A Decidable Mu-Calculus: Preliminary Report @
V.R. Pratt
M.LT. and Stanford

This research was supported by NSF grant no. MCS-
TRO4338.

Abstract

We describe a mu-calculus which amounts to modal logic
plus a minimization operator, and show that its
satisfiability problem is decidable in exponential Lime.
This result subsumes corresponding results for
propositional dynamic logic with test and converse, thus
supplying a better setting for those results. Tt also
encompasses similar results for a logic of [lowgraphs. This
work provides an intimate link between PDL. as defined by
the Segerberg axioms and the mu-caleuli of de Bakker and
Park.

Motivation

The notion of minimization is found both in recursive
function theory and program semantics, supplying them

pratt
Note
Proc. 22nd IEEE Conference on
Foundations of Computer Science
pp. 421-427, October, 1981.

pratt
Note
Marked set by pratt

with an attractive algebraic alternative to iteration and
recursion respectively. In the former it is used to specify
the least root of a function, that is, the least areument for
which the function vanishes. In the latter it is used to
specify the least fixpoint of a function defined on a lattice,
formalizing the notion of a recursively defined function.

Here we develop a logic of iterative programs in which
minimization, of the least-root rather than least-fixpoint
type, plays a central role. The language of the logic will be
more expressive than that of propositional dynamic logic
(PDL), and more succinct by up to an exponential even
for those constructs expressible in PDL, yet will have a
satisfiability problem that is no more complex than that of
PDL. Moreover it will have fewer constructs than PDL:
specifically, all five program constructs of PDL (test,
union, sequence, star, and converse) are eliminated, with
their place being taken by a single construct, minimization.
Except for this change, the syntax and semantics of the
mu-calculus we describe here is identical to that of
propositional dynamic logic as defined by the Segerberg
axioms [17], whose mathematical content is studied in [15].

The use of roots rather than fixpoints is so that converse
can be treated along with the other constructs. There does
not seem to be a way of capturing converse using least
fixpoints. We accomplish this absorption of converse only
at the price of complicating a step of the algorithm; using

fixpoints and keeping converse as an explicit operation is
more easily treated.

Our treatment will be algebraic, following [15] more
closely than [7] since the notion of continuity central to the
latter is absent from the former and the present paper.
The advantage of an algebraic treatment is that the results
apply equally whether programs are considered to be
binary relations on states (Kripke models [13]), languages
(execution sequence models [8]), sets of state sequences
(trajectory models [6]), sets of sequences of state transitions
(Abrahamson semantics for parallel programs [1]), Boolean
functions (predicate transformers [3]), or anything else
satisfying the Segerberg axioms. This point is made in
more technical detail in [14].

These applications subsume the objectives of such program
logics as Pnueli’s temporal logic (TL) [12], whose primary
application is to reasoning about ongoing processes, in
contrast to the non-process-oriented Kripke structure
model. Propositional dynamic logic as defined by the
Segerberg axioms is independent of whether Kripke
semantics is intended, and is at least as useful for
reasoning about parallel processes as temporal logic, in fact
more so since it has the capability of referring to several
programs at once, which simplifies reasoning about
programs that are structured algebraically. Yet despite its
greater expressive power, the mu-calculus of this paper, in

reducing five program constructs to a single construct,
supplies a language that has no more construcls than TL.
In place of the TL primitives X (single-step) and F
(essentially X*), our mu-caleulus version of PDL has the
primitives <& and p.

Our original motivation for developing the present logic
came from a problem to do with flowcharts: what is the
complexity of satisfiability for the flowchart version of
PDL? This problem was felt by some PDL workers to be
inherently of double exponential complexity. We have
recently shown [16] that its complexity is a single
exponential; the complexity result of this paper is a further
strengthening of this result in that our mu-calculus is at
least as expressive and succinct as flowchart logic vet has a
one-exponential decision method.

An a posteriori reason for our interest in this mu-calculus
1s the link it makes between the work of de Bakker and de
Roever [2] and Park [10,11] on mu-calculi, and the work
on dynamic logic, The link could not be made so
mntimately without the results of [15] characterizing the
exact strength of the Segerberg axioms in terms of
minimality, No attempt at determining the complexity of
mu-calculi has been made hitherto, so this paper can be
viewed as the transfer of techniques developed within one
framework to another more general framework. One
could view the role of PDL in this transfer as a mental
stepping stone to a result that might have been difficult to
even conjecture at ab initio.

Another interesting aspect of our mu-calculus is that the
finite-model or filtration theorem, that if a term has a
model it has a finite model, generalizes from PDL to the

mu-calculus. Yet despite this being a more general result,
the setting for its proof turns out to be more natural than
for PDL, leading to a substantial simplification of the
proof, including the elimination of Fischer-Ladner closure.

Syntax

The language consists of Boolean terms, that is, terms
intended to denote elements of a Boolean algebra. A term
is either a Boolean variable (one of P,QR,..), a Boolean
combination of terms (cither a negation ~p or a disjunction
pV Q). the application Ap of a function symbol A to a term
p (corresponding to the PDL diamond construct <A>p
where A is atomic), or the minimization pQ.7(Q) where Q
= (Q1....Qp) and 7(Q), the minuend (so to speak), is a
Boolean term possibly containing free occurrences of the
Boolean variables Qy.....Q,. We impose on a minuend the
two conditions, defined below, that 7(1) — 0 (expressing
that 7(Q) simplifies syntactically to 0), and that like-signed
occurrences of the Qs of a given minimization not
combine conjunctively in its minuend. (The notions of
free and bound occurrences are as for guantified variables
in predicate calculus; thus pwQ.7(Q) contains no free
occurrences of any Qj, these Q;'s occurring free in 7(Q) all
being bound in puQ.7(Q) by the puQ.)

We write (q) — 0, where q is an n-tuple of terms, to

indicate that r(q) simplifies to 0 under repeated
application of the following simplification rules,

~1, pAO, 0Ap, 0V0, A0 — 0
pVO0, 0Vp, pAl, 1Ap = p
~0, pV1, 1Vp, 1K1 — 1
pRA(R) — 0 when #7(0) — 0

We require 7(1) — 0 to ensure that the set of roots of
7(Q) is nonempty. This condition is straightforward to
test, at least in comparison to testing that t(1) is
semantically equivalent to 0,

Before defining conjunctive combination it will be
convenient to adopt a normal form in which negations are
"pushed down" to the variables. This is done by rewriting
~~p as p, ~(pVa) as ~pA~q, ~Ap as [A]~pn, and
~uR.7(R) as vR.~7(R), these last three constructs being
called respectively conjunction, box, and maximization. A
term obtained by rewriting all possible subterms according
to these rules will be said to be in monotonic normal form.
We assume this normal form henceforth. Tt may be shown
that all six operators, disjunction, conjunction, diamond,
box, minimization, and maximization, aré monotonic.

Two terms are said to combine conjunctively when they
occur within distinet arguments of a conjunction. A term

is considered to combine conjunctively with itself when it
appears in the argument of either a box or a maximization.
Examples of conjunctive combinations of likesigned
variables are QqAQ,, ~Q1A~Qs, [A]~Q, and »Q.Q, but
not Qi A~Qy, ~Q1V~Qy, A~Q, or pQ.Q. It follows that
box and maximization terms occuring within a minuend
7(Q) must be independent of Q. This conjunctive
combining condition is also easily checked, and as will be
seen ensures that the set of roots of 7(Q) forms a lattice (is
closed under conjunction and disjunction).

These two restrictions on minimizations are the
appropriate analogues for a least-root calculus of the
restrictions of syntactic monotonicity and syntactic
continuity in Park’s least-fixpoint calculus [10,11].
Minimization and the nonmonotonic nature of Boolean
algebras do not mix well without such syntactic assistance.

We let By denote the set of Boolean variables, F the set of
function symbols, and B(By, F), or just B, the set of all

Boolean terms over these variables and function symbols.

We abbreviate pA~q to p-g and pp to 0.

Semantics

A model is a triple (B,I',h) where B is a Boolean algebra, F
is a subsct of the strict (AQ = 0) finitely additive (A(pV q)
= ApVAq) functions on B, and h:BUF—=BUF is a
semantic function (hence of homomorphic character)
mapping terms to elements of B and function symbols to
clements of F. h interprets Boolean variables arbitrarily,
logical connectives in the standard way, and Ap as the
result of applying h(A) to h(p). The value of h(pQ.7(Q))
is the first coordinate, i.e. g, of the least q in B® for which
th_q{T(Q}} = 0, where hQ{_q:BUF—}BUF satisfies
]IQ.;_Q(Q) = q and otherwise agrees with h. (The first
coordinate of q plays a role analogous to that of the start
state of a finite state automaton, as will be seen later.)

We say that the term p has a model or is satisfiable when
for some model (B,F,h), h(p) & 0. Such a model is called
a model of p.

Mu-Algebras

One often needs to determine the whole of a model
inductively starting from the values of the variables.
Minimization presents difficulties here. [t is indeed true
that there is at most one model having a given B and given
values for h at By and F. However such a model need not

exist, since the least root of 7(Q) need not exist (though
since (1) vanishes syntactically there must exist roots). A
miu-algebra is a pair (B,F) such that any mapping of By
into B and £ into I extends to an h such that (B,F.h) is a
model.

Theorem 1. Any [inite (B,F) is a mu-algebra.

Prool. Tt suffices to show that least roots always exist
when B is finite. Theorem 6, proved in the Appendix,
states that the set of roots of #(Q) forms a lattice. A finite
lattice always has a least element, the desired least root. §

Examples

For examples of constructs not involving p we refer the
reader to the PDL literature, e.g. [4]. Such terms as
pQ.OV~Q are not well formed since they violate the
condition v(1) = 0. Such terms as pQ.QAAQ are not
well formed since they contain conjunctive combinations.
The following identities hold.

pQo0 =0
pQQ =10
pQ.~Q = 1
pR(7(Rp) V 7(Rq)) = pRa(Rp) V pR.(R.q)

10

provided no Rj occurs in p or g

pQ.(PVER((QVAR)-R)-Q = pQ.(pVAQ)-Q
pQ.pA(pR.~QAA~R) = Ap

The last two formulas are the mu-calculus equivalents of
the (shorter in this case) PDL identities <A**>p = <(A®>p
and <A™ >p = <Adp.

Correspondence with PDL

There is a direct translation from PDL into the mu-
calculus. We denote by p’ the mu-calculus translation of
the PDL, formula p.

9 e s BQO....

(~p).(PVa) s = ~p’, pVa, .

(<A>p) = Ap’

(<alUb>p) = (Ka>p) V (p)

(<a;b>p) = (Ka>p)’

(<pT>q)’ = p'Aq’

(<a*>p) = pQ.((p'V(<a>Q))-Q)
where Q does not occur free in a or p

(<a>p) = pQ.(p'AKa>~Q))

where Q does not occur free in a or p

Note the doubling of p in the translation of <alUb>p,
This compounds to yield exponential growth: <alUb>@p

11

would translate to 20 disjunctions. An alternative
translation of <aUbd>p is pQR.((Ka>R)-Q)V((R)-
QV(p-R). This translation has the merit of not doubling
p and so replacing exponential growth by constant factor
growth. It also supplies an example of a multivariate
minimization. The translation is less obscure in the light
of the discussion on flowcharts below,

In [15] in effect we showed that the Segerberg axioms
exactly define the values of the PDL formulas on the left
to be equal to that of the mu-calculus terms on the right,
except for <a>p which at the time we could not
characterize. However the Parikh axioms p—[a]<a™>p and
p—[a[Ka>p [9] turn out to define the value of <a™>p to be
exactly that of the value shown on the right. (To see this,
observe that the first axiom says that <a™>p is a root of
pALa>~Q, while the second says that <a>p is less than
any other root Q since <a>p < <a>[ajQ < Q.) It follows
that these translations preserve the Segerberg semantics of
the PDL formulas shown on the left.

A corollary of this translation is:

Theorem 2. FEvery mu-algebra expands to a dynamic
algebra,

12

(The expansion is needed to supply F with the regular
operations U, :, *, 2, and ~. The content of the theorem is
that these operations are all definable in a mu-algebra.
They are not in general definable for arbitrary infinite

(B,F).)
We raise the converse of Theorem 2 as an open problem.

This semantic correspondence between Segerberg PDL
and the mu-calculus is particularly interesting in the light
of the question as to the right definition of the class of
dynamic algebras. The question is whether to use Kozen's
[7] or the author's [12] definition of the class of dynamic
algebras. Kozen's class imposes a continuity requirement.
In [12] we argued at length for the merits of avoiding
continuity, on the ground that much of the fundamental
theory of dynamic algebras could be developed without it.
The connection between the Segerberg semanties and mu-
caleuli, independent of continuity, adds further support to
our position.

Flowgraph Logic

Many regular sets can be represented exponentially more
compactly with finite state automata than regular
expressions [3a]. This casts doubts on the succinctness of
PDL, and leads one to explore notations in which large

13

regular expressions in PDL formulas are replaced by small
finite state automata, using some notation convenient for
representing graphs. A logic based on such a notation was
presented in [16]. We sketch here how our mu-calculus
can serve this function, with the same level of succinctness
as provided by graphs.

Let <a>p be a PDL formula in which a is a large regular
expression with a small equivalent nondeterministic finite
state automaton having s states (state 1 being the start
state), ¢ edges, and n final states. The approach is to
translate <a>p into the mu-calculus term

1Q1Q7.. Q.. E1 V...V EeVF1V..VF,; where the variable
Q; corresponds to the ith state, the disjunct F; to the ith

edge, and the disjunct F; to the ith final state, of the
automaton. For each edge labelled B from state i to state
j, there will be the disjunct BQj-Qi, while for each final
state Qp there will be the disjunct p-Qp

The disjuncts corresponding to final states can be collected
into the form p-(Q flz\...h{}_fn}. This avoids duplicating p

in the translation.
Consider for example an automaton with state set {1,2,3},

a ring of three edges 1—=2—3—1 labelled respectively
A.B,C, a fourth edge 3—2 labelled D, with start state 1

14

and final states 2 and 3. One close-to-minimal regular
expression for this is _

E = (A(BD)*BC)*A((BD)*U(BD)*B).

The translation of <E>P using this automaton is
1Q1QQ3.(AQ2Q)V(BQ3-Q)V(CQ|-Q3)V(DQyQ3)
V(P-(QaAQ3)).

The second translation we gave earlier for <alUbdp was
obtained in this way by starting with the obvious finite-
state automaton accepting alJb,

The above technique may be understood by thinking of
cach Q; as denoting the language accepted by the
automaton if the start state is taken to be state i. The
process of converting the finite state automaton to a mu-
calculus term is very similar to that of converting the
automaton to a Type 3 grammar. Read each edge-related
disjunct AQj-Qi as the production Q; — AQJ- and each
final-state-related disjunct p-Q; as the production Qi—p
(Where p is to be thought of as some sort of delimiter).
Vanishing of the disjunction is equivalent to vanishing of
all the disjuncts, which in turn is equivalent to reading the
arrows ol the grammar as language inclusions.

It is evident from the discussion in [3] that Hitchcock and
Park also had flowgraphs (or flowcharts) in mind as an
application for their mu-calculus,

15

The Finite Model Property
Theorem 3. If p has a model it has a finite model.

Proof. Let (BFh) be a model of p. Take B’ C B to be
the Boolean algebra generated by the image under h of the
subterms of p and F' C F to be the set of strict finitely
additive functions on B'. Take h'(P) = h(P) for each
Boolean variable in the language, and take W'(A) to be the
function that maps each p in B’ to A{q€B|q>h(A)p)}.
(The ">" here is that of B, and can be used because B' C
B. This also explains why h(A) can be applied to p.)

(B'F.I) is finite because p has only finitely many
sublerms and a finitely generated Boolean algebra is finite.
In fact n elements generate a Boolean algebra of

cardinality at most Ezn, giving us an upper bound on the
size of the model in terms of the number of subformulas,
and hence length, of p. Note that this bound corresponds
to a bound of 27 on the number of states of a Kripke
structure, cf. [4]. B’ corresponds to predicates on states, of
which there may be exponentially many in the number of
states.

Now extend h’ to the rest of B and F using the standard
interpretations for negation, disjunction, application, and
minimization. Minimization is always well defined since

16

B' is finite.

(B"I",) is a model, by construction. To verify that it is a
model of p it suffices to show that I’ agrees with h on the
subformulas of p, since h(p) = 0. We proceed inductively.

By construction W' agrees with h on Boolean variables,
Since B’ is a subalgebra of B, h’ agrees with h on all
Boolean combinations of terms on which h’ agrees with h,
'(Ap) = W(AW(p) = W(A()

= Aa€Bla>h(A)h(p)=h(Ap)} = h(Ap) since h(Ap) €
B. h(pQ.7(Q)) is a root of +(Q) in (B F.N) since
h(pQ.7(Q)) € B’ and by induction h’ agrees with h on 7,
whence W(pQ.r(Q) < h(pQ.7(Q)). For the other
direction we have that for any q in B’, h'Qi_q(vr(Q)) =
b« q(7(Q)) (argued below), whence any root in B® of
Q) is a root in B of 7(Q) and so h(pQ.7(Q)) <
W(pQ.7(Q)). Hence h' agrees with h on the subformulas
of p.

To verify that hiqeq(T(Q)) 2 hgeg(r(Q)), note that the
first (inductively speaking) parts of la‘Qt_q{-r{Q)} that can
disagree with hQ@.q(T{Q}) are applications. Negative
applications (boxes) cannot contain p-bound variables, so
only positive applications can disagree. The definition of
h'(A) then forces these positive applications to be larger in
h‘Qi_q(-r{Q)} than in IIQ - q(T{Q)). whence the former

17

must be larger than the latter, 8
Testing Satisfiability

The problem is to test whether a mu-calculus term is
satisfiable (is nonzero in some model). The method we
present here is derived from the method of [14] for PDL.,

Our algorithm constructs a single model (B,F.h) and tests
whether the input has value 0 in this model. B is a
quotient of the free Boolean algebra [reely generated by
the Boolean variables and applications of the input, F is a
subset of the strict finitely additive functions on B, and h
maps variables and applications to their image under the
quotient. The major part of the algorithm is the
calculation of the quotient, whose purpose is to ensure that

h(Ap) = h(A)k(p).
The steps of the algorithm are as follows.

1. Construct the atoms of the frec Boolean algebra B
freely generated by the Boolean variables and applications
occurring in the input.

2. Construct h fixing Boolean variables and applications
and mapping each function symbol A to the greatest
function on B satisfying h(A)h(p) < h(Ap) for every

18

application Ap occurring in the input. (It sufTices to
represent a strict finitely additive function in terms of its
action on atoms of B.) Take F to be h(F) where F is the
set of function symbols appearing in the input. To within
the quotient construction of step 3, B, F, and h are now all
determined.

3. For each application Ap in the input for which
h(A)h(p) < h(Ap) (a defeci), subtract h(Ap) - h(A)(p) from
all elements of B and correspondingly pointwise from
elements of F and from values of h. (This is the quotient
operation.) Repeat this operation until no further defects
remain, .

4. The input is 0 in all models just if it is zero in the
resulting model.

For step 3 it will be necessary to be able to calculate h on
Boolean combinations and minimizations. The operations
of B are available for the former. A simple method for
computing nQ.7(Q) is to form the intersection of all roots
of 7(Q). However there may be up to |B] such roots, so
even if the roots could be found easily this method would
require doubly exponential time. We need to be able to
find the least root without touching all the other roots.

When all negative p-variables have no application between

19

them and their binding p, pQ.r(Q) can be computed as
7(0) = Uj¢,,7'(0). This computation must converge
since B is finite. Moreover the longest chain in B is of
length 21, so @ may be reduced to 20,

When negative p-variables appear below applications
and/or minimizations our treatment is considerably more
complex; we defer its account to a longer version of this
paper.

The existence of this algorithm gives:

Theorem 4. The mu-caleulus is decidable in deterministic
exponential time.

To within a polynomial, no stronger result is possible due
to the reduction of PDL to the mu-calculus, and the
deterministic exponential lower bound for PDL
satisfiability proved in [4]. (We count symbols rather than
bits in our estimates, converting the /198 1 jower bound
of [4] to a d™ lower bound)

Open Problems

L. Is the equational theory of this mu-calculus finitely
axiomatizable? That is, is there a finite subset of the
equational theory from which the rest of the theory follows

20

by equational logic?

2. Is every dynamic algebra with test and converse a mu-
algebra? (We have already shown the converse. Moreover
we have answered this positively in the finite case, since
every finite Boolean algebra and nonempty set of strict
finitely additive functions is both a dynamic algebra and a
mu-algebra,)

3. Can converse be represented if least fixpoints are used
in place of least roots?

Appendix: A Fundamental Property of Roots

We show in this appendix that the set of roots of a
minuend +(Q) forms a lattice, that is, is closed under
conjunction and disjunction. Closure under conjunction is
used 1o establish existence of least roots in finite mu-
algebras (Theorem 1). Closure under disjunction is used
in the proof (omitted from this paper) of a lemma, cited as
"lemma *" below, that in effect says that any operation on
programs implicitly definable in the mu-calculus has for its
range finitely additive functions. (For example, since *
and ~ are implicitly definable, a*(pVq) = a*p V a*q and
a(pVq) = ap V aq)

21

We approach this thieorem by developing properties of the
monotonic mu-calculus, defined to have disjunction,
diamond, minimization, and their respective duals, but not
negation.

Let a(p,g) be a function mapping a pair of n-tuples of
terms to a term, all terms being in the monotonic mu-
calculus. We say that o is barren when its subterms are
barren, and

(i) il it is of the form o1(P.OAo(p.4q) then not both

o1(p.g) and o(p.q) may depend on p, nor may both
depend on q;

(i) if it is of one of the forms Oeq(p.q) or »Q.oy(p,q)
then it must be independent of both p and q.

(The motivation for this property is that +(Q) has no
conjunctive combinations just when it is of the form
o(Q.~Q) for some barren o))

Lemma 5. If o is bamren then o(pVarAs) <
a(pr)Volqs) and o(pAgrvs) < o(pr)Vo(gs).

Proof. We proceed by induction on the structure of o, By
symmelry of the arguments of ¢ it suffices to show the
first inequality. The cases are:

22

1 e(wy) = u;
Then o(@VarAs) = (V@) = piVag = o(0.)Va(Gs).

2. oluy) = ¥j.
Then o(pVqrAs) = (As) = pAs; < o(p.)Vo(as).

3. o(uy) = w independent of u and v. Immediate.

4 a(wy) = oy(uy) V a(1,v)

Then e(pVgrAs) = o |(BVarAs) V axpVarAs)
< o1(pn)Veylas) V o2(pr)Vo2(as)
= o)V o(s)

5 o(wy) = o(uy) A oo(uy)

Then o(pVgrAs) = a1(pVarAs) A a9(dV g, As)

o1(@VarAs) A ex(0rAs) wlog.

(a1(p.0Vo(qs) A or(0rAs) (ind. hyp)

(o1(.00AG(0rAS) V (o(@s)Ae(0.rAs))

(01(Ae () V (o1(e8)Ao(q.8))
(monotenicity of o)

A DA N

a(p,r)Voly.s).

I

6. auy) = Cojluy).
Then o(pVarAs) = Qalul‘v'q,rhs)
< 0o Voylas)
= le(p&ﬁ)4 Orrl(q,‘i}

23

= o(pg V o@s)

7. o(wy) = Oegy(uy).

Then a(pVarAs) = Ooy(0,0)
= o (% V Eig]&s)w
= cr{[},if‘)_ V' alf.s).

1
8. o(wy) = pQ.oy(uy).
Then e(pVarAs) = pQ.o1(pVarAs)
< pQo1(p.0)Ver(qs) (ind.hyp.)
< wQuoy(pr) V pQ.op(gs) (lemma *)
= oog) V o)

Uv

9. o(uy) = vQ.o1(u,v). Same argument as 7. |

Theorem 6. The roots of a minimization argument +(Q)
form a lattice,

Proof. 7(Q) may be written as o(Q.~Q) where o is
barren. Let p and q be two roots of r(Q). Hence a(p,~p)
= oaqg~q = 0. But a(pVa~pA~q) <
olp.~pVeale,~¢9) = 0 and o(pAg~pV~q <
a(p.~p)Volqg~q) = 0, whence (pVq) = 7(pAq) = 0,
.e. pVq and p/Aq are roots of 7. !}

24

Bibliography

[1] Abrahamson, K. Modal Logic of Concurrent
Nondeterministic Programs, Preprints of the International
Symposium on Semantics of Concurrent Computation,
Evian-les-Bains, July 1979.

[2] de Bakker, J.W., and W.P. de Roever, A calculus for
recursive program schemes, In Automata, Languages and
Programming (ed. Nivat), 167-196, North Holland, 1973,

[3] Dijkstra, EW., A Discipline of Programming,.
Prentice-Hall. 1976

[3a] Ehrenfeucht, A., and P. Zeiger, Complexity Measures
for Regular Expressions, JCSS, 12., 2, 134-146, April, 1976.

[4] Fischer, M.J. and R.E. Ladner, Propositional
Dynamic Logic of Regular Programs, JCSS, 18, 2, 194-211,
Aprl 1979,

[5] Hitchcock, P. and D. Park., Induction Rules and
Termination Proofs, In Automata, Languages and
Programming (ed. Nivat, M.), 225-252,, North-Holland,
1973.

25

[6] Hoare, CAR. and PE Laver, Consistent and
Complementary Formal Theories of the Semantics of

Programming Languages, Acta Informatica 3, 135-153,
1974,

[71 Kozen, D., On Models of Dynamic Logic, Research
Report, January 1980. To appear in J. Symbolic Logic.

[B] Ogden, WF. W.E. Riddle, and W.C. Rounds,
Complexity of Expressions Allowing Concurrency, Proc.
Sth ACM Symposium on Principles of Programming
Languages, 185-194, Tucson, Arizona, Jan. 1978

[9] Parikh, R., A Completeness Result for a Propositional
Dynamic Logic, Lecture Notes in Computer Science No.
64, 403-415, Springer-Verlag, 1978,

[10] Park, D., Fixpoint Induction and Proofs of Program
Properties, In Machine Intelligence 5. Edinburgh
University Press. 1969,

[11] Park, D, Finiteness is mu-ineffable, Theoretical
Computer Science, 176-181, Nov., 1976.

[12] Pnueli, A., The Temporal Logic of Programs, 18th
IEEE Symposium on Foundations of Computer Science,
46-57. Oct. 1977.

26

[13] Pratt, V.R., Semantical Considerations on Floyd-
Hoare Logic, Proc. 17th Ann. IEEE Symp. on
Foundations of Comp. Sci., 109-121. Oct. 1976.

[14] Pratt, V.R., Models of Program Logics, Proc. 20th
IEEE Conference on Foundations of Computer Science,
San Juan, PR, Oct. 1979.

[15] Pratt, V.R., Dynamic Algebras and the Nature of
Induction, Proc. 12th ACM Symp. on Theory of
Computing, 22-28, Los Angeles, CA, May, 1980.

[16] Pratt, V.R., Complexity of Flowgraph Logic,
manuscript, Dec., 1980.

[17] Segerberg, K., A Completeness Theorem in the
Modal Logic of Programs, Preliminary report. Notices of
the AMS, 24, 6, A-552. Oct. 1977.

27

