Query Nets: Interacting Workflow Modules
that Ensure Global Termination*

Rob J. van Glabbeek and David G. Stork

Ricoh Innovations
2882 Sand Hill Rd. Suite 115
Menlo Park, CA 94025-7022, USA
rvg@cs.stanford.edu
stork@rii.ricoh.com

Abstract. We address cross-organizational workflows, such as document work-
flows, which consist of multiple workflow modules each of which can interact
with others by sending and receiving messages. Our goal is to guarantee that the
global workflow network has properties such as termination while merely requir-
ing properties that can be checked locally in individual modules. The resulting
query nets are based on predicate/transition Petri nets and implement formal con-
structs for business rules, thereby ensuring such global termination. Our method
does not require the notion of a global specification, as employed by Kindler,
Martens and Reisig.

Introduction

This paper deals with the formal modeling of business processes that transform an input
into an output by performing several tasks, or by delegating these tasks to other such
business processes. Examples are an insurance company, that takes as input a claim
and yields as output a decision on that claim, or a car dealership that takes as input a
broken car and yields as output a repaired one. Both businesses follow a pre-established
protocol to transform input into output. Such a protocol is called a workflow.

In this paper we focus on workflows that span several organizations. Each organi-
zation employs a local workflow, and these local workflows may delegate tasks to local
workflows of other organizations. This is done by presenting an input to the other orga-
nization’s workflow, awaiting the generation of an output, and proceeding with the task
at hand using that output. (This paradigm is essentially the Nested Subprocesses Model,
the second interoperability scenario identified by the Workflow Management Coalition
[8].) Naturally, our work also applies to modular workflows within one organization.

Take as example the car dealership. The car dealership’s workflow is initiated by
a customer dropping off a broken car. In case the car dealership can repair the car,
that’s what they do; otherwise the problem is described to the car’s manufacturer in
Detroit, and their answer will be used to carry out the repair. The repaired car constitutes
the output of the workflow; it can be picked up by the customer. The manufacturer’s
workflow can be initiated by a question about the repair of a car, and its output is an
answer to that question. Some questions are dealt with by asking the local dealership
that is supposed to carry out the repair, and using the answer of the dealership as output.

* To appear in: Wil M.P. van der Aalst, editor: Proceedings Business Process Management 2003,
Eindhoven, The Netherlands, LNCS, Springer, June 2003. © Springer-Verlag

In this paper we allow workflows that can deal with different types of input and
output. The dealership’s workflow for instance can also accept a client shopping for a
car as input, in which case the output may be a sale. Or it can take anyone’s question
on how to repair a car as input, and present an answer to that question as output. In the
latter case, difficult questions may be dealt with by asking the manufacturer.

The described workflows of the car dealership and the manufacturer are graphically
displayed in Fig. 1. In Section 1 we will formalize this representation as a Petri net.

Car
(or question
on repair car)

question

input N :)
N question question
i B
examine car examine car send | classify classify
(or question (or question descrintion of \ question: question:
on repair car) on repair car) roblpem to | to be to be
and find a way and find no way mpanu facturer ! answered answered
A2| torepair it Az| torepair it Ao ‘| Ag| by dealer by manuf.
report car car/ d i \
‘
try \
o place- placeholder \
sell holder (question on) \ [forward
report car M question
car
: Xo| to dealer
report) Car Teport car- o
- - Gt
. . receive
repair car admit answer answer
(or answer car cannot from A10| receive Lestion
question) be repaired | manufacturer answer q
. A4 As i <" [from deale
client) car.” % e
output repaired car - Sz answer
>
RN

(or question
on repair car)
output

question
output

dealership’s workflow manufacturer’s workflow

Fig. 1. Petri net representation of the car dealership’s workflow and the manufacturer’s workflow,
as well as their interaction (the dashed arcs). The dealership accepts as input a client shopping
for a car, a broken car, or a question on the repair of a car. As the latter two types of input are
treated similarly, they are collected in the same input place.

Faced with an input of a car, the first task of the dealership is to examine it. Depending on whether
the exam yields a way to repair the car or not, the output of this task is either the car and a report
on how to fix the car, or the car and a description of the problem for which no fix has been found.
In Petri nets, tasks are represented by transitions (the boxes) whose output types are fixed, so the
examination needs to be modeled by two transitions.

The shaded part of the dealership’s workflow deals with the querying of the manufacturer. With
dotted lines we added the alternative of returning the car to the customer unrepaired.

An important property of a workflow is termination. On any given input the work-
flow should eventually produce an output and stop. Let’s continue the example of the
dealership. If a repair does not succeed, the workflow may prescribe to try to repair the
car again, possibly using another method. When faced with a car that can never be fixed,

such a workflow leads to an unending series of attempts to repair the car, and the process
will not terminate. This is unacceptable behavior. When all reasonable methods have
been tried, the dealership should give up and return the car to the customer unrepaired.
Workflows should embody protocols to avoid infinite loops and ensure termination.

When the management of the car dealership inspects its workflow to see if termi-
nation is ensured, it has little information on the workflow used by the manufacturer,
which is called as a subroutine. Yet, if the manufacturer’s workflow fails to terminate, so
will the dealership’s workflow. Given the workflow sketched above, and the absence of
time-outs or other tricks to ensure termination of the invocation of the manufacturer’s
workflow, the best that can be ensured is a conditional termination property. The car
dealership’s workflow may be shown to terminate on the condition that the manufac-
turer’s workflow does. We call this local termination.

It is in the car dealership’s interest to ensure global or unconditional termination
of its workflow. This can be achieved by verifying that the car dealership’s workflow
is locally terminating, and the manufacturer’s workflow is unconditionally terminating.
When the car dealership trusts the manufacturer enough, the verification of the termina-
tion of the manufacturer’s workflow may happen locally by the manufacturer, and the
verdict taken on faith by the car dealership. However, verifying global termination of
the manufacturer’s workflow may not be so easy. It could be that the manufacturer del-
egates tasks to others, and those might delegate subtasks even further. In general we are
dealing with a network of local workflows, and it may be verified locally that each local
workflow in the network is locally terminating, i.e., terminating on the condition that all
other workflows in the network are terminating. The question now arises whether such
local termination properties of the local workflows are sufficient to guarantee termina-
tion of the global workflow.

This needs not always be the case. In could for instance be that the dealership re-
ceives as input a car that they do not know how to repair. According to protocol, they ask
the manufacturer how to deal with this specific problem. The manufacturer on the other
hand may have classified this question as one that ought to be answered by the local
dealership. According to protocol, the manufacturer’s workflow will pose the question
to the local dealership that asked it in the first place. Strictly following protocol, the
dealership now deals with the question by asking the manufacturer (again), and an in-
finite loop results. Thus the car dropped of at the dealership will never be repaired and
the global workflow fails to terminate.

In practice, an infinite loop as sketched above will be prevented by some business
rule. The dealership will never ask the same question twice to the manufacturer in
the course of dealing with the same repair. Once the manufacturer echoes back the
dealership’s original question, the dealership either asks a different question to the
manufacturer—a question that doesn’t lend itself to being thoughtlessly echoed back
to the dealership—or it solves the problem at hand without involving the manufacturer.

The current paper presents a framework for specifying cross-organizational work-
flows in which such business rules can be implemented. It introduces the concept of a
query net, which is a locally terminating workflow module that, when embedded in a
cross-organizational workflow, will never delegate the same task twice to another work-
flow module. We establish that in cross-organizational workflow networks built out of
such query nets global termination is ensured.

In order to ensure global termination of a cross-organizational workflow network,
all that is required is that the individual workflow modules in the network are query
nets, a requirement that can be checked locally for each of these modules. Unlike in
the work of Kindler, Martens and Reisig [6] there is no need to show correctness of
the modules with respect to a fairness-closed specification, specifying the interactions
between all modules in the global network.

1 Cross-organizational workflow nets

This section presents a Petri net model for cross-organizational workflow. For the pur-
pose of establishing notation and terminology we start out by reviewing basic place/
transition Petri nets. Then we present a form of the more powerful predicate/transition
nets, which regard tokens as structured entities. Finally, we arrive at our model by equip-
ping these nets with input and output places and a novel mechanism and implicit proto-
col for one net to call another as a subroutine.

1.1 Place/transition nets

A place/transition net is a tuple (S, T, F') where S and T are disjoint sets of places
(Stellen in German) and transitions, and F': (S x T') U (T x S) — IN is the flow
relation. The elements of S and 7" are represented graphically by circles and boxes,
respectively. For p, ¢ € S U T there are F(p, ¢) arcs from z to y.

When a place/transition net represents a concurrent system, a global state of such
a system is given as a marking M: S — IN. Such a state is depicted by placing M (s)
tokens in each place s. A marked place/transition netis a tuple (S, T, F', M) comprising
a place/transition net (S, T, F') and a marking M.

For two markings M and M’: S — IN we write M C M’ if M(s) < M'(s) forall
s € S. The marking M + M': S — INis given by (M + M')(s) = M (s) + M'(s).
The function M — M': S — Z is given by (M — M')(s) = M(s) — M'(s); this
function need not yield a marking because it might specify a negative number of tokens
in a place.

The multisets of preplaces *¢ and postplaces t*: .S — IN of a transition ¢t € 7" in
a place/transition net are given by *t(s) = F(s,t) and ¢*(s) = F(t,s) fors € S. A
transition ¢ is enabled under a marking M, written M [t), if *¢ C M. In that case ¢ can
fire under M, yielding the marking M’ = M — *t 4 t*, written M[ty)M’.

If a transition ¢ fires, for every arc from a place s to ¢, a token moves along that
arc from s to ¢. These tokens are consumed during the firing, but also new tokens are
created, namely one for every outgoing arc of ¢. These new tokens end up in the places
at the end of those arcs. The firing of ¢ is possible only if there are sufficiently many
tokens in the preplaces of t.

1.2 Predicate/transition nets

A predicate/transition net [3] (sometimes called coloured Petri net [5]) is a Petri net in
which the tokens are structured entities. We use a set of variables V = {z,y,...} to
range over the possible tokens in such a net, and a suitable collection IF of formulas over

those variables, expressing combinations of properties of the tokens referenced by the
variables occurring in those formulas. The specification of IF varies with the application.

A predicate/transition net is given as a quadruple (S, T, F, \) where, as above, S
and T are disjoint sets of places and transitions, but now the flow relation F is a subset
of (SxVxT)U(TxV xS),and X: T — IFallocates to each transition a formula called
the transition guard [7]. As above, the elements of S and T are represented graphically
by circles and boxes, respectively, while an element (p,z,q) € F is represented as
an arc from p to ¢, labeled with variable z. A formula A(¢) is written next to the box
representing the transition ¢.

Anarc (s,z,t) € Fwiths € S,z € Vandt € T indicates that upon firing
the transition ¢, a token z is taken from place s. An arc (¢,y,s’) € F witht € T,
y € V and s’ € S indicates that upon firing ¢ a token y is deposited in place s’. The
transition guard \(t) selects properties of the input tokens that have to be satisfied for
the transition to fire, and simultaneously specifies the relation between the input and the
output tokens. The formula A(¢) may contain free occurrences of the variables allocated
to the arcs leading to or from ¢. These variables refer to the transition’s input and output
tokens. Consider as an example a transition that consumes input tokens z and y, and
produces an output token z. The transition guard could then be a formula that says that
the transition may only fire if y is a cryptographic key, and x is a PGP document that
successfully decrypts with that key; if these conditions are met, the decrypted document
z is emitted.

The Petri net of Fig. 1 is a predicate/transition net. The arc-labels such as “car” and
“report” are variables. The transition guard X, says that the variable “car” refers to a car
for which a repair can be found, or alternatively to a question on the repair of a car for
which a repair can be found; if this condition is not satisfied, the A-labeled transition
cannot fire. Moreover, A, specifies the relation between the car and the report on how
to fix it. The same variable “car” labels both an input and an output arc of the transition;
this indicates that the car or question passes through this transition unchanged.

1.3 Marked predicate/transition nets and the firing rule

A framework for predicate/transition nets specifies a set V' of variables, a collection IF
of formulas over V/, a domain D of possible tokens, and an evaluation function. The
latter specifies, for each formula ¢ € IF and each assignment &: V' — D of tokens to
variables, whether ¢ evaluates to t r ue of f al se under &; let ¢[¢] denote the result
of this evaluation. Any specification of a predicate/transition net presupposes such a
framework.

A marking of a predicate/transition net is an allocation of tokens to the places of the
net, formally defined as a function M: S x D — IN, that specifies for every place s € S
and token d € D how many copies of d reside in s. A marked predicate/transition netis a
tuple (S,T,F,\,M) comprising a predicate/transition net (S,7,F,\) and a marking M.

In a marked predicate/transition net a transition ¢ can fire if there is an assignment
¢ of tokens to variables such that the transition guard A(¢) evaluates to t r ue, and for
every x-labeled arc from a place s to ¢ there is an input token £(z) in s. As a result of
firing ¢, these input tokens are taken away and for every y-labeled arc from ¢ to a place
s’ an output token &(y) is deposited in s’.

Here is a more formal description of the firing rule, where the notions M C M’,
M + M’ and M — M’ are defined just as for markings with only one argument. For a
transition ¢ € T in a predicate/transition net and an assignment & V' — D, the input
and output markings *¢[¢] and ¢[£]® : S x D — IN of ¢t under £ are given by

tle] = {(s, () [(s,2,t) € Fp - and t[] = {(s,&(2)) | (t,x,5) € F}

in which {, } are multiset brackets. A transition ¢ is enabled under a marking M, written
M]t), if there exists an assignment & V' — D such that A\(¢)[¢] ist r ue and *t[¢] C M.
In that case ¢ can fire under M, yielding the marking M’ = M — *t[¢] + t[£]®, written
M[tyM'.

1.4 Fairness

A firing sequence in a Petri net is a possibly infinite alternating sequence of markings
and transitions My, t1, My, te, Mo, ... such that My[t,) Mq[ta) Mo - --. We say that
marking M’ is reachable from marking M if there is a firing sequence starting with M
and ending with M.

In a Petri net, complete runs of the represented system are represented by firing
sequences. However, not every firing sequence represents a complete run. Some finite
firing sequences merely represent partial runs, and some infinite ones do not correspond
with runs that could occur in practice. Those firing sequences that do model complete
runs are called fair. Fairness can be formalized in many ways, often requiring a more
involved definition of a Petri net, and often depending on certain progress or fairness
assumptions made on the behavior of nets. In our simple nets we call a firing sequence
fair if there is no transition ¢ such that from a certain marking in the sequence onwards,
t is continuously enabled but never fires. In particular, a finite firing sequence is fair if
and only if in its last marking no transition is enabled. For a more subtle approach to
fairness see for example Kindler, Martens & Reisig [6].

1.5 Workflow nets

Workflow nets are defined in van der Aalst [1, 2] employing place/transition nets. Here
we extend the definition to predicate/transition nets. A workflow net (S, T, F, A, i, 0) is
a predicate/transition net (S, T, F, \) with two special places, ¢ and o. A workflow net
represents a business process that converts an input into an output. The input and output
are represented by tokens, presented by the environment to the net’s input place ¢, and
removed from its output place o. The specification of a workflow nets does not involve
the notion of an initial marking; a workflow net starts out empty, and may start firing
using tokens dropped in the input place 7 by the environment of the net.

1.6 Multi-organizational workflow nets

In this paper we view the parallel composition of any number of business processes as a
single global business process. Imagine two shops, each with their own procedures for
handing input and output. While we generally consider them as two separate business
processes, we might choose instead to treat them as a single global business process,

perhaps because of joint ownership or some other binding relation between the two.
When representing processes as Petri nets, their parallel composition is represented by
the disjoint union of these nets. In the case of workflow nets, this representation leads
to a proliferation of input and output places. Therefore we will consider workflow nets
with multiple pairs of input and output places. These will also be suitable to represent
business processes that can deal with different types of input that are treated in different
ways and lead to different types of output.

A multi-organizational workflow net W= (S, T, F, X, IO) is a predicate/transition
net (S, T, F, \) equipped with a set 7O of input/output ports, each port p € IO con-
sisting of an input place p;, € .S and an output place p,.;: € S.

Each of the two workflows of Fig. 1, not including the dashed arcs between them,
can be regarded as a multi-organizational workflow net. The dealership’s workflow has
two input/output ports, namely “client” and “car (or question on repair car)”.

1.7 Workflow modules

We define a workflow module (S, T', F, A\, IO, Q) to be a multi-organizational workflow
net equipped with a set @@ of query ports. Each query port ¢ € @ consists of two
transitions ¢- and ¢ € T and two places gpre and gactive € S, CONnected by arcs
(Gpres®1,47), (92, T2, Qactive) ANA (Qactive, T3, q1) € F. There are no other arcs to or
from ggctive. The arcs leading to ¢, should be such that g,,. receives at most one
token for each input received by the workflow module. In some cases this is achieved
by allowing only arcs to g,,. from transitions that have an input place p;, with p € 10
as preplace (Fig. 2).

query port g
10 port p'

Fig. 2. A query port in a workflow module. The query port g consists of a query transition g
sending a query to another workflow module, a query transition ¢ receiving the answer from the
other module, a query place g, ensuring that in each run of the workflow module the query
transition g- can be fired at most once, and a query place gq.tve €nsuring that g- fires before gi.

Workflow modules represent business processes with the ability to invoke other
business processes as subroutines. Each query port ¢ € @ models (a) the invocation
of another business process (the target process of the port) by sending it an input, and
(b) the receipt of the corresponding output. The query transition ¢- represents the act of
invoking the target process. The transition guard \(g7) may contain free occurrences of
the variable x». This variable represents the input that is presented to the target process.
The query transition ¢, represents the receipt of an output from the target process. The
transition guard A(¢1) may contain free occurrences of the variable xy, referring to that
output. This guard may relate x, with variables labeling outgoing arcs of ¢; however, it
is not allowed to restrict the enabling of ¢, based on the value of ;.

The query place g,,. ensures that in each run of the workflow started by single to-
ken in an input place, the query transition ¢ can fire at most once. In order to model a
business process that in one such run invokes another business process twice as a sub-
routine, one needs two different query ports. When the target process has been invoked,
but its output has not yet been collected, the query place g, CONtains a token. This
design ensures that ¢ can fire only after the firing of ¢-.

1.8 Modular workflow architectures

A modular workflow architecture is a finite set of workflow modules, together with an
allocation, to each query port in each module in the architecture, of an input/output port
of another (or the same) workflow module (Fig. 3). The input/output port allocated to a
query port is called the target of that query port. We assume that query ports in different
modules in the architecture have different names.

A modular workflow architecture models a collection of interconnected business
processes. Each of these business processes is represented by a workflow module. Oc-
casionally such a business process delegates a subtask to another business process. This
delegation is modeled by the query ports. The target of a query port indicates to which
business process the subtask is delegated. A business process may dynamically choose a
module to which a task should be delegated (e.g. in vendor selection) by routing control
through a chosen query port.

Module B
Module C

a3 D3
Module A p1
Pa/s s
01
Module D Os
02
P2 Pg Je

Fig. 3. Amodular workflow architecture consisting of four workflow modules with six query ports.
The query ports g4 and gs share the same target p, 5.

i

i

A modular network architecture can be represented by a single multi-organizational
workflow net, called the cross-organizational workflow net representing the architec-
ture. This is done by taking the disjoint union of its constituent workflow modules,
and connecting every query port ¢ in every module, through arcs (g7, z7, p:,) and
(Pout, x1, q1), With the input and output places p;, and p,.: of the target port p of ¢
(Fig. 4). The input/output ports of the cross-organizational workflow net are those of
the constituent modules. Figure 1 shows a modular workflow architecture that is made
into a cross-organizational workflow net by adding the dashed arcs.

workflow module A workflow module B

T

query port
10 port p* 10 port p™*

Fig. 4. A query port in a workflow module and its connection in a cross-organizational workflow
net to the target of that port.

2 Workflow nets for multiple cases

A case is a run of a business process invoked by a single input. In a workflow net a
case starts when a token is deposited by the environment in the input place of the net,
and ends when a token arrives at the output place. In van der Aalst [1, 2], workflows are
considered to be case driven, meaning that every case can be considered as running in
a fresh copy of the workflow net. This approach guarantees that different cases do not
influence each other, a property we call case independence.

The case driven approach would unduly complicate the constructions of the present
paper. We consider different cases to be running in parallel in the same workflow net,
which can happen in particular in workflow modules within modular workflow architec-
tures, namely when a module is invoked twice as a subroutine in the course of executing

a single case of another module. Nevertheless, case independence can be ensured easily
in predicate/transition nets by assigning a unique identifier to every case. In practice,
this identifier could consist of the name and address of whomever presented the case
to the workflow, and the time of submission. To this end we assume that every token
deposited in the input place of a workflow net carries a unique case identifier. The
transition guards of each transition will require that that transition fires only when all
incoming tokens have the same identifier. Each output token will have that identifier as
well. This method precludes any interference between cases.

In this section, we first formally define case independence, and then describe a
method to transform any multi-organizational workflow net into a case independent
one under the assumption made above. Subsequently we extend this method to work-
flow modules in such a way that the case-independence of modules is preserved when
these modules are embedded in a cross-organizational workflow net.

2.1 Case independence

A multi-organizational workflow net W enjoys case independence if any firing se-
quence My[t1) M [ta) Malts)- - - where My is a marking that only puts tokens in input
places of W, can be obtained by interleaving firing sequences that start with markings
that put only one token in an input place. This means that, if the initial marking M
has n tokens, each marking M, can be written as M;; + --- + M,;,, such that, for
j=1,...,n, My; puts only a single token in an input place, and for each transition ¢; in
the sequence, there isa j € {1,...,n} such that M;_1y;[t;) M;; and M1y, = My
for & # j. In words, the given firing sequence can be decomposed into n firing se-
guences starting with a 1-token marking, and every transition ¢; belongs to one of these
n firing sequences.

We do not aim for general case independence, but merely for case independence
under the assumption that the environment supplies tokens that are tagged with distinct
identifiers from a set 7D. We call this ID-case independence. It is formally defined just
as case independence above, but only for initial markings M, that supply tokens of the
form (id, d) with id € ID such that all supplied tokens have distinct identifiers.

2.2 Ensuring case independence

Let W = (S, T, F, A\, I0) be a multi-organizational workflow net designed for the case
driven approach, in a framework with D the set of possible tokens. Let ID be a set of
possible identifiers, and take D' = ID x D ={(id,d) | id € ID A d € D}, the set of
possible tokens with attached identifiers. Suppose {z1, ..., z,} is the set of variables
labeling the arcs entering and leaving a transition ¢ € T', then we define \’(¢) to be

Jid€ID: zy=(id,) A+ ANz =(id,x])) ANX()[2}/z; (i=1,...,n)]

where A(¢)[z}/z; (i=1,...,n)] denotes the result of substituting = for =; in A\(t) for
i=1,..,n. Now W' = (5,T, F, X', 10) is a multi-organizational workflow net that
behaves just like W when presented with a single input token, but in which ID-case
independence is guaranteed. The framework in which W is specified uses the domain
D' of possible tokens and a suitably extended collection IF’ of formulas.

10

2.3 Ensuring case independence in modular workflow architectures

We consider a modular workflow architecture to be ID-case independent if its indi-
vidual modules are case independent under the assumption that tokens deposited by
the environment of the architecture in input places of the modules of the architec-
ture have distinct identifiers, chosen from the set ID. For our main results below,
ID-case independence of modular workflow architectures is essential. /D-case inde-
pendence of modular workflow architectures can be achieved by the method described
in Sect. 2.2, provided that all tokens deposited in input places of the modules of the
architecture have distinct identifiers. Such tokens may be provided by the environ-
ment or by query transitions. Therefore we have to require that query transitions never
emit tokens with identical identifiers to input ports of any given module. This require-
ment will be fulfilled when query ports augment the identifier of a case they are deal-
ing with with their own identity. To this end, for a collection of identifiers 7D sup-
plied by the environment, and a collection of Q of potential names of query ports ap-
pearing in a modular workflow architectures, let /Dq be the collection of identifiers
idxqrxqgax---xqr With k € IN, id € ID and ¢; € Q for j = 1,..., k. Such identi-
fiers consist of a global case identifier id from ID, attached to a token by the environ-
ment, together with a sequence of names of query ports that the token passed through
in succession. For a query port ¢ € Q the transition guards \'(g-) and A’(¢1) now are
Jide IDq: z1=(id, x}) A+ - Axp = (id, 2},) Axe = (idxq, x5) AN (g?) [z} /zi (i=1, ..., n,?)] and
JideIDg: z1=(id,T)) A+ Axn = (id,) Ax1= (idxq,) AN () [z} /z: (i=1,...,n,1)].
It could be that in a single case a single module invokes another module twice by means
of different query ports. Using the names of those ports to augment the case identifier
results in the invoked module only receiving tokens with distinct identifiers. Here it
is crucial that in a single case any particular query port ¢ be used only once. For this
reason we introduced the query places gpye.

We call a workflow module manifestly ID-case independent if it has been made ID-
case independent by the method above. If all workflow modules in a modular workflow
architecture are manifestly ID-case independent, then surely the architecture itself is
ID-case independent.

In a modular workflow architecture consisting of manifestly 7D-case independent
workflow modules the type of token identifiers is that of a stack. Tokens deposited by
the environment are assumed to have an identifier id € ID. Whenever a token passes
though a query transition ¢- into another module (containing the target of ¢) the name ¢
of the corresponding query port is appended to the identifier, or “pushed on the token’s
stack”. Within a module the identifier of tokens is preserved. When a token is retrieved
by the query transition ¢, from the output place of the target of ¢, the name ¢ is popped
from the token’s stack.

3 Proper termination

Typically, van der Aalst [1, 2] requires workflow nets to be sound, in the sense that

(1) if a token is put in the input place, a token will eventually appear in the output place,
(2) when a token appears in the output place, no other tokens are left in the net, and
(3) every transition in the net can under some circumstance be fired.

11

These properties are formalized as follows (where the marking {:]} is the multiset that

only contains the input place of the workflow net):

(1) Any fair firing sequence starting with {:]}} contains a marking with a token in o.

(2) Any marking that is reachable from {i]: and has a token in o, must equal {ol}.

(3) For any transition ¢ there is a firing sequence starting with {:]: in which ¢ appears.

In van der Aalst [1, 2] workflow nets are required to satisfy

(4*) The input place 7 does not have incoming arcs and the output place o does not have
outgoing arcs. Furthermore, for every place or transition » € S U T there should be

a path in the net from i to o via r.

This structural property implies that ~ (4) in the marking {o} no transition is enabled.
In this paper, we will drop the structural requirement (4*) but retain its consequence
(4), which will be treated as an additional soundness requirement.

Soundness property (1) says that the workflow net is guaranteed to provide an out-
put token, and property (2) adds that when the environment retrieves this token from
the output place, no tokens remain in the net. In combination with the assumed case in-
dependence of workflow nets, properties (1) and (2) imply that for each token put in the
input place, exactly one token will eventually appear in the output place. It is not hard
to find counterexamples showing that this does not follow without case independence.

Soundness property (3) is one of parsimony, and has no bearing on the operational
behavior of the workflow net. Any workflow net can be transformed into an opera-
tionally equivalent one that satisfies this property, namely by deleting all transitions
that can never be fired. We will not be concerned with this soundness property here,
and instead use a concept of soundness consisting of properties (1), (2), and (4). This
form of soundness is called proper termination [4].

The following definition extends this concept to multi-organizational workflow nets
for which all tokens are of the form (id, d) with id a case identifier. From here onwards
we work in a framework for predicate/transition nets in which all token have this form.
Now a marking is a multiset of elements (s, (id, d)) with s a place in the net. As the case
identifier is supplied by the environment dropping a token in an input place, and that
environment is hoping for an output token pertaining to the same case, only tokens of
the form (id, d’) count as legitimate output when an input (id, d) was supplied. Tokens
with any other identifier may pass through output places casually.

Definition 1. A multi-organizational workflow net is properly terminating if

(1) Any fair firing sequence starting with a marking {(p.», (id, d))} for some input/
output port p € IO contains a marking with a token (id, d") in pyu:.

(2) Any marking that is reachable from a marking {(p.n, (id,d))} and has a token

(id’ dl) in Pouts must equal {[(poutv (Zda dl))]}

(4) Inamarking {(pous, (id, d))]} no transition is enabled.

Note that because in a workflow module in a modular workflow architecture a query
transition ¢ lacks its incoming arc (pou:, 21, 1) Where p is the target of ¢, proper termi-
nation of the workflow module can be understood as proper termination of the workflow
module enriched with such an arc, under the assumption that a token is supplied over
this arc, i.e., under the assumption that the workflow invoked by ¢- terminates. This is
what we called local termination in the introduction. Also note that, in view of the firing
rule for predicate/transition nets, proper termination is required for any token supplied
over this arc, i.e., for any output returned by the invoked workflow.

12

3.1 Proper termination of modular workflow architectures

We consider a modular workflow architecture to be properly terminating whenever the
cross-organizational workflow net representing the architecture is properly terminating.
The main goal of this paper is to formulate conditions on workflow modules in an
architecture that guarantee proper termination of the architecture itself.

Lemma 1. If all workflow modules in a modular workflow architecture satisfy prop-
erty (4) of Definition 1, then the cross-organizational workflow net W representing the
architecture satisfies property (4).

Proof. Let M be a marking {(pou:, (id,d))} of W. As in each of the queries ¢ in W
the place gqctive 1S NOt marked, none of the query transitions ¢, is enabled under M.
Any other transition ¢ in W is enabled under A only if in the module containing ¢, ¢ is
enabled under the restriction of M to that module, which is either {(p,u¢, (id, d))} or
the empty marking. As that module satisfies (4), ¢ is not enabled under {(pout, (id, d))},
and thus certainly not under the empty marking.

Lemma 2. If all workflow modules in a manifestly ID-case independent modular work-
flow architecture satisfy properties (2,4) of Definition 1, then the cross-organizational
workflow net W representing the architecture satisfies property (2).

Proof. Let o be a firing sequence in W starting with {(p?,, (ido, do))}, and let M be a
marking in o with a token (ido, d}) in p%,,. As W is manifestly ID-case independent,
each token occurring in a marking in o has a case identifier of the form idg«qi#qax - *qy.
Here we also use that in W there are no transitions without incoming arcs, which fol-
lows from the assumption that W satisfies (4). Furthermore, each transition in o has
a transition guard of the form Jid € IDq: ¢ and therefore can be annotated with the
identifier id € ID, that enabled it. For any id € 1D and any marking M’ let M’ id
consist of the elements (s, (id, d)) of M, and let o [id be obtained from o by replac-
ing its markings M’ by M’ \id, and by skipping the transitions that are not annotated
with id. From the manifest ID-case independence of W it follows that o [\id is a firing
sequence in one of the modules (that we call W;4). It follows immediately from the
assumption that W;, satisfies (2) that M idy = {(p2,;, (ido, dy))}.

With induction on k& > 0, we establish that M [\idoq1 %qo*- - -xqy i empty, which
finishes the argument. So assume M |id is either {(p,,, (ido, dj,))]} or empty. It has to
be shown that M |idxq is empty. In case o |\id does not contain the transition g- this
is trivial. In case o 'id does contain ¢, it must also contain ¢, as M ['id has no tokens
iN Qactive. HeNce o [id ¢ starts with a marking {(pin, (id*q,d))} and has a marking
M’ with a token (id*q,d’) in pous, Where p is the target of g. As W, 4., Satisfies (2),
M’ Vid+q = {(pout, (id,d’))}, and M id+q must be empty.

It is not hard to see that a modular workflow architecture may fail to be properly
terminating if it fails to be ID-case independent, or if some its workflow modules fail to
be properly terminating. However, (manifest) /D-case independence and proper termi-
nation of the workflow modules in a modular workflow architecture are not sufficient
conditions to guarantee proper termination of a modular workflow architecture. A fail-
ure of proper termination of a modular workflow architecture may occur in the case

13

of loops in the connections between its workflow modules. If, for example, module A
keeps calling module B and vice versa, as can happen in the car dealership example
from the introduction, the resulting architecture has a loop and the associated queries
will never be answered.

Below we define a subclass of acyclic modular workflow architectures for which
the requirements that its modules are manifestly ID-case independent and properly ter-
minating are sufficient to ensure proper termination of the architecture. In Sect. 3.3 we
will show that the condition of acyclicality can be omitted when equipping workflow
modules with a simple business rule that, in essence, prohibits the posing of the same
query twice. Workflow modules that are so equipped will be called query nets.

3.2 Acyclic architectures

The connectivity graph of a modular workflow architecture has as its nodes the work-
flow modules in the architecture, and a directed edge A — B whenever workflow
module A has one or more query ports with a target in B. Figure 5 shows the connec-
tivity graph of the modular workflow architecture of Fig. 3. An architecture is called
acyclic if its connectivity graph has no cycles.

B \
/ \ C
SN
Fig. 5. Connectivity graph of the modular workflow architecture of Fig. 3. The letters represent

workflow modules and the arcs represent queries. This architecture is cyclic because module B
contains a query port with a target in module C' and vice versa.

A

Theorem 1. If all workflow modules in an acyclic modular workflow architecture are
manifestly ID-case independent and properly terminating, then the architecture itself is
properly terminating.

Proof. That the cross-organizational workflow net W representing the architecture sat-
isfies properties (4) and (2) of Definition 1 follows from Lemma’s 1 and 2. Now con-
sider a fair firing sequence o in W starting with a marking {(pi», (id, d))}. Using the
notation and results from the proof of Lemma 2, ¢ |'id is a firing sequence of the mod-
ule Wi4. In case this firing sequence is fair, as W, satisfies (1), o |'id, and hence also
o, must contain a marking with a token (id, d’) in p,.:, which had to be established.
The only way o |'id can fail to be fair in W, even though o is fair in W, is when
there is a query transition ¢, in W4 that, from a certain marking in o Id onwards, is
continuously enabled but never fires. In o this query transition cannot be continuously
enabled, which is possible only when o |\id * g is a firing sequence in Wi, starting
with a marking {(p;,,, (idxq, d1))} but having no marking with a token (idxq, d}) in the
output place pl,,, of the target p! of ¢. (If a such token does arrive in pl ., and ¢ never
fires, that token is stuck in pl,, by properties (2) and (4) of W;4.,, contradicting the
fairness of ¢.) As W ., satisfies (1), o [idxq cannot be fair, even though o is. This can

14

only be explained by a query transition g; in Wq..4, with similar properties as ¢: above.
Continuing in this vein, we find an infinite sequence of query transitions ¢- visited by
o, contradicting the acyclicality of the architecture.

3.3 Query nets

A query net is a properly terminating manifestly 1D-case independent workflow module
that never poses the same query twice. The latter can be achieved by a clause in the
transition guards of query transitions ¢- forbidding the transition to fire when the token
identifier contains the name ¢ of that query already. Thus a query net implements a
business rule that prevents getting stuck in an infinite loop. The requirement of proper
termination moreover implies that the workflow module should embody a backup plan
to deal with the situation that the interaction with other workflow modules would have
given rise to such a loop. This backup plan may involve a transition that can fire as
an alternative to ¢» when ¢, appears in the identifier of an token. Such an alternative
transition must have g,,. as one of its input places. An example of this is the transition
“admit car cannot be repaired” in Fig. 1. We can now state our main result.

Theorem 2. If all workflow modules in a modular workflow architecture are query nets,
then the architecture is properly terminating.

Proof. Exactly as for Theorem 1, but this time an infinite sequence of query transitions
q» without matching ¢,’s cannot be visited, because there are only finitely many queries
in the architecture, and no query can occur twice in the sequence.

In fact, Theorems 1 and 2 can be combined and strengthened by merely requiring that
all workflow modules in the modular workflow architecture are manifestly ID-case in-
dependent and properly terminating , and that in any cycle in the connectivity graph of
the architecture there is at least one query net.

The dealership’s workflow of Fig. 1 is, for adequate choices of the transition guards
A, @ query net. The manufacturer’s workflow on the other hand is not, as its query is
not equipped with a backup plan. Nevertheless, the cross-organizational workflow net
that combines both modules is, for adequate choices of the \;’s, properly terminating.

4 Conclusion and comparison with related work

Petri nets have been established as a powerful model for workflow applications. Van der
Aalst [1, 2] has proposed soundness criteria that guarantee that in a business application
modeled by a workflow net every case submitted to the workflow will be completed,
and with no references to it remaining in the net. In this paper we examined cross-
organizational business applications that are modeled by collections of communicating
workflow nets. The amalgamation of all these workflows into a single workflow net may
be too large for possibly automated formal analysis. Moreover, individual business part-
ners that operate one of the workflows in the collection may be reluctant to provide the
complete specification of their workflow, as result of which nobody can know the com-
plete specification of the amalgamated workflow. For this reason, we explored ways to

15

establish global termination properties for the amalgamated workflow by investigating
whether local termination properties hold for the individual workflows in the collection.
We proposed local properties that can be checked for individual workflow nets in the
collection (by the organizations that operate these individual workflows), without the
need for any knowledge of the other workflows in the collection. These local properties
guarantee global termination of the amalgamation.

Addressing the same issue, Kindler, Martens and Reisig [6] establish that global
termination of the amalgamated workflow is implied by local termination of the com-
ponent workflows, provided those components are locally correct with respect to a
fairness-closed specification. In fact, their definition of a fairness-closed specification
is carefully crafted in such a way that this result holds. In many realistic applications
global termination fails even when local termination of the component workflows holds
(see Section 1.4 in [6]). It turns out that in such cases there is no fairness-closed specifi-
cation for which the component workflows are locally correct. Thus these specifications
are essential. A problem is that fairness-closed specifications specify the interactions
between all workflow modules in the amalgamated workflow. Thus checking correct-
ness of a workflow module with respect to such a specification requires more than local
knowledge about that module.

In our approach there is no need for such fairness-closed specifications. Instead,
for each of the modules we check locally that a simple business rule is obeyed, that in
essence prohibits asking the same question twice. In this way we ensure global termi-
nation by checking local properties only.

References

1. WIL M. P. VAN DER AALST (1999): Interorganizational Workflows: An Approach Based on
Message Sequence Charts and Petri Nets. Systems Analysis—Modelling—Simulation 34(3),
pp. 335-367.

2. WIL M. P. VAN DER AALST & KEES M. VAN HEE (2002): Workflow Management: Models,
Methods, and Systems. MIT Press.

3. HARTMANN J. GENRICH (1987): Predicate/Transition nets. In Wilfried Brauer, Wolfgang
Reisig & Grzegorz Rozenberg, editors: Petri nets: Central Models and Their Properties, Ad-
vances in Petri nets 1986, Part I, LNCS 254, Springer, pp. 207-247.

4. K. GosTELLOW, V. CERF, G. ESTRIN & S. VOLANSKY (1972): Proper Termination of
Flow-of-control in Programs Involving Concurrent Processes. ACM Sigplan 7(*Y), pp. 15-27.

5. KURT JENSEN (1994): An Introduction to the Theoretical Aspects of Coloured Petri Nets.
In Jaco W. de Bakker, Willem-Paul de Roever & Grzegorz Rozenberg, editors: A Decade of
Concurrency, LNCS 803, Springer, pp. 230-272.

Available from http://www.daimi .au.dk/“kjensen/papers_books/rex.pdf.

6. EKKART KINDLER, AXEL MARTENS & WOLFGANG REISIG (2000): Inter-operability of
Workflow Applications: Local Criteria for Global Soundness. In Wil van der Aalst et al.,
editor: Business Process Management, LNCS 1806, Springer, pp. 235-253.

7. EINAR SMITH (1998): Principles of High-level Petri Nets. In Wolfgang Reisig & Grzegorz
Rozenberg, editors: Lectures on Petri nets I: Basic models, Advances in Petri nets, LNCS
1491, Springer, pp. 174-210.

8. WORKFLOW MANAGEMENT COALITION (1995): The Workflow Reference Model. Available
from http://www.wfmc.org/.

16

