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Abstract

The sequentiality postulate assumes that events occur in a definite or-
der. We explore some of the boundary of applicability of this postulate
for the case of sequential observers, varying number of observers, duration
of events, and variability of events. When there is one observer or events
are atomic, the sequentiality postulate holds, making linear orders a fully
abstract model of concurrent behavior. With more than one observer and
with structured events it fails. We show that unlimited observers and
variable events make pomsets a fully abstract model. Putting duration
in place of variability yields an intermediate situation in which the se-
quentiality postulate does not hold but pomsets are not a fully abstract
model.

1 Overview

It is widely believed that trace or interleaving semantics, which assigns a def-
inite order of occurrence to every pair of events, is sufficient for all practical
purposes. In support of this belief, Jonsson [Jon89] and Russell [Rus89] show
that trace semantics is fully abstract for parallel computation, at least of the
kind represented by Kahn networks.

However these full abstractness results suffer from an overly constrained
notion of observer. In this paper we consider a wider range of observational
behaviors or testing scenarios, and give a detailed picture of just where full
abstractness for trace semantics becomes unsound for the eight scenarios ob-
tained by varying three basic parameters of computation, namely duration D,
variability V , and multiplicity M of observers (“teams”).

Duration expresses the notion of an ongoing action, one that can be analyzed
as a sequence of subactions. Duration is naturally modeled as a string. An
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action a may be analyzed as say the string a1a2 indicating that a decomposes
into two consecutively performed actions, a1 then a2.

Variability expresses choice, naturally modeled as a set of alternatives. An
action a may be analyzed as say the set {a1, a2} indicating that for a to occur
means that exactly one of a1 or a2 occurs.

Multiplicity expresses the notion of two or more observers both observing
the same run of a computation, but from different vantage points. We shall
assume that when two observers see the same events from different viewpoints,
they agree on all choices that have been made, including those associated with
variability, but may disagree on the relative order of events. We understand
choice as absolute, in that it is unambiguous which of two alternatives has been
chosen. However we view time as relative in that two events not occurring in
each other’s light cone do not have a well-defined order of occurrence. This
asymmetry of choice and time, while certainly questionable, is consistent with
physics as standardly taught.

Our results in the case of computational behaviors consisting of single pom-
sets (labeled partial orders) is summarized by the following cube.
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Figure 1. Eight testing scenarios

Edges are labeled with the number of the relevant proposition, while the
double lines indicate equivalence, with respect to distinguishing power, of two
kinds of observational behavior, with the remaining lines then indicating strict
inequalities. Thus Proposition 1 shows that Duration on its own makes a dif-
ference while Propositions 2 and 3 show that neither Variability nor Multiplic-
ity make any difference, neither on their own nor as an addition to Duration.
Proposition 4 shows that in the presence of Variability, Multiplicity does make
a difference. Moreover an unlimited supply of observers leads to full abstract-
ness for pomsets even at VM , whence DVM cannot be any bigger and so must
equal VM . This then has the side effect of removing Duration as a contributing
factor.
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The identifications reduce the classes to three, namely ∅ = V = M , D =
DV = DM , and VM = DVM , while Propositions 1 and 4 show that these
three classes are distinct.

As a refinement of these all-or-nothing results, Proposition 5 extends Propo-
sition 4 to a hierarchy theorem: n+1 observers can observe distinctions invisible
to n observers.

We also consider processes as sets of pomsets, and show that the identifica-
tions of VM with DVM , and of ∅ with V , continue to hold. (Rob van Glabbeek
has pointed out to us that this cannot be improved, via examples separating D
from DV and from DM , and ∅ from M .)

2 Background

Linearly ordered multisets (labelled chains up to isomorphism) are strings. Pom-
sets as partially ordered multisets therefore constitute a generalization of strings
to partial orders. This model as an extension of formal language theory is due
to Grabowski [Gra81] who called it a partial word, the characterization as a par-
tially ordered multiset being due to the second author [Pra82]. Pomsets with a
conflict relation are called event structures, introduced by Nielsen, Plotkin, and
Winskel [NPW81]. Prior related notions are Mazurkiewicz’s partial monoids
[Maz77, Maz84] and Greif’s treatment of actors [Gre75]. A list of more recent
papers on the topic [MS80, Gis88, Pra86, AH87, Win88] would be bound to be
incomplete.

We shall identify observation with linearization. That is, at least in the case
of atomic events, an observer of a pomset sees its events in some linear order
consistent with the order of the pomset.

To a zeroth order approximation, two pomsets should be observationally
equivalent when they have the same set of linearizations.

The familiar theorem that (the graph of) a poset is the intersection of the
set of (graphs of) its linearizations is due to Szpilrajn [Szp30]. In our framework
posets are pomsets with no repeated elements, i.e. the function assigning labels
to poset elements is injective. Thus in our application Szpilrajn’s theorem states
that distinct posets are not observationally equivalent.

At the other extreme from posets are pomsets over a one-letter alphabet,
say the alphabet {a}. In our framework these amount to posets up to iso-
morphism. (So pomsets span a spectrum from posets-up-to-isomorphism to
posets.) There are just two two-element pomsets over {a}, which we write as
aa (linearly ordered) and a|a (discretely ordered). These have the same set of
linearizations and hence are observationally equivalent. So whereas Szpilrajn’s
theorem applies to posets this example shows that it does not apply to posets
up to isomorphism.

The meaning of a|a is that we have two copies of an activity a that are
running in parallel. If a is an instantaneous event, as we have been assuming up
to now, and the possibility of exact simultaneity is neglected, then there would
seem to be no basis for distinguishing between aa and a|a in either theory or
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practice.
If however a has duration we have the possibility of overlap for the case

a|a, but not for aa. We may represent duration by taking a to be a pomset of
size two or more, e.g. the string 01. Then the only linearization of aa is 0101,
whereas a|a has for its linearizations both 0101 and 0011. Hence in the presence
of events with duration it becomes possible to observe a difference between aa
and a|a. A similar difference is observable if we take a to be 0|1. In this case
the linearizations of aa are 0101, 0110, 1001, and 1010, while those of a|a are
those four together with 0011 and 1100.

Gischer [Gis88] shows that any two pomsets that are observationally equiv-
alent for strings of length two are observationally equivalent for strings of any
length, whence there is no duration hierarchy for strings. Gischer conjectured,
and Tschantz has shown [Tsc94], that duration suffices to distinguish any two
series-parallel (N-free) pomsets. (A series-parallel pomset is a pomset con-
structible using only the operations of concatenation ab and concurrence a|b.)
Hence series-parallel pomsets are extensional in the presence of duration. (An-
other striking corollary of this result is that the equational theory of concatena-
tion and interleaving of languages is completely axiomatized by the equations
for commutativity of interleaving and associativity of both.)

Gischer gives as an example of pomsets indistinguishable even with duration
the two pomsets N(a, a, b, b) and ab|ab, where N(1, 2, 3, 4) is the 4-vertex pomset
ordered so that 1 < 3, 2 < 4, and 1 < 4, these constraints constituting respec-
tively the two verticals and the diagonal of the letter N , so that N(a, a, b, b)
is ab|ab plus the diagonal. If they could be distinguished it would have to be
by a string of ab|ab not allowed by N(a, a, b, b), possible only by violating the
diagonal 1 < 4 of the N . Hence 1 and 4 overlap; where they do, 2 cannot have
started but 3 must have finished, so the other diagonal 2 < 3 is satisfied. But
that diagonal belongs to an isomorphic copy of N(a, a, b, b), whence that string
must be allowed after all.

We may further take a to be not just a single string but a set of strings,
that is, a language. This provides a notion of variety for a: we have a variety of
choices of behaviors of a. When all strings of a are of unit length we have variety
without duration. Variety provides those little unpredictable hints that can
allow observers to reach consensus as to the identities of entities without them
being a part of the observation language. In some observations the observers
may be unlucky and not get enough such hints; it only matters that there exist
observations that do provide sufficient hints.

Gischer’s argument above remains valid in the presence of variety, giving a
pair of pomsets which variety does not help distinguish.

Two minor results concerning refinements of observational equivalence in
this setting are as follows.

(i) For a single observer, duration helps but variety does not.
(ii) For multiple observers to make a difference, variety without duration

helps but duration without variety does not.
Our main result is:
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(iii) With enough variety and observers any two finite pomsets can be dis-
tinguished, even without duration.

Results (i) and (ii) assign very different roles to duration and variety. Du-
ration is a loner that can help, though not always, as evidenced by Gischer’s
example above of N(a, a, b, b) = ab|ab. Variety on the other hand is useless by
itself but in collaboration with multiple observers is able not only to outperform
duration but, as (iii) shows, to make pomsets fully visible, i.e. extensional. The
proof of (iii) is via a straightforward reduction to the poset case, allowing us to
apply Szpilrajn’s theorem.

A refinement of (iii) is that with enough variety, the number of observers
needed to distinguish two pomsets is at most the larger of the dimensions of their
underlying posets.1 This shows that the hierarchy of observational equivalences
with n observers is strict: n + 1 observers can resolve more detail than n.
Although our proof of this result is not long, neither is it at all obvious!

3 Definitions

The following notions are essentially as in [Gis84]. We start out by defining
labelled partial orders and their maps.

Definition 1. A labelled partial order or lpo over a set Σ is a structure
(V,≤, σ,Σ) where ≤ partially orders V and σ : V → Σ assigns to each element
of V an element of Σ. When necessary we write the components of lpo p as
(Vp,≤p, σp,Σp).

We think of Σ as an alphabet of actions and V as instances of that alphabet,
or events forming a word, with the order of occurrences of letters in the word
given by ≤. The usual formal language theoretic notion of a word obtains for
≤ linear. An atomic lpo is one with |V | = 1.

Definition 2. A map of lpo’s (f, t) : (V,≤, σ,Σ) → (V ′,≤′, σ′,Σ′) consists
of a monotone map f : (V,≤) → (V ′,≤′) of posets together with an alphabet
map (function) t : Σ→ Σ′ such that for all v in V , σ′(f(v)) = t(σ(v)).

Certain maps of lpo’s are of special interest here. An isomorphism of lpo’s is
a map (f, t) for which f is an isomorphism of posets and t is the identity map on
Σ (so isomorphic lpo’s have a common alphabet). An augmentation of lpo’s is a
map (f, t) for which t is the identity function and f is the identity function on
the elements of the poset (but not necessarily an isomorphism of posets, i.e. the
order may increase); an augmentation yields an augment of its argument. We
write pαq to indicate that q is an augment of p; this is the converse of Gischer’s
subsumption relation q � p [Gis84].

Definition 3. A pomset is the isomorphism class of an lpo.
More intuitively a pomset is an lpo in which we pay no attention to the choice

of the set V , other than its cardinality, but retain all other details. Thus if we
replace V = {0, 1, 2} by V = {5, 6, 7} without otherwise disturbing either ≤ or

1The dimension of a poset is the least number of linearizations of that poset whose inter-
section is that poset. The notion is due to Dushnik and Miller [DM41], see Kelly and Trotter
[KT82] for a survey.
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σ the pomset does not change. With our definition of observation, isomorphic
lpo’s will be seen to be observationally equivalent, whence the most we can hope
to resolve even with multiple observers is pomsets.

We shall understand a map between two pomsets to be a map between
representative lpo’s of the respective pomsets.

Definition 4. A process P is a set of finite pomsets. A process is augment
closed when for all pαq, p ∈ P implies q ∈ P . The augment closure α(P ) of P
is the least augment closed process containing P .

We wish to define observation in terms of the notions of linearization and
substitution, which we now define.

Definition 5. A linearization of a pomset p is a linear augment of p. We
write λ(p) for the set of all linearizations of p. This extends to λ(P ) for P a set
of pomsets, namely as λ(P ) =

⋃
p∈P λ(p).

Formal language theory has the notions of homomorphism and substitution
[HU79]. These both generalize immediately from strings to pomsets. (This no-
tion of homomorphism is quite different from that of map between two pomsets:
the former goes between sets of pomsets, the latter between single pomsets.)

Definition 6. A pomset homomorphism is a function mapping pomsets
on Σ to pomsets on Σ′. It is determined by a function f assigning a pomset
on Σ′ to each letter of Σ. It maps p to the pomset whose set of events is
the disjoint sum of the events of the f(σ(u))’s over all u ∈ Vp, definable as
{(u, v)|u ∈ Vp, v ∈ Vf(σ(u))}. Each (u, v) is labelled with σf(σ(u))(v), i.e. just as
v was labelled in f(σ(u)), and ordered so that (u, v) ≤ (u′, v′) just when u <p u

′

(i.e. u ≤p u′ and u 6= u′) or (u = u′ and v ≤f(u) v′), that is, lexicographic
ordering.

Intuitively this is what is obtained by substituting a pomset for each label of
p and flattening the resulting nested structure in the obvious way. For example
the homomorphism taking a to bc takes aa to bcbc and a|a to bc|bc, while the
homomorphism taking a to b|c takes aa to (b|c)(b|c) and a|a to b|b|c|c.

This generalizes to substitutions of sets of pomsets exactly analogously to the
generalization of homomorphisms of strings to substitutions of sets of strings
[HU79], in which the result of substituting a set of strings for a letter is the set of
all strings obtainable by choosing any string from each substitution instance of
such a set. In lieu of a formal definition we offer the example of substituting the
set {b, c} for a in a|a, having two substitution instances of {b, c} and so yielding
the set of three pomsets b|b, b|c, c|c (c|b being isomorphic to b|c as an lpo and
hence equal as a pomset). Just as for formal languages, a homomorphism can
be viewed as the special case of a substitution of singletons.

We may now regard pomsets as expressions, with the labels acting as vari-
ables. Evaluation is then just substitution: values for the variables determine
the value of the expression. Thus the pomset aba is an expression with variables
a and b, and if the value of a is cd and that of b is {e, f} then the value of aba is
{cdecd, cdfcd}. With this interpretation of substitution in mind we write p(s)
for the value of p under the substitution s. By P (s) for a set P of pomsets we
understand the union over the elements p ∈ P of p(s).

We might say that two pomsets are equivalent when their values are the same
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for all substitutions. But merely taking the value of each variable to be itself
already suffices to distinguish distinct pomsets, so this equivalence is trivially
the identity relation.

The notion of observation as linearization, reflecting the sequential life of
an individual observer, leads to more interesting equivalences. We tentatively
define an observation of a pomset to be a linearization of it. Thus the set
of all observations of p is λ(p), and the set of all observations of a set P of
pomsets is λ(P ). Pomsets p and q are equivalent when λ(p(s)) = λ(q(s)) for all
substitutions s.

We now extend this notion of observation to multiple observers. The idea
is that n observers see n possibly different linearizations of the one observed
pomset.

Definition 7. An n-observation of a pomset p is an n-tuple of linearizations
of p. We write λn(p) for the set consisting of all n-observations of p, a set of
n-tuples of strings. For a process P we take λn(P ) =

⋃
p∈P λn(p).

Definition 8. Pomsets p and q are n-equivalent, written p ≡n q, when
λn(p) = λn(q). Likewise for processes, P ≡n Q when λn(P ) = λn(P ).

Our tentative definitions of observation and equivalence are now subsumed
as 1-observation and 1-equivalence.

Implicit in our definition of n-equivalence is a consensus between the ob-
servers as to which pomset of P to linearize, when constructing an n-observation
in λn(P ). This reflects our intuition that the observers agreed on what happened
but not when.

Finally we need the notion of dimension [KT82] in order to show the strict-
ness of the hierarchy of n-equivalence in the presence of variety.

Definition 9. The dimension of a poset is the minimum number of its
linearizations such that the intersection of those linearizations is that poset.
We take the dimension of a pomset p to be the dimension of the underlying
poset of a representative lpo of p.

4 Observation of Single Pomsets

In order to capture duration, variety, etc. we need a parametrized notion of
n-equivalence, parametrized by the permitted substitutions. If substitutions
are restricted so that the assignment to any variable must come from a class
C of sets of pomsets, e.g. singletons, sets of one-element pomsets, languages
(sets of linear pomsets), we say that two pomsets are n-equivalent for C when
they have the same n-observations of their values for all substitutions where the
assignments to the variables are drawn from C.

In the following we are interested in substitutions that have variety without
duration, and duration without variety. We denote these respective classes
of substitutions by Var and Dur respectively. A substitution from Var can
replace each label by a set of labels. A substitution from Dur can replace each
label by a pomset. The class of substitutions permitting neither duration nor
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variety, corresponding to mere renamings of labels, we call Atm for atomic
substitutions.

None of our results make essential use of nonlinearity in the substructure of
events. For example if Dur is taken instead to consist of those substitutions
that replace labels by strings rather than pomsets, no modifications are required
to either the following propositions or their proofs.

The first two propositions are simple, but give some insight into the respec-
tive roles played by duration and variety.

We first show that for a single observer, duration without variety helps but
variety without duration does not.

Proposition 1. 1-equivalence for Dur is strictly finer than 1-equivalence
for Atm.

Proof. It is finer because Dur includes Atm. The example of aa and a|a
shows strictness.

Proposition 2. 1-equivalence for Var coincides with 1-equivalence for
Atm.

Proof. This follows from λ(p(s)) = (λ(p))(s). That is, we can substitute sets
for variables in p and then linearize, or linearize p first (yielding a language) and
then substitute, with the same result in either case. Hence λ(p(s)) = (λ(p))(s) =
(λ(q))(s) = λ(q(s)).

Proposition 3. For all n ≥ 1, 1-equivalence for Dur coincides with n-
equivalence for Dur.

Proof. In this case p(s) is a singleton, substitutions being homomorphisms,
for which λn(p(s)) is the set of all n-tuples of linearizations of the pomset p(s).
Hence λn(p(s)) can be computed from λ(p(s)). Thus if λ(p(s)) = λ(q(s)), we
must have λn(p(s)) = λn(q(s)) as well.

Corollary. For all n ≥ 1, 1-equivalence for Atm coincides with n-equivalence
for Atm.

We now come to the main results. The next two propositions show that
for multiple observers to make a difference, variety without duration helps but
duration without variety does not. The former, proposition 3, is the main result
in that it shows that any two pomsets can be distinguished by n observers
for sufficiently large n. It is noteworthy that duration plays no role in this
result! Since our first explorations in this area focused on the role of duration
in distinguishing pomsets we did not at first expect such a result. In retrospect
it is not so surprising, nor particularly deep, being a straightforward reduction
to Szpilrajn’s theorem..

Proposition 4. For any pomset p there exists n such that p is not n-
equivalent for Var to any other pomset.

Proof. We use variety to distinguish the otherwise indistinguishable events of
a pomset. Let m be the size of p. We take n to be m!. Consider the substitution
s mapping each letter a of Σ to the m-element set {(a, i)|0 ≤ i < m}. This is
enough variety for p(s) to include at least one poset, call it q. Then λ(q) has at
most m! members, whence some m!-tuple of λm!(q) will contain all of them. This
gives us a procedure for recovering p from λm!(p(s)). Discard m!-tuples of λm!(q)
not corresponding to posets (repeated letters). From the remainder select any
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m!-tuple with a maximum number of different components, an m!-observation
of some poset q. Use Szpilrajn’s theorem to infer q from the m!-observation.
Replace each label (a, i) by a in q, to yield p. This construction shows that the
p so recovered will be independent of the choice of poset from p(s).

The argument for proposition 4 can be extended to show that, for any class
including Var, n-equivalence for increasing n forms a strict hierarchy. Our par-
ticular witnesses to this hierarchy are independent of the class of substitutions.

Proposition 5. For every n > 1 there exist pomsets p and q such that for
any class C of substitutions including Var, p and q are n-1-equivalent for C but
not n-equivalent for C.

Proof. It suffices to consider pomsets over a one-letter alphabet, i.e. posets
up to isomorphism. (Note that Szpilrajn’s theorem separates even isomorphic
posets, and cannot be applied directly here.) Given n we take for our coun-
terexample a certain pair p, q of posets of dimension n. Using essentially the
same argument as in Proposition 4 we show that as one-letter pomsets p and q
cannot be n-equivalent for Var, and hence for any larger class. We then show
that they are n-1-equivalent for any class.

We take p to be the standard poset Sn [KT82], having 2n elements
{a0, . . . , an−1, b0, . . . , bn−1}, ordered so that ai ≤ bj just when i 6= j. An equiv-
alent description of Sn is as the lattice of atoms and coatoms of an n-atom
Boolean algebra. Sn is known to have dimension n [KT82]. We take q to be
Sn augmented with a0 ≤ b0. (As pomsets, p and q are determined only up to
isomorphism, so augmenting p with ai ≤ bi for any i yields the same pomset q.)
Since q has 2n elements it is of dimension at most n [KT82]. Hence p and q are
not n-equivalent for Var. The role of Var here is as for Proposition 4, namely
allowing us to treat pomsets as posets.

For n-1-equivalence, suppose some linearization of an element of p(s) violates
ai ≤ bi for some i, necessary if we are to distinguish p and q. Then there is a
point in that string where ai has not yet finished (ai could have duration in the
general case) yet bi has started. The constraints of p require that at that point
all the other aj ’s are done (for bi to start) and none of the other bj ’s have started
(since ai is not yet done). Hence for every j 6= i, aj ≤ bj , that is, there can be
at most one violation of ai ≤ bi for any i in any one linearization. But then any
n-1-observation of p(s) can collectively violate at most n− 1 of the constraints
of the form ai ≤ bi. This always leaves one such constraint unviolated, which is
consistent with observing q. Hence the n-1-observations of p(s) must coincide
with those of q(s) for all s.

5 Observation of Processes

A process is a set of pomsets, as per Definition 4. All our definitions of lineariza-
tion, n-equivalence, etc. have been formulated to hold for processes in general,
with single pomsets identified with singleton processes.

The following shows a basic limitation of all the testing scenarios considered
in this paper when applied to processes.
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Proposition 6. Observationally equivalent processes have equal augment
closures.

Proof. Any pomset p of a process P must be visible to a team of size dim(P ).
If Q is observationally equivalent to P the same team must be able to observe
p as an apparent behavior of Q. Hence Q must contain a behavior q of which
p is an augment, whence P ⊆ α(Q). By symmetry of equivalence Q ⊆ α(P ),
whence α(P ) = α(Q).

Lemma 7. Let p be a pomset. Then there exists n such that for any family
〈qi〉i of pomsets for which λn(p) ⊆ λn(

⋃
i qi), there must exist qj in the family

such that p is an augment of q.
Proof. The only qi’s that can contribute to λn(p) have the same number of

vertices as p. Since each n-tuple in λn(
⋃
i qi) arises from a choice of a particular

qi, and since λn(p) includes a single n-tuple completely encoding p, it follows
that some qi must yield that n-tuple. But this is only possible for a qi of which
p is an augment.

Proposition 8. For any two augment-closed processes P and Q there exists
n such that P is not n-equivalent for Var to Q.

Proof. Assume without loss of generality that P contains a pomset p absent
from Q. Then p is not an augment of any pomset of Q. Let n be the number
associated to p by Lemma 7. Then λn(p) cannot belong to λn(Q), whence λn(P )
contains n-tuples not in λn(Q).

This generalizes Proposition 4 to full abstraction for processes. Hence VM
for processes makes all possible distinctions between processes, whence DVM
can only make the same distinctions. Thus for processes we retain the VM =
DVM edge of Figure 1.

Proposition 2 showed that variability alone makes no difference for single
pomsets. But that proposition applies equally to pomsets and processes, whence
variability also makes no difference for processes and we retain the ∅ = V edge
of Figure 1.
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