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Abstract. To the metaphors of software engineering and software physics
can be added that of software geography. We examine the physical and
economic aspects of the Software Glacier (once an innocent bubbling
brook, now a vast frozen mass of applications imperceptibly shaping
both the Hardware Shelf below and User City above), Quantum Planet
(colonization of which could be fruitful if and when it becomes practical),
and Concurrency Frontier (an inaccessible land with rich resources that
we project will be exploited to profound economic effect during the next
half-century).

1 The Software Glacier

It used to be that the computer was the hard thing to build, programming it
was almost an afterthought. Building a computer was hard because the problem
was so constrained by the laws of nature. Writing software on the other hand
was very easy, being unconstrained other than by the size and speed of available
function units, memory, and storage.

But as time went by it became harder to write software and easier to build
computers.

One might suppose this to be the result of the hardware constraints some-
how loosening up while the software constraints tightened. However these basic
constraints on hardware and software have not changed essentially in the past
half century other than in degree. When hardware design was a vertical oper-
ation, with complete computers being designed and built by single companies,
hardware designers had only the laws of nature to contend with. But as the eco-
nomics of the market place gradually made it a more horizontal operation, with
different specialists providing different components, the need for specifiable and
documentable interoperability sharply increased the constraints on the hardware
designers.

At the same time clock rates, memory capacity, and storage capacity have
increased geometrically, doubling every eighteen or so months, with the upshot
that today one can buy a gigabyte of DRAM and a 60 gigabyte hard drive for
$150 each. This has enormously reduced the speed and storage constraints on
software developers.

So on the basis of how the contraints have evolved, hardware should be harder
than ever and software easier than ever.



Besides constraints, both tasks have become more complex. Hardware in-
creases in complexity as a result of decreasing line geometries combining with
increasing die size to permit more circuits to be packed into each chip. This
has two effects on the complexity of the computer as a whole. On the one hand
the additional per-chip functionality and capacity increases the overall computer
complexity. On the other hand it also facilitates a greater degree of integration:
more of the principal components of the computer can be packed into each chip,
simplifying the overall system at the board level.

The complexity of software (but not its utility and effectiveness) increases
linearly with each of time, number of programmers, and effectiveness of pro-
gramming tools. There is some attrition as retiring technology obsoletes some
packages and others receive major overhauls, but mostly software tends to ac-
cumulate.

So we have two effects at work here, constraints and complexity.
Hardware is complex at the chip level, but is getting less complex at the board

level. At the same time hardware design is so constrained today as to make it
relatively easy to design computers provided one has the necessary power tools.
There are so few decisions to make nowadays: just pick the components you need
from a manageably short list, and decide where to put them. The remaining
design tasks are forced to a great extent by the design rules constraining device
interconnection.

The combined effect of contraints and complexity on hardware then is for
system design to get easier. Chip design remains more of a challenge, but even
there the design task is greatly facilitated by tight design rules. Overall, hardware
design is getting easier.

Software design on the other hand is by comparison hardly constrained at all.
One might suppose interoperability to be a constraint, but to date interoperabil-
ity has been paid only lip service. There is no rigid set of rules for interoperability
comparable to the many design rules for hardware, and efforts to date to impose
such rules on software, however well-intentioned, have done little to relieve the
prevailing anarchy characterizing modern software.

The dominant constraint with software today is its sheer bulk. This is not
what the asymptotics of the situation predict, with hardware growing exponen-
tially and software accumulating linearly. However the quantity of modern soft-
ware is the result of twenty years of software development, assuming we start
the clock with the introduction of the personal computer dominating today’s
computing milieu. Multiply that by the thousands of programmers gainfully or
otherwise employed to produce that software, then further multiply the result
by the increase in effectiveness of programming tools, and the result is an ex-
traordinary volume of software.

Software today has much in common with a glacier. It is so huge as to be
beyond human control, even less so than with a glacier, which might at least be
deflected with a suitable nuclear device—there is no nuclear device for software.

Software creeps steadily forward as programmers continue to add to its bulk.
In that respect it differs from a glacier, which is propelled by forces of nature.
This is not to say however that the overall progress of software is under voluntary



human control. In the small it may well be, but in the large there is no over-
all guiding force. Software evolves by freewill locally, but globally determinism
prevails.

Unlike a glacier, software is designed for use. We can nevertheless continue
the analogy by viewing software users as residents of a city, User City, built on
the glacier. The users have no control over the speed, direction, or overall shape
of the glacier but are simply carried along by it. They can however civilize the
surface, laying in the user interface counterparts of roads, gardens, and foun-
dations for buildings. The executive branch of this operation is shared between
the software vendors, with the bulk currently concentrated in Microsoft. The
research branch is today largely the bailiwick of SIGCHI, the Special Interest
Group on Computer-Human Interfaces.

Hardware is to software as a valley is to the glacier on it. There is only one
glacier per valley, consisting of all the software for the platform constituting that
valley. In the case of Intel’s Pentium and its x86 clones for example, much of the
software comes from Microsoft, but there are other sources, most notably these
days Linux.

A major breakdown in this analogy is that whereas mortals have even less
control over the valley under a real glacier than over the glacier itself, the ease
of designing modern hardware gives us considerable control of what the software
glacier rides on. We are thus in the odd situation of being able to bring the valley
to the glacier.

This is the principle on which David Ditzel founded Transmeta six years
ago. When Ditzel and his advisor David Patterson worked out the original RISC
(Reduced Instruction Set Computer) concept in the early 1980s, the thinking
back then was that one would build a RISC machine which would supplant the
extant CISC (Complex ditto) platforms.

The building was done, by Stanford spinoffs Sun Microsystems and MIPS
among others, but not the supplanting. In a development that academic com-
puter architects love to hate, Intel’s 8008 architecture evolved through a series
of CISC machines culminating in the Pentium, a wildly successful machine with
many RISC features that nevertheless was unable to realize the most impor-
tant benefit of RISC, namely design simplicity, due to the retention of its CISC
origins.

Ditzel’s idea, embarked on in 1995, was to build a Pentium from scratch,
seemingly in the intellectual-property shelter of IBM’s patent cross-licensing
arrangements with Intel. The CISC soul of this new machine was to be realized
entirely in software. Transmeta’s Crusoe is a pure RISC processor that realizes
the complexity benefits of RISC yet is still able to run the Pentium’s heavily
CISC instruction set.

Whether the benefits of a pure RISC design are sufficient to meet the chal-
lenges of competing head-on with Intel remains to be seen. (The stock market
seems to be having second thoughts on Transmeta’s prospects, with Transmeta’s
stock currently trading at $2.50, down from $50 last November.) The point to
be noted here is that Ditzel saw the software benefits of going to the glacier.
Just as bank robber Willie Sutton knew where the money was, Ditzel could see



where the software was. That insight is independent of whether pure RISC is a
sound risk.

The question then naturally arises, must we henceforth go to the glacier, or
is it not yet too late to start a new software glacier in a different valley?

Apropos of this question, a new class of processors is emerging to compete
with the Pentium. The Pentium’s high power requirements make it a good fit for
desktops and large-screen notebooks where the backlighting power is commensu-
rate with the CPU power and there is room for a two-hour battery. However the
much smaller cell phones and personal digital assistants (PDAs) have room for
only a tiny battery, ruling out the Pentium as a practical CPU choice. In its place
several low-powered CPUs have emerged, notably Motorola’s MC68328 (Drag-
onball) as used in the Palm Pilot, the Handspring Visor, and the Sony CLIÉ; the
MIPS line of embedded processors, made by MIPS Technologies, Philips, NEC,
and Toshiba, as used in several brands of HandheldPC and PalmPC including
the Casio Cassiopeia; the Hitachi SH3 and SH4 as used in the Compaq Aero 8000
and the Hitachi HPW-600 (and the Sega Dreamcast); and Intel’s Strongarm.

Software for these is being done essentially from scratch. Although Unix (SGI
Irix) runs on MIPS, it is too much of a resource hog to be considered seriously for
today’s lightweight PDAs. The most successful PDA operating system has been
PalmOS for the Palm Pilot. However Microsoft’s Windows CE, lately dubbed
Pocket PC, has lately been maturing much faster than PalmOS, and runs on
most of today’s PDAs.

Linux has been ported to the same set of platforms on which Windows CE
runs. The difference between Linux and Windows here is that, whereas Windows
CE is a new OS from Microsoft, a “Mini-ME” as it were, Linux is Linux. The
large gap between Windows CE and Windows XP has no counterpart with Linux,
whose only limitations on small platforms are those imposed by the limited
resources of small handheld devices.

This uniformity among PDA platforms gives them much of the feel of a
single valley. While there is no binary compatibility between them, this is largely
transparent to the users, who perceive a single glacier running through a single
valley.

It is however a small glacier. While Linux is a rapidly growing phenomenon
it has not yet caught up with Microsoft in sheer volume of x86 software, whence
any port of Linux to another valley such as the valley of the PDAs lacks the
impressive volume of the software glacier riding the x86 valley.

The same is true of Windows CE. Even with Pocket PC 2002 to be released
a month from this writing, the body of software available for the Windows CE
platform is still miniscule compared to that for the x86.

Why not simply port the world’s x86 software to PDA valley?
The problem is with the question-begging “simply.” It is not simple to port

software much of which evolved from a more primitive time. (Fortunately for
Linux users, essentially the whole of Linux evolved under relatively enlightened
circumstances, greatly facilitating its reasonably successful port to PDA valley.)
It would take years to identify and calm down all the new bugs such a port would
introduce. Furthermore it wouldn’t fit into the limited confines of a PDA.



Now these confines are those of a 1996 desktop, and certainly there was
already a large glacier of software for the x86 which fitted comfortably into
those parameters back then. Why not just port that software?

The problem with this scenario is that software has gone places in the interim,
greatly encouraged and even stimulated by the rapidly expanding speed and
storage capacity of modern desktops and notebooks. To port 1996 software to
PDA valley would entail rolling back not just the excesses of modern software but
also half a decade of bug fixes and new features. A glacier cannot be selectively
torn into its good and bad halves. With the glitzy new accessories of today’s
software comes geologically recent porcine fat that has been allowed to develop
unchecked, along with geologically older relics of the software of two or more
decades ago. Liposuction is not an option with today’s software: the fat is frozen
into the glacier.

Nowhere has this descent into dissipation been more visible than with the
evolution of Windows ME and 2000 from their respective roots in Windows
3.1 and NT. (The emphasis is on “visible” here: this scenario has played out
elsewhere, just not as visibly.) Whereas 16 MB was adequate for RAM in 1994,
now 128 MB is the recommended level. Furthermore the time to boot up and
power down has increased markedly.

The one PDA resource that is not currently in short supply, at least for PDAs
with a PCMCIA slot such as HP-Compaq’s iPAQ, is the hard drive. Toshiba
and Kingston have been selling a 2 GB Type II (5 mm thick) PCMCIA hard
drive for several months, and Toshiba has just announced a 5 GB version. Here
the exponential growth of storage capacity has drawn well clear of the linear
production of the world’s software, which stands no chance now of ever catching
up (except perhaps for those very few individuals with a need and budget for
ten or more major desktop applications on a single PDA). However space on
a PDA for all one’s vacation movies, or Kmart’s complete assets and accounts
receivable database, will remain tight for the next two to four years.

Windows XP, aka NT 6.0, is giving signs of greater sensitivity to these con-
cerns. XP Embedded is not Windows CE but rather XP stripped for action
in tight quarters. And Microsoft distributes an impressive library of advice on
shortening XP boot time under its OnNow initiative. Unfortunately the appli-
cations a power XP user is likely to run are unlikely to show as much sensitivity
and shed their recently acquired layers of fat in the near future.

With these considerations in mind, the prospects for Windows CE/Pocket
PC look very good for 2002, and perhaps even 2003. But the exponential growth
of hardware is not going to stop then. We leave it to the reader to speculate on
the likely PDA hardware and software picture in 2004.

2 Quantum Planet

2.1 Quantum Computation

Quantum computation (QC) is a very important and currently hot theoretical
computer science topic.



The practical significance of QC is less clear, due to a gap of approximately
two orders of magnitude between the largest quantum module of any kind we
can build today and the smallest error-correcting modules currently known from
which arbitrarily large quantum computers can be easily manufactured. This
gap is presently closing so slowly that is impossible to predict today whether
technology improvements will accelerate the closing, or unanticipated obstacles
will emerge to slow it down or even stop it altogether on new fundamental
grounds that will earn some physicist, quite possibly even one not yet born, a
Nobel prize. If this gap turns out to be unclosable for any reason, fundamental
or technological, QC as currently envisaged will remain a theoretical study of
little more practical importance than recursion theory.

The prospect of effective QC is as remote as manned flight to distant planets.
The appropriate metaphorical location for QC then is not a city or even a distant
country but another planet altogether, suggesting the name Quantum Planet.

On the upper-bound side, there are depressingly few results in theoretical
QC that have any real significance at all. The most notable of these is P. Shor’s
extraordinary quantum polynomial-time factoring algorithm and its implications
for the security of number-theoretic cryptography [Sho97].

There has been some hope for quantum polynomial-time solutions to all
problems in NP. One approach to testing membership in an NP-complete set
is via an algorithm that converts any classical (deterministic or probabilistic)
algorithm for testing membership in any set into a faster quantum algorithm for
membership in that set. Grover has given a quadratic quantum speedup for any
such classical algorithm [Gro97].

On the lower-bound side, several people have shown that Grover’s speedup is
optimal. But all that shows about membership in an NP-complete set is that a
good quantum algorithm based on such an approach has to capitalize somehow
on the fact that the set is in NP. Any method that works for the more general
class of sets treatable by Grover’s algorithm cannot solve this problem on its
own.

We would all like to see QC turn out to be a major planet. For now it is
turning out to be just a minor asteroid. I see this as due to the great difficulty
people have been experiencing in getting other good QC results to compare with
Shor’s.

2.2 Quantum Engineering

There is a saying, be careful what you wish for, you may get it. While com-
puter scientists are eagerly pursuing quantum computation with its promise of
exponentially faster factoring, computer engineers are nervously anticipating a
different kind of impact of quantum mechanics on computation. At the current
rate of shrinkage, transistors can expect to reach atomic scale some time to-
wards the end of this century’s second decade, i.e. before 2020 AD. (So with
that timetable, as Quantum planets go, Quantum Engineering is Mars to Quan-
tum Computation’s Neptune.)

As that scale is approached the assumptions of classical mechanics and classi-
cal electromagnetism start to break down. Those assumptions depend on the law



of large numbers, which serves as a sort of information-theoretic shock-absorber
smoothing out the bumps of the quantum world. When each bit is encoded
in the state of a single electron, the behavior of that bit turns from classical
to quantum. Unlike their stable larger cousins, small bits are both fickle and
inscrutable.

Fickle. In the large, charge can leak off gradually but it does not change
dramatically (unless zapped by an energetic cosmic ray). In the small however,
electrons are fickle: an electron can change state dramatically with no external
encouragement. The random ticks of a Geiger counter, and the mechanism by
which a charged particle can tunnel through what classically would have been
an impenetrable electrostatic shield, are among the better known instances of
this random behavior.

Inscrutable. Large devices behave reasonably under observation. A measure-
ment may perturb the state of the device, but the information gleaned from the
measurement can then be used to restore the device to prior state. For small
devices this situation paradoxically reverses itself. Immediately after observing
the state of a sufficiently small device, one can say with confidence that it is
currently in the state it was observed to be in. What one cannot guarantee how-
ever is that the device was in that state before the measurement. The annoying
thing is that the measurement process causes the device to first change state at
random (albeit with a known contingent probability) and then to report not the
old state but the new! The old state is thereby lost and cannot be reconstructed
with any reasonable reliability. So while we have reliable reporting of current
state, we do not have reliable memory of prior state.

So while quantum computation focuses on the opportunities presented by
the strangeness of the quantum world, the focus of quantum engineering is on
its challenges. Whereas quantum computation promises an exponential speedup
for a few problems, quantum engineering promises to undermine the reliability
of computation.

Quantum engineering per se is by no means novel to electrical engineers. Var-
ious quantum effects have been taken advantage of over the years, such as Goto’s
tunnel diode [Got60], the Josephson junction [Jos62], and the quantum version of
the Hall effect [vKDP80]. However these devices achieve their reliability via the
law of large numbers, as with classical devices, while making quantum mechanics
work to the engineer’s advantage. Increasing bit density to the point where there
are as many bits as particles makes quantum mechanics the adversary, and as
such very much a novelty for electrical engineers.

3 Concurrency Frontier

Parallel computation is alive and well in cyberspace. With hundreds of millions
of computers already on the Internet and millions more joining them every day,
any two of which can communicate with each other, it is clear that cyberspace
is already a highly parallel universe.

It is however not a civilized universe. Concurrency has simply emerged as
a force of cybernature to be reckoned with. In that sense concurrency remains



very much a frontier territory, waiting to be brought under control so that it can
be more efficiently exploited.

Cyberspace is still very much a MIMD world, Multiple Instructions operating
on Multiple Data elements. It is clearly not a SIMD world, the science fiction
scenario of a single central intelligent agent controlling an army of distributed
agents.

Nevertheless some SIMD elements are starting to emerge, in which the In-
ternet’s computers act in concert in response to some stimulus. The Y2K threat
was supposed to be one of these, with all the computers in a given time zone
misbehaving at the instant the year rolled over to 2000 in that time zone.

The fact that most computers today in the size spectrum between notebooks
and desktops run Microsoft Windows has facilitated the development of com-
puter viruses and worms. A particularly virulent worm is the recent W32.Sircam,
which most computer users will by now have received, probably many times, as
a message beginning “I send you this file in order to have your advice.” If it
takes up residence on a host, this worm goes into virus mode under various
circumstances, one of which is the host’s date being October 16. In this mode
it deletes the C: drive and/or fills available space by indefinitely growing a file
in the Recycled directory. As of this writing (September) it remains to be seen
whether this instance of synchronicity will trigger a larger cyberquake than the
mere occurrence of the year 2000.

More constructive applications of the SIMD principle have yet to make any
substantial impact on the computing milieu. However as the shrinking of de-
vice geometries continues on down to the above-mentioned quantum level and
sequential computation becomes much harder to speed up, computer architects
will find themselves increasing the priority of massively parallel computation,
not for just a handful of CPUs but for thousands and even millions of devices
acting in concert.

Thinking Machines Corporation’s CM-2 computer was an ambitious SIMD
machine with up to 64K processors. Going by processor count, this is impressive
even today: then it yielded a local bus bandwidth of 40 GB/s, and with today’s
faster buses could be expected to move terabytes per second locally. However
main memory was 0.5 GB while hard drive storage ran to 10 GB, capacity that
today can be matched by any hobbyist for $150. The blazing speed was definitely
the thing.

SIMD shows up on a smaller scale in Intel’s 64-bit-parallel MMX architecture
and 128-bit SSE architecture, as well as in AMD’s 128-bit 3DNow architecture.
However this degree of parallelism yields only small incremental gains sufficient
to edge ahead of the competition in the ongoing speed wars.

As some of the more fundamental bottlenecks start showing up, evasive ma-
neuvers will become more necessary. A return to CM-2 scale parallelism and
higher is certainly one approach.

A major difficulty encountered at Thinking Machines was how to describe
the coordinated movement and transformation of data in such highly parallel
machines.



Rose and Steele [RS87] and Blelloch and Greiner [BG95] came up with some
novel programming language approaches to Thinking Machines’ problem. What
struck me about these approaches was how hard it is to separate ourselves from
the sequential modes of thought that pervade our perception of the universe. It
is as though we cannot see pure concurrency. If we were ever confronted with
it we simply would not recognize it as computation, since it would lack those
sequential characteristics that characterize certain behaviors for us as essentially
computational, in particular events laid out along a time line.

Programmers who would like to leave a useful legacy to their heirs need to
spend more time reflecting on the nature of concurrency, learning what it feels
like and how to control it. My own view of concurrency is that event structures
[NPW81,Win80,Win88] offer a good balance of abstractness and comprehensive-
ness in modeling concurrency.

The extension of event structures to Chu spaces, or couples as I have started
calling them [Pra95], simultaneously enriches the comprehensiveness while clean-
ing up the model to the point where it matches up to to Girard’s linear logic
[Gir87]. The match-up is uncannily accurate [DHPP99] given that linear logic
was not intended at all as a process algebra but as a structuring of Gentzen-style
proof theory.

There is another ostensibly altogether different approach to the essence of
concurrency, that of higher dimensional automata [Pra91,GJ92,FGR98,Gou00].
It is however possible to reconcile this approach with the Chu space approach
by working with couples over 3, that is, a three-letter alphabet for the basic
event states of before, during, and after [Pra00]. It is my belief that the three-
way combination of duality-based couples, geometry-based higher-dimensional
automata, and logic-based linear logic, provides a mathematically richer yet
simpler view of concurrency than any other approach.

The economic promise of Concurrency Frontier is its potential for further
extending the power of computers when the limits set by the speed of light and
quantum uncertainty bring the development of sequential computation to a halt.
I do not believe that the existing sequentiality-based views of concurrency permit
this extension, and that instead we need to start understanding the interaction
of complex systems in terms of the sorts of operations physicists use to combine
Hilbert spaces, in particular tensor product and direct sum. The counterparts
of these operations for concurrency are respectively orthocurrence A ⊗ B and
concurrence A‖B (also A ⊕ B), or tensor and plus as they are called in linear
logic. Closer study of this point of view will be well rewarded.
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