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Abstract

Chu spaces have found applications in computer science, mathematics,
and physics. They enjoy a useful categorical duality analogous to that
of lattice theory and projective geometry. As natural mathematics Chu
spaces borrow ideas from the natural sciences, particularly physics, while
as rational mechanics they cast Hamiltonian mechanics in terms of the
interaction of body and mind.

This paper addresses the chief stumbling block for Descartes’ 17th-
century philosophy of mind-body dualism, how can the fundamentally
dissimilar mental and physical planes causally interact with each other?
We apply Cartesian logic to reject not only divine intervention, preor-
dained synchronization, and the eventual mass retreat to monism, but also
an assumption Descartes himself somehow neglected to reject, that causal
interaction within these planes is an easier problem than between. We use
Chu spaces and residuation to derive all causal interaction, both between
and within the two planes, from a uniform and algebraically rich theory of
between-plane interaction alone. Lifting the two-valued Boolean logic of
binary relations to the complex-valued fuzzy logic of quantum mechanics
transforms residuation into a natural generalization of the inner product
operation of a Hilbert space and demonstrates that this account of causal
interaction is of essentially the same form as the Heisenberg-Schrödinger
quantum-mechanical solution to analogous problems of causal interaction
in physics.

1 Cartesian Dualism

The Chu construction [Bar79] strikes us as extraordinarily useful, more so
with every passing month. Elsewhere we have described the application of
Chu spaces to process algebra [GP93], metamathematics [Pra93, Pra94a], and
physics [Pra94b]. Here we make a first attempt at applying them to philosophy.

It might seem that traditional philosophical questions would be beyond the
scope of TAPSOFT. Bear in mind however that Boolean logic as the basis for
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computer circuits was born of philosophy (and a little statistics). Only slightly
more recently, program verification has drawn heavily on more sophisticated
logics such as first order, modal, and higher order. Computers being think-
ing machines, computer science should not neglect the philosophical literature
on thinking. It is easy to dismiss “all that stuff” as obsoleted by technology.
However good truths, like good wine, must be served at the proper time. We
would like to think of our application of Chu spaces to Descartes’ inspiring yet
short-lived theory of mind-body dualism as a convincing example.

Cartesianism is a “philosophy of everything” founded by René Descartes
in the 1630’s. Its point of departure was to reject all authority and question
everything including the questioner’s existence. Descartes resourcefully boot-
strapped himself back into existence with an instance of the liar paradox, the
absurdity of questioning his own questioning, constructivized as Cogito, ergo
sum. Emboldened by this success, Descartes posed many more questions whose
imaginative answers formed the basis of Cartesianism. This rationalist philos-
ophy flourished for half a century until the march of science contradicted too
many of its answers for it to remain a viable grand unified theory of anything.
Some of the questions however remain philosophically challenging even today.

A central tenet of Cartesianism is mind-body dualism, the principle that
mind and body are the two basic substances of which reality is constituted. Each
can exist separately, body as realized in inanimate objects and lower forms of life,
mind as realized in abstract concepts and mathematical certainties. According
to Descartes the two come together only in humans, where they undergo causal
interaction, the mind reflecting on sensory perceptions while orchestrating the
physical motions of the limbs and other organs of the body.

The crucial problem for the causal interaction theory of mind and body was
its mechanism: how did it work?

Descartes hypothesized the pineal gland, near the center of the brain, as
the seat of causal interaction. The objection was raised that the mental and
physical planes were of such a fundamentally dissimilar character as to preclude
any ordinary notion of causal interaction. But the part about a separate yet joint
reality of mind and body seemed less objectionable, and various commentators
offered their own explanations for the undeniably strong correlations of mental
and physical phenomena.

Malebranche insisted that these were only correlations and not true inter-
actions, whose appearance of interaction was arranged in every detail by God
by divine intervention on every occasion of correlation, a theory that natu-
rally enough came to be called occasionalism. Spinoza freed God from this
demanding schedule by organizing the parallel behavior of mind and matter as
a preordained apartheid emanating from God as the source of everything. Leib-
niz postulated monads, cosmic chronometers miraculously keeping perfect time
with each other yet not interacting.

These patently untestable answers only served to give dualism a bad name,
and it gave way in due course to one or another form of monism: either mind
or matter but not both as distinct real substances. Berkeley opined that matter
did not exist and that the universe consisted solely of ideas. Hobbes ventured

2



the opposite: mind did not exist except as an artifact of matter. Russell [Rus27]
embraced neutral monism, which reconciled Berkeley’s and Hobbes’ viewpoints
as compatible dual accounts of a common neutral Leibnizian monad.

This much of the history of mind-body dualism will suffice as a convenient
point of reference for the sequel. R. Watson’s Britannica article [Wat86] is a
conveniently accessible starting point for further reading.

The thesis of this paper is that mind-body dualism can be made to work
via a theory that we greatly prefer to its monist competitors. Reflecting an era
of reduced expectations for the superiority of humans, we have implemented
causal interaction not with the pineal gland but with machinery freely available
to all classical entities, whether newt, pet rock, electron, or theorem (but not
quantum mechanical wavefunction, which is sibling to if not an actual instance
of our machinery).

2 Dualism via Chu Spaces

We propose to reduce complex mind-body interaction to the elementary inter-
actions of their constituents. Events of the body interact with states of the
mind. This interaction has two dual forms. A physical event a in the body
A impresses its occurrence on a mental state x of the mind X, written a=|x.
Dually, in state x the mind infers the prior occurrence of event a, written x |= a.
States may be understood as corresponding more or less to the possible worlds
of a Kripke structure, and events to propositions that may or may not hold in
different worlds of that structure.

With regard to orientation, impression is causal and its direction is that
of time. Inference is logical, and logic swims upstream against time. Prolog’s
backward-chaining strategy dualizes this by viewing logic as primary and time
as swimming upstream against logic, but this amounts to the same thing. The
basic idea is that time and logic flow in opposite directions.

Can a body meet a body? Only indirectly. All direct interaction in our
account of Cartesian dualism is between mind and body. Any hypothesized
interaction of two events is an inference from respective interactions between
each of those events and all possible states of the mind. Dually, any claimed
interaction of two states is inferred from their respective interactions with all
possible events of the body.

The general nature of these inferences depends on the set K of values that
events can impress on states. The simplest nontrivial case is K = 2 = {0, 1},
permitting the simple recording of respectively nonoccurrence or occurrence of a
given event in a given state. In this case body-body and mind-mind interactions
are computed via a process called residuation. Specifically, event a necessarily
precedes event b when every state x witnessing the occurrence of b also witnesses
a. This inferred relationship is calculated formally by left residuation, which
we describe in detail later. The dual calculation, right residuation, permits a
transition from state x to state y when every event a impressing itself on x does
so also on y. That is, any transition is permitted just so long as it forgets no
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event. These simple-minded criteria are the appropriate ones for the small set
K = 2.

For K = 3 more complex rules for inferring necessary precedence and possi-
ble transition obtain, including the possibility of forgetting (to be written up).
At K = 8 we have groups and semigroups, the latter embedding all abstract
category theory [PT80]. For K the set (not field) of complex numbers, right
and left residuation are naturally taken to be the respective products 〈ϕ|ψ〉 or
ϕ∗ψ and |ψ〉〈ϕ| or ψϕ∗, corresponding to respectively inner product and its dual
outer product in a Hilbert space.

This conveys the flavor of our proposal. We now equip these general ideas
with enough algebraic structure and properties to make the proposal interesting,
useful, and we hope convincing.

The following analogy serves to fix ideas. The numbers ±1 are connected
in two ways, algebraic and geometric. The algebraic connection is via the op-
eration of negation, an involution (−− x = x) that connects them logically by
interchanging them. The geometric connection is via the interval [−1, 1] of reals
lying between these numbers, a closed convex space connecting them topologi-
cally. We refer to these connections as respectively the duality and interaction
of −1 and 1. The connections themselves might respectively be understood as
mental and physical, but this takes us beyond our present story.

We regard each point of the interval as a weighted sum of the endpoints,
assuming nonnegative weights p, q normalized via p+ q = 1, making each point
the quantity p− q. An important property of interaction is that it includes the
endpoints, namely as the special cases where one of p or q is zero. An important
property of duality is that it extends to interaction, namely via the calculation
q − p = −(p− q).

We shall arrange for Cartesian dualism to enjoy the same two basic con-
nections and the two associated properties, with mind and body in place of
−1 and 1 respectively. Ideally the duality would be a negation-like involution
that interchanges their roles; no information is lost in this transformation, and
the original mind or body is recovered when the transformation is repeated.
And ideally the interaction would turn out to be the long-sought solution to
dualism’s main conceptual hurdle. Chu spaces achieve both of these in a very
satisfactory way.

The counterparts to ±1 in our Chu space formulation of Cartesian dualism
are the respective categories Set and Setop. That is, at 1 we place the class of
all sets, each understood as a pure body. At −1 we place what would appear
at first sight to be the same sets, which we propose to construe as pure minds.

Our first distinction between body and mind will be the trivial one of using
different variables to range over these sets: A,B over bodies, X,Y over minds.
The second distinction will be in how the two kinds of sets transform into each
other. Later we make a third distinction within the objects themselves by
realizing the two kinds as Chu spaces with dual form factors: sets tall and thin,
antisets short and wide.

Bodies transform with functions. We turn the class of bodies into Set by
first superimposing on it the graph whose edges comprise all functions, with
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each function f : A → B connecting the set A to the set B. We then promote
this graph to a category by equipping it with the standard composition rule
for functions, as an instance of composition of binary relations, along with an
identity function 1A : A→ A at every set A.

Minds transform with antifunctions. An antifunction g⊥ : X → Y is a
binary relation from X to Y whose converse is a function g : Y → X. Adopting
the composition rule for binary relations as with Set then yields a category dual
to Set, one that is equivalent, in fact isomorphic, to Setop (the result of merely
reversing all the edges of Set), which we simply identify with Setop.

These graphs are not isomorphic, even without their respective compositions.
A quick way to tell them apart is to look for a vertex whose only edge to it is a
self-loop. This vertex occurs only in Set, namely as the empty set. Or look for
a vertex whose only edge from it is a self-loop; this too is the empty set, but in
Setop. The reader will think of other tests.1

We now argue that sets are physical and antisets mental. Since the only
difference is in how they transform, any distinction between mental and physical
must be either dynamic in the sense of being transformational, or algebraic
in the sense that structure regulates transformation. We present both types
of argument (which themselves can be understood as respectively operational
hence mental and denotational hence physical).

Functions identify and adjoin. The function F : A→ B identifies just when
it fails to be injective: f(a) = f(b) means that f identifies a and b. It adjoins
just when it fails to be surjective: f : A→ B first transforms A onto f(A), then
adjoins to it B − f(A) to become into.

Antifunctions copy and delete. The antifunction g⊥ : X → Y makes multiple
copies just when its converse g : Y → X fails to be injective: g(y) = g(y′) means
that g⊥ sends copies of g(y) to both y and y′, inter alia. It deletes just when g
fails to be surjective: g⊥ : Y → X deletes exactly Y − g(X).

Identifying and adjoining are canonically denotational tasks that mathemati-
cians are accustomed to performing on their spaces, groups, and other algebraic
objects. This is the realm of the physical.

Copying and deleting are canonically operational tasks that logicians and
computer scientists are accustomed to performing on their proofs, spreadsheets,
and other symbolic objects. This is the realm of the mental.

In additional to these transformational arguments we can contrast the dis-
crete or dust-like physical structure of sets with the rigidly intermeshed mental
structure of Boolean algebras.

A set is an algebra with no language at all, and no equational theory beyond
the equational tautologies x = x. There is therefore no mental plane to speak of
in sets, making them the most physical of all the objects of traditional concrete
(set-based) mathematics, if not of all category theory (and perhaps even there,
cf. [RW94]).

1Example: look for any vertex having exactly one edge to it from each vertex, and infinitely
many edges out. There are lots of these in Set, namely the many singletons, all isomorphic,
but none in Setop.
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Setop is equivalent to the category of complete atomic Boolean algebras
(CABA’s). But the free CABA generated by the set X is the power set 22X

.
Hence the Boolean operations of each arity X, X empty, finite, or infinite,
consist of all functions from 2X to 2. This is the maximum possible language
compatible with CABA homomorphisms; not only is every arity represented but
every operation of that arity.2 Furthermore the equational theory of CABA’s is
maximally consistent in the sense that no new equation can be added without
collapsing the entire algebra to a singleton. A CABA as the ultimate know-it-all
is as mental as any object of traditional concrete mathematics can be.

We have thus established that the two isolated points Set and Setop rep-
resent respectively the physical and the mental. We now proceed with the
promised construction. At this point the situation is as for ±1 on their own: we
have two isolated graphs, and we seek a duality and an interaction.

The duality analogous to negation is simply the converse operation for binary
relations, which evidently interchanges Set and Setop.

The interaction analogous to the interval [−1, 1], which includes the points
it connects as part of the interval, consists of all Chu spaces and a graph su-
perimposed on them, which includes as subgraphs Set and Setop. That is, the
interaction consists of adding further vertices and edges, in addition to those
already present, to populate an interval from Setop to Set.

A Chu space A = (A,X, |=) over a set K consists of a set A of points, an
antiset X of states, and an X×A matrix |= with entries drawn from K.3 These
provide the vertices of the interval.

This ontogeny of the Chu space recapitulates the phylogeny we are working
towards. A and X are respectively the body or object and mind or menu
of the space, |= is their interaction, and matrix transposition is the duality
interchanging mind and body to yield the dual Chu space A⊥ = (X,A, |= )̆.

Points have necessary existence, all being present simultaneously in the phys-
ical object A. States are possible, making a Chu space a kind of a Kripke struc-
ture [Gup93]: only one state at a time may be chosen from the menu X of
alternatives.

Lafont and Streicher [LS91] were the first to single out Chu spaces as a case of
the more general Chu construction Chu(V, k) [Bar79, Bar91], namely V = Set,
worthy of separate attention as a natural model of linear logic [Gir87] embedding
topological spaces, vector spaces, and coherent spaces. They referred to these
objects as games, understanding |= as the payoff matrix of a von-Neumann-
Morgenstern two-person game.

There is a chicken-and-egg question here as to whether Chu spaces are more
naturally understood as a game or a player of a game. As players, the spaces
A and B play the interaction game A ⊗ B, their tensor product. This inter-
action has featured prominently in our own research as an operation we called
orthocurrence [Pra85, Pra86]. We originally identified orthocurrence as ordinary

2One can add further operations, for example modal logic adds 3. However CABA homo-
morphisms respect none of these additional operations whatsoever.

3Contrast this with a vector space over a field k, which requires k to be equipped with the
four rationals; here K is simply a set with no additional structure.
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product in a cartesian closed category of partially ordered multisets (pomsets),
but subsequently generalized it to the tensor product of any closed category
[CCMP91, Pra93, GP93, Pra94a]. In all cases we took as our basic example
the interaction of trains and stations described on the train station wall by the
daily schedule. Whereas ordinary product must be capable of being projected
consistently onto either component, tensor product requires only that each row
or column of the resulting rectangular body of the space (how stations appear
to conductors, and trains to stationmasters) meet all the constraints imposed
on each of the two constituents of the product, the concept of bilinearity. The
tensor product constitutes a larger Chu space, which can in turn be a player in
a yet larger game.

The representation A ⊗ B takes the physical viewpoint. The logic of the
game may be understood in terms of its dual (A⊗ B)⊥, which is equivalent to
either of A−◦B⊥ or B−◦A⊥. In the former, we take Alice’s point of view as
our premises and view Bob as the goal. This view dualizes Bob to make his
body, which Bob proudly thinks of as his strong points, appear to Alice as Bob’s
possible Achilles’ heels (wrists, etc.). At the same time Bob’s mind, which Bob
thinks of as his possible options, are seen by Alice as Bob’s tricks, all of which
she must be simultaneously on her guard against.

A Chu transform (f, g) : (A,X, |=) → (A′, X ′, |=′) consists of a function
f : A→ A′ and an antifunction g⊥ : X → X ′, namely the converse of a function
g : X ′ → X, satisfying the continuity condition g(x′) |= a = x′ |=′ f(a) for
all a ∈ A and x′ ∈ X ′. These provide the edges of the graph on the interval of
all Chu spaces running from Setop to Set. They compose via (f ′, g′)(f, g) =
(f ′f, gg′) to make the graph a category, denoted ChuK .

The function f transforms the body of the space denotationally, identifying
some points and adjoining others, but neither deleting nor duplicating any. At
the same time the antifunction g transforms the mind of the space operationally,
i.e. as a symbolic object such as a program or a proof, deleting some states to
further constrain the degrees of freedom of the space and copying some as needed
so as not to infringe on the degrees of freedom of the newly adjoined points
(transformations need only preserve the structure of what they transform and
cannot be held responsible for what goes on in the adjoined points). However
g never identifies states, which would be logically inconsistent for states having
distinct rows, and never adjoins states having new rows, which would be logically
unsound (the image could enter a state not permitted its source).

To understand better this last point, let row : X → (A→ K) and dually col :
A→ (X → K) denote the functions satisfying row(x)(a) = x|=a = col(a)(x).
Continuity may then be rephrased in terms of rows: row(g(x′)) = row′(x′) ◦ f ,
verified via row(g(x′))(a) = g(x′)|=a = x′|=′

f(a) = (row′(x′) ◦ f)(a).
That is, every row of B when composed with f must be some row of A, with
g a function selecting a suitable row index. When K = 2 this is equivalent to
requiring that g behave as f−1 on rows viewed as characteristic functions of
subsets of A′. But then the requirement that every row of A′ be mapped by
f−1 to some row of A is recognizable as the condition for a function between
topological spaces to be continuous, where rows are understood as open sets.
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For technical reasons Chu transforms are usually associated with a fixed K,
calling for a distinct category ChuK of Chu spaces for each set K. A set theorist
should have no difficulty with Chu spaces over different K’s transforming into
each other, but the resulting category would to begin with lack a tensor unit,
an annoying omission when one begins to press the rich algebraic structure of
ChuK into service.

The structure of ChuK is that of linear logic [Gir87], which can be under-
stood as the logic of four key structural properties of ChuK : it is concrete,
complete, closed, and self-dual (which therefore makes it also cocomplete and
coconcrete). The associated linear logic connectives are respectively !A, A⊕B
(and unit 0), A−◦B (and left unit 1), and A⊥, which form a complete basis
for linear logic. ChuK is complete but perhaps for syntactic simplicity linear
logic weakens completeness to finite products. Furthermore it is not yet agreed
whether induction is a necessary element of concreteness.

Just as {−1, 1} ⊆ [−1, 1], so are sets and antisets made part of the category
of Chu spaces, as follows. The set A is identified with the Chu space A =
(A,KA, γ) where for each x : A → K, γ(x, a) denotes the application x(a).
The function f : A → A′ is identified with the pair (f, f⊥) : (A,KA, γ) →
(A′,KA′

, γ) where f⊥ : KA′ → KA is defined by f⊥(g)(a) = g(f(a)). When
K = 2, f⊥ can be seen to be the usual inverse-image function f−1, making this
topology’s continuity condition as remarked earlier. We call the Chu space A a
realization4 of the set A in Chu2.

Dually the antiset X is identified with (KX , X, γ )̆ where γ˘ is converse
application, satisfying γ (̆x, a) = a(x), and the antifunction g⊥ : X → X ′ (i.e.
the function g : X ′ → X) is identified with the pair (f, g) where f : KX → KX′

is defined at each h : X → K by f(h)(x′) = h(g(x′)). This constitutes a
realization of Setop in Chu2.

Just as the duality of ±1 extended to [−1, 1], so does the mind-body duality
of Set and Setop extend to ChuK . The dual of A = (A,X, |=) is A⊥ =
(X,A,=|), while the dual of the Chu transform (f, g) is (g, f). Moreover the
duality of sets and antisets achieved via converse of their transforming binary
relations is also achieved via Chu duality for their realizations in ChuK .

To each finite Chu space A we associate integers P and Q measuring re-
spectively the discipline and versatility of A, in terms of the amount by which
the space fails to be a set or an antiset respectively. Write ‖A‖ for the number
of distinct columns of the matrix, and likewise ‖X‖ for the number of distinct
rows. Let P = K‖A‖ − ‖X‖ and Q = K‖X‖ − ‖A‖, both nonnegative. For
K ≥ 2 these cannot vanish simultaneously or we would have an integer solution
to KKA

= A. Hence we can safely define nonnegative reals p = P/(P + Q),
q = Q/(P +Q) satisfying p+ q = 1. We take p− q as the location of A in the
interval [−1, 1] itself, giving a sense in which ChuK lies between Setop and Set.

4A representation is a full embedding of one category in another, i.e. a full and faithful
functor F : C → D. A realization is a concrete representation; that is, C and D are concrete
categories, meaning they have underlying set functors UC : C → Set and UD : D → Set,
with which F commutes, UDF = UC , i.e. the realizing object has the same underlying set as
the object it realizes [PT80, p.49].
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Notice that this procedure assigns sets and antisets to 1 and −1 respectively,
while exactly square Chu spaces are sent to 0.

Although the position of a Chu space in [−1, 1] gives some indication of
its form factor, these positions turn out not to populate [−1, 1] densely. For
example at K = 2 the intervals [ 13 ,

1
2 ) and (1

2 ,
2
3 ] contain no Chu spaces, since

Chu spaces that are only one away from being square are below 1
3 or above

2
3 , and indeed the interval is riddled with such holes. One imagines being able
to distribute Chu spaces more uniformly along [−1, 1] with the help of say
‖A‖/‖X‖, but in choosing such a formula it would help to have some reason for
wanting a dense distribution.

This viewpoint is a compromise between those of set theory and category
theory. Set theory monistically constructs everything from the single category
of pure sets. Category theory pluralistically constructs a plethora of categories.
Chu spaces are like sets in that there is only one category ChuK of them (modulo
the parameterK). ChuK is dualistic in that it postulates the two categories Set
and Setop, neither of which is singled out as having priority over the other, and
connects them via interaction to form the single much larger category ChuK .
Some impression of its size may be had from the theorem [Pra93, p.153-4] that
Chu2k realizes the category of all k − ary relational structures and their ho-
momorphisms standardly defined. For example Chu8 realizes the category of
ternary relational structures, which in turn realizes the category of groups and
group homomorphisms (since its multiplication is the ternary relation xy = z),
and realization is transitive.

3 The Meaning of Interaction

Thus far we have constructed interaction as no more than a formal notion. We
now relate it to our intuitions about causal interaction.

It is ironic that Cartesian philosophy, whose guiding dictum was to question
everything, should question causal interaction between the mental and physical
planes before that within the planes. The latter problems must have posed an
insufficient challenge to the Cartesians. We argue that the converse is the case:
between is actually easier than within!

We interpret interaction as causality. Causality is directional, but the di-
rection depends on whether we have in mind physical or mental causality. We
interpret x |= a ambiguously as the time elapsed between the occurrence of the
physical a and its impression on the mental state x, and as the truth value
of a as a proposition.5 The former is physical causality or impression, flowing
forward in time from events to states. The latter is mental causality or infer-
ence, flowing backwards in time from the thought of a to the inference of a’s

5The reader may be understandably concerned at this identification of physical events and
ostensibly mental propositions. However a Boolean proposition about events in A is of type

22A
and each exponentiation dualizes, whence two of them return us to the physical plane. The

truly mental propositions are the constituent descriptive clauses of a physical DNF formula,
each describing a possible world.
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occurrence. In this way time flows forward (from the usual point of view) while
logic flows backward. This is primary interaction, and it occurs only between
the mental and physical plane.

We thus see that the seat of causal interaction in Cartesian duality is not
the pineal gland but the identification of impression and inference. We write
x |= a as expressing equally the impression of event a on subsequent state x
and the deduction by state x of the prior occurrence of event a. The Cartesian
dictum cogito, ergo sum is the case of this where x is the thinker’s state and a
the event of his or her existence.

As a proponent of more dynamic logics than traditionally contemplated in
logic [Pra76, Pra90a] we point out the atemporal quality of this dictum, a hall-
mark of classical logic. Examined closely, our analysis shows that Descartes’
dictum properly tensed becomes cogito, ergo eram (I was), an epitaph both of
whose tenses the liar paradox renders true in perpetuity. Our thoughts follow
from our events but not conversely and hence may survive them without logical
contradiction. A particularly good one may far outlive its source.

We pass now to interaction within each plane, whether physical or mental,
which we derive as secondary interaction from the primary form with the aid
of residuation, a pair of operations on binary relations that constitute dynamic
implications forwards and backwards in time. For K = 2, =| as a matrix of 0’s
and 1’s is an ordinary binary relation: the event a either is or is not related to
state x. This relation is understood ambiguously as a two-valued distance in
either time space (a=|x, physical) or information space (x |= a, mental).

Given any two contrary binary relations R ⊆ U ×V , T ⊆ U ×W , their right
residual R\T [WD39, Jón82, Pra90b] can be defined equivalently as follows.

(i) As the operation satisfying R;S ⊆ T iff S ⊆ R\T . (Think of this as
defining division on the left by R, with inequalities where one would expect an
equality. The case R = 0, all entries 0, requires no special attention.)

(ii) As the largest relation S ⊆ V ×W such that R;S ⊆ T .
(iii) As the set of all pairs (v, w) in V ×W such that uRv → uTw for all

u ∈ U .
(iv) As that operation monotone in its right hand argument that satisfies

modus ponens, R; (R\T ) ` T , and also T ` R\(R;T ), where ` is read as ⊆. This
makes R;− and R\− pseudoinverse operations which when composed either
decrease or increase their argument depending on the order of composition.

(v) As the relation (R ;̆T−)− where R˘ is converse (transpose) and T− is
complement (change all 0’s to 1’s in the matrix and vice versa). This can be
written more neatly as (T †;R)† where T † denotes T− .̆ If we think of residuation
R\T as a form of implication R→ T , and composition as a form of conjunction,
and allow for the noncommutativity of relational composition (relative product),
then this corresponds to the classical principle A → B ≡ ¬(A ∧ ¬B), as well
as to linear logic’s A−◦B ≡ (A⊗B⊥)⊥.

It is a straightforward exercise to show the equivalence of these definitions;
see [Pra90a] for further discussion.

Definition (v) reveals the contravariance of the operation in R, and its covari-
ance in T , composition being monotone in each argument, a form of bilinearity.
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We therefore call residuation sesquilinear, in anticipation of the next section.
Now consider =|\=| in the light of condition (iii). This instance of residuation

is a binary relation on X. For all x, y in X, x(=|\=|)y holds just when row x
implies (is a subset of) row y for every event, i.e. when x → y is valid. Now
x → y says that in order to be able to get from x to y, every event a whose
occurrence is recorded in x must still be recorded in y. Thus =|\=| consists of
those pairs (x, y) which as transitions do not entail taking back the claim that
an event has already happened.

This makes =|\=| the natural transition relation on X. This is a partially
ordered automaton. Elsewhere we have used higher dimensional automata to
argue that automata could be reliably paired up as the dual of schedules [Pra92].
We find Chu spaces a very appealing extension of this duality.

The left residual T/S, where T ⊆ U ×W , S ⊆ V ×W , is the dual of the
right. We settle for defining T/S as the set of all pairs (u, v) in U ×V such that
vSw → uTw for all w ∈W (cf. (iii)), and ask the reader to infer the other four
equivalent formulations corresponding to (i)-(v) above.

The left residual =|/=| is, by dual reasoning to =|\=|, that binary relation on
A containing (a, b) just when for all x ∈ X, b=|x implies a=|x. This makes it
the natural temporal precedence relation on events, namely a schedule of events,
an alternative to automata theory and Kripke structures that has attracted our
attention as a reliable model of true concurrency since 1982 [Pra82].

When we unravel the primitive causal links contributing to secondary causal
interaction we find that two events, or two states, communicate with each other
by interrogating all entities of the opposite type. Thus event a deduces that
it precedes event b not by broaching the matter with b directly, but instead by
consulting the record of every state to see if there is any state volunteering a
counterexample. When none is found, the precedence is established. Conversely
when a Chu space is in state x and desires to pass to state y, it inquires as to
whether this would undo any event that has already occurred. If not then the
transition is allowed.

If one truly believed that the universe proceeded via state transitions, this
might seem a roundabout and inefficient way of implementing those transitions.
However it seems to us, particularly in view of the considerations of the follow-
ing section, that the more likely possibility is that the universe only seems to
proceed via state transitions, due perhaps to our ancestors having ill-advisedly
chosen monism as the natural world view, perhaps millennia before the rise of
Cartesianism, perhaps only some years after its decline. What we conjecture
actually happens is that events signal states forward in time, or equivalently
that states infer events backwards in time, and the world we imagine we live
in is simply what that process looks like to its inhabitants when interpreted
monistically.

Why this theory as opposed to any other? Well, certainly no other theory
has satisfactorily explained the causal interaction of real mental and physical
planes as conceived by Descartes. Whether monism is an equally satisfactory
alternative for Descartes’ problem is a good question. But for the other appli-
cations of Chu spaces considered here, namely concurrency, metamathematics,
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quantum mechanics, and logic (see below), it seems to us that monism simply
cannot compete with dualism.

4 Quantum Mechanics

When time and truth are complex-valued as in quantum mechanics, right resid-
uation is replaced by the sesquilinear operation of inner product 〈ϕ|ψ〉. This
is a complex-valued correlation between wavefunctions 〈ϕ| and |ψ〉, which are
given as points of a Hilbert space, a metrically complete vector space which is
made an inner product space with this operation.

The correspondence with Chu spaces is as follows. Any given choice of
basis of Hilbert space defines a set of propositions, one per basis vector. Each
coordinate of a given state vector relative to that basis is interpreted as the
complex truth value of the corresponding proposition in that state. Relative to
that basis, a state vector then corresponds to a row of |=, or a column of =|.
Right residuation is defined even for one-state spaces, and is in form the logical
counterpart to inner product. The right residual of a one-state space with itself
is simply the identity relation on that state, this being the only partial order
possible. The inner product of a wavefunction with itself is a scalar, namely its
length squared, but quantum mechanics is a projective system where lengths
are only physically meaningful in proportion: the length of a single state is no
more informative in QM than is the identity partial order on a singleton.

A mixed state is a set of pure states and a distribution giving their relative
probabilities. Such a distribution can be understood as a quantitative form of
disjunction, making a mixed state the quantum mechanical counterpart of a Chu
space. Here 〈ϕ|ψ〉 for mixed states corresponds to the right residual of two Chu
spaces. The inner product of a mixed state with itself yields a square matrix of
transition probabilities between its constituent pure states. The right residual
of a Chu space with itself yields a square matrix of transition possibilities when
K = 2, and a suitably richer relation for larger K, where the possibilities begin
to depend on choice of quantale for K, taking us beyond the scope of this paper.

The outer product |ψ〉〈ϕ| produces an operator which transforms Hilbert
space. Viewed as a transformation of basis vectors of Hilbert space, such an
operator establishes correlations between attributes. The corresponding opera-
tion on Chu spaces is left residuation, which likewise produces a (two-valued)
correlation between events, which we may identify with attributes.

This perspective leads to the following reconstruction of the emergence of
modern quantum mechanics in 1925-26. Classical physics, and the old quan-
tum mechanics, took between-state correlations as basic. Newton’s laws, or
their expression in terms of Lagrange’s equations and the energy-difference Lan-
grangian, were couched in terms of space and time, with velocity v being the
derivative of position with respect to time, and momentum being mv. Hamilton
made the bold move of taking momentum to be an independent quantity in its
own right, observing that two equations per dimension based on a total-energy
Hamiltonian yielded an elegantly symmetric reformulation of Langrange’s one
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equation per dimension. From the perspective of classical physics this was no
more than an ingeniously symmetric but otherwise unimproved variant of the
basic laws of motion.

The new quantum mechanics made Hamilton’s “causal interaction” of mo-
mentum and position primitive, and derived the classical laws as secondary.
Furthermore they used the same logic, only as a complex-valued fuzzy logic
rather than a two-valued logic, to achieve this end. This made momentum-
space interaction a simple interaction, and the derived momentum-momentum
and space-space interactions more complex. These can be understood as having
to go both backwards and forwards in time for their complete effect, the basis
for Cramer’s transactional account of quantum mechanics [Cra86], which Leslie
Lamport drew to my attention in 1987.

5 Conclusion

We have advanced a mechanism for the causal interaction of mind and body,
and argued that separate additional mechanisms for body-body and mind-mind
interaction can be dispensed with; mind-body interaction is all that is needed.
This is a very different outcome from that contemplated by 17th century Carte-
sianists, who took body-body and mind-mind interaction as given and who
could find no satisfactory passage from these to mind-body interaction. Even
had they found a technically plausible solution to their puzzle, mind-body in-
teraction would presumably still have been regarded as secondary to body-body
interaction. We have reversed that priority.

One might not expect mind-body duality as a mere philosophical problem
to address any urgent need outside of philosophy. Nevertheless we have offered
solutions to the following practical problems that could be construed as par-
ticular applications of our general solution to Descartes’ mind-body problem,
broadly construed to allow scarecrows and everything else to have minds.

What is the conceptual basis of concurrent computation? What is the
essence of quantum mechanics? On what foundation should mathematics be
based? What is the right logic to reason with?

Concepts for concurrent computation. Our research focus since 1980 has
been concurrent computation. Our conclusion is that programmers should be
able to move as freely as possible between declarative and imperative modes of
thought about the same program. We are now convinced that the duality of
schedules and automata, as the realization of the duality of body and mind re-
spectively in the world of programming, provides a better conceptual foundation
for concurrent programming than any other model.

Essence of quantum mechanics. We claim that quantum mechanics has not
previously been reduced to lay terms by physicists, who have been content to
leave the subject as a mysterious jumble of properties of Hilbert space that
the working physicist can become acclimatized to and even confident with af-
ter sufficient exposure. Mind-body duality and interaction explain respectively
complementarity and the inner product in relatively elementary terms making a
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clear connection with other structures such as the above model of computation
and the following foundation for mathematics. The central role of the mental
plane in this account of quantum mechanics makes it a rational mechanics.

Foundations of mathematics. We implicitly settle for relational structures as
the objects of mathematics when we so restrict the models of first-order logic.
But this has the unfortunate side effect of excluding some popular mathematical
structures, most notably topology, which would appear to require a second
order theory. Chu spaces over 2k realize all k-ary relational structures [Pra93,
p.154-3] as well as topological spaces when K = 2 [LS91], all as objects of
the one category, yielding a novel degree of morphism-sensitive typelessness
for foundations. The above connection with quantum mechanics suggests that
mathematics based on Chu spaces be thought of as natural mathematics, sharing
with nature the essential principles of duality and interaction.

Choice of logic. We envision two logics, elementary and transformational.
Elementary logic has its usual meaning as the logic of individual objects such
as sets, groups, and Boolean algebras. It serves to reason about relationships
between elements of such objects. These objects are traditionally understood
as relational structures but they can also more generally be understood as Chu
spaces as per the preceding paragraph.

Transformational logic bears superficial resemblances to elementary logic but
serves to reason about interactions between objects rather than relationships
within objects. The structural basis for object interaction is the homomor-
phism or structure-preserving morphism, from which flows all other interaction
structure such as duality, limits, tensor products, homsets, and size (cardinality
or concreteness).

The most promising transformational logic seems to us to be Girard’s linear
logic [Gir87]. ChuK is a constructive model of linear logic in the sense that it
interprets the sequents of linear logic as sets of proofs rather than as Boolean or
intuitionistic truth values. Nonconstructive models of linear logic such as phase
spaces seem to us at best a curiosity. As to alternative constructive models, for
want of any convincing counterexamples we conjecture mildly that these can all
be satisfactorily subsumed by Chu spaces, the case V = Set of the general Chu
construction Chu(V, k). We have yet to be shown a V that improves on Set
for any significant application of the Chu construction.
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of MFCS’93, pages 142–155, Gdańsk, Poland, 1993. Springer-Verlag.

15



[Pra94a] V. Pratt. Chu spaces: complementarity and uncertainty in rational
mechanics. Technical report, TEMPUS Summer School, Budapest,
July 1994. Manuscript available as pub/bud.tex.Z by anonymous
FTP from Boole.Stanford.EDU.

[Pra94b] V.R. Pratt. Chu spaces: Automata with quantum aspects. In
Proc. Workshop on Physics and Computation (PhysComp’94), Dal-
las, 1994. IEEE.
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