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Abstract

Orthocurrence or tensor product A ® B of systems
A and B can be understood symmetrically as an in-
teraction operator expressing a form of conjunction
of state predicates, or asymmetrically as one of two
information channels: either A—B* as a system con-
sisting of A observing states of B (equivalently, con-
veying information about the states of B to A), or
B—oA* for the same thing in the other direction. We
show how the notion of Chu space or couple arises as
a natural corollary of this point of view. We conclude
with a history of orthocurrence.

This paper is intended to be read in conjunction
with the paper by R. Rodriguez and F. Anger in
this workshop [RAO01]. The focus of the paper is on
the intuition underlying, and history of, orthocur-
rence rather than on its more technically detailed
aspects. For more formal definitions the impatient
reader might prefer [Pra99]. One goal here is to per-
suade the reader that couples themselves, as well as
their orthocurrence defined as tensor product, are not
just artificial constructs but natural consequences of
intuitively plausible aspects of interaction and obser-
vation.

1 Introduction

If two people pass in the street with no permanent
after-effects attributable to that passage, one could
say that they did not interact significantly, or that
neither observed the other. The former seems to ad-
dress the physical aspects of their passing (one imag-
ines some sort of perturbation of the state of each

party induced by the other) while the latter sounds
more psychological or information-theoretic.

To one trained in physics, physical interaction
tends to be symmetric, as with Newton’s law of mo-
tion that every action has an equal and opposite re-
action. Observing on the other hand, certainly to one
trained in philosophy or logic, seems less symmetric,
not least for covert observation.

A viewpoint we have gradually grown into over two
decades (recounted in the history section below) is
that interaction and observation can be seen as two
sides of the same coin via the well-known basic iso-
morphism

A—o(B—o(C) = (A® B)—oC,

referred to in computer science circles as currying.

Here A ® B denotes a system of two interacting
systems A and B called their orthocurrence, whose
size is the product of the sizes of A and B. More
precisely, we understand the “stuff” of A to be a set
|A| whose elements are the points of A. As part of
the definition of A ® B we have |A ® B| = |A| x |B|.
Orthocurrence is moreover symmetric, as reflected in
the isomorphism

AR B=B®A.

The construct A—oB on the other hand denotes a
system consisting of the possible outcomes of system
A observing system B. When A is a simple system
in the sense of having just one vantage point with a
clear view of B, A—oB is isomorphic to B. When A is
more complex, the appearance of B from the various
vantage points of A is correspondingly more complex.



For example when A consists of two independent sim-
ple observers, A—oB is isomorphic to the system B2,
namely B as viewed from two independent vantage
points. We denote the As in these two examples as
respectively 1 and 2 (= 1+ 1); thus 1-oB = B and
2-0B =~ B2,

What A sees on any given occasion from point a
of A is a point b of B. The system A—oB as a whole
then consists of the possible views of B. Such a view
constitutes a variable point of B with |A| as its do-
main of variation, i.e. a function f : |A| — |B|. Each
observation of B by A yields one such function spec-
ifying what A saw collectively at that observation.
Although a € A and f(a) € B are formally speaking
both points here, we tend to think of the former as a
vantage point and the latter as an observed value.

Note that this is a distributed notion of observa-
tion: in a single observation B may look different
from different vantage points of A. Furthermore from
a fixed vantage point different observations may yield
different values of B.

2 States

The basic isomorphism admits of various insights.
Let us begin by taking A and B to be two “systems
of interest” and C' to be merely a certain ambient en-
vironment, denoted 1. Then A—o_l is that environ-
ment as seen from A. This makes A—o(B—o1) that
environment as seen from B as seen from A. The ba-
sic isomorphism then tells us that this is isomorphic
to (A ® B)—ol, namely the environment seen from
the system A ® B consisting of A interacting with B.

Thinking of the environment as a kind of mirror
reflecting whoever looks into it, we abbreviate A—o_L
to AL, called the perp operator. The previous iso-
morphism then becomes

A—oB* ~ (A® B)*.

AL has the same form as the intuitionistic logic ab-
breviation -A for A — 0, namely intuitionistic nega-
tion. However A is not a negated proposition per se
but rather a system consisting of a system observing
its environment.

For larger A observing with unclouded vision one
would expect AL to be also larger, in fact exponen-
tially so as a function of the size of A. For example
if 1 has 2 points (the smallest environment with dis-
tinguishable features, call them 0 and 1) and A has
n independent vantage points from each of which ei-
ther value of the environment may be seen, then an
observation by A of its environment has 2" possible
outcomes.

If however any vantage point a of A is “stuck at”
say 0, meaning that a never sees 1, or if some a is not
independent of A’s other points, meaning that the set
of possible views of the environment from the other
points depends nontrivially on what the view from a
turned out to be, then we may think of A’s vision as
being clouded or reduced. The fewer combinations
A can collectively resolve, the less perfect its vision.
Total blindness is the case when A’ has only one
point.

We thus have two complementary aspects of a sys-
tem A, size and perspicacity, measuring respectively
the stuff and vision of A. We have already formalized
stuff as a set of points. We now formalize vision as
the set of points of AL, called the states of A, forming
aset X. A state z € X determines one point of | for
each point of A, making it a function z : |A| — |L].

So what are the states of A', i.e. the points of
A+L? These exist because we have allowed observa-
tion of any system B by any system A to form a sys-
tem A—oB, forcing the system (A—ol)—ol to exist,
and we have assumed that all systems have points.

Now |A++| must consist of certain functions g :
X — |L|. What could such a function g be? If g is
given z : |A| — |L| and is then asked to produce a
point of L in a reasonable way, what can it do?

While there are a great many possibilities here,
hardly any admit of a uniform definition. One plau-
sible choice would be to allow all functions. The set
of states of A+ then becomes 2%, the power set of
its set of points. It should now be clear that for sys-
tems of the form AL, the perp operator amounts to
the power set operator. Those systems would turn
out, were we to pursue the sequel’s line of reasoning
for this choice, to be essentially sets transforming via
functions, i.e. the category Set.

Another uniform choice is all constant functions.



In this case the environment would look the same
throughout A=+, effectively giving AL the observa-
tional power of a system with only one point.

We shall instead take what is pretty much the only
reasonable choice left, namely those functions that
obtain the required value of L by applying their argu-
ment to some a € A, i.e. those functions g satisfying
Ja € |AVx € |At|.g(z) = z(a).

When there exist two points a1, as of A from which
the environment always looks the same, i.e. for which
z(a1) = x(az) for all states x of A, it follows that
Az.z(a1) = Ax.z(az), resulting in the identification
of those two states of AL as defined here. When con-
versely every pair of points of A is separated by some
state x we say that A is separable. In this situation,
each point of A is representable faithfully (meaning
without confusion) as the function A\z.xz(a). In this
paper, as for [RA01], we shall assume separability.

We may now calculate A++. Points and states
are interchanged a second time. State A\z.z(a) be-
comes a point, from which we can recover a thanks
to separability. Point z : |A| — |L| turns back into
state Aa.((Az.z(a))(z)), which we can S-reduce to
Aa.z(a) and then n-reduce to x to get back to where
we started.

Thus we have

At = A

That is, the operator * is an involution. Moreover
it is identically so rather than merely up to isomor-
phism, as no information at all need be lost at each
transposition.

We observed earlier that 1-oA = A. The case
A = 1 tells us that 1+ = 1. Hence Lt 221, ie. L
has just one state, making it totally blind. So when
the environment observes itself from any given point
of itself, all it can see every time is that point.

Returning to the basic (currying) isomorphism,
with C = L, the left hand side is A—oB+ while the
right is (A ® B)*. By substituting Bt for B and
reducing B+ to B, we obtain A—-B = (A ® B+),.
Alternatively, by applying perp to both sides, we ob-
tain A ® B = (A—oB+)+. This demonstrates that
either of interaction and observation can be defined
in terms of the other: they are just (quite literally)
two sides of the same system (provided we perp B

when changing sides).

Via the symmetry isomorphism A @ B =2 B ® A,
we also obtain A ® B = (B—oA~+)+, which we have
already seen to be isomorphic to (A—oB+)t. So
A—oBt = B—oA", and therefore (substituting B+
for B again) A—oB = B+ —oA*t.

The basic isomorphism also immediately yields as-
sociativity of interaction (up to isomorphism). Sim-
ply substitute C+ for C, replace all instances of
A—oB by (A® B*)*, and cancel all double perps.

At this point the reader should review the forego-
ing development to assess the extent to which rabbits
were pulled out of hats in this theory of interaction
and observation. We started with the currying iso-
morphism as a plausible relationship between these
two notions. We postulated a distinguished system
constituting the environment. We assumed that sys-
tems were distributed in the sense of having multiple
vantage points, which did double duty as observed
values, thereby allowing us to distinguish size |A|
from vision |A+|. We did make a choice for the states
of |At|, whose effect was to satisfy At+ = A. Every-
thing else in the development was completely forced.

3 Couples

We have now essentially arrived at the notion of
Chu space or couple! almost entirely from reasonable
views on the nature of interaction and observation.
We may define a couple as a set A of points and a
set X of states. In the above a state is a function
x:A— ¥ (or K, or S [RAO1]). This determines
a function or matrix v : A x X — X definable as
r(a,xz) = x(a). We then arrive at a more pleasingly
symmetric definition of a couple as a matrix (4, r, X).
Here A and X are two sets given a priori with no
structure, and r is a matrix which confers structure
simultaneously on both A and X.

The one restriction this approach induces is that
no columns are repeated, in which case the couple is
called extensional (since we were viewing states ex-
tensionally as functions). To support perp we also
require that no rows be repeated, calling the couple

1A term we are currently experimenting with as synony-
mous with but shorter than Chu space.



separable in that case. The conjunction of “exten-
sional” and “separable” is “biextensional.”

We shall call a morphism of couples a continuous
function. It would raise no eyebrows at this point
were we to simply give the definition of continuity for
f: A — B, one statement of which is that the inverse
image of every state y : B — | of B, defined as yo f :
A — 1, is a state of A. However even continuity
can be derived from reasonable requirements about
interaction and observation rather than by fiat, as
follows.

A continuous map is naturally enough a point of
A—oB. This makes it also a state of A ® B+, and it
is from the underlying intuition of interaction rather
than observation that we shall extract the definition
of a map.

Now the stuff of A ® B is the rectangle |A| x |B|,
whose rows are indexed by |A| and columns by |B).
A state of A ® B is a function from |A| x |B| to
Y (= |L]). We can think of this state as a solved
crossword puzzle [Pra00], one filled in with letters
from the alphabet ¥ (whence the choice of symbol).

From the common isomorphism of (A ® B)*,
A—oBt and B—oA"', a state of A® B can be under-
stand as a point of either A—oB* or B—oA*'. The
meaning of the former reveals it to be a variable state
of B, varying over A. From each vantage point a of
A we observe not a point of B as with A—oB but
rather a state of B. Since observation of B from
any vantage point should never reveal B to be in any
unlicensed state, we demand that each Across word
in the puzzle solution be (when transposed) a col-
umn of B. The corresponding argument for B—o A+
demands that each Down word in the solution be a
column of A. From this perspective the states of
A and B provided dictionaries for respectively the
Down and Across words allowed in the puzzle.

The states of A ® B are then all crossword puzzle
solutions meeting the above constraints, i.e. whose
horizontal words are (transposed) states (columns) of
B and whose vertical words are states (columns) of A.
The conjunction italicized here is the one promised
in the abstract: if we view the criteria for selecting
states in each of A and B as predicates on ¥4 and
.8 respectively, then this combination of conditions
on the permitted crossword solutions can be viewed

as a form of conjunction of those predicates.

We have now derived, from what is an almost
purely intuitive understanding of interaction and ob-
servation, everything needed for the definition of or-
thocurrence on couples as found in [RAO1].

The one thing remaining is to complete the
promised specification of the points of A—oB. But
these are simply the states of A® B+. The constraint
that such a state draw its rows from columns of B+
becomes that the rows must be rows of B. Since rows
are not repeated, this uniquely determines a function
f:|Al = |B].

The dual constraint, that the columns of the state
all be columns of A, uniquely determines a function
g:Y — X from the set Y of states of B to the set X
of states of A. The fact that both functions are deter-
mined by the same state immediately induces the ad-
jointness condition s(f(a),y) = r(a,g(y)), since the
two sides have in common the entry on the a-th row
and y-th column of the state of A@ B+. The adjoint-
ness condition can also be understood as the condi-
tion for g to be the inverse image function associated
to f, justifying “continuous function” as the term for
a morphism of couples. The actual continuous func-
tion is f, with g serving as witness to its continuity.
When A is extensional, f determines g; when not, it
is customary to give g explicitly in addition to f.

We leave to the reader to show that, among ev-
ery class of functions between systems, the class of
continuous functions is the least one closed under
composition that makes all system states continuous.
(Bear in mind that L is a system.) An advantage of
this characterization is its elegance, a drawback is its
third-order quantification over classes of functions.

The couple |A—oB| can now be described as a ma-
trix of size |A—oB| x (JA| x |B*|). Regrouping these
terms as (|A| x |A—oB|) x | B+|, and appealing to the
separability of B to replace each column of length
|B1| in this matrix by a single point of B, we arrive
at an |A| x |A—oB| matrix of points of B. This for-
malizes the remark in the closing paragraph of the
introduction, that observation A—oB is a distributed
notion for which the observed point of B depends
on both the vantage point in A and the particular
instance of observation.



4 Examples

The purpose of this paper was to provide back-
ground for other papers on orthocurrence, such as
[Pra86, CCMP91, Pra00, RA01], which contain many
good examples. The latter two papers include various
cases of orthocurrence of intervals producing Allen-
type temporal relations.

There is however one example not treated else-
where that is worth drawing attention to, that of
conflict in orthocurrence. Consider two systems each
with two points a and b. Taking K = 2, allow all
states for each of those systems save that in which
both points are 1. (So each system has three states
conveniently describable as 00, 01, and 10.) This is
known in the concurrency literature as conflict: ei-
ther of a or b can enter state 1 but not both.

A check of the 2 x 2 crossword puzzles that disallow
11 as either a row or a column turns up 7 solutions:
one with all zeroes, four with a single 1, and two
checkerboards. What does this mean?

Consider this applied to trains and stations [GP93],
with 1 indicating at or = and 0 not-at or #, and rail-
road track as the common universe of trains and sta-
tions. Although neither two trains nor two stations
can occupy the same section of track at the same
time, a train and a station can. The seven solutions
correspond to both trains being out of both stations
(a single case), one train being in either station (four
cases), and both trains in both stations (two cases).

One important point about this example is that it
gives a simple case where tensor product is clearly
different from direct product. With trains ¢, and
stations s,s’, (¢,s) in the direct product conflicts
not only with (¢,s) and (¢,s) (as it does for ten-
sor product) but a fortiori with (¢, s’) (since such
relationships must be respected at every coordinate
of a direct product). It is intuitively clear however
that there is no conflict in practice between (¢, s) and
(t',s"), since the trains are out of each other’s way
when they are at respective stations that are out of
each other’s way.

This is surely the simplest conceivable mathemat-
ical example (other than those involving empty sets)
pointing up in an intuitively clear way the difference
between direct product and tensor product. Since

direct product and tensor product coincide for both
sets and posets, one cannot look there for differences.
Furthermore when all one’s practical experience of or-
thocurrence is restricted to posets (as it was when we
first started considering it), it is all too easy to jump
to the conclusion that orthocurrence should continue
to have the characteristics of direct product in other
situations, e.g. event structures [NPW81], which
combine order and conflict in the one structure. One
then mistakenly believes that orthocurrence gives the
wrong results for those situations, when in fact the
tensor product definition yields exactly the results
called for by intuition, and moreover for intuitively
satisfying reasons based on a straightforward under-
standing of interaction and observation.

Now for an example from linear algebra. As noted
by Lafont and Streicher [LS91], the vector spaces
over a field k£ may be represented as couples whose
points are the points of the space, whose states are
its functionals (linear transformations to the one-
dimensional space), and whose matrix gives the re-
sult of applying a functional to a point (so K is just
the underlying set of the field k). The continuous
functions between such representing couples are ex-
actly the linear transformations between the vector
spaces represented by those couples.

Lafont and Streicher also remark that tensor prod-
uct UV of vector spaces is different from that of cou-
ples as applied to the above representatives. While
the states are the same for both, vector space tensor
product yields more points than couple tensor prod-
uct. The problem is that while the states of both are
closed under linear combinations, as are the points
of the vector space tensor product, the points of the
couple tensor product are not.

Nevertheless Halmos’ following elegant definition
of tensor product of vector spaces [Hal74, §25] makes
a close connection with the couple definition. “The
tensor product U ® V of two finite-dimensional vector
spaces U and V (over the same field) is the dual of
the vector space of all bilinear forms on U ¢ V.”

Note that U@V (direct sum of vector spaces) is also
the direct product U x V (coproducts and products
of vector spaces coincide as so-called biproducts). A
bilinear form on & & V thus amounts to a matrix in-
dexed by the points of the two spaces. Bilinearity



means that every row is a functional on V and every
column a functional on Y. But the functionals on a
vector space are the columns of the Lafont-Streicher
representation of that space. So the bilinear forms
Halmos is using are precisely those crossword solu-
tions on |U| x |V| that restrict themselves to linear
words, both across and down.

At this point we now have the couple tensor prod-
uct. Halmos now passes to the vector space ten-
sor product by observing that the set of states are
those of Y ® V, and that they form the vector space
(U®RV)*, being closed under linear combinations. All
that remains for him therefore is to take the function-
als on (U ® V)*, which then yield the double dual
UV =2UeV.

The last step of Halmos’ trick is in effect a slick
way of closing the points of the couple tensor prod-
uct under linear combinations. We thus have an em-
bedding of the couple tensor product in the vector
space tensor product, whose adjoint (reverse) map is
the identity function. This embedding is an instance
of a so-called tensorial strength, having the form
FU)® F(V) — F(U®YV) where F : Vct, — Chug
is the (full and faithful) Lafont-Streicher representa-
tion of vector spaces by couples.

5 History

Orthocurrence is an operation of process algebra sib-
ling to concurrence. The essential difference between
the two is that whereas concurrence combines events
additively, orthocurrence combines them multiplica-
tively. Both operations can manufacture concurrent
behavior from sequential, witness the product of 2-
chains in the case of orthocurrence, the topic of this
paper.

Mathematically orthocurrence is tensor product.
The principal originators of tensor algebra were Gre-
gorio Ricci-Curbastro and his student Tullio Levi-
Civita [RLCO00], based on Riemann’s general metric
and Christoffel’s curvature tensor, the decisive appli-
cation being due to Einstein.

A broader notion of tensor product evolved within
category theory, where it is allowed to be any weakly
associative binary functor. But in practice tensor

product is rarely referred to as such unless it has a
right adjoint in at least one of its arguments. The first
comprehensive treatment of closed categories from
this perspective is that of Eilenberg and Kelly [EK65],
which studies internal homs both with and without
tensor product (doing without being something of a
tour de force).

The significance of “closed” here, important in un-
derstanding the difference between A x B and A® B,
is that one need not leave the category in order to
have a notion of function space. The elementary no-
tion of a category C' takes the space C(z,y) of mor-
phisms from x to y to be a set, the so-called homset.
The associated homfunctor Hom¢e : C°P x C' — Set
is defined by C(w EN 2,y z): Cla,y) — C(w,z2),
mapping x 5, y to w L z > Y LA z (note that
whereas this grows the right end of g to the right, a
covariant action, it grows the left end to the left, a
contravariant action, whence C°P rather than merely
(). However in category theory sets do not play the
fundamental role asssigned them in the traditional
development of mathematics, and an internal hom-
functor Home : C°P x C' — C permits the morphisms
from x to y to form an object of C rather than a set.

Also important is the notion of cartesian closed.
This refers to the product to which the internal hom
is right adjoint, which is “cartesian” when it is or-
dinary product, i.e. has projections x x y — =,
XYy — Y.

In the context of process algebra as one way of
formalizing reasoning about concurrency, we arrived
at the orthocurrence connective while looking for a
more algebraic formalization of our predicate calcu-
lus solution to Problem 1, Channel with Disconnect,
in [Pra85b]. As such the operator first appeared in
[Pra85a], and in more detail in [Pra86], where we used
it to construct a channel as the orthocurrence of a se-
quence of messages with a sequence of points through
which the messages flow (two points in the simple
end-to-end case). At that time we were working with
a notion of process defined as a set of pomsets (par-
tially ordered multisets or labeled partial orders), for
which ordinary product A x B seemed the appropri-
ate mathematical formalization.

We later tried extending the partial order notion



of time to other metrics satisfying a suitable general-
ization of the triangle inequality. Our students Ross
Casley and Roger Crew pointed out that in some of
these other metrics, orthocurrence no longer had sen-
sible projections and hence could not be direct prod-
uct A x B. However it still retained the properties
of tensor product A ® B, indicating that the passage
to other metrics involving passing from the cartesian
closed category of posets to closed but not cartesian
closed categories of other forms of generalized met-
ric space. We interpreted orthocurrence as flow (of
systems past or through each other) and its right
adjoint A — B as observation. These ideas were
sketched at a CTCS conference in 1989 and spelled
out in [CCMP91].

During the same period Jean-Yves Girard was de-
veloping the notion of linear logic [Gir87] as a formal-
ization of structural aspects of proof theory. However
despite attending several talks on linear logic start-
ing in 1986, it was not until 1989 that we started to
see similarities. The two obvious connections were
the additive-multiplicative distinction (concurrence
vs. orthocurrence, plus vs. tensor, a distinction go-
ing as far back as C.S. Peirce’s relative sum a + b vs.
relative product a;b [Pei33]), and the product’s right
adjoint. Girard’s influence is felt in our replacement
of “flow” by “interaction” in [Pra92c, Pra92a], which
seemed at least as suggestive to us of the intuition
underlying orthocurrence.

The main difference seemed to be the absence of
duality from our process algebra, which seemed more
like intuitionistic than classical linear logic. But dur-
ing 1990-1991 we realized that the absence of duality
was a result more of our myopic perception of the
limits of the notion of behavior than an intrinsic as-
pect of process algebra, and that a broader notion of
process admitted the same kind of dualization as in
classical linear logic [Pra91, Pra92c, Pra92b]. Shortly
thereafter, with our Ph.D. student Vineet Gupta, we
found [GP93] that couples yielded a delightfully sim-
ple yet complete model of what we had been working
towards.

Couples go back further than linear logic. In their
categorical form they were first proposed by Barr
[Bar79, Bar91], and in the set theoretic form fol-
lowed here by Lafont and Streicher [LS91]. Barr’s

inspiration for the notion came in turn from work
in so-called soft analysis arising out of an idea in
Mackey’s thesis [Mac45]. Barr defined general V-
enriched couples, whose carrier, cocarrier, and al-
phabet k are objects of a symmetric monoidal closed
category V, forming the category Chu(V,k) stud-
ied by Barr’s student P. Chu [Bar79, appendix]. La-
font and Streicher treated ordinary couples, the case
V = Set, i.e. the points form simply a set and like-
wise the states, under the rubric of games. More
recently Barwise and Seligman [BS97] have treated
ordinary couples for £ = 2 under the name of classi-
fications, with tokens, types, and infomorphisms for
respectively points, states, and continuous functions.

In 1995, stimulated by several discussions of cou-
ples at the WoLLiC conference in Recife, we began
to examine whether the so-called proof nets of lin-
ear logic could be represented fully and faithfully
as dinatural or logical transformations of functors
in Chu. While we could find dinatural counterex-
amples, to date we have found no logical counterex-
amples. Moreover in 1998 with Devarajan, Hughes,
and Plotkin we established the result for MLL, the
multiplicative fragment of linear logic limited to the
connectives A ® B and A+ [DHPP99]. Our research
associate Dominic Hughes has since been investigat-
ing MALL, MLL plus the additive connective A @ B,
which has turned out to be a far harder problem.
A long-running computer search of hundreds of mil-
lions of MALL proof structures has so far failed to
produce a single counterexample, while however pro-
viding useful insight into the question.

Both linear logic and couples are very natural
and appealing frameworks for their respective arenas
of logic and mathematics. The more precise their
match-up therefore, the greater the synergetic boost
to the significance of both frameworks. Our fingers
are tightly crossed for extending the perfection of the
MLL match-up at least to MALL.
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