active document.

An example of rigid workflow is the processing of issued traffic tickets and
fines at a police station or motor vehicle administration. Here the offender has
no freedom in specifying how the ticket and fine are to be processed. An example
in which modest freedom is granted to the document author is the newspaper
example above. Consider now applications in which the document author has
great freedom. Suppose a mobile professional has an office computer running
an active document processing system. In this case the author might compose
a business letter on a small portable device, send it electronically to his home
computer that supports active document workflow. The document itself might
specify that the letter is to be printed on corporate letterhead on special letter
stock, be bound with the latest version of the corporate financial sheets resi-
dent on the home machine, and mailed to a particular set of recipients. Active
document workflow of this type is particularly useful in low-bandwidth mobile
or other non-synchronous applications. We can imagine, too, an outsource doc-
ument processing service, where customers submit active documents specifying

typesetting, layout, translation, graphics processing, postal or electronic distri-
bution, archiving, and notary services.

Our approach deliberately blurs and reduces the distinction between data
and control, much as lambda expressions describe both functions and arguments
in the λ-calculus and in the high-level programming languages based on the
λ-calculus such as Lisp and Scheme [27, 8]. In an indirect and informal way,
file headers or extensions such as .jpg or .gif indicate that images are to be
processed or rendered in a particular way, again in analogy to what we propose
here. A stronger and richer analogy to our active document processing is the
TEX typesetting and document preparation system, where a single source file
contains a mixture of text and control functions that specify how that document
should be formatted and the text rendered [15]. None of these systems, however,
encompass the tasks of distribution and workflow more generally.

2.3 The roles of humans

Humans are essential components of any workflow system, of course, and we must
clarify their responsibilities during design and use of our enhanced systems. An
expert workflow designer constructs the workflow within the newspaper office,
specifying the processing steps, flow relation, the refinable places and the library
of functions that can be called by active documents. Similarly, this expert spec-
ifies the permission structures which will control which document authors can
refine a given place (see Sect. 2.4). Document authors — here, the reporters —
are non-experts and need only understand the functions available in the libraries.
In this newspaper example, yet other humans serve as resources specified in the
library. Thus the operation “translate from French to English” would send a
document to a bilingual expert who needs no expertise in document workflow or
other conventions.

2.4 Permission structures

Consider next a workflow network within a corporation having both a legal de-
partment and a finance department. Documents such as letters, faxes or emails
received by the corporation are classified and then routed through the corpora-
tion’s document workflow to the appropriate department. Employees in such a
corporation may wish to tailor (“reprogram”) the workflow by means of docu-
ments themselves, even if they are outside the office. Surely, only members of
the legal department should have ability and permission to alter the processing
of documents that are routed to the legal department, and analogously for the
finance department.

Our approach supports such alterations by allowing both temporary changes
(affecting only the current document) and semi-permanent changes (affecting
multiple, future documents) to the workflow. To this end we allow active docu-
ments not only to change (or refine) a workflow net, but also to undo or reverse
such changes. The altered network is therefore hierarchical, where a network im-
plementing the new functions lies at a deeper level than the original network. Our

formalism supports permission structures that specify who can make a change,
and which documents are affected by such a change, as discussed below.

3 Related formalisms

Given that our formalism for active document workflow will build upon Petri
nets for the reason mentioned, there are nevertheless a number of related general
formal approaches and specific proposals that must be considered. As we shall
see, though, none of them have all the properties needed to enable the active
document processing we envision.

Graph rewriting algebras: Graph rewriting algebras specify how to replace
subgraphs with other subgraphs [6]. There is a structure governing these
substitutions, such as formal composition, reversion (contraction), and so
on. These algebras are inadequate for active document workflow because
they contain no notion of the document itself controlling the rewriting.

Action refinement: In concurrency theory and process algebra, action refine-
ment refers to the substitution of complicated actions for simpler ones [4].
By itself, this technique is insufficient for active document workflow as there
is no provision for these substitutions to take place during the execution of
a process.

Petri nets with refinement: Refinement in a Petri net is the process by
which a node in a network is replaced by other networks [24, 11, 7]. In stan-
dard Petri nets with refinement of places or transitions, however, the refine-
ment is specified by the creator of the network rather than by information
in tokens themselves. We shall employ token-controlled refinement as the
mechanism for implementing the processing specified by a document author.
Furthermore, our refinement need not replace an existing section of a net,
but instead attach a refinement net in a way that will be described below.

Traditional workflow nets: Traditional workflow nets [1, 2] represent docu-
ments by tokens, but in essence ignore the contents of those documents. For
this reason they are not sufficiently expressive for token-controlled refine-
ment. Furthermore, most effort on formal document workflow employs Petri
nets such as basic or colored nets rather than the predicate/transition nets
we shall require [3].

Petri nets with structured tokens: In higher-level nets [23], such as predi-
cate/transition nets [10, 9] and colored Peri nets [13, 14], tokens carry struc-
tured information that can be exploited at transitions. Higher-level net-based
document workflow supports processing such as “if the document is a bill for
over $10,000 from a familiar supplier, forward the bill to the Chief Finan-
cial Officer.” Existing higher-level nets however do not allow changes to the
workflow network, and hence no token-controlled changes to the workflow
network in particular. To our knowledge, higher-level nets have never been
used for refinement.

Reconfiguration: Dynamic reconfiguration, where processes are changed dy-
namically based on intermediate computed results, is used in a range of appli-
cations such as FPGA-based reconfigurable computing. The FPGA approach
does not rest on formal foundations such as Petri nets, and the message pack-
ets in this approach bear only weak correspondence to the tokens in Petri
nets for workflow [20]. Badouel and Oliver describe a Petri-net self-modifying
or “reconfigurable net,” which modifies its own structure by rewriting some
of its components, but the reconfiguration information is not passed by the
tokens [5]. Similar ideas appear already in the work of Valk [25].

Hierarchical networks: In [26, 18] hierarchical nets are studied in which to-
kens (objects) are nets as well, whose transitions may synchronize with the
ones from the system net in which they travel. Although this approach is
close to ours in a number of ways, it separates the behavior of the system
net and the object net, and as of yet does not allow the passing of document
contents from one to the other.

In summary, no previous formalisms support the full range of active document
workflow and structures we envision. We now turn to the specification of such a
formalism.

4 Token-controlled refinement in hierarchical nets

We begin with an informal description of basic token-controlled refinement, and
subsequently develop, in various successive stages, formal definitions of the kind
of nets that support such refinement. Because active documents will carry both
data (“text”) and control information (“control”), documents must be repre-
sented by structured tokens in a Petri net. If we consider the document as a file,
the data and control may be intermixed so long as each is tagged and separable.

We call the traditional workflow net the “target net,” to distinguish it from
“refinement nets” specified by the structured token. In active document work-
flow, the workflow designer specifies the target net and any number of special
“refinable places,” which will serve as the loci of document-controlled operations.
Figure 2 shows the internal structure of a refinable place, such as the bold circle
in Fig. 1.

The top portion of Fig. 3 shows a target Petri net which includes a single
refinable place. When a structured token enters the refinable place, refinement is
then “enabled.” Information in the token specifying the refinement net is read
and the refinement net may then be attached between the input and output
places is and os, as shown. In our approach, local places rather than transitions
are refined because it simplifies formal definition and emphasizes that refinement
amounts to the addition of extra tasks to a workflow process rather than a
detailed explanation of how to execute an already specified process.

It is natural to consider the refinement net to lie at a different level than
the target net, as shown in Fig. 3. Below we shall describe how another token
carrying the instruction that a refinement should be undone may arrive, and the
resulting contraction eliminates the refinement net.

τ s

s

Ns
τ

is os

Fig. 2. A refinable place, s ∈ SR, denoted by a bold circle, contains a formally simple
“τ -net,” Nτ , which consists of a unique input place, is, a unique output place, os,
and transition τs, linked as shown. During token-controlled place refinement, is and os
serve as “anchors” for the inserted refinement net, as shown in Fig. 3. The τ -transition
represents a no-op transition and leaves the document unchanged. We use the symbol
τ by analogy to τ -transitions in the calculus of communicating systems, CCS [19]. As
we shall see, documents will pass through such a τ -transition if there has been no
refinement, or if the document does not have permission to execute a refinement net
attached to this refinable place.

ref
ine

me
nt

ne
t

tar
ge

t n
et

tar
ge

t n
et

level 0

level 1

place refinable
place

transition structured
token

S R

before
refinement

after
refinement

τ si o

Fig. 3. Token-controlled process refinement occurs when a structured token encounters
a refinable place. In this case, the control information in the token has been read, and
implemented as a refinement net at the next level.

Transitions in workflow nets Since we consider documents that contain con-
trol information, we must use net representations that employ structured tokens.
In our systems, network transitions will modify documents, and to capture that
fact we build upon the predicate/transition net formalism [10, 9, 23]. Figure 4
illustrates a transition in such a net where lower-case Roman letters (e.g., x and
y) represent documents and upper-case Roman letters represent the operations
performed on single or multiple documents. Thus, a Japanese translation of doc-
ument y might be denoted J(y), the concatenation of documents x and y might
be denoted x; y, and so forth.

x

y

x;y

x

J(y)

x

y

z

u

w

z=x;y
u=x
w=J(y)

Fig. 4. Transitions in our workflow networks are based on those in traditional pred-
icate/transition nets. In this example, documents x and y enter the transition. Op-
erations are denoted by upper-case letters, with documents as arguments; a Japanese
translation of y is denoted J(y), the concatenation of the documents x and y is denoted
by x; y, and so on, as shown on the left. Such processed documents — including ones
subject to the null or “no-op” process, such as x above — are then emitted by the
transition. A formally equivalent representation is to label the output arcs by symbolic
names of the corresponding emerging documents, and write the transformations within
the box, as shown on the right. This second representation emphasizes the fact that all
information passing along an arc can be considered to be within a document. However,
this second representation, as in colored Petri nets, obscures the structural information
in documents, for instance that a particular document is a concatenation of two other
documents.

In practice, some of these operations are automatic, such as “encrypt this
electronic document,” while others require human intervention, such as “trans-
late this document into Japanese.” While we acknowledge that these operations
may be quite difficult to implement, here we need not specify them beyond at-
tributing a label to each so they could be listed in a library and called as needed.

While colored Petri nets [13, 14] may have sufficient formal expressive power
to serve as a foundation for our networks, colored nets are nevertheless awkward
and unnatural for our needs because they obscure the structure of documents
and their relationships. For instance, if two documents x and y are represented
by tokens of differen colors, then the composite or concatenated document x; y
would be represented by a third color, thereby obscuring the document’s com-
posite structure. In fact, giving an equivalent predicate/transition net is often
the most efficient way of specifying a colored net.

Predicate/transition nets We let Σ be a signature, a list of names of oper-
ations f and predicates p on documents, each of which has an associated arity,
a(f), a(p) ∈ IN. For instance, Σ could contain a binary operator “;” which is
interpreted as a concatenation of two documents, or a unary operator J(·), in-
terpreted as a Japanese translation of the document argument. It could further
have a binary predicate Q(·, ·), which when evaluated to True says that its first
argument is a document containing an endorsement for the statements contained
in its second document, or a unary predicate K(·), which when evaluated to True

says that its argument document has been signed by the president.

We also let V = {x, y, . . .} be a set of variables ranging over documents.
Then TT(V,Σ) denotes the set of terms over V and Σ, such as for instance
J(x); y, the Japanese translation of document x concatenated with the document
y. Furthermore, IF(V,Σ) is the set of formulas over V and Σ in the language
of first-order logic, such as (∃y. Q(y, x)) ∨K(x), saying that the statements in
document x either have an endorsement, or have been signed by the president.

A predicate/transition net over V and Σ is given as a quadruple (S, T, F, λ)
where S and T are disjoint sets of places and transitions, F ⊆ (S × V × T) ∪
(T × V × S) is the flow relation, and λ : T → IF(Σ, V) allocates to each transi-
tion a first-order formula over Σ and V called the transition guard [23].

The elements of S and T are graphically represented by circles and boxes,
respectively, while an element (p, x, q) ∈ F is represented as an arc from p to
q, labeled with variable x. The formulas λ(t) are written in the transition t. An
arc (s, x, t) ∈ F with s ∈ S, x ∈ V and t ∈ T indicates that upon firing the
transition t, a document x is taken from place s. An arc (t, y, s′) ∈ F with t ∈ T ,
y ∈ V and s′ ∈ S indicates that upon firing t a document y is deposited in place
s′.

The transition guard λ(t) selects properties of the input documents that have
to be satisfied for the transition to fire, and simultaneously specifies the relation
between the input and the output documents. The variables allocated to the
arcs leading to or from t may occur free in the formula λ(t). They provide the
means to talk about input and output documents of this transition. Consider as
an example a transition that consumes input documents x and y, and produces
an output document z. The transition guard could be a formula that says that
the transition may only fire if x is a PGP document that successfully decrypts
with the key presented in document y; if these conditions are met, the decrypted
document z is emitted.

Marked predicate/transition nets and the firing rule Recall that Σ is a
signature. A Σ-algebra is a domain D over which the operations and predicates
of Σ are defined. In our case, of course, the elements of D denote documents.
An evaluation ξ : V → D over a Σ-algebra D assigns to every variable x ∈ V a
document ξ(x) ∈ D. Such an evaluation extends in a straightforward manner to
terms and formulas over V and Σ, where ξ(t) ∈ D for terms t ∈ TT(V,Σ), and
ξ(ϕ) evaluates to True or False for formulas ϕ ∈ IF(V,Σ).

A marking of a predicate/transition net over V and Σ is an allocation of
tokens to the places of the net. As these tokens are documents that are repre-
sented by elements in a Σ-algebra D, we speak of a marking over D. A marked
predicate/transition net over V , Σ and D is a tuple (S, T, F, λ,M) in which
(S, T, F, λ) is a predicate/transition net over V and Σ, and M : S → IND a
marking, which associates with every place s ∈ S a multiset of documents from
the Σ-algebra D. The multiset M(s) : D → IN is a function that tells for every
possible document how many copies of it reside in that place.

For two markings M and M ′ over D we write M ≤M ′ if M(s)(d) ≤M ′(s)(d)
for all s ∈ S and d ∈ D. The marking M +M ′ : S → IND is given by

(M +M ′)(s)(d) = M(s)(d) +M ′(s)(d).

Thus, the addition of two markings yields the union of the respective multisets
of tokens in each place in the net. The function M −M ′ : S → ZD is given by
(M −M ′)(s)(d) = M(s)(d) −M ′(s)(d); this function need not always yield a
marking because it might specify a negative number of documents in a place.
For a transition t ∈ T in a predicate/transition net and an evaluation ξ : V → D,
the input and output markings •t[ξ] and t[ξ]• of t under ξ are given by

•t[ξ](s) = {|ξ(x) | (s, x, t) ∈ F, x∈V |}

and

t[ξ]•(s) = {|ξ(x) | (t, x, s) ∈ F, x∈V |}

for s ∈ S, in which {|, |} are multiset brackets. A transition t is enabled under a
marking M over D and an evaluation ξ : V → D, written M [t, ξ \/, if •t[ξ] ≤M . In
that case t can fire under M and ξ, yielding the marking M ′ = M − •t[ξ] + t[ξ]•,
written M [t, ξ \/M ′.

Workflow nets A workflow net, as defined by van der Aalst [2], is a Petri
net (S, T, F) with two special places, i and o, that represent the input and
output of the net. A workflow net does not have an initial marking. Instead,
such a net acts on documents that are represented by tokens deposited by the
environment in the input place i. Even if a net is finite and without loops, it may
nevertheless represent an ongoing behavior, as the environment may continue to
drop documents in the input place. The documents that arrive at the output
place o are then carried away from there by the environment. Furthermore, i
does not have incoming arcs (within the workflow net) and o does not have
outgoing arcs (within the workflow net), and for every place s ∈ S there should
be a path in the net from i to o via s. Although in general it makes sense to
consider multiple input and output places (as in Fig. 1), in the below discussions
for simplicity we will follow van der Aalst in assuming just one of each.

Van der Aalst typically abstracts from the contents of documents by mod-
eling them all as unstructured tokens. Here we give contents to documents

by expanding place/transition nets to predicate/transition nets. Thus, a pred-
icate/transition workflow net (over V and Σ) is a tuple (S, T, F, λ, i, o), and a
marked predicate/transition workflow net (over V ,Σ andD) a tuple (S, T, F, λ, i, o,M).
The other parts of his definition are not affected.

An initial marking in a workflow net is a marking that puts only a single
document in the input place of the net. In [2], workflow nets are often required
to be sound in the sense that

– If an initial marking evolves into a marking that has a document in the
output place, then there is only one document in the output place, and
there are no documents left elsewhere in the net.

– If an initial marking can evolve into a marking M , then M can evolve further
into a marking that has a token in the output place.

– There are no transitions in the net that can never be fired.

In van der Aalst [2], workflows are considered to be case driven, meaning
that every case (started by a document token dropping into the input place) is
executed in a fresh copy of the workflow net. This guarantees that documents
in the workflow corresponding to different cases do not influence each other.
Here we consider cases to be executed in parallel in the same workflow net,
thereby creating the possibility for one case to influence the execution of another
one. If we want the cases to be independent, we can augment each document
token with a color or number, and require that transitions fire only when all
incoming documents have the same color or number. Of course, each output then
has the corresponding color or number. It is simple to implement the required
bookkeeping tasks in predicate/transition nets.

Simple hierarchical workflow nets In our formalization of token-controlled
refinement, a workflow net may have one or more refinable places, thereby be-
coming a tuple (S, T, SR, F, λ, i, o) with SR ⊆ S − {i, o} the set of refinable
places. The input and output place are not refinable. It may be helpful to think
of a refinable place s ∈ SR as consisting of an input place is, an output place os,
and a transition τs, as indicated in Fig. 2. All arcs leading to s go to is, whereas
all arcs out of s go out of os. The transition τs has is as its only input place and
os as its only output place. The τs transition does not have any observable effect
and passes documents through unchanged. In fact, the behavior of any net up
to branching bisimulation equivalence [12] is unaffected under substitution of a
net as in Fig. 2 for any place s.

A simple hierarchical workflow net is a tuple (S, T, SR, F, λ, i, o, R) with
(S, T, F, λ, i, o) a predicate/transition workflow net, SR ⊆ S − {i, o} a set of re-
finable places, and R a function that associates with every refinable place s ∈ SR
a simple hierarchical workflow net R(s).1 The refinement net R(s) is inserted in

1 As the nets R(s) are simple hierarchical workflow nets themselves, a formal definition
involves recursion: The class of simple hierarchical Petri nets is the smallest class
IH of tuples N = (S, T, SR, F, λ, i, o, R) with (S, T, F, λ, i, o) a predicate/transition
workflow net, SR ⊆ S − {i, o} a set of refinable places, and R : SR → IH.

the top-level net N at the place s: whenever a document arrives in s (i.e., in is),
the document is transferred to the input place of the net R(s), and then R(s)
runs concurrently with the top-level net. When a document reaches the output
place of R(s) it is transferred back to s (in fact to os), and can be used as input
for transitions that need a document in place s in the top-level net.

A marked simple hierarchical workflow is a tuple (S, T, SR, F, λ, i, o,M,R)
with (S, T, F, λ, i, o) a predicate/transition workflow net, SR ⊆ S−{i, o} a set of
refinable places, M : S → IND a marking of the top-level net, and R a function
that associates with every refinable place s ∈ SR a marked simple hierarchical
workflow net R(s). Under this definition, a marking of a simple hierarchical
workflow net has itself a layer at each level of the hierarchy; M is just the top
layer, whereas the other layers reside in R. Transitions in such a net can fire at
every level of the hierarchy, following the definitions for predicate/transition nets
given before, except that tokens that arrive in refinable places end up one level
lower in the hierarchy, and that tokens arriving in output places of a refinement
net end up one level higher.

A non-hierarchical predicate/transition workflow net can be regarded as the
simple case of a hierarchical workflow net where SR = ∅. Classical notions of
place refinement in Petri nets can be regarded as methods to flatten hierarchical
nets into non-hierarchical ones. Such a flattening operation on workflow nets
is extremely easy to define: just insert the net R(s) at s by identifying the
input place of R(s) with is and the output place with os, while deleting the
transition τs. As we will explore ways to change the hierarchical structure of
nets dynamically (in particular by undoing a refinement during the execution
of a net), it is important to clearly separate the refinement net associated to a
refinable place from the top-level net. Therefore we will not flatten the net during
refinement, but instead work with hierarchical nets. The operational behavior
of a hierarchical net however can best be understood by picturing the flattened
net.

Hierarchical workflow nets A hierarchical workflow net is defined just as a
simple hierarchical workflow net above, except that the refinement function R
has more structure. In particular, R associates to every refinable place not just
a single refinement net, but a list of guarded refinement nets. Here a guarded net
is a pair of a guard and a net, the guard being a first-order logic formula over V
and Σ, with a distinguished variable x, which is the only variable that may occur
free in that formula. When a structured token d ∈ D arrives in s, the guard of
the first guarded net in the list is evaluated by taking x to be d. If the guard
evaluates to True, the token descends to the input place of the corresponding
net. Otherwise, the second guard is tested, and so on. The last element in the
list is always the τ -net (cf., Fig. 2) with a guard that always evaluates to True.
When a token arrives in the output place of any net in the list specified by R(s),
it moves upwards to s for further use in the higher-level net.

Our aim in defining guards in this way stems from our recognition that a
particular refinement may be useful only for documents of a particular type or

from a particular author. The guards check in some way whether a document has
“permission” to enter a particular refinement net. In case a document does not
have permission to enter any meaningful refinement net associated to a certain
place s, the structured token performs the τ -transition instead.

N

N' N''

N'''

N''''

sR1

sR2

sR3 sR4

sR5

level 0

level 1

level 2

Fig. 5. Successive semi-permanent refinements lead to a hierarchical net. The target net
N at the top has two refinable places. Here sR1 has been refined with the attachment
of workflow net N ′′′ and sR2 with both N ′ and N ′′. Finally, sR4 in N ′′ has been refined
with N ′′′′.

Figure 5 shows an example of a hierarchical net in which a single place has
multiple refinement nets attached to it. The hierarchical structure of such a net
can be represented by means of a bipartite tree, as indicated in Fig. 6. Each path
from the root to a leaf consists of an alternating sequence of nets and refinable
places.

Token-controlled refinement In order for our hierarchical workflow nets to
allow token-controlled refinement, the refinement function R(·) will have even
more structure than indicated above.

In active document workflow we allocate identifiers to refinable places, and
documents carry instructions such as “when you land in a refinable place with
this identifier, add the guarded net G to the list of guarded refinement nets.” A
refinable place s now carries an extra refinement guard gs(x) that checks whether
an incoming document has permission to initiate a refinement.2 Moreover, it has
a refinement net extractor, ref s(x), that reads the instruction pertaining to the

2 To avoid confusion, the guards discussed above will henceforth be called entry guards.

N

N' N'' N'''

N''''

sR2 sR1

sR3 sR4

sR5

Fig. 6. The hierarchcial nets produced through token-controlled refinement, such as
the one in Fig. 5, can be represented by a bipartite tree. In such a tree each path from
the root, N , to a leaf consists of an alternating sequence of nets and refinable places.

refinement of s in a document x, and extracts the appropriate guarded refinement
net from the document text. When, for an incoming document d, the refinement
guard evaluates to True (i.e., gs(d) holds), and the refinement net extractor
yields a guarded refinement net G (i.e. ref s(d) = G), then this net is added to
the head of the list in R(s).

We also want to give documents the possibility to remove certain refinement
nets. However, removal must not occur when that refinement net is still active,
that is, when there is a token in the refinement net. Therefore we merely allow
documents to change the entry guard of a refinement net to False, thereby
preventing subsequent documents from entering that net. As soon as such a
refinement net becomes inactive, in the sense that it can do no further steps, its
role in the workflow comes to an end. We can eliminate idling “ghost nets” by
incorporating a garbage collection process that regularly checks the workflow for
inactive refinement nets with entry guards False, and removes them from the
workflow.

In order to model token-controlled refinement fully, the R-component of a
hierarchical net should have the structure R(s) = (gs(x), ref s(x), Ls), where
gs(x) is the refinement guard of s, ref s(x) is the refinement net extractor, and
Ls is a list of guarded refinement nets, which are triples (e(x), N, r(x)) in which
N is a refinement net, e(x) is an entry guard, and r(x) a removal guard. All
guards are first-order logic formulas over V and Σ that have only the variable x
occurring free. When a document d enters the refinable place s, first the removal
guards of the guarded refinement nets in Ls are evaluated by substituting d for
the free variable x. Each guarded refinement net (e(x), N, r(x)) for which r(d)
evaluates to True is earmarked for removal by assigning e(x) to False. Next,
the refinement guard is evaluated. In case gs(d) evaluates to True, the guarded
refinement net ref s(d) is added to the head of the list Ls. Finally, the token d
enters one of the refinement nets in Ls. To this end the token is evaluated by the

entry guards one by one, and as soon as a guarded refinement net (e(x), N, r(x))
is encountered for which e(d) evaluates to True, the token d is transferred to the
input place of N .

In its initial state, any hierarchical workflow net has a refinement function
R, such that for every refinable place s, the list Ls in R(s) has only one guarded
refinement net in it, namely (True, Nτ , False). Because the removal guard of
that τ -net always evaluates to False, that net will never be removed. Because
that net’s entry guard evaluates to True, this guarantees that every document
will always succeed in entering the τ -net, should the document fail to enter any
other refinement net.

The machinery above has been set up to facilitate semi-permanent token-
controlled refinement. In order to achieve temporary refinement, in which only
the token creating a refinement net may enter that net, the removal guard of the
refinement net could be True (as well as the entry guard). This way, the next
token that visits the refinable place will close that refinement net.

Summary We now summarize the formal definitions of the entities supporting
active document workflow, based in part on traditional definitions and notations
such as in [22, 21].

Places: A set S (German, “stellen”), whose elements are indicated by circles.
Transitions: A set T (German, “transitionen”), whose elements are indicated

by squares.
Variables: A set V of symbolic names, to be instantiated by documents.
Flow relation: A relation F ⊆ (S×V ×T)∪(T×V ×S), indicated in a network

by a set of directed arcs labeled with variables.
Input place: The unique place i in a workflow net that accepts tokens (docu-

ments) from the environment. (In more general nets, there could be multiple
input places.)

Output place: The unique place o in a workflow net that emits tokens (doc-
uments) to the environment. (In more general nets, there could be multiple
output places.)

Signature: A set Σ of names of n-ary operations and predicates on documents.
Terms: TT over V and Σ.
Formulas: IF over V and Σ, using the language of first-order logic.
Transition guards: Formulas λ(t) allocated to each transition t.
Predicate/transition workflow net: A tuple (S, T, F, λ, i, o).
Tau net: A net Nτ

s = (Sτs , T
τ
s , F

τ
s , λ

τ
s , is, os), where Sτs = {is, os}, T τs = {τs},

F τs = {(is, x, τs), (τs, x, os)}, and λτs (τs) = True.
Entry guard: A formula e(x) such that e(d) tells whether document d has

permission to enter a refinement net N .
Removal guard: A formula r(x) such that r(d) tells whether document d has

both the intention and the permission to remove a refinement net N .
Guarded refinement net: A triple (e(x), N, r(x)) consisting of a refinement

net with an entry and a removal guard.
Guarded τ-net: A tuple (True, Nτ

s , False).

Refinable places: A set SR ⊆ S−{i, o}, whose elements are indicated by bold
circles.

Refinement guard: A formula gs(x) such that gs(d) tells whether document
d has permission to refine place s.

Refinement net extractor: A term ref s(x), such that ref s(d) extracts from
document d the guarded refinement net that according to that document
should be inserted at place s.

Refinement function: A function R associates with each refinable place s a
triple R(s) = (gs(x), ref s(x), Ls), consisting of a refinement guard, a refine-
ment net extractor, and a list Ls of guarded refinement nets, this list ending
in the guarded τ -net.

Algebra of tokens: An algebra based on the setD = {d1, . . .} of tokens equipped
with the operators and predicates of Σ.

Marking: The assignment M : S → IND of structured tokens to places in a net.
Marked hierarchical workflow net: A net N = (S, T, SR, F, λ, i, o,M,R).

Transition firing in hierarchical active document workflows Firing in
networks supporting active document workflow is more complicated than in tra-
ditional workflows, of course, because permissions, refinement and contraction
are supported.

The firing of a transition t now entails the following:

1. for an evaluation ξ of the variables that makes λ(t) True
(a) extract documents ξ(x) from place s for every (s, x, t) ∈ F
(b) deposit documents ξ(y) in place s for every (t, y, s) ∈ F

2. when a structured token d enters a refinement place s ∈ SR:
(a) for each guarded refinement net (e(x), N, r(x)) in Ls, if r(d) = True:

change e(x) into False

(b) evaluate gs(d). If gs(d) = True

add guarded refinement net ref s(d) to the head of the list Ls in R(s)
(c) go through the elements (e(x), N, r(x)) of Ls one by one until e(d) =

True and move d to the input place of N
3. when a structured token d enters an output of a guarded refinement net in
R(s)
(a) transfer that token one level up to s
(b) continue executing the target net.

5 Future directions

In summary, we have identified a new yet general and powerful operation, token-
controlled refinement, and have proposed modifications to predicate/transition
nets based on that operation support enhanced workflow. Our formal definitions
of elementary properties lay a foundation for more sophisticated work, both in
the theory of concurrency and workflow applications. Ideally, we would like to

prove the preservation under refinement of properties such as workflow sound-
ness, as put forth by van der Aalst [2]. Alas, in general predicate/transition nets
his soundness property need not be preserved under refinement, and thus neither
can this be the case for our extensions to predicate/transition nets, at least not
without significant restrictions to the expressive power of our nets. Future work,
then, will focus on properties such as the preservation of liveness through token-
controlled refinement, much as has been shown for the composition of Petri nets
[17]. These are steps toward an concurrent formalization of expanded workflow
that should have important practical applications.

References

1. Wil M. P. van der Aalst. Three good reasons for using a Petri-net-based work-
flow management system. In Information and process integration in enterprises:
Rethinking documents, pages 161–182. Kluwer Academic, Norwell, MA, 1998.

2. Wil M. P. van der Aalst. Interorganizational workflows: An approach based on
message sequence charts and Petri nets. Systems analysis – Modelling – Simulation,
35(3):345–357, 1999.

3. Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, editors. Business
Process Management: Models, Techniques, and Empirical Studies. Springer, New
York, NY, 2000.

4. Luca Aceto and Matthew Hennessy. Adding action refinement to a finite process
algebra. Information and Computation, 115(2):179–247, 1994.

5. Eric Badouel and Javier Oliver. Reconfigurable nets, a class of high level Petri
nets supporting dynamic changes. (WFM) Workshop within the 19th International
Conference on Applications and Theory of Petri Nets, pages 129–145, 1999.

6. Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewriting.
Mathematical Systems Theory, 20(83–127), 1987.

7. Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour and
equivalence preserving refinement of Petri nets. In Grzegorz Rozenberg, editor,
Advances in Petri Nets 1990, number 483 in LNCS, 1991.

8. R. Kent Dybvig. The Scheme programming language: ANSI Scheme. Prentice Hall,
Upper Saddle River, NJ, 1996.

9. Hartmann J. Genrich. Predicate/transition nets. In Advances in Petri Nets 1986,
volume 254 of LNCS, pages 207–2471. Springer-Verlag, 1987.

10. Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level
Petri nets. Theoretical Computer Science, 13(1):109–136, 1981.

11. Rob van Glabbeek and Ursula Goltz. Refinement of actions in causality based mod-
els. In Jaco W. de Bakker, Willem Paul de Roever, and Grzegorz Rozenberg, edi-
tors, Proceedings REX Workshop on Stepwise Refinement of Distributed Systems:
Models, Formalism, Correctness, Mook, The Netherlands, May/June 1989, volume
430 of Lecture Notes in Computer Science (LNCS), pages 267–300. Springer, 1990.

12. Rob van Glabbeek and W. Peter Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.

13. Kurt Jensen. Coloured Petri nets and the invariant-method. Theoretical Computer
Science, 14(3):317–336, 1981.

14. Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use, Vol. 1. Springer–Verlag, 1992.

15. Donald E. Knuth. TEX: The Program, Computers and Typesetting. Addison-
Wesley, Reading, MA, 1986.

16. Frank Leymann and Dieter Roller. Production Workflow: Concepts and Techniques.
Prentice Hall, Upper Saddle River, NJ, 2000.

17. Michael Köhler, Daniel Moldt, and Heiko Rölke. Liveness preserving composition of
agent Petri nets. Technical report, Universität Hamburg, Fachbereich Informatik,
2001.

18. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and
behaviour of Petri net agents. In José-Manuel Colom and Maciej Koutny, editors,
Applications and Theory of Petri Nets 2001, pages 224–241, 2001.

19. Robin Milner. Communicating and Mobile Systems: The π-calculus. Cambridge
University Press, Cambridge, UK, 1999.

20. Ethan Mirsky and Andre DeHon. MATRIX: A reconfigurable computing architec-
ture with configurable instruction distribution and deployable resources. In Peter
Athanas and Kevin L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, pages 157–166, 1996.

21. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, 1989.

22. Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and analysis with
Petri nets. Springer, Berlin, Germany, 1998.

23. Einar Smith. Principles of high-level Petri nets. In Wolfgang Reisig and Grze-
gorz Rozenberg, editors, Lectures on Petri nets I: Basic models, volume 1491 of
Advances in Petri nets, pages 174–210. Springer, 1998.

24. Robert Valette. Analysis of Petri nets by stepwise refinements. Journal of Com-
puter and System Sciences, 18(1):35–46, 1979.

25. Rüdiger Valk. Self-modifying nets, a natural extension of Petri nets. In Proceedings
ICALP ’78, volume 62 of Lecture Notes in Computer Science (LNCS), pages 464–
476. Springer, 1978.

26. Rüdiger Valk. Petri nets as token objects: An introduction to elementary object
nets. In Jörg Desel and Manual Silva, editors, Application and Theory of Petri
Nets, volume 1420 of Lecture Notes in Computer Science (LNCS), pages 1–25.
Springer, 1989.

27. Patrick Henry Winston and Berthold Klaus Paul Horn. Lisp. Addison-Wesley,
Reading, MA, third edition, 1988.

