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Abstract

We view the Chu space interpretation of linear logic as an alternative
interpretation of the language of the Peirce calculus of binary relations.
Chu spaces amount to K-valued binary relations, which for K = 2n we
show generalize n-ary relational structures. We also exhibit a four-stage
unique factorization system for Chu transforms that illuminates their op-
eration.

1 Introduction

In 1860 A. De Morgan [DM60] introduced a calculus of binary relations equiv-
alent in expressive power to one whose formulas, written in today’s notation,
are inequalities a ≤ b between terms a, b, . . . built up from variables with the
operations of composition a; b, converse ă , and complement a−. In 1870 C.S.
Peirce [Pei33] extended De Morgan’s calculus with Boolean connectives a + b
and ab, Boolean constants 0 and 1, and an identity 1′ for composition. In 1895
E. Schröder devoted a book [Sch95] to the calculus, and further extended it
with the operations of reflexive transitive closure, a∗, and its De Morgan dual
a1. In full this should be called the De Morgan-Peirce-Schröder-Tarski-Jónsson
calculus, taking into account the further model-theoretic contributions of Tarski
[Tar41] and Jónsson [JT48, JT52]. However it may reasonably be argued that
Peirce did the bulk of the work of bringing the calculus to its modern form,
which we recognize by calling it simply the Peirce calculus.

In 1987 J.-Y. Girard [Gir87] introduced linear logic, whose language is strik-
ingly similar to that of the Peirce calculus. Liberally interpreted, linear logic
may be regarded as subsuming the Peirce calculus, relevance logic [Dun86],
quantales [Mul86], and related logics. But we feel this is too broad, since these
interpretations lack the bilinear tensor product characteristic of linear algebra,
present in the calculus to be described here. Moreover these nonconstructive
interpretations considerably predate linear logic, and are done an injustice by
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sweeping them all under the rubric of linear logic. At the same time the great
originality and strength of linear logic are undermined by presenting it as both
a nonconstructive and constructive logic, modeled by Girard with respectively
phase and coherence spaces. The former is not so novel, as some in the relevance
logic community have pointed out, and as others [BvN36] could also. Linear
logic is seen in its best light as the realization of the Curry-Howard isomorphism
for linear algebra, imaginatively moving logic into new but legitimate territory.

This paper focuses these distinctions more sharply by describing both the
Peirce calculus and linear logic as calculi having the same domain, namely binary
relations, and essentially the same constants and operations, but with strikingly
different interpretations. Furthermore the associated equational logic consists as
usual of equations for the former, but isomorphisms for the latter, characteristic
of the passage from nonconstructive to constructive logic. We further sharpen
this focus by eliminating all other distinctions as far as possible consistent with
the substantive details of the two calculi. Key to this passage is the replacement
of composition by tensor product, these being mathematics’ basic operations of
sequential and parallel composition respectively, which for some time now in our
own writing about models of behavior [Pra86] we have been calling respectively
concatenation, or sequence, and orthocurrence, or flow.

This juxtaposition of the calculi is achieved by translating Chu’s construction
of *-autonomous categories [Bar79], ordinarily given in the rarefied atmosphere
of commuting diagrams, into the same elementary set-theoretic terms in which
the Peirce calculus is customarily described. Although the Chu interpretation of
linear logic is conventionally understood via adjunctions in terms of (co)products
and tensor products, in our elementary account of this interpretation we shall
not even need to define the morphisms that go with the Chu objects, which we
leave to the second half of the paper.

Chu’s construction was originally studied by P. Chu as a Master’s thesis un-
der the supervision of M. Barr, who supplied the basic definition. More recently
Barr has commented that “At the time, the formal construction appeared not
to have substantial mathematical interest, but it appears to be the most in-
teresting part in the present context.” [Bar91]. Certainly within the past four
years or so Chu’s construction has turned into one of the more popular con-
structive interpretations of linear logic [Bar91, BG90, LS91], at least relative to
the still-small overall interest in the constructive aspects of linear logic.

There is still no consensus on the proper standard model for linear logic,
constructive or not. Our concern is with the algebra of Chu spaces. While we
feel this is what linear logic should be about, this is a decision we are happy to
leave to the linear logic community, Chu spaces being of mathematical interest
independently of their relevance to logic.

The second half of the paper treats Chu transforms, which lift the class of
Chu spaces to a category thereof. We obtain a four-stage unique factorization
property for Chu transforms that illuminates their role as structure-preserving
homomorphisms. And we show that n-ary relational structures and their ho-
momorphisms fully and concretely embed in the category of Chu spaces over
the set 2n. We will treat further aspects and applications of Chu spaces, of
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which there appear to be a good many even at this early stage, in sequels to
this paper.

2 The Peirce and Chu Calculi of Binary Rela-
tions

2.1 The Common Language

The Peirce calculus amounts to two copies of the logical connectives or, false,
and, true, not, and implies, distinguished as the logical and relative (relational)
forms of those connectives. To these Schröder [Sch95] added reflexive transitive
closure a0, nowadays a∗, and its De Morgan dual a1.

Combining the separate involutory logical and relative complements, a− and
ă , as a single involutory (a⊥⊥ = a) complement ă − = a⊥ [Pra92c, p.252]
weakens the Boolean structure of the Peirce calculus to that of a De Morgan
lattice [Dun86, p.184,p.193], since neither a+a⊥ = 1 nor aa⊥ = 0 hold of binary
relations. This seems in practice to leave the utility of the Peirce calculus largely
unimpaired, whose operations are as follows.

Peirce
Language:

Logical : a+b 0 ab 1
Relative : a +

˘
b 0′ a; b 1′

Nonmonotone : a⊥ a\b b/a a→b
Closure : a∗ a1

These are not independent, and a suitable basis is

Peirce
Basis:

a+b 0
a; b 1′

a⊥ a‡

where a‡ = a⊥∗, intermediate between a∗ and a1, to go with A† below.
We eliminate the remaining operations from consideration by reducing them

to mere abbreviations, definable in terms of the basic operations as follows.

Peirce
Abbreviations:

ab = (a⊥+b⊥)⊥ 1 = 0⊥

a +
˘

b = (b⊥; a⊥)⊥ 0′ = 1′⊥

a\b = (b⊥; a)⊥ = a⊥ +
˘

b a→b = a⊥ + b

b/a = (a; b⊥)⊥ = b +
˘

a⊥

a∗ = a⊥‡ a1 = a‡⊥

The language of the Chu calculus is that of linear logic, which we give as
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follows.1

Chu
Language:

Additives : A+B 0 A×B 1
Multiplicatives : A⊕B ⊥ A⊗B >
Nonmonotone : A⊥ A−◦B A⇒B
Exponentials : !A ?A

These are intended to correspond with the Peirce connectives tabulated in
the corresponding positions. The so-called residuals of the Peirce calculus, a\b
and b/a, which from the table of abbreviations can be seen to behave like impli-
cations, merge in linear logic into the one “linear implication” A−◦B. The impli-
cations have “currying” in common: a\(b\c) = (b; a)\c and a→(b→c) = (ab)→c
hold in the Peirce calculus, while A−◦(B−◦C) ∼= (A⊗B)−◦C and A⇒(B⇒C) ∼=
(A×B)⇒C will be seen to obtain for the Chu calculus. And Girard’s dual ex-
ponentials are loosely related to Schröder’s dual closures, ideally as a sort of
“cotransitive closure;” for simplicity we content ourselves below with the naive
interpretation of !A as the domain of A.

As with the Peirce calculus, these operations are not independent, and we
choose the following basis, matching our choice of basis for the Peirce calcu-
lus. For this purpose we take as primitive not !A itself but rather A† =!(A⊥),
explained below.

Chu
Basis:

A+B 0
A⊗B >
A⊥ A†

We can then similarly define the rest of the linear logic operations as follows.
Chu
Abbreviations:

A×B = (A⊥+B⊥)⊥ 1 = 0⊥

A⊕B = (B⊥⊗A⊥)⊥ ⊥ = >⊥

A−◦B = (B⊥⊗A)⊥ = A⊥⊕B A⇒B = !A−◦B
!A = A⊥† ?A = A†⊥

Except mainly for notational differences, the identification of a\b and b/a,
and the absence of * from a → b, we have in this way concentrated whatever
differences exist between the two calculi into the primitives, whose very different
interpretations we now give.

1This is the notation now followed by Barr and Seely, and close to their earlier usage [Bar91,
See89]. It replaces Girard’s idiosyncratic notation A⊕B, A&B, and A

...................................................
..............
.............................. B by respectively

A+B, A×B, and A⊕B, and interchanges his assignments of 1 and >. For vector spaces,
A⊕B conventionally denotes the biproduct A×B = A+B, but the Chu calculus distinguishes
× and +, freeing up ⊕ for this other use. Actually Girard’s notation goes quite tidily with
our choice of primitives, which become A⊕B, 0, A⊗B, 1. The trouble here is that coproduct
and final object have been + and 1 for many decades now, and one needs a better reason than
tidiness to make such a sweeping change. The tensor unit, > in Barr-Seely notation, is often
written I, but almost never 1.
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2.2 The Peirce and Chu Interpretations

The Peirce calculus is standardly interinterpreted for a, b, . . . ranging over sub-
sets of X2 where X is a fixed infinite but otherwise arbitrary set, namely as
follows.
Peirce
Interpretation:

x(a+b)y ⇔ xay ∨ xby x0y ⇔ false
x(a; b)z ⇔ ∃y[xay ∧ ybz] x1′y ⇔ x = y
x(a⊥)y ⇔ ¬(yax) a∗ = 1′ + a + a; a + . . .

We may pass from binary relations on a single fixed set X to binary relations
from a domain X to a codomain Y , which are permitted to vary from one relation
to the next, provided we make the operations partial. In this extension a+b is
defined only when a and b have the same domain and codomain, while a; b is
defined just when the codomain of a is the domain of b. Furthermore every set
X has its own identity 1′X , making a; b the composition no longer of a monoid
but of a category. Such structures have been called Schröder categories [Jón88].

The Chu calculus assumes such a variable domain and codomain at the
outset. We define its connectives, acting on binary relations A,B, . . . , Ai, . . . as
subsets of XA×YA, XB×YB , . . . , Xi×Yi, . . ., as follows.
Chu
Interpretation:

A+B = A·0 1 B·1 0 = d∅e
A⊗B = ( 1

x′∈XB

A·x′) 1 ( 1
x∈XA

x·B) > = d{0}e
x(A⊥)y ⇔ yax A† = dYAe

We write dXe for the membership relation from X to 2X , which we take
to be the Chu representation2 of the set X. We write A·z for the result of
renaming each x in the domain of A to (x, z) (without otherwise changing the
relation); z·A renames each x to (z, x). Lastly we define the natural join3

A = 1i Ai of a family Ai of relations thus. Define X =
⋃

i Xi, and define
Y = {y ∈

∏
i Yi | ∀ij∀x∈Xi∩Xj [xAiyi = xAjyj ]}. (So if the Xi’s are disjoint,

Y =
∏

i Yi.) Define A from X to Y such that for each x ∈ Xi, xAy = xAiyi,
well-defined in the event that any x appears more than once in this condition
(non-disjoint Xi’s) because of how we chose Y .

The Chu interpretation of 0 is the unique 0 × 1 relation, while > denotes
the 1 × 2 relation

(
0 1

)
. A† denotes the YA × 2YA relation yA†Z = y∈Z.

A⊥ is converse. A+B is the (XA+XB) × (YA×YB) relation (the 0 and 1 im-
plement the disjoint union XA+XB) satisfying (x, 0)(A+B)(y, y′) = xAy and

2This generalizes immediately to d(X,≤)e for any poset, by interpreting 2X to consist of
just the order ideals of X rather than all subsets. This is the usual open-set representation of
a poset as a topological space, a set then being just a discrete or unordered poset.

3The join operation comes from database theory. We take X to be the attributes or
columns of the relation. In database terms A ⊆ X×Y is an X-ary relation (i.e. X is the set
of attributes or columns) on the domain {0, 1} consisting of a set Y (the rows) of records,
each of which is an X-tuple of bits. This is the transpose of the usual view of A as an X×Y
matrix.
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(x, 1)(A+B)(y, y′) = xBy′, which we illustrate as follows.

(
1 0
0 1

)
+

(
1 0 1
0 1 0

)
=


1 0 1 0 1 0
0 1 0 1 0 1
1 1 0 0 1 1
0 0 1 1 0 0


The rows of A+B are those of A followed by those of B, in order, while

its columns are indexed in order by (y0, y
′
0), (y1, y

′
0), (y0, y

′
1), (y1, y

′
1), (y0, y

′
2),

(y1, y
′
2) where yi ∈ YA, y′i ∈ YB .

This leaves just A⊗B, whose properties we summarize as follows.

Theorem 1 A⊗B has domain XA×XB and codomain the set of all pairs of
functions (f : XA → YB , g : XB → YA) satisfying xAg(x′) = x′Bf(x), with
(x, x′)(A⊗B)(f, g) = xAg(x′) (= x′Bf(x)).

Proof: The domain of 1x′∈XB
A·x′ can be seen to be XA×XB , while by

disjointness of A·x′ as x′ varies, the codomain is
∏

x′∈XB
YA = Y XB

A , i.e. the
set of functions g : XB → YA. And the resulting relation A′ is defined by
(x, x′)A′g = xAg(x′). Likewise 1x∈XA

x·B has the same domain, XA × XB ,
has codomain Y XA

B , i.e. functions f : XA → YB , and is the relation B′ defined
by (x, x′)B′f = x′Bf(x). Hence the join of these two joins also has domain
XA×XB , while its codomain is that subset of the product Y XB

A ×Y XA

B consisting
of those pairs (f, g) such that for all (x, x′) in XA×XB , (x, x′)A′g = (x, x′)B′f ,
that is, xAg(x′) = x′Bf(x), this then being the value of (x, x′)(A⊗B)(f, g).

Corollary 2 The domain of A−◦B is the set of all pairs of functions (f : XA →
XB , g : YB → YA) such that for all x ∈ XA, y′ ∈ YB, f(x)By′ = xAg(y′) (cf.
the definition of Chu transform in the section of that name, also cf. continuous
functions of topological spaces where the Y ’s are taken to consist of open sets).

As a proposition, the first join repeats A “at XB different locations,” with
a fresh set of variables of A for each location, while the second repeats B at
locations XA, with a fresh set of variables of B for each location, such that
the two sets of repetitions use the same set XA × XB of variables. The join
of the two is the conjunction of these two conditions, expressing the notion of
bilinearity characteristic of tensor product. Although there is nothing “linear”
about binary relations, the “linear” in linear logic expresses the thought that
the essence of linear algebra resides in this property rather than in anything to
do with the structure of fields [LS91].

We may view the relation A from X to Y as denoting the Boolean proposition
P whose set of variables is X and each of whose assignments s : X → 2 of truth
values to those variables satisfies P just when there exists y ∈ Y such that
∀x ∈ X[s(x) = xAy]. The y’s in Y then correspond to satisfying assignments,
or equivalently to clauses of the DNF form of the proposition. In this view, join
is exactly the notion of conjunction of Boolean propositions.

We illustrate this definition of A⊗B with the following example.
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(
1 0
0 1

)
⊗

(
1 0 1
0 1 0

)
=


1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0


The rows of A⊗B in order are (x0, x

′
0), (x0, x

′
1), (x1, x

′
0) (x1, x

′
1). Its columns

in order are
({x0 7→y′0, x1 7→y′1}, {x′0 7→y0, x

′
1 7→y1}),

({x0 7→y′1, x1 7→y′0}, {x′0 7→y1, x
′
1 7→y0}),

({x0 7→y′2, x1 7→y′1}, {x′0 7→y0, x
′
1 7→y1}),

({x0 7→y′1, x1 7→y′2}, {x′0 7→y1, x
′
1 7→y0}),

these four being the only compatible pairs of (f, g)’s out of the 32 × 22 = 36
possibilities. For example the first column is indexed by the given (f : X →
Y ′, g : X ′ → Y ) specifying that the entry in the first row of that column should
be x0Ag(x′0) = x0Ay0 (= x′0Bf(x0) = x′0By′0) = 1.

These operations on relations are somewhat more intricate than those of the
Peirce calculus. The idea however is that one should not work directly with the
interpretation but rather indirectly with its logical properties, which is also the
idea behind the Peirce calculus. Since the respective logics are of comparable
complexity, the gains are potentially greater with Chu logic than with Peirce
logic (provided one never has to resort to the explicit interpretation), since
more complex machinery is being manipulated at no additional cost in logical
complexity. While more complex does not always mean more powerful, in this
case a small increase in complexity turns out to lead to a considerable increase
in power.

2.3 K-valued Relations

We now make a small generalization to the notion of binary relation that gives
a large increase in the power of the Chu calculus. We allow K-valued binary
relations where K is an arbitrary set. Thus instead of xAy either holding or
not, it has a value from K. More formally, A is a triple (X, Y, a) where X and
Y are sets and a : X×Y → K is a K-valued function.

We need consider only d−e and 1. We generalize dXe from membership of
elements of X in elements of 2X to application of elements of KX (i.e. functions
f : X → K) to elements of X.4 And the join operation immediately generalizes
from {0, 1}-valued to K-valued relations since nothing in the definition of join
depended on that special case.

2.4 Equational Laws

We have a+b = b+a for the Peirce calculus, and it is natural to expect this for
the Chu calculus as well. However on closer inspection we notice that each x in

4The generalization to posets d(X,≤)e is intended only for K = 2, though some analogous
notion might be possible for larger K, in particular for power sets K = 2n.
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the domain of A becomes (x, 0) in A+B but (x, 1) in B+A. We may however
claim the isomorphism A+B ∼= B+A, in which (x, 0) in A+B is matched up
with (x, 1) in B+A. This applies to the other laws of the Chu calculus as
well. (A is isomorphic to B when there exist bijections XA

∼= XB , YA
∼= YB

of their index sets making their corresponding entries equal.) The full list of
isomorphisms (and equalities where possible) we know to hold for extensional
T0 Chu spaces, those with no repeated rows or colums (discussed in more detail
in the paragraph following Definition 3 below), is as follows.

A+(B+C) ∼= (A+B)+C A+0 ∼= A A+B ∼= B+A
A⊗(B⊗C) ∼= (A⊗B)⊗C A⊗> ∼= A A⊗B ∼= B⊗A
A⊗(B+C) ∼= (A⊗B)+(A⊗C) A⊗0 ∼= 0 A⊥⊥ = A

Without attempting to be complete (though this should be pretty close to
the expressible consequences of the RA axioms [JT48, JT52]), the Peirce laws
include all these less a; b = b; a and (a + b)‡ = a‡; b‡ (spoiled by the noncommu-
tativity of composition), plus the Boolean properties expressible in the available
language, e.g. idempotence and distributivity over each other of ab and a + b,
along with a; ((a; b)⊥; a)⊥ = a; b, and all regular expressions involving * (those
not involving * being already covered).

From the Chu laws and the definitions of abbreviations we can derive for
example (A⊗B)−◦C = (C⊥⊗(A⊗B))⊥ ∼= ((C⊥⊗A)⊗B)⊥ = B−◦(C⊥⊗A)⊥ =
B−◦(A−◦C). We leave (A×B)⇒C ∼= A⇒(B⇒C) as an exercise. We are not
aware of any completeness results for the isomorphism theory of the Chu calcu-
lus.

An equivalent to (A+B)† ∼= A†⊗B† is !(A × B) ∼= !A⊗!B, but this uses
the nonprimitive ×, our first reason for taking A† as primitive rather than !A,
the contravariance of A† notwithstanding. This law just asserts the previously
noted fact that the codomain of a sum is the product of the codomains of the
arguments, the naturality of which is our second reason for preferring A† over
!A.5 Abstracting away A+B, we obtain the law dX×Y e ∼= dXe⊗dY e for sets X,
Y . This remains valid when X and Y are generalized to posets, these forming
a cartesian closed category. That is, to form the cartesian product of sets and
posets when represented as Chu spaces, form their tensor product in the Chu
calculus, not their direct product A×B which yields something different. The
product of join-semilattices, when these are represented as Chu spaces over 2
whose rows are closed under finite bitwise OR (union), is however not formed
by tensor product; in fact the tensor product of a meet-semilattice with a join-
semilattice is a distributive lattice (since tensor product works by conjoining
properties), details in a future paper.

5It seems plausible to us that both are needed, in that !A may well be more appropriately
interpreted as either the symmetric (boson) or antisymmetric (fermion) tensor algebra gener-
ated by A, as contemplated in recent unpublished work of Blute, Panangaden, and Seely on
“ Old Foundations for Linear Logic: Holomorphic Functions in Banach Spaces as Models of
Exponential Types,” concerning the Fock space interpretation of !A, and of Blute on “Mod-
elling linear logic with vector spaces,” a forthcoming talk at the Cornell workshop on linear
logic, June 1993. We hope to understand this issue better in the near future.
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Given that the linear logic primitives are all definable with d−e, 1, and A⊥,
it may be worth investigating taking these as an even simpler basis for linear
logic, suitably organized.

Note that A†, A††, A††† . . . is YA,KYA ,KKYA , . . ., in contrast to !!A = !A.

2.5 Historical Notes

In introducing linear logic, Girard proposed phase spaces and coherence spaces
[Gir87] as respectively nonconstructive and constructive interpretations, the dis-
tinction being whether each sequent Γ ` ∆ is considered to denote a truth value
or a set of proofs of ∆ from Γ. But when Girard presented his logic at a cat-
egory theory conference in Boulder in 1988, M. Barr recognized the suitability
for modeling linear logic of his *-autonomous categories in general and his stu-
dent P. Chu’s construction of such in particular [Bar79]. Chu spaces, as the
objects of Chu’s construction for the category of sets, seem to be a particularly
attractive constructive model of linear logic.

We have been using A+B and A⊗B in our concurrency work, starting with
[Pra86] where they are notated respectively A‖B, called concurrence (meaning
noninteractive asynchronous parallel composition) (p.47), and A×B, orthocur-
rence, meaning flow or mixing of one process through or in another (p.49, also
§3), an interactive form of parallel composition. Subsequently it was realized
[CCMP91, p.208] that A×B should have been tensor product A⊗B; the confu-
sion with A×B occurred because the earlier work was conducted in the category
Pos, which being cartesian closed identifies the two. The confusion was exposed
when the passage from ordered time to real time broke the A×B definition. By
the same token the Chu representation of the direct product of posets (conflict-
free schedules) is the tensor product of the Chu representations of those posets,
but this does not extend to schedules having conflicts and other forms of causal
structure. Our interpretations of concurrence and orthocurrence, which have
been evolving over the intervening years, appear to have been moving steadily
towards the Chu interpretation. It remains to connect up the Chu interpreta-
tion with the yet more general interpretations of [CCMP91], which we expect
to be only a matter of details.

With regard to orthocurrence as flow, e.g. of a sequence A of trains through a
sequence B of stations, the bilinearity expressed in the equation defining tensor
product corresponds to the notion that when we stand on the platform of any
station b ∈ XB we see the same sequence A of trains, and vice versa when we
watch the stations go by from any train a ∈ XA.

We have been using A⊥ only relatively recently [Pra92b, Pra92a], as the
basic link between schedules and automata, and as complementarity in quantum
mechanics [Pra93]. Automata express behavior as graphs with states as vertices
and events as edges; schedules dualize this by interchanging them, with A⊥

denoting the automaton form of the schedule A. The generalization of the
event spaces of [Pra92b, Pra92a] to the Chu spaces of this paper is anticipated
by the partial distributive lattices of [Pra93, §5], which are essentially Chu
spaces, whose role in this application we defer to a separate paper.
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3 Chu Spaces and Transforms

We now imbue a binary relation with a spatial character by taking its domain to
be its point set, and its codomain to be its degrees of freedom or states, reflected
in the following notation.

Definition 3 A Chu space A = (P, S, v) over a set K consists of a set P of
points, a set S of states, and a function v : P×S → K assigning a value v(p, s)
to each point p in each state s.

We associate with v : P×S → K the functions v− : P → (S → K) and
v− : S → (P → K) satisfying v−(p)(s) = v−(s)(p) = v(p, s). We abbreviate
v−(p) to vp, called the extension of p, and v−(s) to vs, the extension of s. We
think of vs as one of the permitted paintings of the underlying set P , with K
for our palette. Dually vp is a painting of S, understood as the varying values
of one point encountered as one traverses the “possibility space” of alternative
paintings of P . We write V ∗ = {vs | s ∈ S} for the set of extensions of states,

through which S
v−→ KP factors as S → V ∗ → KP . Dually P

v−→ KS factors
through the set V∗ = {vp | p ∈ P} of extensions of points as P → V∗ → KS .
When all states have distinct extensions, i.e. v− is injective (S ∼= V ∗), we call v
extensional (shorter and more mnemonic than Barr’s “right separated” [Bar91])
and say it has enough points (to distinguish states). (This situation is very
important, allowing us to interpret (P, S) for S ⊆ KP as a Chu space.) When
all points have distinct extensions (P ∼= V∗) we call A T0 (by analogy with the
topological property of that name), and say it has enough states (Barr: left
separated). Locales are the prototypical example of a nonextensional but T0

space [Vic89, p.61].
Logically speaking, points are necessary in the sense that they are necessarily

all present in the space at the one time. Dually, states are possible, in that the
space is in one state or another, like the possible worlds of a Kripke structure
(our conventional understanding of spaces does not permit us to imagine that
the whole space is in all states simultaneously).

More states mean more degrees of freedom, corresponding to less structure.
At one extreme the extensional space (P,KP ) contains all possible states and
hence has the vacuous structure of a set or discrete space, which we shall identify
with the set P itself. We view the omitted states, those in KP − V ∗, as the
atomic properties of the space, collectively constituting the theory or structure
of the space. At the other extreme the space (P, ∅) omits all states, which
we view as the inconsistent structure on P . A one-state space, S a singleton,
is “rigid,” every point having a uniquely determined or constant value. The
canonical rigid space is (K, {0}), which we denote ⊥ (not K, which a moment
ago we associated, in its capacity as a set, with the discrete space (K, KK)).

The dual of A = (P, S, v) is the state space A⊥ = (S, P, v )̆ where v (̆s, p) =
v(p, s). Duality interchanges points and states, and hence necessity and possi-
bility. This confers on duality one of the qualities of logical negation, another
being double negation, A⊥⊥ = A.
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We turn now to the notion of a transform of Chu spaces, foreshadowed in
Theorem 1.

Definition 4 A Chu transform (f, g) : (P, S, v) → (Q,T,w) consists of func-
tions f : P → Q, g : T → S satisfying v(p, gt) = w(fp, t) for all p ∈ P and
t ∈ T . Composition of (f ′, g′) : (Q,T,w) → (R,U, X) with (f, g) : (P, S, v) →
(Q, T,w) is defined by (f ′, g′)(f, g) = (f ′f, gg′), satisfying v(p, gg′u) = w(fp, g′u) =
x(f ′fp, u) and hence a Chu transform. Associativity is inherited from that of
function composition. The identity transform on (P, S, v) is the pair (1P , 1S)
of identity functions on P, S respectively. We abbreviate (f, g) : (P, S, v) →
(Q, T,w) to f : A → B when unambiguous.

It is easy to see from the explanation of A⊗B in the previous section that
defining A−◦B to be (A⊗B⊥)⊥ makes it the Chu space whose points are the
linear transformations from A to B.

We denote by Chu(K) the category of Chu spaces and their Chu transforms
so composed.6 A+B and A×B as defined for the Chu calculus are respectively
coproduct and product in this category, which A−◦B is the internal hom and
A⊗B its associated tensor product.

Taking the duals A⊥ = (S, P, v )̆ and B⊥ = (T,Q,w )̆ of the domain and
codomain of (f, g) : (P, S, v) → (Q,T,w) necessarily entails replacing (f, g) by
(g, f). To construe this as a Chu transform we must then treat it as (g, f) :
(T,Q,w )̆ → (S, P, v )̆. That is, duality reverses the direction of transforms,
much as transposing a matrix reverses the direction of the linear transformation
it defines.

As mentioned in less detail earlier, Chu spaces first arose as the objects of the
self-dual symmetric closed monoidal category produced by Chu’s construction
from a symmetric closed monoidal category V, for the case V = Set [Bar79].
Lafont and Streicher have more recently called the objects of this case games
[LS91]. They observed that vector spaces over a field K may be realized as games
over the underlying set of K, and that topological spaces may be realized as
games over 2. We observe that Chu transforms of Chu posets d(X,≤)e realize
exactly monotone functions of posets, which generalizes to a comprehensive
analysis of Stone duality viewed as a continuum from sets to complete atomic
Boolean algebras, to be treated elsewhere.

4 Unique Factorization of Chu Transforms

In this section we develop a factorization yielding a useful insight into what
the Chu transform accomplishes, namely the proper management of states or
degrees of freedom as the complement of structure, that which is preserved by
transformations.

6This definition of Chu(K) takes place in the category Set of sets and functions, with K
as a distinguished set. By generalizing Set to any symmetric closed monoidal category V and
K to any object K of V, we may correspondingly generalize the above definition to the doubly
parametrized category Chu(V, K) defined by Barr and Chu [Bar79].
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Any function X
f→ Z factors uniquely as X

f1→ X/ ker f
f2→ Y

f3→ Z, where
f1 is the quotient of X induced by the kernel of f (a surjection), f2 is an
isomorphism, and Y is a subset of Z. That is, any f : X → Z may be viewed
in exactly one way as transforming X by identifying certain of its elements,
renaming the resulting elements to certain elements of Z to form the image
f(X), and adjoining Z−f(X). The uniqueness of this factorization depends on
the identifications being performed before the additions, since there are many
ways of adding multiple copies of Z − f(X) and then identifying them, indeed
a proper class of such ways.

Applying this factorization to each of the two components of a Chu transform
(f, g) yields (f3f2f1, g3g2g1). But this now has many possible factorizations,
namely the

(
(6
3)

)
= 20 possible merges of (f3, 1)(f2, 1)(f1, 1) with (1, g1)(1, g2)(1, g3).

Each of the two functions (f, g) of a Chu transform factor in this way, with
the contravariance of g interchanging the roles of epi and mono for its factors.

We show here a more elaborate unique factorization for Chu transforms
(f, g), namely the process described informally as, omit states, then in par-
allel duplicate states and identify points, and finally add points. This draws
distinctions finer than those made by epis and monos, which view both state
duplication and point addition as monos, and the other two as both epis. Lack-
ing more abstract terms for these four notions, we adopt our informal names
as official and call this the ODIA (oh-dear) factorization for Chu(K), properly
written O; (D + I);A.

We accomplish this factorization in two steps. We refer to the OD half,
omission then deletion of states, as an erasure, and the IA half, identification
then addition of points, as a move. We prove unique factorization into an erasure
followed by a move. The rest of the ODIA factorization is then an immediate
corollary of the surjection-injection factorizations of f and g individually, about
which we need say nothing further.

Definition 5 An erasure is a Chu transform of the form (1, g); we let E denote
the class of all erasures of Chu(K). Dually a move is of the form (f, 1), forming
the class M.7

An erasure (1, g) : (P, S, v) → (P, T, h) modifies only states: every state
t ∈ T receives its extension from state g(t) ∈ S. Hence H∗ ⊆ V ∗, whence
any state omitted from A = (P, S, v) remains omitted from H = (P, T, h), i.e.
erasure preserves structure. (Thus we may identify the omitted states, namely
KP − V ∗, with the structure of the Chu space (P, S, v).) A state of A may be
duplicated in H, but we distinguish duplication of existing states from creation
of new states.

A move (f, 1) : (P, T, h) → (Q, T,w) modifies only points, mapping each
point p ∈ P to a point f(p) ∈ Q having the same extension as p. Since the

7Thus E ∩ M consists of the identities of Chu(K); when it is necessary that it consist
of the isomorphisms, here bijections, it suffices to close E and M under composition with
bijections. Normally E and M consist of respectively epis and monics, our little pun receives
some legitimacy from the observation that (1, g) is an epi of Chu(K), and (f, 1) a monic, just
when both f and g are injective.
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image f(H) of a move “receives” its states from H, states are neither created
nor destroyed in f(H). The “shape” of a state changes concomitantly with that
of P under f , but the values of points of P in a given state are not changed
as they move to their new locations in Q, all necessary changes in value having
been previously accomplished by the erasure.

Bear in mind that the transform f : A → B maps A into B, and that the
noncreation of states refers only to A thus transformed, not to the whole target.
While the image f( |R) of the linear transformation f : |R → |R2 has at most
the degrees of freedom of |R, |R2 has visibly more degrees of freedom than |R.

Theorem 6 Every transform factors uniquely and functorially as the composi-
tion me of a move m with an erasure e.

Proof: Uniqueness is immediate: (f, g) : (P, S, v) → (Q,T,w) must factorize
as (f, 1)(1, g). For existence define the intermediate object (P, T, h) as h(p, t) =
v(p, gt), making (1, g) a transform. But v(p, gt) = w(fp, t), whence (f, 1) is also
a transform.

Functoriality means that any transform of h to h′, as a commuting square
with sides u, w (Figure 1(a)), factors uniquely as the composition of transforms
m to m′ with e to e′ (Figure 1(b)), mediated by a unique transform v.

A
h−→ C

u
y yw

A′ h′−→C ′

(a)

A
e−→ B

e′−→ C
u
y yv

yw

A′ m−→ B′ m′

−→C ′

(b)

A
e−→ B

u
y yv

A′ m−→B′

(c)

A
e−→ B

eu

y yev

A′′ i−→B′′

mu

y ymv

A′ m−→ B′

(d)

Figure 1

This can be seen to be equivalent to the requirement that all squares of
the form shown in Figure 1(c) have a unique diagonal fill-in from B to A′.
This is seen by factoring u and v as mueu and mvev respectively as in Figure
1(d). Each of the equal sides AA′B′, ABB′ of the commuting square has now
been EM-factored, as mmueu and mveve respectively. But EM factorization
is unique (up to a bijection if we have closed E and M under composition with
bijections), yielding the identity (or a bijection) i from A′′ to B′′. The sides
ABB′, AA′B of the square determine mvieu : A → B′, hence i : A′′ → B′′,
hence i−1 : B′′ → A′′, making the diagonal fill-in mui−1ev : B → A′.

Returning to the notion of S as the possible states of (P, S, v), the geometric
significance of this unique factorization is that every transform can be viewed
as taking place in two stages. First the theory of the space being transformed
is strengthened in preparation for the coming move, by erasing suitable states
(and permuting and duplicating some of the surviving states), without however
moving the points themselves, and without introducing any new states. Then
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the points are moved in a way that does not modify their assignments in each
of the new states.

The EM factorization thus separates transforms into a purely structure-
preserving part followed by a purely point-moving part. This constitutes the
dynamic confirmation of our previous static analysis of P and S as the sets of
respectively necessary points and possible states. We may think of the omitted
states dually as necessary facts. From this perspective, transforms preserve that
which is necessary, namely points and facts.

It should be clear from this analysis of the factorization of (f, g) through H
that f , g, and h are by no means independent. Indeed either of f or g suffice
to determine h. Further, if A is extensional then h (and hence f) determines g,
while if B is T0, h (and hence g) determines f . It follows that our convention
of abbreviating (f, g) to f : A → B is unambiguous when A is extensional.

5 Power of Chu Spaces

We have already mentioned Lafont and Streicher’s observation [LS91, p.45] that
the category of vector spaces over a field K is a full subcategory of Chu(K), and
that the category Top of topological spaces is a full subcategory of Chu(2). We
improve on these observations by showing that every n-ary relational structure
is realizable as an object of Chu(2n), giving a very strong sense in which Chu
spaces form a universal category.

The earliest instance of a universal category is due to Trnková [Trn66]. The
universality of the category of semigroups was established by Hedrĺin and Lam-
bek [HL69]. These and a number of other such embeddings all took the form
of a full and faithful functor that did not preserve underlying sets, for example
representing some finite objects as infinite ones. The advantages accruing from
the unifying framework of semigroups are then more than offset by the radically
different discipline required to do mathematics in the absence of the expected
underlying set.

Pultr and Trnková [PT80] call the kind of concrete full embedding we aim
for here a realization: the functor F : C → D realizes object A of C when
not only is F full and faithful, but UD(F (A)) = UC(A), where UC : C → Set,
UD : D → Set are the respective underlying-set functors. Pultr and Trnková
give hardly any realizations, concentrating on weaker forms of full embeddings.
In contrast the embedding here is a realization, and a simple one at that.

Here by “A represented as B” we shall mean throughout that the category
CA of all A’s fully embeds8 in the category CB of all B’s.

Definition 7 For any ordinal n, an n-ary relational structure (X, ρ) consists
of a set X, the carrier, and an n-ary relation ρ ⊆ Xn on X. A homomorphism
f : (X, ρ) → (Y, σ) between two such structures is a function f : X → Y between

8An embedding is a faithful functor F : CA → CB , i.e. for distinct morphisms f 6= g
of CA, F (f) 6= F (g), and is full when for all pairs a, b of objects of CA and all morphisms
g : F (a) → F (b) of CB , there exists f : a → b in CA such that g = F (f).
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their underlying sets for which fρ ⊆ σ. Here fρ denotes {fa | a ∈ ρ}, where a
denotes (a0, . . . , an−1) and fa denotes (fa0, . . . , fan−1). We denote by Strn the
category formed by the n-ary relational structures and their homomorphisms.

It suffices to treat structures with a single carrier and relation, since k carriers
can be combined as their disjoint union, kept track of with k unary relations
(dlog2 ke is enough information-theoretically, but not enough to ensure that
homomorphisms respect type). Multiple nonempty relations on a set can be
joined to form a single relation on the same set, of arity at most the sum of the
arities of its constituent relations. For algebras, structures all of whose (n + 1)-
ary relations are n-ary operations, the join may share the input coordinates of
the operations, reducing the total arity to the maximum of the input arities plus
the number of operations (including constants).

This notion of homomorphism is standard in the strong sense that any class
of n-ary relational structures and their homomorphisms constitutes a full sub-
category of Strn. Familiar examples of such categories and their arities include
those of semigroups (3), monoids (4), groups (3), rings (4), rings with a mul-
tiplicative unit (5), fields (4), lattices (3), lattices with top and bottom (5),
Boolean algebras (3), vector spaces (4),9 directed graphs or binary relations
(2), multigraphs (4), posets (2), and categories (4).

Many of these numbers benefit from group structure, for which homomor-
phisms preserve inverses and identities even when these operations are not given
explicitly as part of the relation. Units of monoids, including tops and bottoms
of lattices, are not so fortunate and each requires its own unary relation in order
to be recognized and preserved by homomorphisms.

The universality achieved here is of a different kind from that achieved by
say ZF set theory. Externally a model of ZF is a single object of Str2 of some
cardinality, with membership as its only relation, “internally” coding objects
larger than any fixed cardinal including its own. Our universality has no sepa-
rate notion of an internal world; instead we code our objects purely externally.

We now define the promised functor F : Strn → Chu(2n), namely in defi-
nitions 9 and 13, and prove that it is full, faithful, and concrete.

The complementarity of constraints and states indicates ρ and ρ as the ap-
propriate respective sources of each. We shall define a state to be essentially
a subset of ρ, with however a small but essential refinement. The following
lemma obtains from the standard constraint-based definition of homomorphism
an equivalent state-based characterization.

Lemma 8 fρ ⊆ σ ⇔ f−1σ ⊆ ρ. Here ρ = An − ρ and σ = Bn − σ.

Proof:

fρ ⊆ σ ⇔ ρ ⊆ f−1σ (Definition of f−1)
⇔ f−1σ ⊆ ρ (Complement)
⇔ f−1σ ⊆ ρ (f−1 preserves Boolean operations)

9Treat as partial rings, with uv defined just when u is on a specified axis. This works
equally well for homogeneous vector spaces (all over the one field) and heterogeneous, the
only nontrivial field endomorphisms being automorphisms.
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Definition 9 (F on objects). Let 2n denote the set of n-bit bit vectors, that is,
n-tuples over 2. We define the object part of the functor F : Strn → Chu(2n)
as taking the n-ary relational structure (A, ρ) to the Chu space (A,R, v) defined
as follows. Take R to consist of those n-tuples r ∈ (2A)n of subsets of A for
which

∏
i ri ⊆ ρ. Let v : A×R → 2n satisfy v(a, r)i = 1 if a∈ri, and 0 otherwise.

It might seem that R could be represented more naturally and conveniently
as just the power set of ρ. But observe that a state r as defined here can be
recovered from the set

∏
i ri of its n-tuples just when no component ri is empty.

The definition of f−1 : S → R in Definition 13 below requires each ri to be
available independently even when some are empty.

The crucial test of whether (A,R, v) faithfully represents (A, ρ) is whether
ρ can be recovered from (A,R). We show this constructively as follows.

Lemma 10 For all a ∈ An, a ∈ ρ ⇔ ∀r∈R ∃i<n : v(ai, r)i = 0.

Proof:

a ∈ ρ ⇔ ∀r∈R : a 6∈
∏

i ri (Construction of R)
⇔ ∀r∈R ∃i<n : ai 6∈ ri (Definition of product)
⇔ ∀r∈R ∃i<n : v(ai, r)i = 0 (Construction of v)

Corollary 11 F is injective on objects.

Lemma 12 (A,R, v) is extensional.

Proof: If vr = vr′ then ∀i[a ∈ ri ⇔ a ∈ r′i], so ∀i : ri = r′i, whence r = r′.
If we regard R as a subset not of (2A)n but of the isomorphic (2n)A, this

makes Lemma 12 clear by qualifying (A,R) as an extensional object of Chu(2n).
We may view (A,R) for arbitrary R ⊆ (2n)A as a generalization of (A, ρ), which
in the case n = 1 reduces to ordinary binary relations, which as previously noted
capture topological spaces along with other similar structures such as complete
lattices etc.

Definition 13 (F on maps). Let f : (A, ρ) → (B, σ) be a homomorphism,
with F (A, ρ) = (A,R, v) and F (B, σ) = (B,S, w) as per Definition 9. Define
f−1 : (2n)B → (2n)A to take g : B → 2n to gf : A → 2n. Now for all s ∈ S,∏

i si ⊆ σ by construction of S. Hence
∏

i f−1si ⊆ ρ, by Lemma 8. Thus
f−1s ∈ R by construction of R. We may therefore define F (f) as (f, f−1)
where f−1 : S → R.

Theorem 14 The functor F of Definitions 9 and 13 is concrete, faithful, and
full.
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Proof: F is concrete by construction, and a fortiori faithful.
For fullness consider any Chu transform (f, g) : F (A, ρ) → F (B, σ) where

F (A, ρ) = (A,R) and F (B, σ) = (B,S). If a ∈ ρ, then for every s ∈ S there
exists i < n such that

v(ai, gs)i = 0 (Lemma 10 with r = gs),
whence w(fai, s)i = 0 ((f, g) is a Chu transform).

Hence by Lemma 10, fa ∈ σ, establishing that f is a homomorphism. And since
(A,R, v) is extensional, by Lemma 12, g is determined by f . Hence F (f) =
(f, g).

Remarks. (i) Where size matters, R need contain only those states repre-
sentable as the inverse image of a tuple of singletons. These can be characterized
explicitly as those states r with the property that either ri = rj or ri ∩ rj = ∅
for all i, j < n, observing that f−1 preserves this property. (ii) Lemma 12 is
an inessential bonus. Had Definition 9 produced a nonextensional (A,R, v), we
would simply have enforced extensionality, needed for fullness, by identifying
those states having the same extension.

Acknowledgements. I am deeply indebted to Michael Barr for many gen-
erously shared insights about Chu spaces, including the suggestion that semi-
groups might be realizable in Chu(23) (in the sense of a concrete full embedding
[PT80, p.49]).
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