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a given level of abstraction are replaced by more complicated processes on a lower level. This is done in
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form. Instead, we define this operator on several causality based, event oriented models, taking into
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1 Introduction

Our aim is to investigate methods to design concurrent systems in a modular way, in
order to achieve higher reliability with respect to functional correctness. In the context
of this research, we introduce an operator for refinement of actions. This section serves
as a motivation for our choices. In Part I of this paper the refinement operator will
be defined on various causality based, event oriented models. In Part II we investigate
the interplay between refinement and abstraction in terms of equivalence notions for
concurrent systems. Related work is discussed in the concluding section.

1.1 Refinement of actions

We consider the design of concurrent systems in the framework of approaches where the
basic building blocks are the actions which may occur in a system. By an action we
understand here any activity which is considered as a conceptual entity on a chosen level
of abstraction. This allows the representation of systems in a hierarchical way, changing
the level of abstraction by interpreting actions on a higher level by more complicated
processes on a lower level. We refer to such a change in the level of abstraction as
refinement of actions. This approach is in the line of stepwise refinement, a methodology
in program development first named and described in [Wirth]: a “program is gradually
developed in a sequence of refinement steps. In each step, one or several instructions
of the given program are decomposed into more detailed instructions.” More recently
the keyword “refinement” has been used to indicate any transformation of a program or
system that can be justified because the transformed program is related to the original
through an implementation relation. Suitable implementation relations are preorders
such as trace inclusion, various kinds of simulation or any of the semantic equivalences
mentioned in this paper. Many papers in this tradition can be found in [BRR]. In order
to distinguish our notion of refinement, which is more in the spirit of [Wirth], from these
latter approaches, we adopt the terminology action refinement.

Example 1.1

Consider the design of a sender, repeatedly reading data and sending them to a
certain receiver. A first description of this system is given by the Petri net shown

below.!
’®—’ read data —»O_, send data )

to receiver

! An introduction to Petri nets and the way they model concurrent systems can be found in [Reisig];
the refinement mechanism used in this example has been treated formally in [GG-c].



On a slightly less abstract description level the action “send data to receiver” might
turn out to consist of two parts “prepare sending” and “carry out sending”, to be
executed sequentially. This corresponds to the following refined Petri net.

: prepare carry out : ]
[‘®—> read data —>O—:> ~() > Y :

sending / sending

Refinement by a sequential process

Then the action “prepare sending” may be decomposed in two independent activities
“prepare data for transmission” and “get permission to send”, to be executed on
different processors.

prepare data
for transmission

®—> read data sending

get permission
! to send

: ™| carry out

Refinement by a parallel process

Furthermore it may turn out that there are two alternative channels for sending
messages. Each time the sender should choose one of them to send a message,
perhaps depending on which one is available at the moment.

O prepare data N\ send on
/ for transmission / ! channel 1
@—> read data \ |
get permission N | | send on
O to send / ! channel 2

Refinement by alternative actions

On an even more concrete level of abstraction, channel 2 may happen to be rather
unreliable, and getting a message at the other end requires the use of a communica-
tion protocol. On the other hand, channel 1 may be found to be reliable, and does
not need such a precaution.
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Refinement by an infinite process

Here we see that it may happen that the process we have substituted for the action
“send on channel 2” does not terminate. It may happen that the attempt of sending
data always fails and this prevents the system of reaching its initial state again.

In this paper, action refinement will be modelled as an operator, taking as arguments
a system description on a given level of abstraction and an interpretation of (some of)
the actions on this level by more complicated processes on a lower level, and yielding a
system description on the lower level. This will be done in such a way that the behaviour
of the refined system may be inferred compositionally from the behaviour of the original
system and from the behaviour of the processes substituted for actions. It should be
noted that in our framework (as is common in many action oriented approaches) actions
are semantically treated as uninterpreted activities. Thus the “behaviour of the original
system” does not contain any information about the nature of actions that are to be
refined. Such information is added during action refinement. As a consequence there is
no such concept as the “correctness” of a refinement. This may indicate a difference with
other approaches (cf. Conclusion).

As illustrated above, we want to allow to substitute rather general kinds of behaviours
for actions. We even allow the refinement of an action by an infinite behaviour. This
contradicts a common assumption that an action takes only a finite amount of time. It
means that when regarding a sequential composition a;b we can not be sure that b occurs
under all circumstances; it can only occur if the action a really terminates successfully.

The only type of refinement that we will not allow is forgetful refinement, “forgetting”
actions by replacing them with the empty process.

Example 1.2

Continuing Example 1.1 we could imagine that getting permission to send turns out
to be unnecessary and can be skipped. Hence we replace the corresponding action
by the empty behaviour, thus obtaining



O_> prepare data connect with —>O—> send data j

for transmission channel 1

read data

connect with O
\‘O nnect with | 1 o cond data
time-out <_O

\_ acknowledge-
ment

Forgetful refinement

Even though this operation seems natural when applied as in the above example, it
may cause drastic changes in the possible behaviours of a system. It may happen that
executing a certain action a prevents another action from happening. This property
should be preserved under refinement of a. However, if a is completely removed, it cannot
prevent anything any more, which can remove a deadlock possibility from the system.

Example 1.3

Consider the Petri net

=2
I

oR=NeNc
O & O @

and the net obtained when refining a by the empty behaviour:

=
Il
O._
O-RFO--®

In the first net it is possible to execute a and ¢, and by this reach a state where d is
not possible. If we try to deduce the behaviour after refinement from the behaviour



of N, we would expect that the refined system may reach a state, by executing just
¢, where d is not possible. However, this is not the case for N'. After ¢, but before
b, it is always possible to execute d in N'.

Thus “forgetful” refinements can not be explained by a change in the level of abstraction
at which systems are regarded. For this reason they will not be considered here. Other
methods to avoid this problem will be reviewed in the conclusion.

1.2 Modelling concurrent systems

In order to define a suitable refinement operator, one first has to select a model for the
description of concurrent systems. The models of concurrency found in the literature can
roughly be distinguished in two kinds: those in which the independent execution of two
processes is modelled by specifying the possible interleavings of their (atomic) actions,
and those in which the causal relations between the actions of a system are represented
explicitly. The interleaving based models were devised to describe systems built from
actions that are assumed to be instantaneous or indivisible. Nevertheless, one might be
tempted to use them also for the description of systems built from actions that may have
a duration or structure. However, the following example shows that it is not possible
to define the desired compositional refinement operator on such models of concurrency
without imposing some restrictions (as already observed in [Pratt-a] and [CDP]).

Example 1.4

The systems P = a|b, executing the actions a and b independently, and QQ = a;b+b;a,
executing either the sequence ab or the sequence ba, cannot be distinguished in
interleaving models; they are represented, for example, by the same tree in the
model of synchronisation trees [Milner-a].

tree (P) = tree (Q) = b

After refining a into the sequential composition of a; and as, thereby obtaining the
systems

P' = (a1;a9) | b and Q' = (a1;a2);b + b;(ar;a9),
their tree representations are different:
aq b aq b
tree (P')= a2/ \b \a1 . tree (Q') = a2 a

b o | Qo b [(15)



The two systems are even non-equivalent, according to any reasonable semantic
equivalence, since only P’ can perform the sequence of actions a;bas. Hence, in the
model of synchronisation trees the semantic representation of the refined systems is
not derivable from the semantic representation of the original systems. The same
holds for other interleaving models.

There are still ways left to define a compositional refinement operator on interleaving
based models. First of all one could restrict the kind of refinements that are allowed
in such a way that situations as in Example 1.4 cannot occur. Of course this would
exclude the possibility of refining a in ai;a; in either P or @@ (or both). This idea is
investigated in [CGG]|. Secondly, one could refrain from dealing with both P and @ by
restricting the class of systems under consideration. Thirdly, one could consider a different
notion of action refinement such that either ref(P) # P’ or ref(Q) # . Finally, one
could find reasons to consider P’ and )" equivalent after all. Approaches based on these
possibilities will be discussed in the conclusion. In this paper we chose to allow general
systems, including P and (), and rather general refinements, including at least the one
of Example 1.4. Furthermore, our understanding of how action refinement should work
out is exactly captured by Example 1.4, and we have in general no reasons to identify P’
and @'. Hence interleaving based models are unsuited for our approach. On the other
hand we will show that the desired compositional refinement operator can be defined on
causality based models of concurrency without imposing such restrictions.

Example 1.5

The systems P = a|b and @ = a;b + b;a from Example 1.4 may be represented by
the Petri nets

B
o O

The Petri net representations of the refined systems P’ and @', where a is replaced
by the sequence ajas, are then derivable by transition refinement from the nets for
the original systems. We obtain



and
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Since action refinement entails general sequential composition (namely P;@ is the result
of refining a into P and b into @ in a;b), we do not escape from the problems usually
associated with the latter. There are basically two approaches to defining a sequential
composition-like operator (and as a consequence also two approaches in defining a refine-
ment operator). One idea is that the second component starts when the first component
cannot do any further actions. This approach is for instance taken in [Moller|. The other
idea is that systems end either in a state of deadlock (this arises for instance if all compo-
nents in a parallel composition are waiting for an opportunity to synchronise with another
component) or by terminating successfully. Now the second component only starts when
the first component terminates successfully. This approach is taken for instance in the
system description language ACP [BK, BW]|. We refer to an operator based on the first
idea as a sequencing operator, and to one based on the second idea as a sequential compo-
sition operator. The difference between the two operators is illustrated by the following
example.

Example 1.6

We consider a variant of the classical example of the dining philosophers who are
seated around a round table with one fork between every two of them. In our
case, the philosophers do not think, and eat only once. Each philosopher takes first
one of the two forks next to his plate, then the other one, and subsequently eats his
spaghetti with the two forks. If any of the forks is missing (because it was taken first
by his neighbour) he just waits until it becomes available again. After the meal,
both forks are returned where they were found. The system P can be described
as the parallel composition of the philosophers and the forks with an appropriate
synchronization mechanism. Let () be the system consisting of a waiter, who cleans
up the table afterwards. In the sequential composition of P and (), the waiter
starts his work only when all philosophers finished eating. The situation were all
philosophers have taken their right-hand fork leads to a state of deadlock, in which
the waiter remains passive. When P and () are sequenced however, the waiter must
be equipped with a mechanism for deadlock detection, and starts his work when he
is sure that no philosopher will eat any more.



Here we have chosen the sequential composition approach, and define the refinement
operator accordingly. Thus our semantic models must be able to distinguish between
deadlock and successful termination.

In this paper we have chosen event structures as our model of concurrency. They feature
explicit representations of causal links between action occurrences, thereby also repre-
senting independence of activities. Additionally, they represent the choice structure of
systems; they show where decisions between alternative courses of action are taken. We
will consider several types of event structures, as will be discussed in the beginning of
Part I. Traditionally, in event structures deadlock and successful termination are not
distinguished. We extend the event structure models accordingly where necessary. Ad-
ditionally, we consider configuration structures, which can be regarded as more abstract
representations of event structures.

Examples 1.1 and 1.5 may have suggested Petri nets as an appropriate model of concur-
rency for the definition of a refinement operator. They have appealing graphical repre-
sentations and, unlike for event structures, many infinite behaviours may be represented
as finite net structures together with the “token game”. However, the formal definition
of a general refinement operator [GG-¢, JM, BDE] is rather complicated and gives rise
to even more complicated proofs. In part this is due to the bookkeeping of places, which
play a secondary role in an action-oriented approach. Therefore in the present paper we
have chosen event structures instead. Although Petri nets are less suitable than event
structures for the formal definition and analysis of the refinement operator, they may be
preferred for representing examples of systems before and after refinement (cf. the final
net of Example 1.1).

Example 1.4 may suggest term models for the definition of a refinement operator. Concur-
rent systems are then represented by process expressions built from action constants by
means of operators for alternative, sequential and parallel composition, etc., and refine-
ment takes place by replacement of actions by compound terms. Such notions of syntactic
action refinement are pursued in [Aceto-a, AH-a/b, NEL, GGRJ. In this context, we con-
sider it important to work with a parallel composition operator with synchronisation,
which involves the study of the interaction between action refinement and the chosen syn-
chronisation mechanism [Aceto-a, AH-b, GGR]. Since we consider this to be outside the
scope of the present paper, we prefer to deal with semantic action refinement. Another
reason to do so is that some of the equivalence notions that we will study are defined
on term models only through an interpretation of terms in a domain of e.g. Petri nets or
event structures. So for our study of equivalence notions it is then a more direct approach
to define action refinement in such a semantic domain as well.

Approaches to action refinement in Petri nets, term models and other models of concur-
rency will be discussed in the conclusion.

Even though we do not employ process algebraic terms formally in this paper, we will use
them in examples, as in Example 1.4. We use ; for sequential composition, + for choice, |
for independent parallel composition and || 4 for parallel composition with synchronisation
on a set of actions A (hence | = ||g). The operator + binds weaker than ;.
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1.3 Equivalence notions

It can be argued that a concurrent system should not be represented just by an event
structure (or a Petri net or a process expression), but rather by an equivalence class of
such objects, since these models give a representation which is not abstract enough. For
this purpose many equivalence notions have been proposed in the literature.

Often equivalence relations are used to establish the correctness of implementations with
respect to specifications of concurrent systems. If P represents a specification and @)
an implementation of a concurrent system, then the equivalence P = () states that the
implementation is correct. If the representations contain occurrences of uninterpreted
action symbols a, b, ..., this statement is independent of the interpretation of these sym-
bols. Taking into account that action refinement can be understood to correspond to a
change in the level of abstraction at which systems are described, without changing these
systems in any way, it is reasonable to expect that if P and @) are equivalent according to
a particular equivalence notion, this must still be the case after refining both system rep-
resentations using the same interpretation of action symbols, unless it has been explicitly
assumed that action symbols refer to atomic or instantaneous activities only.

Example 1.7 [vG-b]

Consider the following specification of a concurrent system: “The actions a and b
should in principle be performed independently on different processors, but if one of
the processors happens to be ready with a before the other starts with b, b may also
be executed on this processor instead of the other one.” This system description is
represented by the Petri net P below.

Suppose that someone comes up with an implementation in which first it is deter-
mined whether the actions a and b will happen sequentially or independently, and
subsequently one of these alternatives will take place, as represented by the Petri
net (). Although this implementation does not seem very convincing, it will be
considered “correct” by many equivalences occurring in the literature.

11



Let the next step in the design process consist of refining the action a in the sequen-
tial composition of two actions a; and as. From () one thereby obtains the net @'
on the right.

If Q' is going to be placed in an environment where a, becomes causally dependent
on b — it may be the case that b is an output action, as is an input action, and
the environment needs data from b in order to compute the data that are requested
by as — then deadlock can occur. However, if the refinement step splitting a in a,
and as is carried out on P already, the resulting system P’ is deadlock free in the
environment sketched above.

Thus the possibility of refining a somehow invalidates the correctness of the design
step from P to Q.

In other words, a semantic equivalence that is not preserved under action refinement can
only be useful in verifications if the actions involved in its definition are assumed to be
atomic and unrefinable. Such equivalences are said to be strictly based on the assumption
of action atomicity [CDP].

At this point a reader may argue that adding more information about the precise im-
plementation of systems makes it more likely that systems turn out to be different that
were indistinguishable on a higher level of abstraction. However, in our understanding
a statement P =~ () says that based on the information present in the representations P
and @), the equivalence of the represented systems can be concluded. Thus adding more
information to two system representations could make them equivalent if they were not
so before, but cannot invalidate equivalence. Crucial for this argument is that, in the
original system representations P and (), it is already decided that different occurrences
of the same action will be implemented in the same way, so that any difference between P
and @ that could arise after refinement is already visible in the abstract representations,
namely through the use of different action names for corresponding events.

12



Many different equivalence notions have been proposed in the literature, driven by the
consideration which aspects of system behaviour are crucial in the chosen context, and
which one wants to abstract from. Roughly speaking, there are two important aspects of
equivalences used in their classification: the preserved level of detail in runs of systems and
the preserved level of detail of the choice structure between these runs. Concerning the
first aspect, two opposite approaches are interleaving semantics and causal semantics. In
interleaving semantics runs are represented by sequences of actions, thereby abstracting
from the causal links between these actions. In causal semantics all causal dependencies
between action occurrences in runs of processes are preserved. By partial order semantics
we denote causal semantics in which causal dependencies can be represented as partial
orders. Concerning the second aspect, the choice structure of systems, the simplest notion
in the spectrum of equivalences yields trace semantics (“linear time”), in which a system
is fully determined by the set of its possible runs, thereby completely neglecting the choice
structure of concurrent systems. On the other end, bisimulation semantics (“branching
time”) additionally preserve the information where two different runs diverge (although
choices between similar runs are still neglected). In between there are several decorated
trace semantics, where part of the choice structure is taken into account. Mostly these are
motivated by the observable behaviour of concurrent systems, according to some testing
scenario. By combining both parameters in this classification, a two-dimensional spectrum
of equivalence notions emerges. A third aspect of equivalences used in their classification
is the treatment of internal or invisible actions (strong versus weak equivalences). In this
paper, we only consider strong equivalences, that do not distinguish internal from external
actions. Already early in the development of this spectrum of semantics for concurrent
systems it has been observed that the issue of atomicity or refinability of actions is crucial
in this context.

The limitations of models of concurrency in which actions are taken to be atomic and
unrefinable are addressed in [Lamport] and [Pratt-al: “These models are not appropriate
for studying such fundamental questions as what it means to implement an atomic op-
eration, in which the nonatomicity of operations must be directly addressed” [Lamport|
and “we would like a theory of processes to be just as usable for events having a duration
or structure, where a single event can be atomic from one point of view and compound
from another” [Pratt-a]. [Pratt-a] uses this criterion as a reason for preferring partial or-
ders over interleaving semantics: “A serious difficulty with the interleaving model is that
exactly what is interleaved depends on which events of a process one takes to be atomic”
and “In the partial-order model what it means for two events to be concurrent does not
depend on the granularity of atomicity”. In the same spirit, [CDP] shows by means of a
simple example (essentially Example 1.4) that interleaving equivalences are not invariant
under refinement of actions, and claims that “on the other hand, the approaches based on
partial order are not constrained to the assumption of atomicity”. Of course none of this
came as a surprise for the “interleavers”; the assumption of action atomicity is explicitly
made in almost all papers about interleaving semantics.

In Part II of this paper, we consider various equivalence notions from the spectrum ex-
plained above. We study equivalences based on interleaving of single actions or steps of

13



concurrently executable actions, and on representing causality in runs by partial orders.
For each of these notions of system runs, we study linear time equivalences as well as
equivalences taking additionally the choice structure into account. It turns out that all
interleaving and step equivalences are not preserved under refinement, regardless to which
extent the choice structure is taken into account. We show that linear time partial or-
der semantics, namely pomset trace equivalence, is indeed preserved under refinement of
actions.

For branching time partial order semantics, considering bisimulation equivalences based
on partial orders, the situation is more intricate (see the introduction to Part IT). We will
show that the two originally suggested versions of such equivalences are not preserved
under action refinement (or only for restricted situations). Subsequently we show that a
finer equivalence notion, proposed in [RT] under the name BS-bisimulation, is indeed pre-
served under refinement. We call this notion history preserving bisimulation equivalence.
A strengthening of this notion due to [Bednarczyk] is preserved under refinement as well.

Since we treat action refinement as a binary operator, the property of an equivalence of
being preserved under action refinement does not imply that it is a congruence for the re-
finement operator. The latter is the case if it is not only preserved when refining actions in
the two systems by identical structures, but also when refining them by equivalent struc-
tures. Action refinement is only well-defined on a quotient domain induced by a semantic
equivalence if this equivalence is a congruence for refinement. A semantic equivalence
can only be congruence for sequential composition, and hence for action refinement, if it
distinguishes between deadlock and termination. One can define a termination sensitive
and a termination insensitive variant of each of the equivalence notions mentioned be-
fore. We will proof that the termination sensitive variants of pomset trace equivalence
and history preserving bisimulation equivalence are congruences for action refinement. A
counterexample will show that termination detection is indeed necessary for this.

14



Part 1

Models and refinement

We consider systems that are capable of performing actions from a given set Act of action
names. We will not distinguish external and internal actions here; we do not consider
abstraction by hiding of actions.

The basic entities of our system models are called events; they model action occurrences
and are labelled with the corresponding action names. Concurrent systems will be mod-
elled as sets of labelled events together with some additional structure, specifying the
occurrences of events in system runs.

We will consider four such event oriented models: prime event structures with binary
conflict NPW], flow event structures [BC-b], (stable) event structures [Winskel| and con-
figuration structures.

Prime event structures with binary conflict are the original form of event structures and
have simple and clear notions of causality and conflict between events. This allows for a
particularly natural and simple definition of action refinement when refining actions by
finite and conflict-free processes. However, this definition does not generalise to refinement
by alternative actions or by infinite processes (cf. Example 1.1). In addition, prime event
structures do not allow straightforward definitions of sequential and parallel composition
(with synchronisation), and for that reason more general models have been considered.

Flow event structures were proposed in [BC-b| as a form of event structures which are par-
ticularly suited for giving semantics to languages like CCS. Here we show that they allow
for a straightforward generalisation of the definition of action refinement on prime event
structures to refinement by arbitrary non-empty processes. We establish that the be-
haviour of a refined event structure may be deduced compositionally from the behaviours
of the original event structure and of the refinements of actions. However, the dynamic
behaviour of flow event structures is defined in a rather indirect way, and it is often cum-
bersome to prove properties about it. Moreover, as shown in [CZ], the canonical definition
of parallel composition on flow event structures is meaningful only on a subclass obeying
a complicated structural property.

Stable and non-stable event structures were introduced in [Winskel]. They also allow for
convenient definitions of CCS-like operators, including parallel composition, and do not
suffer from the disadvantages of flow event structures mentioned above. Again we define
a compositional general action refinement operator. However, the definition is somewhat
more complicated than for prime and flow event structures, due to the less direct notion
of causal dependence.

In the three models discussed so far, usually no distinction between deadlock and success-
ful termination is made. They have been used as semantic models for CCS-like languages

15



where action prefixing is the only form of sequential composition; in this context, the dis-
tinction is not necessary. As explained in the introduction, dealing with action refinement
incorporates sequential composition, and the distinction becomes relevant. In [BV] this
distinction is achieved, in the context of prime event structures, by introducing a special
event-label /. The occurrence of a \/-event models successful termination. A system
run deadlocks iff it does not contain a /-event and cannot be prolonged. Another way
of establishing this distinction is by upgrading the notion of an event structure with an
explicit predicate indicating which runs of the system do successfully terminate. This is
the approach we have chosen in our treatment of stable and non-stable event structures.
For flow event structures on the other hand, we show that such a predicate can be de-
rived from their structural properties. A notion of sequential composition on flow event
structures will be introduced showing that this predicate has the intended semantics. In
our treatment of prime event structures, which is included mainly to introduce our con-
cept of action refinement, we avoid the entire issue by implicitly restricting attention to
deadlock-free systems.?

Finally, we introduce a more abstract model of concurrency, called configuration struc-
tures, in which a concurrent system is described by exactly the relevant features that are
used to derive the behaviour of event structures of each of the forms above. We define a
refinement operator for them, and show that the more “syntactic” constructions in the
previous sections are consistent with this general notion.

2When modelling operators like restriction or parallel composition, which can introduce deadlocks,
this limitation is no longer acceptable and leads to contra-intuitive results when considering sequential
composition or refinement as defined here (see Section 2.3).
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2 Refinement of actions in prime event structures

In this section, we show how to refine actions in the most simple form of event structures,
prime event structures with a binary conflict relation [NPW]. Furthermore, we motivate
our move to more general structures in the next sections by discussing the limitations of
this approach.

2.1 Prime event structures

Definition 2.1

A (labelled) prime event structure (over an alphabet Act)is a 4-tuple £ = (E, <, #,1)
where

— F is a set of events,

— < C E x E is an (irreflexive) partial order (the causality relation) satisfying
the principle of finite causes: Ve € E : {d € E | d < e} is finite,

— # C Ex E is an irreflexive, symmetric relation (the conflict relation) satisfying
the principle of conflict heredity: Vd,e, f € E :d < e Nd#[f = e#f,

— 1 : F — Act is the labelling function.

A prime event structure represents a concurrent system in the following way: action
names a € Act represent actions the system might perform, an event e € E labelled with
a represents an occurrence of a during a possible run of the system, d < e means that d
is a prerequisite for e and d#e means that d and e cannot happen both in the same run.

Causal independence (concurrency) of events is expressed by the derived relation co C
ExFE:dcoeiff =(d < eVe<dVd#e). By definition, <, >, # and co form a partition
of E x F.

Throughout the paper, we assume a fixed set Act of action names as labelling set. Let
F ,;ime denote the domain of prime event structures labelled over Act. The components of
a prime event structure £ € F i Will be denoted by Eg, <g, #¢ and [¢ — a convention
that will also apply to other structures given as tuples. If clear from the context, the
index £ will be omitted. A prime event structure £ is empty iff E¢ is empty, finite iff E¢
is finite and conflict-free iff #¢ = 0.

[}

Two prime event structures £ and F are isomorphic (€ = F) iff there exists a bijec-
tion between their sets of events preserving <,# and labelling. Generally, we will not
distinguish isomorphic event structures.

The behaviour of a prime event structure is described by explaining which subsets of
events constitute possible (partial) runs of the represented system (thus formalising the
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interpretation of the conflict and the causality relation). These subsets are called config-
urations. Configurations have to be conflict-free. Furthermore they must be closed with
respect to causal predecessors; all prerequisites for any event occurring in the run must
also occur. Configurations may also be considered as possible states of the system. They
determine the remaining behaviour of the system as being the set of all events which have
not yet occurred and are not excluded because of conflicts.

Definition 2.2 Let £ € FE pipe.

(i) A subset X C E¢ of events in € is conflict-free in € iff #¢ N (X x X) = 0.
X is left-closed in € iff, for alld,e € E,e € X Nd <ge=d € X.

(ii)) A subset X C E¢ is a (finite) configuration of £ iff X is finite, left-closed and
conflict-free in €. Conf (£) denotes the set of all configurations of £. We call a
configuration X € Conf () (successfully) terminated iff Vd € E¢ :d ¢ X = Je € X
with d#te.

Note that a configuration X is terminated iff it is maximal, i.e. X CY € Conf(£) implies
X=Y.

Unlike [Winskel|, we only consider finite configurations here. As usual, we assume that in
a finite period of time only finitely many actions may be performed. Now the restriction
says that we only consider runs which are executable in a finite period of time. This does
not cause a loss of expressiveness, since Winskel’s infinite configurations are completely
determined by the finite ones. We will further comment on this point in Section 4.

In order to represent causal dependencies in a run of an event structure £, we can take the
corresponding configuration X of £ together with the causality relation, <x, inherited
from £. A more abstract view of a run is obtained by replacing events by their labels. For-
mally, this is done below by taking the isomorphism class of (X, <x,!}X) (which can be
seen as the restriction of £ to X), yielding a partially ordered multiset (pomset). Pomsets
as representations of runs of systems have been studied, among others, in [Pratt-a).

Definition 2.3 Let £ € Epime-

(i) Let X = (X, <x,lx) and Y = (Y, <y, ly) be partial orders which are labelled over
Act. X and Y are isomorphic (X = )) iff there exists a bijection between X and Y
respecting the ordering and the labelling. The isomorphism class of a partial order
labelled over Act is called a pomset over Act.

(ii) For a configuration X € Conf(€), <x, the causality relation on X, is defined as
<x:=<g N(X x X). The pomset of X is given by pomset(X) := [(X, <x, [} X)]~.

In graphical representations of prime event structures, only immediate conflicts — not the
inherited conflicts — are indicated. The <-relation is represented by arcs, omitting those
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derivable by transitivity. Furthermore, instead of events, only their labels are displayed;
if a label occurs twice it represents two different events. Thus these pictures determine
event structures only up to isomorphism.

Example 2.1

The system (alb) + (a;b;c), executing either a and b independently or a, b and ¢
sequentially, may be represented by the prime event structure with events ey, e», es,
eq, €5 with l(e1) = l(e3) = a, l(e2) = l(e4) = b and I(e5) = ¢, where e; co eq, e3 < ey,
ey < es, ez < es and each of ey, e, is in conflict with each of e, ey, e5. Following the
conventions set out above, this event structure is represented as

Its configurations are

Q)a {61}5 {62}5 {61’ 62}? {63}5 {635 64}, {63, €4, 65},

corresponding to the pomsets

0, a, b, Z ,a—band a —b—c.

a : :
b and @ —b —c correspond to terminated configurations.

2.2 Refinement of actions

We will now define a refinement operator substituting actions by finite, conflict-free,
non-empty event structures. As discussed in the introduction, we will not allow forgetful
refinements, replacing actions by the empty event structure. In Section 2.3 we will explain
why we have to restrict to finite and conflict-free refinements of actions.

A refinement function will be a function ref specifying, for each action a, an event structure
ref (a) which is to be substituted for a. Interesting refinements (and also the refinements
in our examples) will mostly refine only certain actions, hence replace most actions by
themselves. However, for uniformity (and for simplicity in proofs) we consider all actions
to be refined.

Given an event structure £ and a refinement function ref, we construct the refined event
structure ref (£) as follows. Each event e labelled by a is replaced by a disjoint copy, &,
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of ref (a). The causality and conflict structure is inherited from &: every event which
was causally before e will be causally before all events of &, all events which causally
followed e will causally follow all the events of &, and all events in conflict with e will be
in conflict with all the events of &,.

Graphically, the idea may be sketched as follows.

]

2 e
]

/

(i) A function ref : Act — FE,.ime is called a refinement function (for prime event
structures) iff Va € Act : ref (a) is non-empty, finite and conflict-free.

N

[

Definition 2.4

(ii) Let £ € E, ime and let ref be a refinement function.
Then ref (€) is the prime event structure defined by
ref(€) ‘= {(6, €I)|€ E. Ee, e € Evef(lg(e))};
—(d,d’) <wp(e) (e,e'). iff d<ge or (d=eANd <€),
— (d,d")#wepe) (e, €) iff d#ee,
= lrge) (€5 €) = legiz(e) (¢)):

The following proposition states that refinement is a well-defined operation on prime event
structures, even when isomorphic prime event structures are identified.

Proposition 2.1

(i) If £ € E,rime and refis a refinement function then ref (£) is a prime event structure
indeed.

(ii) If £ € Eprime and ref, ref’ are refinement functions with ref (a) = ref'(a) for all
a € Act then ref (£) = ref'(£).

(i) If £, F € Eprime, € = F, and ref is a refinement function then ref (£) = ref (F).
Proof Straightforward. ]
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Example 2.2

Consider the sender (Example 1.1) from the introduction. As every action occur-
rence is represented by a separate event, the representation of this system as an
event structure is infinite. We may carry out the first two steps of the design in
terms of prime event structures as follows.

read data

read data

send data
to receiver

read data

———————————————————————————————

prepare

read data

sending

carry out
sending

read data |———

_______________________________

___________

—————————

prepare data for
transmission

get permission
to send

___________

_________

carry out

sending

read data

\

Refinement by a sequential and a parallel process in prime event structures

The next refinement step, introducing alternative channels for sending, would re-
quire a refinement of an action by conflicting behaviours. This is not possible in our
framework up to now.

The following proposition shows how the behaviour of the refined event structure ref (£)
is determined by the behaviour of £ and by the behaviour of the event structures which
are substituted for actions.

Proposition 2.2 Let £ € Fime, let ref be a refinement function.

We call X a refinement of configuration X € Conf (€) by ref iff

~ X =U {e} x X, where Ve € X : X, € Conf (ref (Is(e))) — {0},

ecX

— e € busy(X) = e maximal in X with respect to <g

where busy (X) := {e € X | X, not terminated}.
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Then Conf (ref (€)) = {X | X is a refinement of a configuration X € Conf(€)}.

Proof As a special case of Proposition 3.3. [ |

Hence the configurations of ref (£) are exactly those configurations which are refinements
of configurations of £. A refinement of a configuration X of £ is obtained by replacing each
event e in X by a non-empty configuration X, of ref (l¢(e)). Events which are causally
necessary for other events in X may only be replaced by terminated configurations.

2.3 The limitations of prime event structures

The reason that so far we only refine actions by conflict-free event structures is the prin-
ciple of conflict heredity and the notion of configuration in prime event structures. They
imply that any event will always occur with a unique history in terms of its causal prede-
cessors. This makes it particularly easy to analyse prime event structures. On the other
hand, it makes it is rather difficult to define certain composition operations on them, such

«,”

as a general sequential composition operator “” (not just action prefixing).

Example 2.3

c
Consider # ; b. In this case b can be caused either by c or by d. The simplest
d
prime event structure representation of the resulting behaviour is
c—b
# )
d—b

It is not possible to represent this behaviour by a prime event structure with only
one b-event.

Exactly the same problem occurs when refining a by c#d in a —b. A definition of
sequential composition (cf. [BV]), or of a refinement operator on prime event structures
allowing conflicts in refinements, would require duplications of events, as illustrated above.
This would lead to undesirable complications when using these constructions. We will
consider more general forms of event structures that do not require duplication of events
in Sections 3 and 4.

The restriction to refinement of actions by finite event structures is necessary to ensure
that the resulting event structure will obey the principle of finite causes. Again the same
problem occurs already in a simple sequential composition.
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Example 2.4

Consider the sequential composition of an infinite process a; —ay — - -+ with a
process b. Since, following e.g. [Winskel|, we made the assumption that in a finite
time only finitely many actions can happen, the only consistent interpretation of
the resulting system is the one in which b will never occur. As in a prime event
structure there are no “dead” events (every event occurs in some configuration), the
only way to represent this system is by erasing the b-event.

A definition of sequential composition, or of a refinement operator on prime event struc-
tures allowing infinite refinements, would hence again lead to undesirable complications.
In the more general models we will consider later, the principle of finite causes will be
abandoned, and this will allow also refinements by infinite behaviours as discussed in the
introduction.

Also when considering a parallel composition operator, it may be necessary to duplicate
or erase events when using prime event structures.

Example 2.5

Consider the parallel composition operator ||4, where A C Act, from TCSP [OH].
In P ||a @, P and @ are executed in parallel; however any action in A may only be
executed by both P and () together as one joint action.

Let P :=a;b;c and Q := d'; b; ¢, representable by the prime event structures

a—b—c and o —b—C.

A prime event structure for P || @ is obtained by taking the union of the event
structures for P and () and identifying the b-events:

a\b/a’
NG,
c c

However, in general the situation is not so simple. Consider e.g.

a
# ||{a} a—=b

c—a

Here, we will have two possibilities for b to occur: Either immediately after an a-
communication (choosing the upper a-event on the left side) or after ¢ followed by
an g-communication. Because of the unique history of events, this may again only
be represented by duplicating the b-event:

a—b

#

c—a—b
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Example 2.6

Consider
a—b |y b—a

In the resulting system, no event can occur because of the cyclic causal dependency
between the a- and the b-communication. Since in prime event structures there are
no dead events, the only prime event structure to represent this is the empty one,
which is not obtainable by a construction as suggested in Example 2.5.

This shows that the parallel composition for prime event structures may not simply be
defined by taking the cartesian product of the events that have to synchronise and the
union of the other events. One has to determine which events can actually take place
and to duplicate events which get different histories. This leads to a rather complicated
definition [LG, DDM-b, Vaandrager-al.

Thus, it is possible, though somewhat complicated, to define parallel composition as well
as action refinement (or just sequential composition) on the prime event structures con-
sidered here. However, having both operations around at the same time is problematic. In
the definition of action refinement, we implicitly assume that all maximal configurations
represent successful termination (cf. Definition 2.2). This implies that we can not model
systems that may end in deadlock. A parallel composition operator as in Example 2.5 on
the other hand (or the restriction operator of CCS) can introduce deadlocks; defining it on
the prime event structures considered here implicitly assumes that one represents systems
that may have deadlocks, but that deadlock and successful termination are not distin-
guished. Although each of these two implicit assumptions is consistent, their combination
is not, as illustrated by the following example.

Example 2.7

The system P := (a;b;c)||1a,c}(a;c;b) constitutes a typical example of a deadlock
situation. After the occurrence of the action a, each component in the parallel
composition is waiting in vain for an opportunity to synchronise with the other
component; yet the system will never perform any further action. In view of the
approach to sequential composition outlined in Section 1.2, this implies that in the
system P ;d the action d will never occur.

However, in the model of prime event structures as considered here, P can only be
represented by the event structure consisting of a single event labelled a (regardless
of the precise definition of ||4). Hence P ;d will denote the event structure a —=d,
in which the action d can occur.

The same inconsistency occurs when refining e into P in the structure e —d.

This problem can be avoided by distinguishing deadlock from successful termination. We
will do so in the following sections, simultaneously considering more general kinds of
event structures in order to avoid the erasure and duplication of events encountered in
the preceding examples.
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3 Flow event structures and action refinement

In the previous section, we have indicated that for refining actions by event structures
with conflicts, or by infinite event structures, as well as for defining sequential and par-
allel composition, more general models than prime event structures are appropriate. In
[BC-b] a form of event structures, called flow event structures, has been proposed which
is particularly suited for giving semantics to languages like CCS.

In this section, we introduce flow event structures following closely [Boudol-b]. We show
that they allow for a straightforward generalisation of Definition 2.4 to refinement by arbi-
trary non-empty processes, and that deadlocks can be expressed appropriately. Moreover,
we establish that the behaviour of a refined event structure may be deduced composition-
ally from the behaviours of the original event structure and of the refinements of actions.

3.1 Flow event structures

Flow event structures have a similar representation as prime event structures, but use a
(not necessarily transitive) relation which represents “possible direct” causes instead of
the transitive causality relation <. They even allow for “syntactic” cycles in this so-called
flow relation. This is convenient for modelling parallel composition. The axiom of conflict
heredity is dropped, as well as the axiom of finite causes. The conflict relation may be
reflexive, such that “inconsistent” events are possible which will never occur. These are
convenient to model restriction in CCS.

Definition 3.1

A (labelled) flow event structure (over an alphabet Act) is a 4-tuple £ = (F, <, #,1)
where

— FE is a set of events,

— < C E x E is an irreflexive relation (the flow relation),

— # C E x E is a symmetric relation (the conflict relation),
— | : E — Act is the labelling function.

Let F g, denote the domain of flow event structures labelled over Act. O denotes the
empty flow event structure (0,0, 0, 0).

Two flow event structures £ and F are isomorphic (€ = F) iff there exists a bijection
between their sets of events preserving <, # and labelling.

The interpretation of the conflict and the flow relation is formalised by defining config-
urations of flow event structures. Configurations have to be conflict-free; in particular,
self-conflicting events will never occur in any configuration. d < e will mean that d is
a possible immediate cause for e. For an event to occur it is necessary that a complete
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non-conflicting set of its causes has occurred. Here a set of causes is complete iff for any
cause which is not contained there is a conflicting event which is contained. Finally, no
cycles with respect to causal dependence may occur.

Definition 3.2 Let £ € E .

(i) X C E is conflict-free in & ff #£N (X x X) = 0.
X C E is left-closed in € up to conflicts iff Vd,e € E :
ifee X,d<eandd¢ X then there exists an f € X with f < e and d#f.

(ii) X C E is a (finite) configuration of £ iff X is finite, left-closed up to conflicts and
conflict-free and does not contain a causality cycle, i.e. <x:= (< N(X x X))t (where
* denotes transitive closure) is irreflexive.
Conf (£) denotes the set of all configurations of £.
A configuration X is called mazimal iff X CY € Conf (£) implies X =Y.
A configuration X is called (successfully) terminated iffVd € E:d ¢ X = Je € X
with d#e.

The causal dependence between action occurrences in a configuration may again, as for
prime event structures, be represented by a pomset; for X € Conf (£), we take the
isomorphism class of (X, <x,l¢ P X).

In graphical representations we omit names of events and represent < by arcs of the form
———. A self-conflicting event labelled d is denoted ' d .
Example 3.1

The system ((a + b) | ¢); d may be represented by the flow event structure

a
# T~y

7

Cc

a b
\ \ . .
The pomsets c/d and c/'d correspond to terminated configurations.

Note that prime event structures can be regarded as special flow event structures by defin-
ing d < e iff d < e. The requirement of left-closedness up to conflicts for configurations
then reduces to left-closedness with respect to <; hence the notions of a configuration
according to Definitions 2.2 and 3.2 coincide. Furthermore, in each configuration X, the
relation <x of Definition 2.3 coincides with the one of Definition 3.2.
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3.2 Deadlocks in flow event structures

We have introduced the set of configurations to formalise the intuitive meaning of flow
event structures. When considering flow event structures as a model for CCS, this is
sufficient. However, when considering sequential composition, we have to distinguish suc-
cessful termination and deadlock. We will show here that this distinction is possible in
flow event structures, but is lost when describing a flow event structure merely by its set
of configurations. We will look at configurations more closely in order to distinguish con-
figurations corresponding to successful termination from those corresponding to deadlock
states.

We start by defining a sequential composition operation. For flow event structures, a
simple and natural definition may be given by putting all events in the first component
in <-relation with all events of the second component.

Definition 3.3 Let £, F € Fpyy, wlo.g. EcNEx=0.
Then 5,.7: = (Eg U E]-', <& U <F U(Eg X E]:), #g U #}‘,lg U l]:)

We are now able to distinguish deadlocking from successfully terminating behaviours by
considering them as first components in a sequential composition.

Example 3.2

Consider the event structure O (the empty process) and an event structure D := [c_l]
containing just one inconsistent event. We have Conf(O) = {0} = Conf(D). How-
ever, in O; a the action a will occur, whereas in D; a it will not. Hence O represents
a skip-process which terminates successfully without executing any action, but D
deadlocks.

Behaviours that cannot be prolonged are modelled by maximal configurations. In prime
event structures, every maximal configuration X terminates successfully: every event
which is not contained in X is in conflict with some event in X. However, this is not
true for flow event structures: there may be configurations which are maximal but not
terminated, and these configurations may be interpreted as deadlock situations. We will
show that this captures exactly deadlocking behaviour with respect to our notion of
sequential composition.

Definition 3.4 Let £ € FEpy.

X € Conf(€) is called a deadlock iff X is maximal but not terminated.
€ is called deadlock-free iff £ has no deadlock configurations.

Example 3.2 (continued)

As expected, O is deadlock-free whereas D deadlocks; the only configuration () of D
is not terminated.
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Deadlocks may not only be caused by inconsistent events. Obviously causality cycles may
also cause deadlocks, as in a;b ||{45} b;a (cf. Example 2.6). A third cause of deadlocks
originates from the fact that in flow event structures “syntactic” and “semantic” conflict
do not necessarily coincide. Two events are in semantic conflict iff there is no configura-
tion containing them both. Flow event structures where syntactic and semantic conflict
coincide are called faithful in [Boudol-b].

Example 3.3

a——c¢
Let £ := # . In £ we reach a deadlock by executing b, since c is disabled
b
without being in syntactic conflict with b. In £; d it may happen that d cannot occur.
a——c
However, the faithful event structure corresponding to £, # # , is deadlock-free.
.

The next example shows that deadlocks may occur also in faithful event structures without
self-conflicting events and without causality cycles.

Example 3.4 [Schreiber| as
Let £ := # c

as

The configuration containing a; and as is maximal but not terminated.

We will now show that our notion of termination indeed captures exactly the behaviours
which, when occuring in the first component of a sequential composition, allow action
occurrences in the second component. Hence deadlock configurations are precisely those
maximal configurations that prevent action occurrences in the second component. Note
however that this depends on our definition of sequential composition and on the notion
of configuration for flow event structures.

Proposition 3.1 Let £, F € Fpyy,.

Then Conf(E; F) = Conf(E)U{XUY | X € Conf(£), X terminated, Y € Conf (F)}.
Moreover, Z € Conf(E;F) is terminated iff Z N Eg and Z N Ex are terminated.

Proof Let &, F € Epoy-

“D” and “if”: Suppose X € Conf(€£) .Then X is finite. As X is left-closed up to
conflicts, conflict-free and without causality cycles in &, it must be left-closed up to
conflicts, conflict-free and without causality cycles in £; F. Hence X € Conf(E; F).
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Now suppose X € Conf(€) is terminated and Y € Conf(€). We show that X UY €
Conf(&; F). Clearly, X UY is finite and conflict-free, and <x_y contains no causality
cycles. So we show that X UY is left-closed up to conflicts.

Let d,e € Eg.r, d g XUY and d <¢;re € XUY. If d,e € E¢ or d,e € Ex we may apply
left-closedness up to conflicts of X or Y, respectively. Hence we only need to consider the
case d € Eg, e € Y. Asd ¢ X, there is an f € X with d#¢f (since X is terminated).
Since f € E¢ and e € Ex, we have d#¢.rf <¢,r €.

In case X and Y are both terminated it follows immediately that also X UY is terminated.

“C” and “only if”: Let Z € Conf(E;F) and let X :=ZNEgandY :=ZNEx. As Z is
finite, left-closed up to conflicts, conflict-free and without causality cycles, so are X and
Y. In case Y = () we have Z = X € Conf(£). Otherwise, it only remains to be shown
that X is terminated. Take e € Y. Let d € E¢, d ¢ X. Then d <¢.7 e, and since Z
is left-closed up conflicts there is an f € Z such that d#s.rf <g,7 e. As d € Eg and
d#¢.7f it must be that f € E¢ and d#¢f, and since f € Z we have f € X. Hence X is
terminated.

In case Z is terminated it follows immediately that both X and Y are terminated. [ |

We conclude this section by discussing our notion of deadlock with respect to infinite
behaviours. In this case, sequential composition does not provide an obvious criterion.

Example 3.5

Consider a process executing an infinite sequence of a’s. It may be represented by
the event structure

E£:=a a a

In a;b, b will not occur in any configuration of £, even when considering infinite
configurations as in [Boudol-b] (since the axiom of finite causes is kept for configu-
rations). Nevertheless, £ is clearly deadlock-free.

Now consider the event structure

where £ is put in parallel with a deadlocking process. F is deadlock-free according
to our definition. One could argue that a parallel composition should deadlock
whenever one of its components deadlocks and then F should not be regarded as
deadlock-free. Alternatively, one can say that a parallel composition deadlocks
when some components deadlock, and all others have terminated successfully. This
is captured by our definition.
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3.3 Refinement of actions

Refinement of actions in flow event structures may now be defined as follows. We assume
a refinement function ref : Act — FE o, — {O} mapping actions to non-empty flow event
structures, and replace each event labelled by a by a disjoint copy of ref (a). The conflict
and causality structure will just be inherited.

Hence, we may replace actions also by behaviours with conflicts and by infinite behaviours.

Definition 3.5
(i) A function ref: Act — E o — {O} is called a refinement function (for flow event
structures).

(ii) Let £ € gy, and let ref be a refinement function.
Then the refinement of € by ref, ref (£), is the flow event structure defined by

= Erpey = {(e, €')|e € Eg, €' € Eng(en}
— (d,d") <wpe) (6, €) iff d <g e or (d=eANd <wpag(a) €),
— (d, d')#repe) (e, €') iff dFtce or (d = e A d'H#ppeaye),
~ leye) (€,€) 1= Liege () (€1)-
As for prime event structures, we verify that ref (£) is well-defined, even when isomorphic
flow event structures are identified.

Proposition 3.2
(i) If £ € E o and ref is a refinement function then ref (£) is a flow event structure.

(ii) If £ € F o and ref, ref ' are refinement functions with ref (a) = ref '(a) for all
a € Act then ref (€£) = ref'(£).

(iii) If £, F € Epow, € = F, and ref is a refinement function then ref (£) = ref (F).
Proof Straightforward. [ |

Example 3.6

Continuing Example 2.2, the third step in the design of the sender from the intro-
duction yields the following flow event structure, which is not prime.

———————————————

I I
I I
prepare data for | send on :
transmission : channel 1 !
| | e
1 I
read data ! # ! read data ‘e
\ | / \
I I
get permission _ : send on |
to send : channel 2 !
I I
I I

_______________

Refinement by alternative actions in flow event structures
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Next, we show that, analogously to prime event structures, the behaviour of a refined flow
event structure ref (£) may be deduced compositionally from the behaviour of £ and the
behaviour of the refinements of actions, where the behaviour of a flow event structure is
given by its configurations and their termination status.

Proposition 3.3
Let £ € FE gou, let ref be a refinement function for flow event structures.

We call X a refinement of configuration X € Conf (€) by ref iff

~ X =U {e} x X, where Ve € X : X, € Conf (ref (ls(e))) — {0},

ecX
— e € busy(X) = e maximal in X with respect to <x
where busy (X) := {e € X | X, not terminated}.

Then Conf (ref (£)) = {X | X is a refinement of a configuration X € Conf (€)}.
Moreover, X is terminated iff X is terminated and Ve € X : X, is terminated.

Proof For any set X C Eef(e) of events in ref (£), define the projections

m(X)={e|3f:(e,f) e X} and  w&(X):={f] (e, f) e X}

Now X can be written as X = U A{ep x m¢(X).
ecm1(X)

“C” Let X € Conf (ref (£)).
First we show that X := m,(X) € Conf (£).
X 1is finite since X is finite.

X is left-closed in € up to conflicts:

Let e € X, d € Eg withd <geand d ¢ X.

We have to show that there exists an f € X with f <¢ e and f#¢d.

Since e € X there must be some (e, €') € X.

There exists (d,d') € Epfe), (d,d’) X since ref (d) # O and d € X.
Furthermore (d, d') <ry(e) (e, €') since d <¢ e.

So there exists (f, f') € X with (f, f') <wse) (€, €') and (f, f")#ne) (d, d').
f#dsince f € X,d & X; hence f#cd.

If f#e wehave f <ce and we are done.

Assume f = e, then (d,d') <wse) (f, f')-

So there exists (g, ¢') € X with (g,g) <wee) (f, ') = (e, f') and (g, ¢") #rs(e)(d, d').

As X has no causality cycles, (9,9") # (e,€'). g € X, s0 g #d, and hence g#¢d.

If g # [ = e then g <¢ e and we are done. s N
Since X is finite, we will find (by repeating this), after finitely many steps, (f, f') € X
with f#gd and f <¢ e. Hence X is left-closed up to conflicts.
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(d,d")

AN

ff—— - — gg £ f (e, €')

X

X 1is conflict-free: .
Assume d, e € X with d#ge. Then there exist (d,d'), (e,€’) € X with (d, d')#wse) (e, €').

This is a contradiction since X is conflict-free.

Finally we have to show that X does not contain a causality cycle.

Assume d,e € X, d# e, d<x e and e <x d (where <x:= (<¢ N(X x X))*).

It is straightforward to verify that this implies that there are (d,d'), (e,€’) € X with
(d,d') # (e,€), (d,d) <z (e,€) and (e, ') <5 (d,d').

This is in contradiction with the cyclefreeness of X.
Hence X € Conf (£).
Next we will show that X is a refinement of X.

Let e € X. Let & := ref (lg(e)). We want to show that m¢(X) € Conf (&) — {0}.

By construction 5(X) # () and obviously 75(X) C E,.

m5(X) is finite, conflict-free and cycle-free since X is finite, conflict-free and cycle-free.
So it only remains to be shown that 75(X) is left-closed up to conflicts.

Let d' € &, d' <g, € € X, d & Xe. - N
Then (e,d') € Epg(e), (€,d") <rye) (6,€') € X and (e,d') ¢ X.

So there exists (f, f') € X with (f, f') <rwf(e) (e;€) and (f, f')#rse) (e, d).
As f,e € X we have ~(f#ce),s0 f =eA f' #ged’. Thus f' € X, and f' <, €
Hence 75(X) € Conf (E,).

From what we have shown by now it follows that X = U {e} x X, with X € Conf (€)
and, for all e € X, X, € Conf (ref (l¢(e))) — {0}. eeX

Now let e € busy (Y) We have to show that e is maximal in X with respect to <x.

Suppose e is not maximal in X.
Then there exists f € X with e <¢ f, and there is an (f, f') € X.
Since 75(X) is not terminated there exists d’ € Eg, — 75(X) with

(x) Ve €ms(X): ~(d#e ).

We have (e, d') <ns(e) (f, f) and (e, d') ¢ X.
Since X is a configuration, there then exists (g,¢') € X with (g,9') <wr(e) (f, f') and
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(9,9")#rr)(e,d). As g,e € X, we have —(g#¢e). Hence g =e, ¢' € 75(3\(:) and ¢'#¢. d'.
However this contradicts (x).

“D3” Let X be a refinement of X € Conf (€). We show that X € Conf (ref (€)).

It follows in a straightforward manner from the corresponding properties of X and the
X.'s that X is finite and conflict-free and contains no causality cycles.
Hence it suffices to show that X is left-closed up to conflicts.

So let (e, ¢') € X, let (d,d') € Ereg(e) — X with (d,d') <wse) (e, €'). We have to show that

there exists (f, f) € X with (f, f') < rf(€) (€,€') and (f, f') s (d, d').
In case d = e this follows immediately from the corresponding property of X..

So let d # e.

If d ¢ X then the requirement follows from the corresponding property of X.
So we now consider the remaining case that d # e and d € X. Then d' ¢ X,.
Since d # e we have d <¢ e, hence d is not maximal in X.

Thus X, must be terminated.

So d §é Xy implies 3f' € X4 with fl#mf(lg(d))d'.

Hence (d, ') € X, (d, ') <wfe) (6,€') and (d, f")#wpie)(d, d').

This completes the proof of the first statement of the proposition. We now turn to the
second.

“=” Let X € Conf(ref(€)) be terminated.

First we show that X = 7 (X) is terminated.

Let d € E¢ — X. We have to show: de € X with d#c¢e.

Since £; # O, there exists (d,d') € Eyefe) with (d,d") ¢ X.

Since X is terminated, there exists (e,e’) € X with (d, d)#repe)(e€), e € X,
d = e would imply d'#¢ €', however d', ¢’ € wg()? ), which is conflict-free.
Hence d # e and thus d#ce.

Next we show, for e € X, thatirg()A(:) is terminated. .

Let e € X. Let d' € Fg, — m5(X). We have to show: Je’ € 75(X) with d'#¢,e".
We have (e, d') ¢ X. -

Since X is terminated, there exists (f,e') € X with (f, €')#rese) (e, d').
However, f = e since otherwise e#¢ f, but e, f € X.

Thus €' € 7§(X) and d'#¢,¢€'.

“<” Assume X is terminated and, for all e € X, X, is terminated.

We show that X = U {e} x X, is terminated.
ecX

Let (d, dl) € Eref(é') — Y

First consider the case that d ¢ X. -

Then Je € X with d#¢e. Since X, # (), 3¢’ € Eg, with (e, €') € X and (d, d')#res(e) (e, €).
Now let d € X.

As (d,d') ¢ X we have d' € Xy, so Je’ € Xy with d'#¢ e’ (since Xy is terminated).

Thus (d,e') € X and (d,d")#,ef)(d, €'). u
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The following proposition shows that sequential composition for non-empty flow event
structures can be regarded as a special case of action refinement.

Proposition 3.4 Let £ and F be non-empty flow event structures, and a,b € Act.
Let ref be a refinement function with ref(a) = € and ref (b) = F. Then

E;F = ref(a——0).

Proof Let a and b be the two events in the event structure a — b (where a is the
event labelled a, and b the one labelled b). Let G be the event structure ref (¢ —— b). In
Definition 3.3 of the sequential composition operator ; it is assumed that Ec N Ex = (.
Now the function i : E¢,z — Eg given by i(e) := (a,e) if e € Eg and i(e) := (b, e) if
e € FEr is clearly an isomorphism. [ |

The following adaptation of Proposition 3.1 can now be obtained as a corollary of Propo-
sition 3.3.

Corollary 3.1 Let £, F and ref be as in Proposition 3.4.

Then Conf (ref (a —b)) = {({a} x Xo)U({b} x X3) | X, € Conf(£), Xy € Conf(F)
and X, is terminated or X, = 0}. Moreover, ({a} x X,)U ({b} x X}) is terminated
iff both X, and X} are terminated. [ |

In this paper, apart from action refinement and sequential composition, we do not treat
process algebraic operations formally; in particular we do not consider an operator for
parallel composition. When considering such an operator, the following problem occurs.
Flow event structures allow for an easy definition of CCS-like parallel composition [BC-b],
which however does not always give the desired result. In [CZ] it is shown that the subclass
of flow event structures satisfying the so-called A-axiom is well-behaved under parallel
composition, and is closed under all operators of CCS as defined in [BC-b].

Axiom A: a#tb < cANad c= 3Id:b#d < c AVe#d : (e # b= b#e ~ c).

Here e ~ €’ abbreviates e#e’ Ve < €' Ve < e. So ¢ is defined on flow event structures
exactly as co is on prime event structures. However, this class is not closed under our
refinement operator.

Example 3.7 a # bl#
Refining b into by by in @ # b # d yields b2f# d. The former structure satisfies

c c
A, by lack of events e # b with e#d. However, the latter does not: take b := by and
e := by; then by# b fails to hold.?

3 After renaming d into @ and b into 7, the original event structure can be denoted by the CCS-
expression a|@.c.nil. Hence, excluding this event structure from consideration by strengthening the
A-axiom is not an option.
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We claim that this problem can be solved by regarding a larger subclass of flow event
structures, closed under action refinement and the CCS operators as defined in [BC-b], for
which parallel composition is still well-behaved. This will be discussed in a forthcoming

paper.

We end this section with a lemma that will be useful later on.

Lemma 3.1 Let £ € Ep,y, X € Conf (£) and busy C X.

Then Ve € busy : e maximal in X with respect to <x
< VY Chusy: X =Y € Conf (€).

Proof

“=” Let £ € Epow, X € Conf(£),Y C X and Ve € Y : e maximal in X w.r.t. <x.

It suffices to prove that X —Y € Conf (£).

X —Y is finite and conflict-free and does not contain causality cycles since X has these
properties. It remains to be shown that X — Y is left-closed up to conflicts.

Suppose e € X — Y, d <ceandd ¢ X —Y. If d € Y then d would be maximal in X
w.r.t. <y, contradicting d <¢ e. Thus d ¢ X. Hence there is an f € X with f <¢ e and
d#¢f. Since f <g e, f is not maximal in X w.rt. <x,so f € X — Y, which had to be
proved.

“<” Let £ € FEpon, X € Conf (), d € X and X — {d} € Conf(E).

It suffices to proof that d is maximal w.r.t. <x.

Suppose it is not, then Je € X with d <¢ e. Since X — {d} € Conf (£), there exists an
f e X —{d} with f <¢ e and d#¢f, contradicting the conflict-freeness of X. [ |

This means that, in Proposition 3.3, the condition “e € busy(X) = e maximal in X w.r.t.
<x” can be replaced by “for all Y C busy(X), X —Y € Conf (£)”. The underlying idea
is that, as events which are causally necessary for other events in X may only be replaced
by terminated configurations, it must be possible to take any subset of “non-terminated”
or busy events out of X, again obtaining a configuration.
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4 Refinement of actions in stable and non-stable
event structures

Stable and non-stable event structures are introduced in the work of Winskel [Winskel].
In this section, we extend the model by a predicate for successful termination. We define
a compositional operator for general action refinement on event structures and show that
the subclass of stable event structures is closed under this operator.

4.1 Event structures

Definition 4.1

A (labelled) event structure (over an alphabet Act) is a 5-tuple & = (E, Con,F,/,1)
where

— F is a set of events,

— Con is a non-empty set of finite subsets of E (the consistency predicate) satis-
fying Y C X € Con =Y € Con,

— FC Con x E is the enabling relation, satisfying X Fe A X CY € Con = Y F e,
— v/ C Con is the termination predicate, satisfying e¢ X €/ = XU{e} & Con,
— [ : E — Act is the labelling function.

Here, E and [ play the same role as before. X € Con means that the events in X could
happen in the same run — they are consistent. - indicates possible causes: an event e
can occur whenever for some X with X F e all events in X have occurred before. Finally,
X €/ means that the represented system may terminate successfully after performing
exactly the set of events X.

The termination predicate is added to distinguish between deadlock and successful termi-
nation, which was not done in [Winskel|. There are now for instance two event structures
with an empty set of events: € = (0,0, 0, {0}, ?) represents successful termination, whereas
§=(0,0,0,0,0) represents deadlock (successful termination and deadlock are represented
by € and 9§, respectively, in the context of ACP [BW, Vrancken|). The requirement on
the termination predicate in Definition 4.1 says that a set of events can terminate only
if adding any further events would make the set inconsistent. As we will show, dropping
this requirement would give rise to notions of sequential composition and action refine-
ment that are either more difficult to define and analyse or conceptually different from
the notions considered so far.

Let E denote the domain of event structures labelled over Act.
Two event structures £ and F are isomorphic (€ = F) iff there exists a bijection between

their sets of events preserving Con, I, 1/ and labelling.
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Definition 4.2 Let £ € F.

A subset X C Eis securediff Jeq, ...,e, : X = {e1, ..., en}AVi < n : {eq,...,e;} F eir1.
X is a (finite) configuration of £ iff X is secured and consistent. Conf(£) denotes
the set of all configurations of £. A configuration X is called terminated iff X € /.

A collection of sets is called directed if for every two sets it contains, it also contains a
superset of their union. In [Winskel] the family F (&) of (possibly infinite) configurations
of an event structure £ is defined. Under that definition (1.1.2 in [Winskel]), trivially, the
infinite configurations are exactly the unions of directed collections of finite configurations.
Moreover, our configurations coincide with the finite ones from [Winskel]. Hence the
set Conf(€) contains the same information as F(€). As pointed out in Section 2, the
configurations in Conf(€) represent the runs executable, and the states reachable, in a
finite period of time.

Example 4.1 “Parallel switch” [Winskel].

We have two actions 0 and 1 interpreted as closing switch 0 and closing switch 1,
respectively, in an electric circuit. As soon as at least one of the switches is closed,
a bulb lights up; this is represented as an action b.

’ b
1 j—‘;@
—
Assuming that each action occurs only once, this may be represented by an event
structure with events 0, 1 and b, labelled with themselves, all sets of events consis-

tent, - given by @ =0, @ = 1, {0} = b and {1} F b, and only {0, 1,b} terminated®.
The configurations are:

{0,1,b}
0. iy
o >
0

Note that the b-event may occur here without a unique “causal history”; in the
configuration {0, 1,b} it is not clear whether b is caused by 0 or by 1.

As observed above, the causal dependencies between the events in a configuration of an
event structure can not always be faithfully represented by a partial order. Therefore, the
subclass of stable event structures is defined in [Winskel]. In a configuration X of such a
structure, causal dependence is given by a partial order <jy.

4One could argue that this process should be able to terminate successfully even if only one switch
has been pressed. However, according to Definition 4.1, {0,b} and {1, b} cannot terminate; they are not
maximal consistent sets of events.
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Definition 4.3

An event structure £ is stable iff X F e implies that there is a least subset Y of X
with Y Fe.

Let £ € FE be stable and X € Conf(€). For d,e € X, we write d <x e iff d is a
member of the smallest subset Y of X with Y  e. Now <x, the causality relation
on X, is defined as the transitive closure of <x. We write d <x eford <x evd = e.

We now observe how flow event structures (and therefore also prime event structures) can
be seen as special cases of stable event structures.

Definition 4.4 Let £ be a flow event structure.

Let Cong be the class of conflict-free sets of events in £ (cf. Definition 3.2) and /,
the class of terminated configurations of £. We write X F¢ e iff X is consistent
and contains a complete set of causes of e, i.e. iff X € Cong and Vd € E¢ :
if d < eand d ¢ X then there exists an f € X with f < e and d#f. Now
S(€) = (Eg, Cong,t¢,+/¢,le) is the stable event structure representation of &.

Proposition 4.1 Let £ be a flow event structure.

Then S§(€) is a stable event structure and Conf(S(€)) = Conf(E). Moreover, if X
is a configuration of £, then the causality relations <x on £ and (&) coincide, and
X terminates in & iff it terminates in S(&).

Proof Tt follows immediately from the definitions that S(€) is a stable event structure.

“C”: Let X € Conf(S(€)). As X is secured, it must be finite and left-closed in £ up to
conflicts, and as it is consistent, it must be conflict-free in £. It remains to show that X
does not contain a causality cycle. Let eq, ..., e, be a securing of X. It suffices to establish
that e; <¢ e; implies ¢ < j. By contradiction, suppose ¢ > j. As the set {e1,...,e;_1}
enables e;, it must contain a complete set of causes of e;. Hence, there must be a k < j
with e;#eg, contradicting the conflict-freeness of X.

“27: To prove X € Conf(£) = X € Conf(S(€)) we use induction on | X|. So suppose
X € Conf(£), and the implication has been established for smaller sets. X is conflict-free
in £ and hence consistent in S(€), so it remains to be shown that it is secured. As X is
finite and without causality cycles, it must have an element e such that there isno f € X
with e <¢ f. Now X — {e} € Conf(€), and by induction X — {e} € Conf(S((£)). Let
€1,...,6e, be a securing of X — {e}. As X is left-closed up to conflicts, X — {e} must
contain a complete set of causes of e. Hence ey, ..., e,, e is a securing of X.

The remaining statements are straightforward consequences of the definitions. [ |
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4.2 Refinement of actions

A refinement operator on event structures will be given by a function ref specifying for
each action a an event structure ref (a) which is to be substituted for a. Again we only
consider non-forgetful refinements here, where forgetful refinements refine some action into
an event structure with () € 1/, or equivalently (by Definition 4.1) Con =/ = {0}. Apart
from this restriction, we may replace an action by any event structure. In particular,
refinement into deadlocking processes is unproblematic.

Definition 4.5

(i) A function ref : Act — F is called a refinement function (for event structures) iff
Va € Act : 0 & v/ ot (a)-

(ii) Let £ € IE and let ref be a refinement function.
Then the refinement of € by ref, ref (£), is the event structure defined by
- Ene) =6, ¢) [ € € By €' € Enpaeents,
— X € Conggy iff m(X) € Cong and Ve € m(X) : 75(X) € Conpep(ig(e))s
— )?I—ref(g) (e,€') iff ready(Y) F¢ e and WS(Y) Fref(ic(e)) €
— X € Vyepey 1 (X) € /¢ and Ve € mi(X) : 5(X) € v/, r 1))
“lepe)(€, €) = lrpueen(€), N
with 7 (X) :={e | 3f: (e, f) € X}, m5(X) := {f | (e, f) € X} and
ready(X) = {e € 1(X) | 75(X) € viusoie} 7 X C Broge

As usual, we verify that ref (£) is well-defined, even when isomorphic event structures are
identified. In addition we check that stability of £ and ref is preserved.
Proposition 4.2

(i) If £ € E and refis a refinement function then ref (£) is an event structure indeed.

(i) If £ € E and ref, ref' are refinement functions with ref (a) = ref’(a) for all a € Act
then ref () & ref'(£).

(i) If &, F € E, £ = F, and ref is a refinement function then ref (£) = ref (F).
(iv) If € is stable and ref (a) is stable for all a € Act then ref (£) is stable.

Proof Straightforward. [ |

As observed in the footnote to Example 4.1, it might be interesting to allow also non-
maximal configurations to terminate, which however is forbidden in Definition 4.1. Now
we investigate what happens if we just drop the corresponding requirement on the termi-
nation predicate in Definition 4.1.
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Example 4.2

Let &£ be the parallel switch of Example 4.1, but with /= {{0, b}, {1, 6},{0,1,b}},
and let d be the event structure that performs a single action d and terminates.
As in Section 3 (cf. Proposition 3.4), sequential composition of event structures
with ) ¢ |/ can be defined as a special case of action refinement. Now &;d has 4
events, which, preserving isomorphism, may be named 0, 1, b and d, labelled with
themselves. The configurations of £;d are

{0,1,b,d}
{0,b,d} {1,0}
{0,0} {1,0}
{0} {1}
0

This structure has a configuration {0,b,d} with {0,b,d} - 1. Here an action from
the first component can happen after the second component of the sequential com-
position has already started, contradicting the notions of sequential composition
and action refinement investigated here.

The problem raised in this example can be solved by a more elaborate definition of
action refinement (and sequential composition) on event structures, involving duplication
of events such as d above. However, this would undo the main advantage of working
with event structures that are not prime. Alternatively, one can consider looser notions of
sequential composition and action refinement, allowing some degree of parallelism between
the components of a sequential composition (cf. [JPZ, JZ-a/b, Zwiers, Janssen, DGR,
Wehrheim-a/b, RW, Huhn-a/b)).

As in Section 3, we establish that the behaviour of a refined event structure ref (£) may
be deduced compositionally from the behaviour of £ and the behaviour of the refinements
of actions. The following proposition generalises Proposition 3.3. However, as for non-
stable event structures the notion <x is not defined, we use the alternative formulation
suggested by Lemma 3.1.

Proposition 4.3 Let £ € FE, let ref be a refinement function for event structures.

We call X a refinement of configuration X € Conf(E) by ref iff

- X =U {e} x X, where Ve € X : X, € Conf (ref (Is(e))) — {0},

ec X
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- VY C busy()z) : X =Y € Conf(€),
where busy(X) :={e € X | Xe & V/,010(e )

Then Conf (ref (£)) = {X | X is a refinement of a configuration X € Conf (€)}.
Moreover, X is terminated iff X is terminated and Ve € X : X, is terminated.

Proof “C”: Let X € Conf(ref(£)). We will show that

(i) ready(X) C Z C m(X) = Z € Conf(£) and

(ii) e € m(X) = 7§(X) € Conf (ref(ls(e))) — {0}.
Considering that busy(X) = m(X) — ready(X) and that X =
then immediately follows that X is a refinement of 7,(X) € Conf(€).

~{e} x 7&(X), it

ecm1(X)

(ad (i)). Let ready(X) C Z C m(X). By Definition 4.5 we have m(X) € Cong, so
by Definition 4.1 also Z is consistent. It remains to be shown that Z is secured. Let
X ={(e1,€}),...,(en,€,)} such that Vi < n: {(e1,€,), ..., (es, €})} Frerce) (€iv1,€541). We
show that the sequence dj, ..., di, obtained from ey, ..., e, by deleting the events that are not
in Z has the required properties. As Z C m(X) = {ey,...,en} we have Z = {d,, ..., dy}.
Let j < k. Then dj;1 = e for certain ¢+ < n. We have {(e1,€}),..., (e, €})} Free)
(€it1,€;,,). Hence, by Definition 4.5, ready({(e1,€}),..., (e;,¢€})}) l—g €it1 = djy1. As
ready({(e1,€}),-.., (e;,€l)}) C {eq,-..,e;} and ready({(el,el) (ei,€)}) C ready(X) C
Z, we have ready({(e1,€}),...,(e;,€})}) C {di,...,d;} € Cong, so, by Definition 4.1,
{dl, ceey d]} F dj+1. It follows that Z € CO’I’Lf(g)

(ad (ii)). Let e € my(X). Then n%(X ) # 0, and, by Definition 4.5, 7¢(X) is consis-
tent. It remains to be shown that m¢(X) is secured. Let X = {(el,el) ,(en,el)}
such that Vi <n: {(e1,€)),..., (e €))} Frepe) (€it1,€jy1). We show that the sequence
di, ..., d, obtained from €, ..., e;, by deleting the events e; for which e; # e has the re-
quired properties. By definition 75(X) = {di,...,d;.}. Let j < k. Then d}, = e{,, for
certain ¢ < n. We have {(e1,€}),..., (e, €;)} Frer(e) (i1, €,,). Hence, by Definition 4.5,

{di, ..., d;} =m5({(e1,€1),..., (e, €})}) Fref (i (e) e;+1 = d;'+1

“J7: Let X be a refinement of a configuration X € Conf(€). Then m(X) = X € Cong
and X = U.ex{e} x X, with Ve € X : X, € Conf (ref (lg(e))). For all e € mi(X) we
have 7r§()7) = X, € Conyep,(e))- Hence X e Conyef(g)- It remains to be shown that X is
secured. Using that ready(X) € Conf (€ £), write ready()?)ﬁ/z {e1,...,em} such that Vi <
m : {e1,...,e} Fg eiy1. Forall e € busy(X) we have ready(X)U{e} € Conf(£), so it must
be that ready(X) F e. Let busy(X) = {emi1, - en}, ie. X = {e1,...,en}, with n > m.
Fori=1,..,nlet X, = {€},..., €}, } such that Vj <k; : {e}, ..., €4} Fresiz(e)) €igjr1)- We
claim that the sequence (e1,€};), ..., (€1,€ly,), (€2,€51);s s (€2,€51,)5 - - - (€nsen1), -y (€nsehp,)
secures X. This follows from Definition 4.5. Namely, let © < n and 7 < k;. Then
ready({(e1,€11); s (€, €l )5 (€156 1)1)s s (€ir1,€(4107) ) = {ers o semasfimy} F €iy1 and
™' ({(enenr), - (e, €ik;)>(€ir 1€ 11)1)s o (€ir1,€(i11)5)}) = {€lisnyry r€g1) ) €
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The last statement of Proposition 4.3 follows immediately from Definition 4.5. [ |

The stable event structure associated to a refined flow event structure £ is not always equal
to the corresponding refinement of the stable event structure associated to &£, i.e. there
are flow event structures £ and refinement functions ref with S(ref(£)) # ref s(S(E))
where ref g(a) := S(ref (a)) for all a € Act.

Example 4.3

Take £ := aib’ ref(a) := a and ref (b) := ¢——( , where the names of events
are equal to their labels. Then

a#—i—"c
ref (€) = \\\\

4.3

and in S(ref (€)) we have {(a,a)} Fser(e)) (b, d). On the other hand, in ref 5(S(€))
we have {(CL, a)} |7(ref5(8(5)) (b, d), as (D |718(1"ef(b)) d in S(ref(b))

However, the difference between S(ref(£)) and ref g(S(€)) is not essential; see Corol-
lary 5.1.
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5 Configuration structures and action refinement

In the previous sections we have shown that different forms of event structures may
be used for refinement of actions. Although the refinement operators we have defined
depend on the particular “syntax” of the chosen event structures, in all cases the relevant
behaviour of an event structure is determined by its set of configurations, a predicate on
configurations indicating successful termination, and the labelling of events. As we will
see in Part II, all relevant equivalence relations for event structures can be formulated in
terms of these notions only.

In this section, we define a refinement operator for a general and more abstract event
oriented model of concurrent systems, in which a system is represented by its set of con-
figurations, a termination predicate and a labelling function. To the extent that refinement
operators for any particular brand of event structures are determined by a composition-
ality property such as expressed by Propositions 2.2, 3.3 and 4.3, these operators are
obtained as special cases.

5.1 Configuration structures

Definition 5.1

A (labelled) configuration structure (over an alphabet Act) is a triple C = (C,/,1)
where C'is a family of finite sets (the configurations), v/ C C a termination predicate,
satisfying X € / A X CY € C; = X =Y (i.e. terminating configurations must

be maximal), and [ : U X — Act is a labelling function.
Xxec

In [GG-c| we introduced configuration structures without the termination predicate /,
and required them to satisfy three closure properties, ensuring that they were exactly the
labelled versions of the families of finite configurations of Winskel’s (non-stable) event
structures. Following [GP] we drop these closure properties here, thereby obtaining a
simpler and more general model of concurrency, closely resembling the Chu spaces of
[Pratt-b]. In addition, we add the termination predicate, enabling us to distinguish be-
tween deadlock and successful termination. In Section 5.3 we will show that our refinement
operator preserves the closure properties of [GG-c|, as well as an extra property restricting
attention to the families of finite configurations of stable event structures.

The requirement on the termination predicate in Definition 5.1 says that in a successfully
terminating configuration no further events can be executed. As in the previous section,
this requirement enables a clear notion of action refinement.

Let ¢ denote the domain of configuration structures labelled over Act. The set E. of
events of C € (' is defined by E. .= U X.

XeCe

As usual, we will not distinguish configuration structures which are isomorphic in the
sense that they only differ with respect to names of events.
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Definition 5.2

Two configuration structures C and D are isomorphic (C = D) iff there exists a
bijective mapping f : Ec — Ep such that

- XeCe& f(X)e Cp for X C Eg,

- X ey, f(X)e/pfor X CEg,

—and lc(e) = Ip(f(e)) for e € E¢.

We may now associate a configuration structure with each event structure.

Definition 5.3 Let £ be a prime, flow or stable event structure.

The configuration structure of £, C(€), is defined as

C(€) := (Conf(€), V(E), led U X).

XeConf(€)

where /(€) denotes the set of terminated configurations of &.

There is no unique correspondence in general: different event structures may have the
same configuration structure.® It follows immediately from Proposition 4.1 that, for a
flow event structure &£, C(S(€)) = C(E).

5.2 Refinement of actions

Next, we define refinement of actions for configuration structures. Again we only consider
non-forgetful refinements here, hence ref (a) # ¢ for all a € Act, where ¢ denotes the
configuration structure with C, = /. = {0}, indicating a successfully terminating process
that performs no actions.

Definition 5.4

(i) A function ref : Act — € — {e} is called a refinement function (for configuration
structures).

(ii) Let C be a configuration structure and let ref be a refinement function.
We call X a refinement of a configuration X € C¢ by ref iff

- X= {e} x X, where Ve € X : X, € Crerqe(e)) — {0},
ecX

— VY C busy (X): X —Y € Ce, where busy (X) :={e € X | Xe &V er(o(en -

5Although for prime event structures the correspondence is unique [NPW].
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Such a refinement is terminated iff Ve € X : X, € v/, 1.0 1-€- Iff busy (X) = 0.
The refinement of C by ref is defined as ref (C) = (Cres(c)s \/mf(c), Lef(cy) With

— Crye) == {X| X is a refinement of some X € C¢ by ref},
- \/mf(c) = {)A(:| X is a terminated refinement of some X € Ve by ref}
— and lepc) (€, €') := lufae(e)(€') for all (e, €') € Erec)-

This definition corresponds exactly to the previous characterisations of refinement for
event structures (cf. Propositions 2.2 and 3.3, Lemma 3.1 and Proposition 4.3).

Next we show that refinement is a well-defined operation on configuration structures, even
when isomorphic configuration structures are identified.

Proposition 5.1

(i) IfC € € and refis a refinement function then also ref (C) is a configuration
structure.

(ii) If C € € and ref, ref " are refinement functions with ref (a) = ref’(a) for all
a € Act then ref (C) = ref'(C).

(iii) If C,D € €, ref is a refinement function and C = D then ref (C) = ref (D).
Proof Straightforward. [ |

Finally, we show that the more structural refinement operators for prime, flow and stable
event structures defined in Sections 2, 3 and 4 are consistent with the refinement operator
for configuration structures proposed here.

Theorem 5.1

Let £ be a prime, flow or stable event structure and let ref be a refinement function
for such event structures.

Then C(ref (£)) = refo(C(£)), where ref.(a) := C(ref (a)) for all a € Act.

Proof By Definition 5.3 we have Ce(ey = Conf(£), Creje(ieee)) = Conf (ref (le(e))) and
\/Tefc(lc(g)(e)) = /(ref(lg(e))). Hence a refinement of a configuration X € C¢ey = Conf(€)
by ref (as defined in Propositions 2.2, 3.3 resp. 4.3) is the same as a refinement of X by

ref (as in Definition 5.4); in the case of flow (and prime) event structures Lemma 3.1 is
used here. It follows that

L el
[SORXAN)

o Ce(ref(e)) 22 Conf(ref(€)) £ {X | X is a refinement of some X € Conf(£) by ref}
o £X|X is a refinement of some X € Ceey by refe} = Crefe(c(€))s
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Lo b

® Vewese) 2 /(ref(€)) & {X | X is a ref. of some X € (/(€) with busy(X) = 0}
2 £X|X is a terminated refinement of some X € Ve by refct = Vreto(c(€):

U‘»b

2.
N 5.3 3 N 5.3 N 5.4 p
o letrer(e)(€:€) 2 Lioge)(€,€) Z Lueg160) (€) 2 Lropettcrey @) (€) = lregeicien (€, €)- u

Thus, first performing action refinement on an event structure and then translating the
result to a configuration structure yields the same result as first moving to configuration
structures and then performing action refinement. In contrast, Example 4.3 showed that
performing action refinement and transforming flow into stable event structures does
not always commute, i.e. we do not always have S(ref(£)) = refs(S(€)). However,
interpreting both sides as configuration structures always yields the same result.

Corollary 5.1 Let £ be a flow event structure and ref a refinement function.

Then C(8(ref (£))) = C(ref s(S(£)))-

Proof Asremarked at the end of Section 5.1, we always have C(S(€)) = C(£).
Hence C(ref5(S(€))) = (ref5)c(C(S(E))) = refc(C(E)) = C(ref(£)) = C(S(ref(£))),

using Theorem 5.1. [

The following lemma says that if in Definition 5.4 we would not have insisted that the
sets X, are nonempty, the resulting notion of ref (C) would be the same. Note however,
that in this case X need longer be given as {e € E¢ | 3¢’ : (e,€') € X}, and the notion
busy(X) ought to be parametrised by X.

Lemma 5.1 Let C be a configuration structure and let ref be a refinement function.

Then X € Chep(cy iff there is a configuration X € C¢ such that

— X =U {e} x X, where Ve € X : Xe € Crepgie

ec X

—Vngust(X) X =Y € C¢, where busy x (X )—{€€X|X ¢\/ref(lc }

Proof “Only if” is given by Definition 5.4, but “if” is not, because we do not require
here that X, # (. So suppose X = Uccx{e} x X, where Ve € X : X, € Cre((e)), and
VY C busyyx(X): X =Y € Ce. Let X' :={e € X | X, # 0}. Then X = Ueex:{e} x Xe
where Ve € X' : X, € Crep(ipe)) — {0} Let Y C busy(X) = busy (X)) C busy 5 (X). As
ref is not forgetful, we have X — X’ C busy(X). Hence, VY C busyx(X): X' —Y =
X — (YU (X — X") € Ce. Tt follows that X € Chep(c). m
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5.3 Stable configuration structures

In this section we characterise the configuration structures with the property that the
causal dependencies in configurations can faithfully be represented by means of partial
orders. It turns out that these are exactly the configuration structures associated to stable
event structures; hence we call them stable configuration structures. We show that this
class is closed under action refinement.

Definition 5.5 A configuration structure C € (' is

— rooted iff ) € Cg,

connected iff ) #X € Cc = Je € X : X — {e} € C,

— closed under bounded unions ift XY, Z € Ce, XUY CZ = XUY € (g,

— closed under bounded intersectionsift X, Y, Z € Ce, XUY C Z = XNY € Ce.

C is stable iff it is rooted, connected and closed under bounded unions and intersec-
tions. Cyape denotes the domain of stable configuration structures.

The following lemma shows a number of properties that are equivalent to connectedness.
The second of these says that a configuration structure is connected iff every configuration
is reachable from the empty configuration (modelling the initial state of the represented
system) by executing one event at a time. It also implies that in a connected configuration
structure rootedness is equivalent to nonemptyness. Properties 3 and 5 will be used further
on.

Lemma 5.2 Let C € € be closed under bounded unions.
The following are equivalent:

1. C is connected.

2. For all X € C; there are X,,..., X, €e Ccwith=XoCc X;C---Cc X, =X
and Vi < n:|X; — X, = 1.

3. C satisfies the property of coincidence-freeness:
XeCANdieeX,d#e=3FY €CwithY CXand (deY & edgY),

4. fX,Y€EC,XCYand|Y —X|>2 then3dZ € Ce with X CZCY (ie.
X4Z4Y).

5. f X, Y € Cz and X C Y, then there are Xy, ..., X,, € Cc with X = X, C X; C
- CXp=YandVi<n:|X;;; — X =1

Proof
1 = 2 By repeated application of connectedness.
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2 = 3 Trivial.

3=4 Taked,e€ Y — X, d#e. Then3Z € C¢, Z CY with (d € Z < e ¢ 7), say
de Zand e & Z. AsC is closed under bounded unions, X UZ € C.. Moreover
XCcXuZcY,de(XUZ)—XandeeY —(XUZ).

4 = 5 By repeated application.

5 =1 Trivial. [ |

Next we show that in stable configuration structures causality can be faithfully represented
by means of partial orders.

Definition 5.6 Let C € U4 and X € C.

The causality relation on X is given by d <x e iff d <x e and d # e, where d <x e iff
forallY € Ce withY C X we havee € Y = d € Y. The concurrency relation on X
is given by d cox e iff =(d <x eVe <x d). Finally, pomset(X) := [(X, <x, lc ' X)]=.

Proposition 5.2 Let C € Cype and X € Cp.

<x is a partial order.

Proof The transitivity and reflexivity of <y follow immediately from Definition 5.6,
and antisymmetry is a restatement of coincidence-freeness (cf. Lemma 5.2). [ |

Proposition 5.3 Let C € Cyap. and X € Ce.

A set Y C X is a subconfiguration of X, i.e. Y € C¢, iff Y is left-closed w.r.t. <x.

Proof That subconfigurations of X are left-closed w.r.t. <x follows immediately from
Definition 5.6. Conversely, suppose Y C X is left-closed w.r.t. <x. In case ¥ = X,
trivially Y € C¢, and in case Y = () this follows from the rootedness of C. Hence we
may assume that X —Y # () and Y # (. For every pair of events d,e with d € Y and
e € X —Y we have =(e <x d), i.e. there is a Z4, € Cc with Zye C X, d € Zye and e & Zy,.
We have Y = Ugey Neex—y Zae- As X =Y # () and Y # B, these unions and intersections
are non-empty; as Zgz C X they are bounded; and they are finite because X is finite.
Hence, using that C is closed under (binary) bounded unions and intersections, we find
that Y € Cg. |

Proposition 5.4 Let C € Cype and X, Y € Ce with Y C X.

Then <y = <x Y.

Proof This follows immediately from Definition 5.6, since for any Z € C¢, Z C X, also
ZNY € Ce by stability. [ |
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We now establish that, whenever in a nonempty configuration structure causality can be
faithfully represented by means of partial orders, it must be stable.

Theorem 5.2 Let C € € be rooted.

For all X € C¢ let <x be defined as in Definition 5.6. Then Propositions 5.2 and
5.3 are satisfied iff C is stable.

Proof “If” has already been established, so suppose that <x satisfies Propositions
5.2 and 5.3 for all X € C¢. Let X,Y,Z € Ccand X UY C Z. As X and Y are
subconfigurations of Z, they must be left-closed w.r.t. <z. Therefore X UY and X NY
are left-closed w.r.t. <z, and hence must be subconfigurations of Z. Thus C is closed
under bounded unions and intersections. As <y is antisymmetric for all X € C¢, C is
coincidence-free, and hence, by Lemma 5.2, connected. [ |

The following theorem characterises the classes of configuration structures that arise as
the sets of configurations of (stable) event structures.

Theorem 5.3 Let C € .

C is of the form C(£) with £ € F iff it is rooted, connected and closed under
bounded unions; it is of the form C(£) with £ € F stable iff C is stable.

Proof This is a reformulation of Theorems 1.1.9, 1.1.13 and 1.1.16 of [Winskel] (except
that in [Winskel] the requirement of rootedness, or, equivalently, nonemptyness of C¢,
is missing), taking into account that our configurations are finite, whereas the ones in
[Winskel] may be infinite. Cf. [GP] for how the properties above are obtained from the
ones in [Winskel]. |

Next, we verify that the causality relations <x on the configurations X of stable config-
uration structures agree with the ones defined earlier for stable event structures.

Proposition 5.5 Let £ € F be stable and X € Conf(£).
Then the causality relations <x defined on £ and C(€) coincide.
Proof For any given e € X let |e := {d € X | d <x e according to Definition 4.3}.

Using Definition 4.2 it follows that Je € Conf(£). Thus whenever d <x e according to
Definition 5.6, it must be that d €le, and hence d <x e according to Definition 4.3.

Now suppose that d <x e according to Definition 4.3. If follows immediately from Def-
inition 4.2 that every subconfiguration of X that contains e must also contain d. Hence
d <x e according to Definition 5.6. [ |
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We now show that each of the properties of Definition 5.5 is preserved under action refine-
ment; in particular the class of stable configuration structures is closed under refinement.

Proposition 5.6 Let C € € and let ref be a refinement function.
(i) If C is rooted, then so is ref (C).

(ii

) If C and all ref (a) for a € Act are connected, then so is ref (C).
(iii) If C and all ref (a) for a € Act are closed under bounded unions, then so is ref (C).
)

(iv) If C and all ref (a), a € Act are closed under bounded intersections, then so is ref (C).

Proof
(i) Trivial.

(i) Let 0 # X € Cres(c)- Then X = Ueex{e} x X, with Ve € X : X, € Creftie(e)) — 10}
and VY C busy(X) : X =Y € Cp, where busy (X) = {e e X | X, ¢ \/mf(lc -
In case busy(X) # 0 take e € busy(X). As 0 # X, € Crospe(e) and ref (le(e )) is
connected, there must be an e’ € X, with X, — {€'} € Crer((c)). Using Lemma 5.1
it now follows that X — {(e, ¢')} € Cref(c)-

Next assume busy(X) = 0. As C is connected and () # X € Cg, there must be an
e € X with X — {e} € C¢. As also ref (Ic(e)) is connected and ) # X, € Crerge(e)
there must be an €' € X, with X, — {€'} € Crep(io(e))- With Lemma 5.1 it again

follows that X — {(e, ¢)} € Cre(c)

(iti) Let X,Y,Z € Creey and XUY C Z. Then X = Upex{e} x X, with Ve € X : X, €
Cref(c(e)) and VX* C bust(Y) : X — X* € C¢. Likewise Y = Ueey{e} x Y, with
Ve €Y : Y, € Cropie(ey and VY™* C busyy(f/) Y —Y* € Ce,and Z = U, {e} x Ze
with Z € Co and Ve € Z : Z, € Cref . Fore € Y — X write X, := () and for
e€ X —Y write Y, := . Then XUY = UeeXUY{e} (XeUY,). As XUY C Z we
have XUY € C¢, and as X, UY, C Z, we have X, UY, € Cre(e)) foralle € XUY.
Let W C busyx y (X UY). Then W N X C busyy(X) and WNY C busy, (V).
Hence X —W € Ceand Y —W € C¢, 50 (XUY)-W = (X -W)U(Y -W) € Ce.

Using Lemma, 5.1 it follows that X UY € Cle(c)

(iv) Let X,Y,Z € Crep(ey and XUY C Z. Then X = Upex{e} x X, with Ve € X : X, €
Chref(ic(e)) and VX* C busy(X) : X — X* € Ce. Likewise ¥ = Ueey{e} x Y, with
Ve €Y : Y, € Creie(ey) and VY™ C busyY(Y) Y —-Y*€Ce, and Z = Ueez{e} x Ze
with Z € C¢ and Ve € Z : Z, € Crepe(e))- Now XNy = Ueexny{e} x (XeNYe). As
XUY CZ wehave XNY € C¢, and as X, UY, C Z, we have X, NY, € Crep(c(e)
foralle e XNY. Let W C bustnY(Xﬂ Y). Then it must be possible to write
Was W =X*UY"* with X* C busy x(X) and Y* C busy, (Y). Now X — X* € C¢
and Y —Y* € C¢, 50 (XNY) =W = (X-X*)N(Y -Y") € Cc. Using Lemma 5.1
it follows that X NY € Crep(c)- [ |
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Finally we establish that for stable configuration structures the causality relations on
refined structures are completely determined by the causality relations on the original
structures and the ones on the structures refining actions.

Proposition 5.7 Let C € Cgape, let X € Ce.

Let X be a refinement of X by a refinement function ref — X = U {f} x Xy
fex
Then (d,d') <; (e,e) & (d<xe)V(d=eAd <x, ).

Proof “=7: Assume (d,d') <; (e,¢€'), i.e. for all Y C X with (e,¢) € YV € Chref(c) We
have (d,d') € Y.

Suppose d # e. Let Y C X with e € Y € Cc. We have to show that d € Y.

Let YV := Usey{f} x X;. Since X is a refinement of X, X; € Cree(sy — {0} for all
f € Y. By construction of Y we have busy(Y) C busy(X), using that Y C X. Now let
7 C busy(Y) C busy(X). Then Y — Z = (X — Z)NY € Cg, since X is a refinement of
X and C is closed under bounded intersections. Hence Y € Chref(ic(e))- By construction
Y C X and (e,¢’) € Y, using that e € Y. So, by assumption, (d,d’) € Y, hence d € Y.

Now suppose d = e. Let Y’ C X, with €' € Y € Crep(io(e))- We have to show that d' € Y.
LetY ={feX|f<xe}andV := Urey ({f} x X)U({e} xY”). Since X is a refinement
of X, Xy € Cresie(ry) — {0} for all f € YV; Y € Creppee) — {0} by assumption. By
construction of ¥ we have busy(Y) C busyQ() U{e}. We claim that even busy(Y) C {e}.
Namely, let f € busy(Y) — {e} C busy(X). Then X — {f} € C; by Definition 5.4.
However, as f € Y we have f <y e € X, so X — {f} is not left-closed w.r.t. <x,
contradicting Proposition 5.3. Thus busy(Y) C {e}. As both Y U J{e} €Cecand Y € C¢
by Proposition 5.3, we have = Chref(ic(e))- By construction Y C X and (e,€') € Y using

that ¢’ € Y. So, by assumption, (d,d') € Y, hence d' € Y.

“=”: Assume d,e € X, d € Xy, ¢ € X, and d <y e, ie forallY C X witheeY € C¢
onehasd € Y. Let ¥ € Crep(ie(e) With (e ¢') € Y C X. We have to show that (d,d') € Y.
Let V := Usey {f} X V. As (e,€¢') €Y C X we have e € Y C X. Hence d € Y. As
Y —{d} is not left-closed w.r.t. <x, Y —{d} & C¢ by Proposition 5.3. Hence d & busy(Y),
and Yy € \/ref(lc(e))- We have Yy C Xy € Cref(ie(e)), and as by Definition 5.1 terminating
configurations are maximal, Y; = X,. Since d' € X, = Y} it follows that (d,d') € Y.

Now assume e € X, d',¢' € X and d' <y, €', i.e. for all Y’ C X, with €' € Y" € Crer(ie(e))
onehasd € Y'. Let Y € Cref(ie(ey) With (e, e) Y C X. We have to show that (e, d') € Y.
Let V := Urey{f} x Y;. We have ¢ €Y,C X,. Hence d € Y, and (e,d') € Y. [ ]
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Part 11

Equivalence notions

In this part of the paper, we will consider the spectrum of equivalence notions outlined
in the introduction and investigate which equivalences are preserved under refinement of
actions, and which are even a congruence for action refinement.

Definition I1.1 Let =~ be an equivalence relation on event or configuration structures.

(i) For refinement functions ref and ref’ we write ref ~ ref’ iff ref (a) ~ ref'(a) for all
a € Act.

(ii) = is preserved under action refinement iff C = D = ref (C) ~ ref (D) for all systems
C and D and all refinement functions ref.

(iii) = is a congruence for action refinement iff C = D A ref ~ ref' = ref(C) ~ ref' (D)
for all systems C and D and all refinement functions ref and ref’.

Following the classification discussed in the introduction, the semantic equivalences con-
sidered in this paper can be positioned in a two-dimensional diagram as shown below.

runs interleaving step causal

semantics semantics semantics
conflict sequences sequences partial orders
structure of actions of steps (pomsets)
E interleaving step
= trace trace .

sets of traces . . pomset trace equivalence =2,

5 equivalence equivalence
s Nt Regt
S
S
= . . . .
- interleavin . e pomset bisimulation equiv. &,
= v . .
g . e L e weak history preserving eq. Xqyn
= .. . bisimulation bisimulation ..
S | bisimulation . . e the combination of both: & ynps
S equivalence equivalence - : .
S _ _ ¢ history preserving equiv. =
= ~ib ~sb e hereditary hist. pres. eq.  Rpp

|:| means: not preserved under refinement

|:| means: preserved under refinement

The canonical representatives of linear time and branching time interleaving equivalences
are interleaving trace equivalence (=) and interleaving bisimulation equivalence (=),
respectively. Interleaving trace equivalence generalises in a canonical way to step and
partial order semantics, yielding step trace equivalence (=) and pomset trace equivalence
(mept). Likewise step bisimulation equivalence (=4 ) is the canonical generalisation of ~s;,
to step semantics. However, several generalisations of =, to partial order semantics have
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been defined in the literature. The two original proposals are the pomset bisimulation
equivalence (=) of [BC-a] (there called equipollence), defined on event structures, and the
NMS partial ordering equivalence of [DDM-a|, defined on nondeterministic measurement
systems. We rephrase the latter as an equivalence on stable event and configuration
structures under the name weak history preserving equivalence (Ryy). A strengthening of
this equivalence is the BS-bisimulation of [RT], defined on behaviour structures. Again
we provide a definition for this notion on stable event and configurations structures, and
call it history preserving (bisimulation) equivalence ().

As our system model is equipped with a predicate indicating successful termination, each
equivalence can be defined in two ways: a termination sensitive variant, taking this predi-
cate into account, and a termination insensitive variant, abstracting from this information.
Systematically, we will use the termination insensitive variant of linear time equivalences,
and the termination sensitive variant of branching time equivalences. In this way, most
notions studied in the literature are lying in between.

Between the extremes considered here (interleaving semantics versus partial order seman-
tics, trace semantics versus bisimulation semantics) other paradigms are being investigated
in the literature. We will comment on these in the conclusion, giving a more complete
version of the above diagram.

As mentioned in the introduction, we will show that none of the interleaving and step
equivalences of the spectrum (also not those between trace and bisimulation semantics)
is preserved under action refinement, whereas pomset trace equivalence is; its termina-
tion sensitive variant is even a congruence for action refinement. Then we give examples,
showing that pomset bisimulation equivalence and weak history preserving bisimulation
are not preserved under refinement of actions. We also show that weak history preserv-
ing equivalence does not imply pomset bisimulation equivalence and vice versa; these
notions are incomparable. Next, we provide an example demonstrating that the obvious
combination of both equivalences (/) is also not preserved under action refinement.
Finally we show that history preserving equivalence is finer than each of these notions and
is preserved under refinement. Again its termination sensitive variant is a congruence.
For systems without autoconcurrency we show that history preserving and weak history
preserving equivalence coincide. We also compare history preserving equivalence with
a strengthening proposed by [Bednarczyk| under the name hereditary history preserving
equivalence (Rp;), which is also preserved under action refinement.

Our definitions and theorems will be formulated in terms of stable configuration struc-
tures, this being the most general and abstract event oriented model which allows the
representation of causality by means of partial orders. They then also apply to prime,
flow and stable event structures. In particular, an equivalence =~ on stable configura-
tion structures is inherited by these models of event structures by writing & ~ F iff
C(€) =~ C(F) for prime, flow or stable event structures £ and F. In fact, our definitions
lift to such event structures verbatim. On the other hand, our counterexamples, showing
that certain equivalences are not preserved under action refinement, are phrased in terms
of prime event structures, and therefore also apply to the other, more general, models.
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6 Interleaving semantics

In this section, we define the two interleaving equivalences on both ends of the linear time
— branching time spectrum: (termination insensitive) interleaving trace equivalence and
(termination sensitive) interleaving bisimulation equivalence. We show that these two
equivalences, as well as all (interleaving) equivalences lying in between, are not preserved
under action refinement.

We start by defining a transition relation for configurations.

Definition 6.1 Let C € @stable-
X ¢ X'iffa € Act, X, X' € Ce, X C X' and X' — X = {e} with l¢(e) = a.

Here X —“3¢ X' says that if C is in the state represented by X, then it may perform
an action ¢ and reach a state represented by X'. This transition relation associates a
labelled transition system with each configuration structure. Hence every (interleaving)
equivalence defined on labelled transition systems immediately induces a corresponding
equivalence on configuration structures. Here we just give explicit characterisations of the
so obtained interleaving versions of trace and bisimulation equivalence.

Definition 6.2

A sequence ai---a, € Act* is a (sequential) trace of C € Cyype iff there exist
configurations X, ..., X, € Ce such that Xo =0 and X;_; ¢ X; (i =1,...,n).
SeqTr (C) denotes the set of all sequential traces of C € Ciyapie-

C,D € Cysape are interleaving trace equivalent (C ~y D) iff SeqTr(C) = SeqTr(D).

Definition 6.3 Let C,D € Cyqpie-

A relation R C C¢ x Cp is called an (termination sensitive) interleaving bisimulation
between C and D iff (0,0) € R and if (X,Y) € R then

- X %¢ X' a€ Act = Y with Y —%p Y’ and (X', Y’) € R,
~ Y %, Y a€ Act = 3X' with X —%¢ X’ and (X, Y") € R,
- Xe.eYe,

C and D are interleaving bisimulation equivalent (C %Z‘g D) iff there exists an inter-
leaving bisimulation between C and D.

Note that adding the third requirement turns the usual termination insensitive notion of
bisimulation [Milner-b] into a termination sensitive variant [BW].

Clearly, C x;,f D implies C ~; D. Most other interleaving equivalences studied in the
literature can be positioned in between [vG-c| (recall that we do not consider abstraction
from internal actions).
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Example 6.1

We now recall the example of [CDP], showing that both &;; and z;é are not preserved
under refinement (cf. also Example 1.4). Consider the two systems P := a|b and
Q@ := a;b + b;a, representable by the following prime event structures.

Ep = a b , & = a # b
}

a

S -—

In all known interleaving semantics, P and () are considered equivalent; we have
Ep %Z‘If Eg. However, if we refine the action @ into the pomset a; — ay we obtain
the two systems

ref(€p) = a1 b , ref(Eg) = a1 # b

} } '

Qo Qg ay
! '
b a9

which are not even interleaving trace equivalent: £p: allows for the sequence aq bas
whereas £y doesn’t.

This shows that both interleaving trace equivalence and interleaving bisimulation equiv-
alence are not preserved under action refinement. Even more, the same follows for all
equivalences identifying £p and &g and distinguishing ref (€p) and ref (€g), in particular
for all equivalences = in the linear time — branching time spectrum with z;,{gmgmit.

As equivalences which are preserved under refinement one can consider isomorphism on
the various models of event structures (Propositions 2.1, 3.2 and 4.2) or isomorphism on
configuration structures (Proposition 5.1). However, the main purpose of introducing an
equivalence notion is to abstract from certain details in a system representation. For ex-
ample, we would like to express that the processes a and a+ a exhibit the same behaviour.
Furthermore, we would like to identify processes like (b|(a + ¢)) + (a|b) + ((b + ¢)|a) and
(bl(a + ¢)) + ((b + ¢)|a) (absorption law, see [BC-a]). This is not possible when using
isomorphism. Hence, in the sequel we will consider various equivalence notions in be-
tween these two extremes (the interleaving equivalences and the isomorphisms), taking
into account the concurrency and conflict structure in more and more detail.
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7 Step semantics

A more discriminating view of concurrent systems than that offered by interleaving seman-
tics is obtained by modelling concurrency as either arbitrary interleaving or simultaneous
execution. In this section we generalise the single action transitions X —*+ X' from the
previous section to transitions of the form X Ay X' where A is a multiset over Act,
representing actions occurring concurrently. In particular, we allow actions to occur con-
currently with themselves (“autoconcurrency”). Using this new kind of transitions, vari-
ous equivalences can be obtained as straightforward generalisations of the corresponding
interleaving equivalences, see e.g. [Pomello]. As before, we explicitly define just the two
extreme ones, namely (termination insensitive) step trace equivalence and (termination
sensitive) step bisimulation equivalence. Then we provide examples showing that these
two equivalences, as well as all (step) equivalences lying in between, are not preserved
under action refinement.

Definition 7.1 Let C € Cy4p0-

X e X'iff A € N4 (A is a multiset over Act), X, X' € C¢, X C X' and
X' — X = G such that Vd,e € G : d coxs e and I¢(G) = A. Here Io(G) € N4 is
given by lc(G)(a) := |{e € G | lc(e) = a}|.

Definition 7.2

A sequence A --- A, where A; € N4 (; =1,...,n) is a step trace of C € Cyapie iff
there exist X, ---, X, € C¢ such that Xq =0 and X,_; A, X; (i=1,...,n).
StepTr (C) denotes the set of all step traces of C € Cyqpie-

C, D € Cysyapie are step trace equivalent (C =5 D) iff StepTr (C) = StepTr (D).

Definition 7.3 Let C,D € Cyqpie-

A relation R C C¢ x Cp is called a (termination sensitive) step bisimulation between
C and D iff (0,0) € R and if (X,Y) € R then

- X e X', Ae N4 = 3V’ with Y —55 V' and (X,Y) € R,
Y 45V, Ae N = 3X’ with X 53¢ X' and (X,Y) € R,
- Xe.eYe,
C and D are step bisimulation equivalent (€ %;{, D) iff there exists a step bisimulation

between C and D.

Clearly the two event structures £p and £p in Example 6.1 are not equivalent in step
semantics. The step {a, b} is possible in £p but not in &g.
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As for interleaving, C %;{) D implies C = D. Moreover (as far as we know) all other
interesting step equivalence notions are positioned somewhere in between.

The following example shows that step trace semantics is in general not preserved under
refinement.

Example 7.1

We consider the two systems

a

5:=?c and F = 6L\\,/C-i- /.
b b b c

The +-sign in F may easily be “implemented” by putting all events in the first
component in conflict with all events in the second component.

These two systems are step trace equivalent. However, when refining ¢ into ¢; — co,
the resulting systems

a C C1 a
ref (€) = é } and  ref (F) = bt b/ AN
2 N |
b Cy

are not step trace equivalent (not even interleaving trace equivalent).

This example shows that ~; is not preserved under refinement. However, the example is
not adequate for step bisimulation equivalence since £ and F are not step bisimulation
equivalent (after performing a, the b is always possible in €& but not always in F). The

next example shows that also %;{, is not preserved under refinement.

Example 7.2
Consider P := alb and @ := (a|b) + a;b,

It is easy to verify that £p %;{, Eo. However, refining a into a; — ay yields

ref(Ep) = a4 , ref(Eg)= a1 # a1 # b
boob } !
as Qg D)
!
b
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After the step {a1}, the step {b} is always possible in ref (£p). However, in ref (€g),
it may be the case that the step {b} is impossible after executing a; (choosing
the branch a; —ay —0b). Hence ref(Ep) and ref(€g) are not step bisimulation
equivalent (not even interleaving bisimulation equivalent).

However, this example is still not suitable for disqualifying the whole range of equivalence
notions included between ~,; and %;{), as Example 6.1 does in the interleaving case, since
the refined systems ref (€p) and ref (£g) turn out to be step trace equivalent. A slightly
more complicated example is given below, disqualifying all equivalence notions between
%;{7 and =4, including the step failure equivalence of [TV].

Example 7.3

First consider the following three systems:

Now we consider the two composed systems
E:=E& + &, F:=E+E+Es.

We have £ zg/b F [GV-a]. However, when refining ¢ into ¢; — ¢, only the refinement
of F may perform the sequence of actions ¢; a b co. The resulting systems ref (£)
and ref (F) are not even interleaving trace equivalent.

So let & be any equivalence included between =, and z;{), then also £ ~ F, but

ref (€) % ref (F).

Thus we have shown that all the currently known versions of step equivalence are not
preserved under refinement.
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8 Linear time partial order semantics

In [CDP] it was claimed that equivalence based on considering partially ordered executions
is preserved under refinement. In this section we will make this claim more precise. We
will show that this is indeed true in linear time semantics, formalising the proof sketch
from [CDP] in terms of configuration structures. However, in the next section, we will
consider equivalence notions for branching time semantics, and it will turn out that in
this case the claim is not so obvious.

In Part I, we discussed that the possible executions of a system may be represented as
isomorphism classes of labelled partial orders (pomsets), thus taking full account of the
causality relation for event occurrences.

Definition 8.1

For C € Cyiapie let Pomsets(C) := {pomset(X) | X € C¢}.
C, D € Cstapie are pomset trace equivalent (C =y, D) iff Pomsets (C) = Pomsets (D).

Clearly, pomset trace equivalence implies step trace equivalence. Example 7.1 shows that
pomset trace equivalence is strictly finer than step trace equivalence. On the other hand,
pomset trace equivalence and step bisimulation equivalence (or interleaving bisimulation
Ropt

#sb

equivalence) are incomparable: a;(b+ c)

gp b EQ but 513 a‘épt 8Q.

a;b+ a;c, and for Ep and &g of Example 7.2,

The following theorem shows that pomset trace equivalence is preserved under refinement.

Theorem 8.1 Let C,D € Cyigpie-
Then C ~,; D implies ref (C) ~,; ref (D) for any refinement function ref.

Proof Let C =, D and let ref be a refinement function. We have to show
Pomsets (ref (C)) =Pomsets (ref (D)).

“C”: Let u € Pomsets (ref (C)). .
Then u = [(X, <z lresc) 1 X)]= where X € Crep(c).-

With Definition 5.4 we have that X is a refinement of some configuration X of C.
Since Pomsets (C) = Pomsets (D), there exists Y € Cp such that (X, <x,lc}X) and
(Y, <y,lplY) are isomorphic. Since isomorphism preserves labelling, we can refine Y to
a configuration Y (by choosing identical refinements for corresponding events) such that

(X, <5 lreg) 1 X) 2 (¥, <, lpegemy 1Y),
hence u € Pomsets (ref (D)).

“D”: by symmetry. [ |
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On the domain of prime event structures, =, is even a congruence for refinement of
actions (by non-empty, finite, conflict-free prime event structures). This follows from
Proposition 2.1(ii) and Theorem 8.1, since two finite, conflict-free prime event structures
are pomset trace equivalent iff they are isomorphic, and hence ref =, ref’ < ref = ref’.

However, for flow event structures (or more general models) /%, is not a congruence.

Example 8.1

Let £ be the flow event structure ¢ ——>b.
Let ref (a) := ¢, ref'(a) :== ¢ ——d 1 and ref(a') := o' =: ref'(a’) for a' # a.
Then ref a2, ref’, but ref (£) &y ref’(€).

This problem can be solved by using a termination sensitive variant of pomset trace
equivalence.

Definition 8.2

For C € Csgpie let \/-Pomsets(C) := {pomset(X) | X € \/.}.

C, D € Csiapie are termination sensitive pomset trace equivalent (C z;,é D) iff
Pomsets (C) = Pomsets (D) and +/-Pomsets (C) = /-Pomsets (D).

Theorem 8.2 Let C € C4p1. and let ref, ref’ be refinement functions.

Then ref x;,é ref’ implies ref (C) %1‘4 ref'(C).

Proof Let ref %;,é ref'. We have to show that Pomsets(ref(C)) = Pomsets(ref'(C))
and +/-Pomsets(ref (C)) = \/-Pomsets(ref'(C)).

“C”: Let u € Pomsets(ref(C)). Then u = [(X, <3 lres(c) ) X)]e where X € Cre(c)

With Definition 5.4 we have that X is a refinement of some configuration X of C, i.e.
X=U {e} x X, where Ve € X : X, € Crepo(e) — {0} and VY C busy (X): X -V € C.

eeX
As ref ~ ~pt ref', for all e € X there is an Y, € Crypr((e)) — {0} such that pomset(X,) =
pomset(Ye) and Ye € v/ o) HE Xe € Vigr(0))-

It follows that ¥ := {e} x Y, € Cyepr(cy, since in particular busy(X X) = busy(Y).
eEX

It remains to be shown that pomset(Y) = pomset(X).
For each e € X, let f, : X. — Y, be an isomorphism between (X, <x,, lref(ic(e))) and

(Y;, <y,, lref (lc(e)))
Define f: X — Y by f(e,e) := (e, fo(€)).

e [ is a bijection, since all the f,’s are bijections.
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o (dd) <3 (ee)d<xeV(d=eNd <x, ¢€)
sd<xeV(d=eA f(d) <x, f.() & f(d,d) <3 f(e, €', using Proposition 5.7.

i lref’(C)(f( )) = lref ( fe( )) = lref’(lc(e))(fe(el)) = lref(lc(e)) (el) = lref(C) (6, el)-

Hence f is an isomorphism between (X <z lref(c) MX ) and (Y, <z lrepr(c) }Y), which had
to be shown.

Furthermore, ¥ € Virepriey 1 Xey since Y, € y/ iff X, e/

ref (C)? ref'(le(e)) ref (le(e))*
“D”: by symmetry. u

Together, Theorems 8.1 and 8.2 say that %;,/t is a congruence for refinement.
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9 Branching time partial order semantics

In this section, we discuss several suggestions to define equivalence notions based on
partial orders and recording where choices are made. We show that most of these fail in
general to be preserved under action refinement. Finally we show that the last and finest
notion is indeed invariant under refinement.

9.1 Pomset bisimulation equivalence

In [BC-a] it was suggested to generalise the idea of bisimulation by considering transitions
labelled by pomsets. So we consider now transitions X — X’ where u is a pomset over
Act.

Definition 9.1 Let C € Cqp.

X % X' iff u is a pomset over Act, X, X' € Co, X C X' and X' — X = H with
w=[(H,<x' A(H x H),lc H)]x.

Definition 9.2 Let C,D € Cyqpie-

A relation R C C¢ x Cp is called a (termination sensitive) pomset bisimulation
between C and D iff (0,0) € R and if (X,Y) € R then

— X ¢ X', u pomset over Act = IV’ with Y —»p Y" and (X', Y') € R,

— Y —p Y, u pomset over Act = 3X’ with X —»¢ X' and (X', Y’) € R,

- Xey.eYe .

C and D are pomset bisimulation equivalent (C %1‘,{, D) iff there exists a pomset
bisimulation between C and D.

This equivalence notion is clearly finer than both step bisimulation equivalence and pomset
trace equivalence: C %1‘)2 D implies C %;{) D and C %;,é D; moreover, the processes a|b and
(alb) + a;b considered in Example 7.2 are sb-equivalent but not pb-equivalent; a;(b + c)
and a;b + a;c are pomset trace equivalent but not pb-equivalent.

However, pb-equivalence is not preserved under refinement.

Example 9.1

Consider the systems P := a;(b+c) + (a|b) and @ := a;(b+ ) + (a|b) + a;b. For con-
venience in checking that P and () are pomset bisimulation equivalent, we represent
them as pomset transition systems. Here the circles represent configurations and the
arrows pomset-labelled transitions; terminating configurations are marked with /.
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A pomset bisimulation between P and () is given by relating each configuration
of P to the corresponding configuration of @) (using that P is a subsystem of Q),
together with the relation indicated by dotted lines. It is easily checked that this
relation satisfies the three clauses of Definition 9.2. Hence P %1‘){) Q.

However, when refining a into a; — a9 and executing a;, we may arrive in a situation
in the second system where a, and b may be only executed sequentially and where
c is excluded. This is not possible in the first system.

In [GV-a], pomset bisimulation was criticised for violating “the real combination of causal-
ity and branching time”. The criticism is that only the first system of Example 9.1 has
the property that any action a that is causally preceding b is also preceding the choice
between b and c. Therefore they suggested a generalised pomset bisimulation equivalence,
that is finer then pomset bisimulation equivalence, does not identify the two systems of
Example 9.1, and still satisfies a = a 4+ a and the absorption law of Section 6.

However, generalised pomset bisimulation equivalence is also not preserved under refine-
ment.

Example 9.2 a a a
E= | F =} + |
b #b b #0b b

As observed in [GV-a], these two systems are generalised pomset bisimulation equiv-
alent. However, when refining a into a; — as, the resulting systems

ay ai a1

' ' }
ref(E)=as and ref (F) = a + a

' ' }

b # b b # b b

are not even interleaving bisimulation equivalent. After the action a; the action b is
always possible in ref (£). However in ref (F) it may be the case that b is impossible
after executing a; (choosing the branch a; — ay — b).
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9.2 History preserving bisimulation

In [DDM-a] another generalisation of bisimulation equivalence was proposed by consider-
ing states labelled by pomsets. The idea is to relate two states only if they have the same
causal history. This so-called NMS partial order equivalence was defined on Nondeter-
ministic Measurement Systems. We rephrase the definition here in terms of configuration
structures as follows.

Definition 9.3 Let C,D € wstable-

A relation R C C¢ x Cp is called a (termination sensitive) weak history preserving
bisimulation between C and D iff (0,0) € R and if (X,Y) € R then

— there is an isomorphism between (X, <x,lc'X) and (Y, <y,lp 1Y),
~ X % X', a € Act = 3" with Y —%p V" and (X, Y") € R,

- Y 55 Y a€ Act = 3IX' with X 3¢ X' and (X', Y') € R,

- Xe.eYe,

C and D are weakly history preserving equivalent (C %xh D) iff there exists a weak
history preserving bisimulation between C and D.

In Definition 9.3 we could equivalently write X C X' € C; for X -5 X', a € Act and
Y CY' €CpforY —p Y’ a € Act (using Lemma 5.2(5), compare Proposition 9.1);
the isomorphism requirement then guarantees that the labels of the events in X' — X and
Y’ —Y correspond as well.

The two systems considered in Example 9.1 are pomset bisimulation equivalent but not
weakly history preserving equivalent. The latter follows since any bisimulation between P
and () must relate the black configurations, and hence also the grey ones. However, these
induce different pomsets. Nevertheless, wh-equivalence is not finer than pomset bisimu-
lation, as shown by the following example; the two notions are in general incomparable.
It will turn out later that wh-equivalence does imply pomset bisimulation for systems
without autoconcurrency.

The following example will also show that wh-equivalence is in general not preserved under
refinement. This example was suggested to us by Rabinovich. He used it for showing that
%;{h is not a congruence with respect to a TCSP-like parallel composition.

Example 9.3

a #
Let & :=

a #
and F :=

> —Q
> —Q
S +—Q

a
# |
b
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In order to check that £ %u‘{h F, consider the representations of £ and F below. In
these pictures every ellipse represents a configuration, inscribed with its associated
pomset. Between these configurations the single action relations are displayed. Ter-
minating configurations are marked with /. A weak history preserving bisimulation
between £ and F is given by relating each configuration of F to the corresponding
configuration of £ (using that F can be regarded as a subsystem of &), together
with the relation indicated by dotted lines. It is easily checked that this relation
satisfies the four clauses of Definition 9.3; in particular the first clause is satisfied
because related configurations are inscribed by the same pomset.

However, £ and F are not pomset bisimulation equivalent. After executing a, it is
alway possible to execute a — b in £, whereas in F it may be impossible to execute
a — b after a (namely in the grey configuration). When refining a into a; — as, the
resulting systems are no longer wh-equivalent, not even interleaving bisimulation
equivalent. This can be proven by providing a formula in Hennessy-Milner logic
[HM] that is satisfied by the refinement of F, but not by the refinement of £. Such

a formula is: (@T/\ _' @T> '

An equivalence finer than both pomset bisimulation and wh-equivalence may be consid-
ered by extending the definition of pomset bisimulation with the requirement that, for
any (X,Y) € R, (X, <x,lc}X) and (Y, <y, lc 1Y) should be isomorphic, i.e. by replacing
the single action transitions -~ in Definition 9.3 by pomset transitions ——. However,
the following example shows that also this equivalence would not be preserved under
refinement.
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Example 9.4 R o

## ## :

a’ o a a a a’ a’ Ta a
e=1#1 | Fe= L # 1 #

b b# b b b b

In order to check that £ and F are equivalent according to the equivalence notion
proposed above, we represent these systems and the bisimulation between them
following the same conventions as in Example 9.3. However, this time we also have
to check that every pomset-labelled transition possible in the one system can be
matched by the other. The only three non-trivial instances of this are indicated by
the boldface transitions in the figures below.

Again, after refining a into a; — ay the systems are not even interleaving bisimula-

tion equivalent. The formula <b>T is satisfied by the refinement of

&, but not by the refinement of F.

A finer version of history preserving equivalence has been proposed in [RT] in terms of
behaviour structures. These are representations of concurrent systems consisting of a la-
belled transition system in which the states are annotated with pomsets, just like the
representations used in Examples 9.3 and 9.4, and additionally the transitions are an-
notated with embeddings of the pomset associated with its source into a prefix of the
pomset associated to its target. [RT] show that a prime event structures can, up to iso-
morphism, be completely recovered from its representation as a behaviour structure, and
vice versa. The behaviour structure bisimulation of [RT] is a bisimulation on the underly-
ing transition systems, reflecting the additional structure precisely. Here we reformulate
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this notion on configuration structures under the name history preserving bisimulation.
We will show that this equivalence is preserved under refinement. For systems without
autoconcurrency, this equivalence coincides with %«fh- This will imply the result that %Xh
is invariant under refinement for systems without autoconcurrency.

Definition 9.4 Let C,D € Cgqpie-

A relation R C Ce x Cp x P(E¢ x Ep) is called a (termination sensitive) history
preserving bisimulation between C and D iff (0,0, ) € R and whenever (X,Y, f) € R
then

— f is an isomorphism between (X, <x,lc ! X) and (Y, <y, Y),

X %o X' a€ Act = 3V, f with Y —%p V', (X1, Y, f') € R and f' )X =/,
~ Y Sp Y a€ Act = X', f with X ¢ X', (X, Y' f') € Rand f ) X=Ff,
- XeeYe,

C and D are history preserving equivalent (C %)L/ D) iff there exists a history pre-
serving bisimulation between C and D.

Example 9.3 (continued)

In order to see that %,‘l/ distinguishes the two system of Example 9.3, it is helpful to

indicate the names of the a-events in the simplified behaviour structure representa-
tion given earlier. To this end we name the a-events a; to ag, numbered from left
to right in the event structure representations of £ and F, respectively.




Let &£ start by performing as, thereby reaching a state from which it is possible to
do a b-transition. This move must be mimicked by F by performing a5 or ag, since
a4 leads to a state from which no immediate b-transition can be done. Suppose F
answers with as. Then a supposed history preserving bisimulation between £ and
F relates the configurations {as} and {as}, and supplies an isomorphism f; relating
the events as and as. Next let £ perform a3. Then F can only answer by doing

ag. Thus {as, a3} will be related to {as,ae}, and the isomorphism f; is extended
as
to fo by additionally relating event as to ag. Now &£ can move to the state as {.
b

as
The best F can do is to move to the state | ag. But then f, must be extended to
b

f3, relating the two b-events, which is not an isomorphism: we have a3 < b but not
f(az) < f(b). A similar contradiction can be obtained if F tries to simulate ay by
doing ag. When &£ continues with a3, F has a choice between a5 and a4. In the
first case, the isomorhism will relate as to ag and a3 to as. This time it is the other
possible b-move of £ that leads to a contradiction. In the latter case, £ can do a
b that depends on a3 but F cannot do a b that depends on the related event ay.
Hence, there exists no history preserving bisimulation between £ and F.

In the same way one shows that the two systems of Example 9.4 are not history
preserving equivalent either.

The following proposition shows that considering more complex transitions in the defi-
nition of z,‘l/ does not change the obtained equivalence notion, and that the label of the
transitions is not relevant.

Proposition 9.1

Let N\/ be the equivalence obtained by replacing the single action transitions ——
in Definition 9.4 by step transitions i), let %1‘,2 be obtained by replacing them by

pomset transitions —. Let %Z‘,/l be obtained by replacing X —*+¢ X', a € Act by
XCX' eCeandY 5 Y, a€ Act by Y CY' € Cp in Definition 9.4.

Then, for all ¢, D € Cyape, C 7Y D= C~Y D& C a2y D& C ey D,

Proof Asa smgle action 1s a special k1nd of step, and a step a special kind of pomset
we have C ~ hD:>C sh’D:>C~h D. The 1mphcat10nC~h‘/’D:>C th
immediately follovvs from the observation that, for X, X' € C¢, C € Cyiapie, whenever
X C X' there exist configurations Xj, ..., X, and actions ay,...,a, (n € IN) such that
X = Xy =5¢ Xl e ... ¢ X, = X' (Lemma 5.2(5)). Finally, the implication
C %i D=Cx 'D follows from the isomorphism requlrements in Definition 9.4: Let R
be an zh—blslmulatlon, and suppose (X,Y,f) € R and X — X'. Then X C X', thus
Y f with Y C Y/ (XY, f') € R and f'}X = f. Since f’ is an isomorphism and
f'MX = f, range(f' M X' — X)) = range(f') — range(f) =Y' —Y;so f'MX'— X) is an
isomorphism between X' — X and Y' — Y. Hence Y — Y”, so R satisfies the first clause
of a ph-bisimulation. The second clause follows by symmetry. [ |
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Clearly, we have C z,‘l/ D=C¢C %Xh D. However the two systems of Example 9.3 are

not h-equivalent. As a corollary of Proposition 9.1 we obtain C z,‘l/ D =2C zz‘,é F.
That also this implication is strict follows since the two systems of Example 9.1 are
not h-equivalent. From Proposition 9.1 we learn that A-bisimulation not only implies
pomset bisimulation but even the previous proposal, combining weak history preserving
equivalence and pomset bisimulation. Thus %,‘l/ is the finest equivalence considered so far

(except for isomorphism). Nevertheless it is possible to abstract from certain details in

a system representation: we have a z,‘l/ a+ a and (b|(a + ¢)) + (alb) + ((b+ ¢)|a) ”1\1/

(bl(a +¢)) + ((b+ ¢)|a) (absorption law).

Next we show that zh‘/ is a congruence for action refinement; so in particular it is preserved

under refinement.

Theorem 9.1 Let C,D € Cyapi and let ref, ref’ be refinement functions.

IfC %h‘/ D and ref %,‘l/ ref' then ref (C) %,‘L/ ref' (D).

Proof For the sake of simplicity, we use the alternative characterisation %% of ==Y from

Proposition 9.1. So let R C C¢ x Cp x P(E¢ x Ep) be an ih-bisimulation between C and
D, and, for a € Act, let R, be an ih-bisimulation between ref (a) and ref’(a). Define the
relation R by

R = {(X,Y,f) € Crep(c) X Crepr(p) X P(Erpicy X Ereremy) | I(X,Y, f) € R such that
— X is a refinement of X by ref — X = U {e} x X, with X, # (),

ecX

— Y is a refinement of Y by ref’ — Y = U {d} x Yy with Yy # 0,
dey

- Yee X, df.: X, — Yf(e) such that (Xe: Yf(e)a fe) € Rlc(e)
— and f: X — Y is the bijection satisfying f(e, ') = (f(e), f.(¢')}.

We show that R is an ih-bisimulation between ref (C) and ref’(D).
i. (0,0,0) € R since (0,0,0) € R.
ii. Suppose (X,Y, f) € R. Take (X,Y, f) € R such that
— X is a refinement of X by ref — X = U {e} x X, with X, # 0,
eeX
— Y is a refinement of Y by ref’ — Y = U {d} x Y, with Yy # 0,
ey

- VYee X, df. : X, — Yf(e) such that (Xe, Yf(e), fe) € Rlc(e)
— and f: X — ¥ is the bijection satisfying f(e,¢') = (f(e), fo(¢')).

Now four things have to be established:
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1. f satisfies (d, d') <3 (e,¢) & f(d,d) <3 f(e,e') and lreff(p)(f(e, ') = lrep(c)(e, €).
2. X C X'€Cyyc) = 3Y", ' such that Y C Y"€ Cropr(py, /') X = f and (X, Y, f) € R.
3. Y CY'€Cp(py = 3X, f' such that X C X'€ Cres(c), f'1X =f and (X', Y", f') €R.
4 X €vppi) &Y € Vopio):

ad 1. Straightforward with Proposition 5.7 (cf. the proof of Theorem 8.2).

ad 2. Suppose XCX'e Creg(c)-

Let X' = U {e} x X! where X' € C; and Ve € X' : X! € Cref(ic(e)) — {0}-

ec X’
Since X C X' we have X C X'. As R is an ih-bisimulation, 3Y”, f' with Y C Y’ € Cp,
f'MX = fand (X", Y', f') € R.

Furthermore, for e € X', we have X, C X € Cyef,(e)) (taking X, :=0ife € X' — X).
Since Ry, () is an ih-bisimulation, taking Y () := 0 if e € X' — X,
3Y}'(e), Jfe with Yie € Yf'(e) € Crefr(ic(e))s felXe = fe and (X, Yfl’(e)’ fo) € Rig(e)-

Let Y7 := {(f'(e), fi(€"))|(e,¢) € X'} and f':= {((e, €), (f'(e), f2(€")) (e, ¢') € X'}
It now suffices to show that Y is a refinement of Y’ by ref’, since then it follows imme-
diately with Definition 5.4 that Y C Y’ € C,ep(p) (using that f'}X = f and, for e € X',
X, = f.), /)X = f (likewise) and (X', Y7, f') € R.

— By construction Y' = J {f'(e)} x fi(X!) = U {d} x Y] where

ec X’ dey’
VdeY': Yd, € CTCf(l’D(d)) - {@}
—debusy(Y)={deY'|Y; ¢ Vrep (@} 1

F7Hd) € busy(X") = {e € X'|XL &V rostieten b Since (X0, Yoy, f2) € Rigge).
Furthermore, d maximal in Y iff f'~'(d) maximal in X', since f’ is an isomorphism.
Hence d € busy(Y’) implies d maximal in Y, since X’ is a refinement of X".

From this it follows that Y7 is a refinement of Y.
ad 3. By symmetry.
ad 4. Straightforward with Definition 5.4. [ |

Termination insensitive history preserving equivalence (=) is defined as z,‘l/, but without

the last clause. Clearly C z,‘l/ D = C =5, D, and on prime event structures the two
equivalences coincide.

Proposition 9.2 Let C,D € Cgqp. and let ref be a refinement function.
If C =, D then ref (C) ~, ref (D).

Proof Trivially, ref %,\l/ ref. Now the proof of Theorem 9.1 applies, omitting item 4. B

However, again using Example 8.1, a5}, is not a congruence for refinement.
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Finally we show that %Xh and z,\l/ coincide for stable configuration structures where

concurrent events may not carry the same label. As a corollary we then have that in this
case also %;{h implies pomset bisimulation and is preserved under refinement.

Definition 9.5 C € Cup. is without autoconcurrency iff

VX € Ce, Vd,e € X : (dcox eand I(d) =(e)) = d =e.

Theorem 9.2 Let C, D € Cyqpe be without autoconcurrency.
Then C &Y, D & C ~Y F.

Proof First note that a wh-bisimulation can be regarded as a h-bisimulation without
the requirements that f'}X = f. The isomorphisms that are required to exist anyway
are then included as a third component in the bisimulation.

Now “<«=” is trivial.
In order to establish “=" we first make two observations.

1. Let C € Cgapre, X, X' € Ce, X C X' and e € X. Then by Propositions 5.3 and 5.4
we have
(deX'Nd<xe)&e (de X Nd<xe).

2. If g is an isomorphism between two labelled partial orders (X,<x,lx) and
(Y, <y,ly), and e € X then

{de X |d<xe}| = [{deY|d<y g(e)}].

Now suppose C ~ \/ D. Let R be a h-bisimulation between C and D without the re-
quirements f'}X = f We proof that these requirements are met nevertheless. Assume
that (X,Y, f) € R and X ——¢ X'. Then there exists (X', Y, f') € R with Y —p Y.
Suppose f'}X # f. Then there exists an e € X with f'(e) # f(e). With the observations
above it follows that

{deY'|d<y f(e)}| = [{d€Y|d<y f(e)}]
{deX|d<xel| = [{de X'|d<x e}| 2 [{deY'|d<y f'(e)}].

Hence we cannot have f'(e) <y+ f(e) or f(e) <y f'(e ) Thus f'(e) coy f(e).
Moreover, f' and f preserve labelling, so Ip(f ( )) le(e) = 1p(f(e)).
This is a contradiction since D was assumed to have no autoconcurrency. [ |

2

Corollary 9.1 Let C,D € (41 be without autoconcurrency.
(i) If C &Y, D then C &Y, D

(ii) Let ref and ref’ be refinement functions.
If C ~Y, D and ref ~Y, ref' then ref (C) Y, ref'(D). u
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9.3 Hereditary history preserving bisimulation

The following strengthening of z,‘l/ was proposed in [Bednarczyk].

Definition 9.6 Let C,D € Cupiec-

A history preserving bisimulation R between C and D is hereditary iff it satisfies
- (X,Y,f) e RAX' 3¢ X, a € Act = (X', f(X'), f}X") € R.

C and D are hereditary history preserving equivalent (C %;L/h D) iff there exists a
hereditary history preserving bisimulation between C and D.

To be precise, [Bednarczyk| calls our history preserving equivalence strong history pre-
serving bisimulation equivalence, and hence calls ), hereditary strong history preserving
bistmulation equivalence. Moreover, he studies the termination insensitive variant only.
Note that the clause above is equivalent to

(X,)Y,f)ERAX' ¢ X =TV, fwithY' 55 Y, (X', Y, f') € Rand fIX'=f"

i.e. the same condition as in Definition 9.4, but going “backwards” along the a-transition.
This clause is also equivalent to its symmetric counterpart

(X,Y,f) € RAY' -5 V = X', f' with X' %3¢ X, (X, V", ') € R and f)X'=f".

Finally, as in Proposition 9.1, the property is invariant under replacement of the single
action transitions —— by step or pomset transitions, or by inclusion of configurations.

By definition C z,‘l/h D = C ~) D. This implication is strict, because z,‘l/h does not satisfy
the absorption law mentioned at the end of Section 6:

Example 9.6
Below the system (b|(a + ¢)) + (alb) + ((b + ¢)|a) is represented as a simplified
behaviour structure, following the conventions of Example 9.3. The related system
(bl(a + ¢)) + ((b+ ¢)|a) is represented by exactly the same structure, but without
the dashed parts.




A bisimulation between the two systems consists of the identity relation (using that
one system can be seen as a subsystem of the other), together with the relation
indicated by dotted lines. This bisimulation is surely history preserving; as the
systems are without autoconcurrency it suffices to check that related configurations
are inscribed with the same pomset. Note that the a from a|b (grey) can only be
matched by the a from b|(a + ¢) (also grey); the a from (b + c¢)|a leads to a state
where c still is possible. The b from a|b on the other hands needs to be matched by
the b from (b + ¢)|a. The underlying idea is that whenever even the smallest part
of the process a|b happens, either a small part of the a-event, or a small part of the
b-event must have happened (or both). In the first case, executing an equally small
part of the a-event in a|(b + ¢) already rules out the possibility of ever executing c,
and the futures of the related processes are the same.

In order to see that the two systems are not hereditary history preserving equivalent,
execute the a from a|b followed by the b, thus reaching the configuration a b; from
there go back to the b-configuration along the a-transition. This can only be matched
in the other system by travelling to the grey a-configuration, doing a b from there,
and backtracking to the b-configuration. The latter allows a c-move, however, which
is not possible in the original system.

The following theorem says that also %}{h is a congruence for action refinement.

Theorem 9.3 [Bednarczyk| Let C,D € Cyape and let ref, ref’ be refinement functions.
If C &Y, D and ref &), ref' then ref(C) ), ref'(D).

Proof Suppose the bisimulations R and R, mentioned in the proof of Theorem 9.1 are
hereditary. Then the bisimulation R constructed in that proof is hereditary as well. 1

[Bednarczyk] establishes that any hereditary history preserving bisimulation between two
prime event structures with binary conflict £ and F can itself be regarded as a prime
event structure, which is hereditary history preserving equivalent to £ and JF. This result
applies to stable configuration structures as well, as we will show below. Moreover, a
hereditary history preserving bisimulation between two stable configuration structures
can not only be regarded as a stable configuration structure itself, but even as a prime
event structure in the sense of [Winskel|, upgraded with a termination predicate.

Definition 9.7 Let R be a hh-bisimulation between C,D € Cqupe-

Then &g := (Eg, <g, Cong,lg) is the prime event structure given by

- Er:={(X,Y, f) € R| X has a greatest element maxz(X) w.r.t. <x},

o (leyl’fl) <r (X:Kf) iff X' QX/\Y, - Y/\fl - f7

— a set of events {(X;,Y;, f;) | € I} is consistent iff (U;er Xi, Uier Vi, Uier fi) € R,
notation Con({(X;,Y:, fi) | i € I}),

—r(X,Y, f) = lc(mazx(X)).

Moreover, a consistent set of events {(X;, Y, fi) | ¢ € I} is terminated iff \/(U;cr Xi)-
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Note that, for (X,Y,f) € R, X has a greatest element maz(X) w.rt. <x iff Y has
a greatest element maz(Y) w.r.t. <y. Moreover, f(maxz(X)) = maxz(Y) and hence
le(maz (X)) = lp(maz(Y)). Finally, if {(X;,Y;, f;) | ¢ € I} is a consistent set of events,
then /(User Xi) © /(Uier Yi)- Thus the definition is symmetric in C and D.

Proposition 9.3 Let R be a hh-bisimulation between C,D € Cyupie-

Then &g is a prime event structure in the sense of [Winskel].
Proof It is easy to check that £g satisfies the four properties required in [Winskel|. B
However, £ is not a prime event structure with binary conflict as in Definition 2.1.

Definition 9.8

The (finite) configurations of a prime event structure in the sense of [Winskel] are
those finite sets of events that are left-closed and consistent. Now define the con-
figuration structure associated to a hereditary history preserving bistmulation R as
Cr := (Cr, Vg, r), where Cp is the set of configurations of £g, and /j the set of
those configurations that are terminated.

Definition 9.9 Let R be a hh-bisimulation between C,D € Cyqapie-
Let m : Er — E¢ be given by m(X,Y, f) := maz(X) and likewise m(X,Y, f) :=
mazx(Y). For (X,Y, f) € R write C(X,Y, f) :={(le, ) f(e),f le) | e € X}, in
which le:={d € X |d <x e}.

By Proposition 5.3, e € Ce for e € X € Ce. So, as R is hereditary, every element of
C(X,Y, f) is an event in Er. Moreover, (Ueex 4 € Uecx 4 f(€),Uccx f1le) = (X,Y, f),
and hence C(X,Y, f) € Cg. It is easy to see that every configuration in Cx is of this
form, i.e.

So C' establishes a bijective correspondence between R and Cgk. Furthermore, for every
(X,Y, f)eR, mMC(X,Y, f) is a bijection between C(X,Y, f) and X preserving < and I:

(d, L f(d), fMd) <r (Le, L fle), fMe) & d <xeand [r(le, | f(e), fMe) =lc(e).

Now the following is the (straightforward) generalisation of Theorem 5.6 of [Bednarczyk|
to stable configuration structures.

Proposition 9.4 Let R be a hh-bisimulation between C,D € Cyiqpie-
Then C &), C ~Y, D.

Proof {(C(X,Y,f),X,mMN(X,Y,[)) |(X,Y,f)€ R} is a hereditary history preserv-
ing bisimulation between Cr and C, as is straightforward to check. [ |

Corollary 9.1 It follows that every stable configuration structure is z,‘l/h-equivalent to a
prime event structure as in [Winskel] upgraded with a predicate for successful termination.
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Hereditary history preserving bisimulation from open maps

In [JNW] a general definition of bisimilarity is given that applies to any category M with
subcategory P. The idea is that the objects in M represent concurrent systems and the
morphisms simulations of one system by another. The path category P is supposed to
contain the systems that have only one (finite) run. The purpose of P is to formalise the
notion of a (partial) run or computation path of a system A € M. This is defined as a
morphism p from a one-run system P € P to A. In order to define bisimilarity, [JNW]
define the following concept of an open morphism:

Definition 9.10 Let M be a category with subcategory P.

A morphism (or map) f : A — B in M is P-open if for every P,QQ € P and
morphisms p: P - A, m: P — @ and ¢ : @ — B such that f o p = g o m, there
exists a morphism p' : Q — A such that p’om = p and f op’ = ¢q. As a diagram:

/A ) /A

P2Q) f = P-Q) f.

fOPV« fopV‘B

=qom TR =qom

In this definition p is a computation path of the system A and hence f o p is one of B.
These paths are matched by f. The latter path embeds in a computation path ¢ of B.
The definition of an open map requires that a computation path p’ can be found in A,
matching ¢ and suitably containing p. Thus an open map induces a kind of bisimulation
between A and B. In general however, not every bisimulation between two systems can
be realised as an open map, for open morphisms yield only functional bisimulations, in
which a run of the first system is related to only one run of the second. Therefore [JNW]
defines P-bisimilarity as follows:

Definition 9.11 Let M be a category with subcategory P.

Two objects A, B € M are P-bisimilar if there is a span of open maps f : C — A,
g : C — B for some C € M.

They show that if this definition is applied to the category of transition systems with
functional simulations, taking P to be the full subcategory of finite one-branch trees,
then P-bisimilarity coincides with the classical bisimulation equivalence of [Milner-b].
Moreover, when applied to the category of prime event structures [Winskel|, taking P to
be the full subcategory of finite pomsets, P-bisimilarity turns out to be ~,.

Below, we generalise the latter result to stable configuration structures, obtaining %,‘l/h as
the resulting notion of bisimilarity.
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Definition 9.12 Let C,D be configuration structures.
A morphism from C to D is a map f : E; — FEp such that
— Ip(f(e)) =lc(e) for all e € Eg,
— fMX is injective and f(X) € Cp for any configuration X € Cg.
— f(X) € y/p for any terminating configuration X € /.

This is the standard notion of a synchronous morphism on stable families of configurations
from [Winskel|, upgraded to reflect labelling and the termination predicate. It makes ¢
into a category C, and C,pe into a category Cyupe. As stable path category we take
the full subcategory Pom of Cg,p consisting of those configuration structures with a
largest configuration. These structures arise as the configuration structures associated
to finite, conflict-free prime event structures (pomsets), except that the unique maximal
configuration need not be terminating. A morphism p : P — C with Ep € /, (for
P € Pom) represents a complete run, rather than a partial one.

Definition 9.13 Let C € ¢’ and X € Cg.
The restriction of C to X is given by
- CI\X:Z{ZGCc‘ZgX},

=1z €y | ZC X},
*ZCI\X :lc[\X

Note that C )X € Pom for all C € Cyap. and all X € Ce. In fact, Pom consists exactly
of those stable configuration structures that are of the form C}.X.

Proposition 9.5 Let C,D be stable configuration structures.

A morphism f from C to D is Pom-open iff for all X € C¢ it satisfies

d<x e f(d) <) F(©
FX)CYelp=3X' eCr: XCX'AF(X) =Y
f(X) e Vp=> X €V

Proof “if”: Suppose f : Ec — FEp is a morphism that satisfies the three conditions
above. Let p: P —- C and ¢ : Q@ — D be runs and m : P — () a morphism with
gom = fop. Write X :=p(Ep) and Y := ¢q(Eg). As m(Ep) C Eg we have f(X) C Y.
So there is configuration X’ € Cc with X C X’ and f(X') = Y. Define p' : Q@ — C by
p'(e) := (fMX")"'(g(e)). That fop' = g is immediate. Let e € Ep. Then p'(m(e)) =
(FMXN"Yg(m(e)) = (F X)L (f(p(e)) = p(e), so p' o m = p. Tt remains to check that p’
is a morphism. First of all, lc(p'(e)) = Ip(g(e)) = lg(e) for all e € Eg. As @ has a largest
configuration, ¢ is injective, and so is p’. Next, let Z € Cq. Then ¢(Z) € Cp. Hence,
by Proposition 5.3, ¢(Z) is left-closed w.r.t. <y, so p'(Z) must be left-closed w.r.t. <x:.
Again using Proposition 5.3, it follows that p'(Z) € Cc. Finally, suppose Z € /. Then

fW'(2)) =q(Z) € /p, and hence p'(Z) € /.
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“only if”: Suppose d £x e. By Definition 5.6 this means that there is a configuration
Y C X of C with e € Y # d. By Definition 9.12 f(Y) C f(X) is a configuration of D with
f(e) € f(Y) Z f(d). Hence f(d) £ f(e). For this direction we did not need openness.

Now suppose f is a Pom-open morphism from C to D and X € C¢. Then apply Defi-
nition 9.10 with p : C}X — C the identity function on X, ¢ : D} f(X) — D the identity
function on f(X), and m := f}X. Clearly gom = m = fop. It follows that there
exists a morphism p’ from D} f(X) to C mapping f(X) to X. Using this morphism, the
implication f(d) £sx) f(e) = d £x e follows exactly as the reverse direction above. It
also follows that if f(X) € v/, then X € /..

Finally, suppose that f(X) C Y € Cp. Apply Definition 9.10 with p : C}X — C the
identity function on X, ¢ : DY — D the identity function on Y, and m := f}X. It
follows that there exists a morphism p' from D }Y to C such that p’om = p and fop' =g¢.
Let X' := p/(Y). Asp'om = p we have X = p(X) = p'(m(X)) = p'(f(X)) Cp'(Y) = X,
and as fop' =q we have f(X') = f(p'(YV)) =q(Y) =Y. |

Proposition 9.6 Let C,D € Cgup. and f a Pom-open morphism from C to D.
Then {(X, f(X), f}X) | X € Cc} is a hereditary history preserving bisimulation.

Proof We check the conditions of Definition 9.4. First of all § € C¢ and f(0) = 0.
Now take X € Cc. That f}X : X — f(X) is a labelling preserving bijection is given
by Definition 9.12. Proposition 9.5 implies that it is even an isomorphism. The second
clause in Definition 9.4 follows easily from Definition 9.12 by taking Y’ := f(X'), and the
third from Proposition 9.5 (using also Proposition 9.1). The last clause follows in one
direction from Definition 9.12 and in the other from Proposition 9.5.

That this bisimulation is hereditary follows immediately from its construction. [ |

Corollary 9.2 Let C,D € Cap1e

A function f : Ec — Ep is a Pom-open map iff {(X, f(X), f}X) | X € C¢} is a
(hereditary) history preserving bisimulation.

Proof “Only if” is Proposition 9.6; “if” follows directly from Proposition 9.5 and Def-
initions 9.4 and 9.12. [ |

By definition, an open map preserves the internal structure of stable configuration struc-
tures to a very large extent. It essentially does nothing else then collapsing certain events
that are pairwise in conflict, in the sense that they can not occur in the same configura-
tion. This may also cause different configurations to be identified, but only if the possible
extensions of these configurations are identified as well.

The following result characterises hereditary history preserving equivalence in terms of
Pom-open maps. In generalises a similar result of [JNW] to stable configuration structures
with termination predicates.
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Theorem 9.4 Let C,D € Cgqpie-

Then C and D are Pom-bisimilar iff C z,‘t/h D.

Proof “only if” follows immediately from Proposition 9.6 and the transitivity of zh‘/h.
“if” follows from the considerations leading up to Proposition 9.4; 7; is an open map from
Cr to C, and my from Cg to D. [ |

This theorem reveals an important difference between z,‘l/ and z,‘l/h. Both satisfy the

CCS law x + x = z, and, judging by Definition 9.4, both completely respect the causal
and branching structure of concurrent systems and their interplay. However, %h‘/h may
be the finest reasonable equivalence with these properties — it thoroughly respects the
internal structure of related systems — whereas %,‘1/ may be the coarsest equivalence of
this kind — Definition 9.4 essentially says that it preserves nothing else than causality,
branching, and their interplay, and Example 9.6 illustrates that it still makes nontrivial
identifications.
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Conclusion

In Part I of this paper we defined a compositional action refinement operator on three
kinds of event structures and on the new model of configuration structures. We started
with prime event structures [NPW], on which the definition of such an operator is fairly
straightforward as long as refinement by conflicting or infinite processes is excluded. How-
ever, we indicated that in order to treat general refinements it is convenient to use a more
expressive model. Here we have taken flow event structures [BC-b, Boudol-b] as well as
stable event structures [Winskel] (and we extended the definition to non-stable ones too).
Both are also very suited for giving semantics to CCS-like languages. Flow event struc-
tures allow for a straightforward generalisation of the definition of action refinement on
prime event structures, but their dynamic behaviour is relatively complicated. Moreover,
as shown in [CZ], the canonical definition of parallel composition on flow event structures
is meaningful on a subclass only. We showed that the subclass provided in [CZ] is not
closed under our refinement operator. In a forthcoming paper we will define a larger sub-
class on which parallel composition is well-behaved, that is closed under action refinement
and other relevant process algebraic operators. Stable event structures admit an easier
treatment of their dynamic behaviour and do not need to be restricted in order to define
the standard process algebra operators in a meaningful way, but necessitate a more com-
plicated definition of action refinement. Alternatively, we could have used bundle event
structures [Langerak], which are also very suitable as a semantic domain for languages
like CCS. This would have given rise to a similar trade-off as for stable event structures.

In order to define action refinement properly we had to distinguish deadlock from success-
ful termination. In the setting of prime event structures we avoided this issue by assuming
that all systems under consideration are deadlock-free. This strategy works fine as long as
no operators are considered that could introduce deadlocks (e.g. the restriction operator
of CCS or the parallel composition of TCSP). In order to deal with deadlock behaviour
in the setting of stable event structures, we extended them with an explicit termination
predicate. For flow event structures this was not needed, as such a predicate could be
derived from their structural properties.

The dynamic behaviour of event structures is entirely determined by their configura-
tions, their deadlock behaviour, given by a subclass of terminating configurations, and
the labelling of events. Therefore we have defined a more abstract and general model
of concurrency, where a system is represented by exactly these three ingredients. This
model of configuration structures serves as a common stepping stone between the various
notions of event structures and the equivalence relations defined on them. We defined an
action refinement operator on this model and proved it consistent with the operators for
action refinement on event structures, thus providing a general framework to investigate
refinement independently of a particular event structure representation.

Many semantic concepts are defined only for those systems in which causality can be
faithfully represented by means of partial orders. In Section 5.3 we characterised the class
of configuration structures for which this is the case. It turned out that this is exactly
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the class of configuration structures that can be obtained as the abstract representations
of stable event structures, i.e. Winskel’s notion of an event structure is broad enough to
capture all configuration structures with this property. This class strictly contains the
configuration structures representing flow, bundle and prime event structures.

In Part II we have shown that equivalences based on interleaving of atomic actions or of
steps (multisets of concurrently executable actions) are not preserved when changing the
level of atomicity of actions. On the other hand, we could show that certain equivalences
based on modelling causal relations explicitly by partial orders are indeed preserved under
refinement of actions. We considered “linear time” approaches, where the behaviour of
a system is equated to the set of possible runs, and “branching time” approaches, where
the conflict structure of systems is taken into account. We could show the negative
results about the interleaving approaches regardless of the level of detail in modelling the
conflict behaviour. However, for the positive results about the partial order approaches,
the conflict structure turned out to be crucial. It turned out that linear time partial
order semantics (pomset trace equivalence) is preserved under action refinement, but the
two original approaches to branching time partial order semantics (pomset bisimulation
[BC-a] and the NMS partial ordering equivalence [DDM-a]), as well as their combination,
are not. However, we found that a finer branching time partial order semantics due to
[RT] — which we call history preserving bisimulation — is robust under refinement.

For each of the equivalences considered we could define a termination sensitive variant,
distinguishing between deadlock and successful termination, and a termination insensitive
variant. We proved that the termination sensitive variants of pomset trace and history
preserving bisimulation equivalence are not only preserved under refinement of actions,
but even congruences for action refinement. A counterexample showed that this does not
hold for the termination insensitive variants.

In the setting of prime event structures, [Bednarczyk| proposes a strengthening of history
preserving equivalence, called hereditary history preserving equivalence, that is also pre-
served under action refinement. [JNW]| shows that this equivalence can be obtained as a
special case of a general categorical definition of bisimilarity on models of concurrency. In
Section 9.3 we have generalised the results of [Bednarczyk| and [JNW] to stable configura-
tion structures, thereby also taking successful termination into account. Additionally we
show that every stable configuration structure is hereditary history preserving equivalent
to a prime event structure with non-binary conflict [Winskel] upgraded with a termination
predicate. We argue that history preserving and hereditary history preserving equivalence
both preserve causality, branching, and their interplay, and both abstract from choices
between identical alternatives; however, the latter may be the finest reasonable equiv-
alence with these properties — it thoroughly respects the internal structure of related
systems — whereas the former may be the coarsest equivalence of this kind, still making
nontrivial identifications.
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Distinguishing deadlock and termination in other models of concurrency

Both [Milner-a] and [Hoare| indicate how CCS and TCSP can be enriched with y/-actions
(done actions in CCS) in order to capture the distinction between deadlock and successful
termination. [AH-a] achieves such a distinction on CCS by means of a predicate on
states (= processes). In [TV], y/-actions are used to model termination in a step failure
semantics for TCSP. The distinction is also made in the metric approach of [BZ], by
using a suitable domain equation. The separation of deadlock and successful termination
plays a crucial role in the language and semantic models of ACP [BK, BW]. In [BK]
it is implemented by the introduction of d-actions, marking deadlock states; in [BW]
termination states are marked. In the realm of non-interleaving semantics, Petri net
models distinguishing deadlock and successful termination are proposed in [GV-al; there
termination is modelled by means of the empty marking. In the Petri Box Calculus [BDE],
termination is indicated by distinguishing so-called exit places; a process terminates when
these places carry tokens. The first (prime) event structure model with a distinction
between deadlock and successful termination (using y/-actions) is proposed in [BV]. In
[Busi] action refinement is defined on stable event structures with a binary conflict relation.
Following our treatment of termination in flow event structures, there a configuration X
is considered successfully terminated iff every event not in X is in conflict with an event
in X. In this approach, an explicit termination predicate as introduced in Section 4 is not
needed. On the other hand, unlike in Section 4 or in the work of Winskel, self-conflicting
events play a crucial role in the interpretation of event structures, and may not simply be
omitted.

Refinement of actions in other models of concurrency

In [BC-a] a generalisation of prime event structures has been considered that is simpler
than flow event structures: just the axioms of conflict heredity and finite causes have been
dropped. On this model the simple definition of a general action refinement operator we
gave for flow event structures can be applied as well. [DD-c| call an event structure in the
sense of [BC-a] A-free if for every events d, e and f with d#e < f one has d#f or d < f,
and show that the class of A-free event structures is closed under this operator. This class
contains the prime event structures; it extends them by dropping the principle of finite
causes and weakening the axiom of conflict heredity. Like prime event structures, A-free
event structures may be seen as special cases of deadlock-free flow event structures. They
seem to be the weakest extension of prime event structures that is closed under action
refinement as defined in Definition 3.5. [DD-c] states a refinement theorem for history
preserving bisimulation on this model, using the same class of refinements as considered
here. However, for both the event structures from [BC-a] and [DD-c], it is difficult to
model full CCS or TCSP, in particular to deal with communication.

In [DD-c|, action refinement is also defined on causal trees [DD-a]. In this model, pro-
cesses are represented as trees, thereby capturing their branching structure; causalities
are encoded into arc labels. Using a canonical representation of A-free event structures
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as causal trees, it is shown that the definition of action refinement on causal trees is in
agreement with the one on A-free event structures, which is a special case of our operator
on flow event structures. Operational definitions of action refinement are presented in
[DG-b, Rensink-a/c, BGG, CD-a/b]. The treatment of [DG-b] is shown to agree with
the treatment of [DD-c| in terms of causal trees. Likewise, [Busi| shows that (a variant
of) the treatment of [BGG] agrees with (a variant of) our treatments on flow and stable
event structures. Action refinement has been defined on sets of pomsets — a linear time
variant of the model of prime event structures — in [Gischer| and on process graphs and
trees, respectively, modelling only sequential processes, in [GW, DD-b]. In [Rensink-a/c]|,
an action refinement operator is defined on families of posets, and shown to agree with his
operational definition. There is no conceptual difference between the refinement operators
mentioned so far; the latter approach may be closest in style to the one pursued here.

In [Gupta] action refinement is defined for eztensional Chu spaces over 2 [Pratt-b]. When
abstracting from the morphisms in the category of Chu spaces, these are, up to iso-
morphism, exactly the configuration structures of Section 5, but without the labelling
function and the termination predicate. [Gupta] treats configurations as terminated iff
they are maximal. His definition of action refinement deviates from ours only when re-
fining events by non-rooted configuration structures; the idea is that whenever such an
event can happen, there may not be a configuration in which no part of its refinement
has happened.

Refinement of actions has also been considered in the theory of Petri nets by investigat-
ing several constructions for refining transitions in nets. For an overview see [BGV]. In
[Valette, SM, Vogler-a/b, BDKP] restricted refinement operators have been defined; these
preclude the refinement by a parallel process that occurred in Example 1.1. A general
refinement operator for transitions in nets is defined in [GG-a, JM, BDE]. These tech-
niques have been generalised to higher order nets in [DK]. In [Kiehn-a/b], firing a refined
transition is like a procedure call, creating an incarnation of the corresponding subnet;
such calls may be recursive. This method leads outside the frame of usual Petri nets.
Except for the latter one, all refinement operators on nets mentioned here correspond
conceptually, through a suitable unfolding, to our operator on event structures.

Syntactic action refinement

The refinement operation we have considered was defined directly on a semantic domain
for concurrent systems. An alternative would be to introduce refinement as an operation
on syntactic expressions in CCS-like languages (syntactic action refinement).

In principle there are two ways to treat syntactic action refinement in languages like CCS.
One of them is to use the CCS-actions for modelling the refinable actions of this paper.
In the absence of communication (or synchronisation), refinement can simply be defined
as syntactic substitution of an action by a process expression. This approach has been
taken in [AH-b] and [NEL]. In the presence of synchronisation defining such a refinement
operator is much more difficult, as it involves the study of the interaction between action
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refinement and the chosen synchronisation mechanism. A first proposal, for the simple
case of an operator only splitting actions in two parts to be executed sequentially, can
be found in [GV-a]. A detailed investigation of a more general approach is undertaken in
[Aceto-a, AH-c|. Syntactic action refinement and its relation to semantic action refinement
as pursued here is treated comprehensively in [GGR].

An alternative is to use the actions of CCS for modelling “atomic” or instantaneous ac-
tions that cannot be refined, and representing our refinable actions by means of variables
or parameters. This approach requires a general sequential composition operator and has
been carried out in [BT] in the setting of ACP. In particular [BT] shows that there is
no problem in defining such a refinement operator while working in interleaving seman-
tics: atomic actions a,b cannot be refined, so the equation a|b = a;b + b; a is harmless;
parameters x,y can be refined, but there is no equation z |y = z;y + y; z. Of course the
refinement operator, ordinary substitution, is defined in the language (that still contains
all information about causal dependence) and not in the associated interleaving model
(which would be impossible according to Example 1.4).

Forgetful refinement

Because of the anomaly of Example 1.3, we have excluded refinement by the empty
process. We know of three possibilities to deal with forgetful refinement nevertheless.
In [DG-b] refinement by an empty process is considered an erroneous step in the top-
down development procedure, and is therefore identified with refinement by a deadlocked
process. As we will allow refinement by deadlocked processes, our approach is equally
general. In [BGG] a form of empty refinement on so-called ST-transition systems is
proposed, in which actions are abstracted away, but their potential to prevent other actions
from happening remains. However, the refined processes according to this approach can
in general not be represented by Petri nets or the event oriented models considered here.
Finally one could, in the spirit of [Vrancken], model the empty refinement by a renaming
into a so-called e-transition. In that case the equivalences of this paper would need to be
modified to reflect the transparent nature of e-transitions. An example illustrating the
various approaches can be found in [BGG].

Other concepts of action refinement

Our concept of action refinement is characterised by the following properties:

e Actions are uninterpreted, and there is no concept of the correctness of a refinement.

e The refinement of a given system description is completely determined by a refinement
function, mapping actions to system descriptions.

e All actions may be refined.
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e All relations of causal (in)dependence and conflict that exist between actions before
refinement are inherited by the refined system.®

The first property is in contrast to [Wirth] and many subsequent papers employing step-
wise refinement. There actions have a prescribed input/output behaviour, which makes
it possible to prove the correctness of a refinement step with respect to this behaviour.

[DGR] abandons the second and fourth property. This paper presents refinement as a
category-theoretic construction on event structures, where for every pair of events it is
specified explicitly to what extent relations of causality and conflict are inherited by the
event structures substituted for these events.

The third property is abandoned in [CGG], where a conceptual distinction between atomic
and compound actions is made; only the latter ones may be refined. It is shown that when
all actions which can decide a choice as well as all actions that can occur concurrently
with themselves are atomic, action refinement can be applied in interleaving semantics.
As in Example 1.4 there is a choice between a and b, these actions may not be refined, and
the problem of Example 1.4 is avoided. In [Boudol-a, GMM, GM, Gorrieri-a/b, DG-a,
BV-a] another concept of “atomicity” is introduced such that all actions are atomic, but
they may still be refined when preserving atomicity. This results in atomic subprocesses
that can not be “interrupted” by other activities, i.e. the refinement of P in Example 1.4
would not have the execution aibas. As the causal independence of a from b in P is
not inherited by a; and as, this approach abandons the fourth property. In [GMM, GM,
Gorrieri-a/b, DG-a, BV-a] this kind of refinement is carried out in interleaving semantics.
In [Boudol-a] two aspects of atomicity are considered, namely the all-or-nothing property
(recoverability) and interference freedom, and two kinds of action refinement are proposed.

The fourth property has been abandoned in [JPZ, JZ-a/b, Zwiers, Janssen, Wehrheim-a /b,
RW, Huhn-a/b] as well. In these papers causal dependence is given by a global dependency
relation between actions, as in [Mazurkiewicz]. Now causal dependence is inherited only
to the extent that it fits this global dependency relation. In [GW-b] it is shown that,
in a setting with global action dependencies, interleaving bisimulation coincides with
history preserving bisimulation, and hence, using Theorem 9.1, action refinement can be
performed in interleaving semantics. In case a and b are dependent, the event structure £p
of Example 6.1 does not exist; if they are dependent £ does not exist. [Wehrheim-b, RW]|
still allow to write both the expressions a|b and a;b+b;a, but they denote identical systems.
By means of an operational semantics they define action refinement on transition systems.
The refinement of tree(P) = tree(Q) in Example 1.4 yields a transition system bisimilar
to either tree(P’) or tree(Q'), depending on whether a and b are dependent or not. Using
a new process algebraic language with a linear time semantics, [JPZ, JZ-a/b, Zwiers,
Janssen| show how to apply action refinement with regard to global action dependencies
to the design of layered systems, having a sequential structure which still allows some

6This property can also be applied to models that abstract from causal (in)dependence (e.g. interleav-
ing models). It then says that it is possible to regard the process representations as abstractions from
systems whose causal (non-)relations are inherited when actions are refined.
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parallelism, using the principle of communication closed layers. In [JZ-a, Janssen], it is
shown how to use this for deriving an implementation of the Two Phase Commitment
Protocol. In [JZ-b, Janssen]| a distributed algorithm for computing minimum weight
spanning trees in graphs is derived. [Huhn-a/b] considers systems consisting of a parallel
composition of a fixed number of sequential agents; local refinement functions allow to
refine an action differently in different agents. A corresponding notion of refinement is
introduced for a logic based on local modalities.

All properties except the third are abandoned in [Rensink-a/b, RG]. There a refinement
function does not determine a unique refinement of a given system. Instead they advocate
the use of vertical implementation relations, parametrised by refinement functions, that
allow several correct refinements. In such a refinement step again not all causal relations
need to be inherited. This approach turns out to be compatible with interleaving se-
mantics; under a suitable notion of wvertical bisimulation both P’ and @)’ can be correct
refinements of P (=@Q) in Example 1.4.

Refinement in interleaving semantics

As explained for several approaches discussed above, there are ways to define a compo-
sitional action refinement operator on interleaving models. However, for our notion of
refinement, characterised by the above four properties, interleaving models are not suffi-
cient, provided that they are expressive enough to model both the processes P and () and
discriminating enough not to identify P’ and @' of Example 1.4.

In [BV-b], action refinement in our sense is carried out in linear time interleaving seman-
tics. However, it is not implemented as an operation on an interleaving model. Instead,
a syntactic expression is interpreted by treating the actions as variables: its semantics
consists of a function that, given any refinement function of the actions in terms of sets
of traces, gives an interpretation of the given expression as a set of traces. In particular,
two expressions are defined to be equivalent iff they evaluate to the same set of traces
for every instantiation of the actions by trace sets. The resulting semantics is therefore
by definition preserved under action refinement. Conceptually, the approach of [BV-b] is
similar to that of [BT], except that in [BT] the actions of [BV-b] are called “variables”
and in addition there are atomic actions that may not be refined.

Related work on equivalence notions

In response to our findings [GG-a], [DDM-c| shows that history preserving bisimulation
fits smoothly in the NMS framework [DDM-a| by combining totally and partially ordered
observations into mixed orders, and [Vaandrager-b] shows that it coincides with bisim-
ulation equivalence on causal trees [DD-a|, a result that has been generalised to stable
event structures in [Aceto-b]. [BDKP]| defines the fully concurrent bisimulation equiva-
lence on Petri nets and also proves a preservation result for action refinement. Through
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the correspondence between safe Petri nets and prime event structures due to [NPW],
this equivalence can be seen to coincide with history preserving equivalence. However,
the treatment of [BDKP] covers unsafe Petri nets as well. In [Devillers-a/b] this work is
generalised to a setting with internal moves, whereas such a generalisation of our work
appears in [Vogler-d/e]. Furthermore, Vogler settles the decidability of history preserving
bisimulation on finite safe nets in [Vogler-c|] and generalises this result to a setting with
internal actions in [Vogler-f]. An overview on refinement theorems in the setting of Petri
nets appears in [BGV].

In [GKP, Bednarczyk] a back-and-forth bisimulation equivalence is defined on prime event
structures by upgrading Definition 6.3 with clauses requiring that single-action transi-
tions should also be matched when going backwards. Such a bisimulation is shown to
be characterised by a variant of the Hennessy-Milner logic with backwards modalities.
Hereditary history preserving equivalence can be understood as a similar back-and-forth
variant of history preserving equivalence. [Bednarczyk] proves that for systems without
autoconcurrency back-and-forth bisimulation equivalence coincides with hereditary his-
tory preserving equivalence, and hence is preserved under refinement of actions. In the
presence of autoconcurrency, back-and-forth bisimulation fails to distinguish a|a from a;a,
and hence is not preserved under action refinement. [Cherief-a/b] studies a different con-
cept of back-and-forth bisimulation, in which only those backwards transitions need to
be matched that lead to states visited before. In this setting, she characterises history
preserving equivalence as back-and-forth pomset bisimulation equivalence. This result is
applied to give a modal characterisation of history preserving equivalence, using back-
wards pomset-labelled modalities. This logic is shown to be equally powerful as a logic
studied earlier in [DF]; thus the latter also characterises history preserving equivalence.

In our approach for partial order semantics, we have only considered the extreme points
in the linear time - branching time spectrum: pomset trace semantics and bisimulations
based on partial orders. The most prominent decorated trace equivalence between inter-
leaving trace and bisimulation equivalence is interleaving failure equivalence [BHR] (=),
also known as testing equivalence [DH]. This is the coarsest equivalence that respects in-
terleaving traces annotated with deadlock information and is a congruence for the parallel
composition operators |4 of TCSP. An interesting topic is to generalise this notion to
a setting where runs are represented as partial orders. This has been pursued in [ADF]
and [GW-al. Since the systems £ and F' of Example 9.2 are not even interleaving failure
equivalent, no equivalence that is included between interleaving failure and pomset bisim-
ulation equivalence can be preserved under action refinement. This includes the partial
order equivalence of [ADF]| (=,s). In [GW-a] a stronger version of testing is considered
where tests are sensitive to causal relations between previous action occurrences and ac-
tions which are to be performed next. The resulting causal testing equivalence (=) is
finer than ~,; and ~,, coarser than %, and incomparable with ~,;, and ~,,;. It is shown
that this notion is preserved under action refinement.

A naturally arising question is to what extent it is actually necessary to move to partial
order semantics to achieve preservation of equivalence under refinement (here we have
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only shown that steps are not sufficient). In [vG-a] it is proved that ST-bisimulation
equivalence [GV-a] (Rg1p) and ST-trace equivalence (Rgry) are preserved under refinement
of actions. In ST-semantics causal links between actions are not explicitly preserved;
causal independence can be detected only through the overlap of durational actions in
time. The generalisation of interleaving failure equivalence (~2;) to ST-semantics (~g7y)
has been shown in [Vogler-b], in the setting of Petri nets, to be preserved under action
refinement as well.” These ST-equivalences do not imply pomset trace equivalence. Thus
it is not necessary to use the full distinguishing power of partial order semantics to get
preservation under action refinement.® In [Vogler-b/d/e| it has been shown that ST-
semantics is the weakest extension of interleaving semantics that is suitable for action
refinement: ~g7y is the coarsest equivalence contained in ~; that is preserved under
action refinement, and similar results are obtained for ~g7; and ~xg7y.

Split semantics is a variant of interleaving semantics based on interleavings of begin-
nings and ends of action occurrences, instead of entire action occurrences. It is more
discriminating than step semantics. The difference with ST-semantics is that the latter
additionally takes into account which ends of actions match with which beginnings. For
systems without autoconcurrency, split and ST semantics are the same. In [GV-b] an
example is given, showing that neither split bisimulation equivalence (/2;) nor split trace
equivalence (Rs4;) nor any equivalence in between is preserved under action refinement.
This also shows that the split equivalences are strictly coarser than their ST counterparts.
In fact splitting actions in n parts yields coarser equivalences than splitting them in n+ 1
parts for any n € IN*. [Vogler-g] characterises the limit of all the split-n trace equiva-
lences (=,:) and shows that it is not preserved under action refinement. [GL] establishes
that, for systems with bounded autoconcurrency, the limit of the split-n bisimulation
equivalences coincides with ST-bisimulation equivalence, and hence is preserved under
refinement.

The equivalences mentioned so far are indicated in the following diagram, that extends
the one given at the beginning of Part II. Note that the ordering into squares in this
diagram is a conceptual classification and does not indicate formal relations between the
equivalences in terms of implication. For example, it is not the case that ~,; is finer than
~s7p; in fact these notions are incomparable.

Split bisimulation equivalence has been defined on a syntactical level on a subset of CCS
in [Hennessy-a]. In [AH-b] it is established that it is preserved by action refinement
on this subset. This does not contradict the negative result of [GV-b], as in [vG-a] it

"[Vogler-b] uses a restricted set of refinement functions, precluding the refinement by a parallel process
that occurred in Example 1.1. His work is generalised to arbitrary refinement functions in [JM].

8[Vogler-d] classifies ST-trace and ST-failure semantics as partial order semantics. This because these
semantics can be conveniently described by means of so-called interval orders [Vogler-b], which are truly
partial. On the other hand, the definition of ST-bisimulation [GV-a] does not manifest partial orders. We
prefer to use the phrase partial order semantics only when the partial orders denote causal dependencies.
Under this convention ST-semantics do not count as partial order semantics. Vogler’s conclusion that
the power of partial order semantics is necessary for refinement of actions [Vogler-d, page 136] is, apart
from the chosen terminology, consistent with ours.
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is observed that on that subset, for 7-free systems, =g, ~g7 and =, coincide. Thus,
the systems making up the counterexample of [GV-b] must fall outside this subset. A
linear time variant of ST-equivalence is proven robust under refinement in [NEL], and
the same is done for ST-failure equivalence in [AE]. Both papers do this on a simple
language, where a syntactic/operational treatment of action refinement is shown to match
with a denotational one. Working without autoconcurrency, [NEL| shows that their ST-
semantics can be characterised as split semantics. [AE] admits autoconcurrency, but
shows that on the studied language, ST-failure semantics is obtained as the limit of split-
n failure semantics.

[AH-c, Aceto-a| define refine equivalence, also on a syntactical level, but on all of CCS, and
prove that it is preserved under syntactic action refinement. This equivalence coincides
(at least for 7-free systems) with ~gp,. Likewise, [Hennessy-b| defines an ST-testing
equivalence on CCS and proves preservation under syntactic refinement. This equivalence
coincides with ~gry.

Finally, we would like to address the question whether history preserving bisimulation as
defined here is the coarsest equivalence finer than pomset bisimulation and being preserved
under refinement. We conjectured in [GG-a] that this is not the case, in particular, that
for

a a
£ = d F =
b/i b b?_ﬂ/#\a # .

we have £ %, F, but for any refinement ref, ref (£) = ref (F). That € %, F, in fact
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even &£ %, F, can easily be seen from the simplified behaviour structure representations
of £ and F below.

E:

If £ does two a-moves, F has to answer in kind; however, from the resulting state of &£

it is possible to reach both and , whereas from the matching state of F only

one of them is reachable. In order to see that ref (€) and ref (F) are pomset bisimulation
equivalent (for arbitrary ref), relate first all identical refinements of the initial a-events
of both structures. Thus as long as only parts of that a-event are executed, any pomset
transition of the one structure can be matched by a similar pomset transition of the other.
As soon as one of the structures does a move involving part of a b-action (and possibly
a part of a second a), a similar move (labelled by an identical pomset) can be made by
the other, and the remaining event structures (given by deleting the events that have
happened or are in conflict with events that have happened) are isomorphic. Finally, if
one event structure performs a part of the second a, without doing any part of a b yet,
the other structure can do likewise (in F it doesn’t matter which a is chosen), and the
remaining event structures will even be history preserving bisimilar.

In line with the prediction of this example, [Vogler-e| defines an equivalence (/2g7pp) that
is finer than s, (in fact it combines ST-bisimulation and pomset-bisimulation), relates
€ and F, and is preserved under action refinement. It can be argued however that ~grp
does not respect the interplay of causality and branching: after performing two a-actions
in both systems, it may be necessary to match a b that causally depends on one of
the a’s with one that is independent of both. In fact, judging from its definition, history
preserving bisimulation appears to be the coarsest suitable equivalence when it is required
to model the interplay of causality and branching in full detail.
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local action refinement, 85

models of concurrency, 7
causality based, 8
interleaving based, 7, 8
morphism (on configuration structures), 76

NMS mixed order equivalence, 85
NMS partial order equivalence, 53, 64
nondeterministic measurement systems, 53

open map, 75

parallel composition, 10, 23, 24, 34, 64

partial order semantics, 13, 52, 59, 62
not necessary for action refinement, 86,

87

partial orders, 13, 37, 48

partially ordered multiset, 18

path category, 75

Petri box calculus, 81

Petri nets, 3, 10, 82, 85

pomset, 18, 26, 48, 59

pomset bisimulation equivalence, 53, 62

pomset trace equivalence, 14, 52, 59, 60

pomset transition relation, 62

pomset transition systems, 62

preserved under action refinement, 12, 52

prime event structures, 15, 17, 74

principle of conflict heredity, 17, 25

principle of finite causes, 17, 25

process algebra, 10

process expressions, 10

process graphs (transition systems), 82, 84

quotient domain, 14

ready, 39



recoverability, 84
refine equivalence, 88
refinement
of actions, see action refinement, 3
of configurations, 21, 31, 40, 44
of transitions, 8, 82
stepwise, 3, 84
refinement function, 20, 30, 39, 44, 83
restriction operator, 24, 25
runs (of systems), 13, 17, 75

secured set of events, 37

semantic action refinement, 10, 83

semantic conflict, 28

sender example, 3, 5, 21, 30

sequencing, 9

sequential composition, 9, 10, 14, 22, 27,
34, 40

sequential composition approach, 10

span of open maps, 75

specifications, 11

split bisimulation equivalence, 87

split semantics, 87

split trace equivalence, 87

ST semantics, 87

ST testing, 88

ST-bisimulation equivalence, 87

ST-trace equivalence, 87

ST-transition systems, 83

stable configuration structures, 47

stable event structures, 15, 37, 38

states (of systems), 18

step, 13, 80

step bisimulation equivalence, 52, 56

step failure equivalence, 58

step semantics, 13, 52, 56

step trace equivalence, 52, 56

step transition relation, 56

stepwise refinement, 3, 84

strong equivalences, 13

successful termination, 9, 14-16, 27, 36, 81

synchronisation, 10, 23, 82

synchronisation trees, 7

syntactic action refinement, 10, 82

term models, 10

termination, 9, 14-16, 24, 27, 36, 81
termination (in)sensitive, 14, 53, 54
termination predicate, 36, 43

testing equivalence, 86

trace, 54

trace semantics, 13, 52

transition refinement, 8, 82

transition relation (for configurations), 54
transition systems (process graphs), 82, 84

uninterpreted actions, 5, 11, 83

vertical bisimulation, 85
vertical implementation relations, 85

weak equivalences, 13
weak history preserving bisimulation, 53



