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Abstract

We combine the principles of the Floyd-Warshall-Kleene algorithm, enriched categories, and Birkhoff
arithmetic, to yield a useful class of algebras of transitive vertex-labeled spaces. The motivating appli-
cation is a uniform theory of abstract or parametrized time in which to any given notion of time there
corresponds an algebra of concurrent behaviors and their operations, always the same operations but
interpreted automatically and appropriately for that notion of time. An interesting side application is a
language for succinctly naming a wide range of datatypes.

1 Introduction

Posets, metric spaces, “closed” automata, and categories have in common the notion of a space of points
with distances between points. These distances are respectively truth values, reals, languages, and sets.

Distances have two facets, logical and metrical. The logical facet is expressed respectively via implications
p — q between truth values, comparisons = > y between reals, inclusions L C M between languages, and
functions f: X — Y between sets. The metrical facet is expressed via a suitable monotone associative
operation, respectively conjunction p A ¢, addition x + y, concatenation LM, and cartesian product X x Y.
These two facets confer on any such set of distances the attributes of an ordered monoid (D, <, ®, I), having
simultaneously the attributes of a poset (D, <) and a monoid (D, ®,I), with ® monotone in each argument
with respect to <. For such cases as our last example, sets as distances, the poset structure is generalized to
category structure, so that rather than an ordered monoid we have a monoidal category, for which “monotone
operation” must be correspondingly generalized to “functor.”

The transitivity law u < v Av < w — u < w for a poset, the triangle inequality d(u,v) + d(v,w) > d(u, w)
for a metric space, the requirement L, Ly, C Ly, for an automaton to be considered closed, and the family



of composition operations my.,: Hom(v, w) x Hom(u,v) — Hom(u,w) for a category, respectively combine
these two facets via essentially the same basic triangle inequality.

Each of these classes of generalized metric spaces has a natural notion of map, respectively monotone
functions, contractions, morphisms of automata, and functors, in each case making that class a category
with those maps as its morphisms.

In computer science some of the common elements of these notions have been unified by organizing distances
as an idempotent semiring, an ordered monoid whose underlying partial order contains all sups and whose
monoidal operation preserves (i.e. distributes over) those sups. The basis for this unification is the O(n?)
time procedure of Roy [Roy59] and independently that of S. Warshall [War62] for computing the transitive
closure of a binary relation on n elements presented as an n x n Boolean (0- and 1-valued) matrix. The
unification was hinted at by R.W. Floyd [Flo62] who observed that Warshall’s procedure would compute
shortest paths instead of transitive closure if Booleans were replaced by nonnegative reals, disjunction by
min, and conjunction by addition. The uniform expression of this common algorithm in terms of semirings
was first described by Robert and Ferland [RF68]. Synonyms for this notion of semiring include regular
algebra [Con71], Kleene algebra [Ko0z80, Koz81], and quantale [Vic89].

Other instantiations of this abstract algorithm were subsequently found. Replacing Booleans in Warshall’s
algorithm by languages, conjunction by concatenation, and disjunction by union, yields Kleene’s algorithm
for “closing” an automaton M having n states, viewed as an n X n matrix of (finitely presented) regular
languages, from which one may then easily read off a regular expression denoting the language L(M) accepted
by M [AHUT74]. Even Gaussian elimination was found to be so describable in the (nonidempotent) ring of
reals made a field via 1/(1 —2) =1+ ax + 22 +....

Independently and working in a categorical setting, Eilenberg and Kelly [EK65] developed a more categor-
ically sophisticated version of the same generalization of metric space under the name enriched category
or V-category. In place of a semiring they used a monoidal category V. Distances became homobjects, a
generalization of homset. The logical facet was expressed by the category structure of V: the morphisms of
V' permitted “comparisons” of homobjects. The metrical facet was expressed by the monoidal structure of
V. “consecutive” homobjects were combined by the binary operation of the monoid.

Although FEilenberg and Kelly described enriched categories in their full generality, their motivating appli-
cations were confined to V’s forming classes rather than sets, an emphasis continued in Kelly’s subsequent
book on enriched categories [Kel82, p22]. Yet in 1974 F.W. Lawvere [Law73] in an excellent advertisement
for the utility of enriched categories emphasized V'’s that were semirings, hence sets rather than classes, and
with category structure merely that of a poset. This brought enriched categories into close proximity to
the parallel computer science development. Nevertheless this connection between enriched categories and
shortest-path algorithms remained undetected for another 15 years [Pra89].

The present paper starts from the notion of a partial order as a behavior of a “truly concurrent” process,
and uniformly extends it to other classes of spaces via the above correspondences. This extension was
first proposed by Pratt [Pra84] with just the semiring view in mind; here we extend that proposal to take
advantage of the enriched category perspective as well as additional basic operations whose utility were not
at all apparent at the time, and develop the resulting framework in detail.

This approach achieves a considerable unification of ideas relevant to concurrency, as well as making connec-
tions with other areas to which the semiring and enrichment insights apply. In the concurrency application
we characterize time abstractly as an ordered monoid, and more generally albeit speculatively as a monoidal
category, whose objects are temporal quantities. From this model of time we construct via enrichment a
category of behaviors. A behavior, or computation, is a space whose points represent events and whose
distances are to be interpreted as delays between events.



Various natural operations on such spaces correspond to useful constructs for concurrent programming
languages. These operations are functors, most of which prove to be definable via familiar categorical
constructions. We treat only concurrency and not nondeterminism (choice), in that we work only with single
behaviors rather than sets of them representing alternative behaviors.

An appealing feature of this approach is its abstractness. A single framework is developed independently of
choice of ordered monoid or monoidal category. Instantiating the whole framework for a particular monoidal
structure yields the corresponding model of concurrency incorporating that structure as its notion of time,
with all the operations of the framework likewise instantiated. The development lends itself to the application
of categorical methods.

A practical application of this perspective is to improving the organization of current theories of real time
in concurrency modeling. A case in point is the recent work of H. Lewis [Lew90]. Lewis works with state
diagrams each of whose transitions is labeled with a set of O(n?) intervals, with larger sets at later transitions,
per his Figure 6. In our framework the essence of this information would be captured with one real labeling
each edge of the transitive closure of the diagram, with the delay from u to v being a lower bound whose
matching upper bound (to form an interval) is the negation of the delay from v to w.

The ordered monoids that have previously been found useful in this setting are all useful here for one view
or another of time. In addition we identify a class of finite generalizations of the ordered monoid 2 of
truth values which we call the idempotent closed ordinals or ico’s. There are 272 such closed or residuated
ordered monoids with n elements, exactly one of which is cartesian closed, proved via a pretty representation
theorem. We describe natural applications for the two three-element ico’s 3 and 3’, and show where each
has in effect been used in the concurrency literature.

The operations on spaces ordinarily considered in the context of shortest-path algorithms and their cousins
can be collectively understood as Kleene’s regular operations L + M, LM, and L*, defined by Kleene only
for languages but all equally meaningful for the other domains, even the one for Gaussian elimination (with
2* =1/(1 —z)). In terms of matrices these are the operations of pointwise sum of two m x n matrices M, N
to yield an m x n matrix M + N, product of an m x k matrix M by a k X n matrix IV to yield an m x n
matrix M N, and reflexive and/or transitive closure of an n x n matrix M to yield an n x n matrix M*. A
reasonably close connection between such matrices and spaces can be made by regarding rectangular m x n
matrices as complete bipartite graphs from m vertices to n vertices, and in the other direction ordinary
(nonbipartite) directed graphs as square matrices, with distances entering as edge labels.

This paper adds to these regular operations a number of other operations such as disjoint union or juxtaposi-
tion, tensor product, concatenation, exponentiation, and useful variations on these obtained by generalizing
products to pullbacks and coproducts to pushouts. These operations are generally better matched to the
concurrency modeling application than the regular operations, both extrinsically and intrinsically. Extrinsi-
cally juxtaposition captures concurrence, tensor product captures orthocurrence, etc. And intrinsically these
operations impose few if any constraints on relationships between vertex sets of their arguments, unlike the
regular operations.

An early and striking example of these “nonregular” operations is provided by Birkhoff’s arithmetic [Bir37,
Bir42] of posets up to isomorphism under addition, multiplication, and exponentiation each of two kinds,
cardinal and ordinal. Birkhoff’s application was to the arithmetic of cardinals and ordinals, which he
proposed to unify by regarding both as posets, with cardinals as discrete posets and ordinals as linear. In
place of two sorts of data he then had two sorts of operations.

In relating Birkhoff arithmetic to concurrent programming we make the connections cardinal-concurrent and
ordinal-sequential. Discrete posets model the purely concurrent behaviors (no sequentiality) while linearly
ordered posets model the purely sequential. The cardinal operations map discrete sets to discrete, i.e. they
preserve concurrency, while the ordinal operations map linear sets to linear, i.e. they preserve sequentiality.



Our framework can then be viewed as a generalization of Birkhoff arithmetic, in several directions: several
additional operations, many other metrics besides 2, provision of labels on points, and setting Birkhoff
arithmetic in a suitable categorical framework. We have not however succeeded in finding the right categorical
expression of either ordinal multiplication (i.e. lexicographic product) or ordinal exponentiation, which we
therefore raise as an interesting problem.

There is a recursive aspect to the enrichment process that permits a further generalization of this framework.
We introduce an operation we call D!, the enriched category term for which is V-Cat,! which takes a
symmetric monoidal category D and returns the symmetric monoidal category D! of all small D-categories.
For example if D is the monoidal category {0, 1} of truth values then D! is the monoidal category of preordered
sets. This construction can therefore be iterated to yield D!!, D!, etc.

Behaviors as sets of events require not only delay information between events but information describing
each event. That is, we wish to label vertices independently of the labeling of edges. From a set theoretic
perspective there is nothing to this. However from a category theoretic perspective, with some operations
defined as limits or colimits the presence of labels is a nontrivial complication; consider for example coprod-
ucts in the category of vertex-labeled posets. We define the category of £-labeled D-spaces, each of whose
objects is an object d of D (we call such a d a D-space) paired with an object e of £, along with a function
f:Uq — V. from the underlying set of d (the points of the space d) to the underlying set of e (typically
the set e itself, construed as an alphabet of labels) serving as a vertex labeling function. The appropriate
category of such &-labeled D-spaces is the comma category (U, V).

To make the comma-category construct iterable analogously to the iterability of enrichment we need to
extend its arguments so as to carry both the structure we need for enrichment (i.e. a symmetric monoidal
category) and that for the comma construction (hence we need a forgetful functor). We denote this extension
of the comma construction to these extended arguments by D> €.

With these two operations, along with certain constants, we now have a language with such expressions as
1!, 3> 1! R!, etc. The succinctness of each expression belies its content. For example the expression 1!!!
does not merely hint at the category of all 2-categories but specifies it in full detail, complete with all internal
features such as the interchange law, 2-functors between 2-categories, etc. Moreover it supplies some external
features: it is a closed category, and is equipped with a forgetful functor to Set taking each 2-category to
the set of its objects. However it is not a 3-category as it should be, or even a 2-category, and has no other
useful forgetful functors such as to Cat. These restrictions reflect our particular recursive construction of
categories, which yields only semiconcrete symmetric monoidal categories.

2 Operations

The motivating application of our framework is to define an algebra of concurrent behaviors (runs, compu-
tations), independently of any particular choice of notion of time. In this section we describe the desired
operations of such an algebra, and illustrate them for dual metric spaces, spaces in which distance d from u
to v indicates that v must follow u by at least d units (metric spaces would replace “at least” by “at most”).

In formal language theory, concatenation is defined on individual strings as well as on languages (sets of
strings) whereas union and Kleene star are defined only on languages. In the framework of the present paper
strings are generalized to behaviors, defined as labeled spaces, with languages correspondingly generalized
to processes as sets of behaviors. We shall define only operations on individual behaviors, hence including
concatenation but excluding union and Kleene star. The operations we treat include all behavior operations of
the process language of [Pra86], namely concurrence, orthocurrence, concatenation, and local concatenation,

1We prefer D to V as connoting distance or delay.



as well as new operations synchronized concurrence, exponentiation, product, and local product. The process
operations of that paper are linearization, union, intersection, complement, star, augment closure, and prefix
closure, whose definition we defer for now pending the appropriate integration of our framework with the
current understanding of nondeterminism.

We now illustrate and define three forms of sum: concurrence p|q, concatenation p;? ¢, and local concatenation
p:%q. In these examples all edges are labeled with reals or oo, with absence of an edge interpreted as distance
—00. These examples may be taken as pomset examples by ignoring the edge labels (equivalent to taking
—o0 as 0 and everything else as 1), and as automata examples by treating distance d as the set of all strings
of length at most d (making —oco the empty language).

In all of these forms of sum, the set of points of the sum is the disjoint union of those of p and g. That is,
the basic step in forming the sum is to juxtapose p and gq.

Concurrence plq is the least constrained form of sum. Labels on points, and distances within p and ¢, remain
unchanged, while the distance from an event of p to one of ¢ is —oo, and likewise from ¢ to p. Disjoint
concurrence differs from concurrence in that the labels from p and ¢ are “marked” to distinguish them: the
label a becomes ag or a; according to whether the point it labels is from p or q.

a c a c¢ a c ad c a c a2 c
[ ] [ ] [ ] [ ] —
[ ] [ ] [ ] Y [ ] | SN,
b d b d b d 2 d B D B2 D
Concurrence (a;3b)|(c|d)  Concatenation (a;*b);? (c|d) Local Concat. (a;® B);*(c|D)

Figure 1. Additive Operations.

Concatenation p;? q is like plq, differing only with respect to the distances from p to g, which are the least
possible distances no less than d. Disjoint concatenation is to concatenation as disjoint concurrence is to
concurrence.

Local concatenation pidq is intermediate in strength between concurrence and concatenation: it only imposes
the additional distance constraints of concatenation between colocated elements of p and q. For the above
example we have identified location with case of label: lower case at one location, upper at the other.

We now illustrate and define three forms of product, namely orthocurrence p ® ¢, product p x g, and local
product pxgq.

a c ac_ 2 _ad a c ac_ 2 ad a c
ac_L , ae
3@2:3\5J3 3J><J2:3\2J3 3><2/\1= .
_— _— BD
b d bc 2 bd b d bc 2 bd B D e
Orthocurrence (a;®b) ® (¢;% d) Product (a;3b) x (¢;%d) Local Prod. (a;3b)xc(;2D,;tc)

Figure 2. Multiplicative Operations.

The underlying set of each of these products is the cartesian product of the underlying sets of their arguments
(or a subset thereof in the case of local product), while their labels are corresponding tuples: thus if p assigns
labels to points then the label p({u,v)) in a product is (p, (), e (v)).



Orthocurrence plq is distinguished from other products by the distance from (u, v) to (u’,v’) being d(u,u’) +
d(v,v"). Product p x q takes this distance to be min(d(u,u),d(v,v")). Local product pxq is obtained from
product by deleting all points with mixed locations (again indicated by case in the example), and reducing
the distance between tuples at distinct locations to —oc.

For pomsets orthocurrence and product coincide, both combining the distances d(u,u’) and d(v,v’) via
conjunction. For automata they differ: orthocurrence uses concatenation, product intersection.

Basic Constants. The empty schedule, denoted 0, has no events. It is the identity for all sums: concurrence,
concatenation, and local concatenation. The unit schedule, denoted I, has one event with self-distance 0,
and has the singleton alphabet {e}, whence that one event is labeled e. Up to isomorphism I is the identity
for orthocurrence. The top schedule, denoted 1, differs from I in having self-distance co. Up to isomorphism
it is the identity for product. (The isomorphism is not only between events but between labels, via the
evident isomorphism between ¥ and ¥ x {e}.)

We have illustrated these operations and constants for (dual) metric spaces, and indicated how to derive
the corresponding pomset and automata examples. However these operations and constants also admit of
obvious interpretations for the metrics themselves. Concurrence is respectively max, disjunction, and union
for each of the ordered monoids consisting of truth values, reals, and languages, and is the same operation
as concatenation and local concatenation. Orthocurrence is respectively arithmetic sum, conjunction, and
concatenation. Product is respectively min, conjunction, and intersection, and is the same operation as local
product.

3 Monoidal Categories and their Functors

Monoidal categories and enrichment are less well established in the computing literature than such other
aspects of category theory as adjunctions. We therefore recall here enough details of these notions to make
this paper self-contained at least on a first reading by those familiar with at least adjunctions. In addition
our treatment will serve to define the perspective on these topics that we will assume of the reader, and to
coordinate this perspective with the rest of the paper. Considerably more information on these topics can
be found in the books of Mac Lane [Mac71] and Kelly [Kel82].

3.1 Monoidal Categories

Informally, a monoidal category amounts to a structure that is both a monoid and a category. Formally a
strict monoidal category D = (D, ®, 1) is a category D together with a functor ®: D? — D called the tensor
product 2 and an object I of D called the unit, such that the object part and the morphism part of D each
form a monoid under ® with respective identities I and 1;. We refer to (®,I) as a monoidal structure for
the category D.

The structure (Set, x, {e}) with x cartesian product is not strict monoidal because in general X x (Y x Z) is
not equal to (X xY') x Z, they are merely isomorphic. Moreover there is a particular isomorphism we would
like to be able to assume is the one meant when we say that they are isomorphic, namely axy z: (X XY)xZ —
X x (Y x Z) defined as a({(z,y), z)) = (z, (y,2)). Similarly particular isomorphisms take the place of the
two identity laws for the unit 7 = {e}.

We therefore define a more general notion. A monoidal categoryD = (D, ®, I, , A, p) is as for strict monoidal

2Mac Lane writes ® as O.



categories but specifying natural isomorphisms a: (c® d)®e 2 c® (d®e), I ®@d=dand p:d® I = d in
place of the usual three-axiom basis for the theory of monoids. A symmetric monoidal category specifies an
additional natural isomorphism v: d®e = e®d. We shall confine ourselves to symmetric monoidal categories
throughout, and understand “monoidal” to mean symmetric monoidal at all times.

The intent of these isomorphisms is that they be canonical: if an element of one set corresponds to an element
of another set at all, this is a universal or global correspondence. In particular there may be at most one
such isomorphism between two sets, and in the case of a set in isomorphism with itself that isomorphism
must be the identity. This intuition is formalized via certain coherence conditions, whose effect is that if
there are multiple ways to infer by transitivity two isomorphisms between two sets, those isomorphisms must
be the same. A strict monoidal category amounts to a monoidal category in which such isomorphisms are
all identities.

A monoidal category C'is left closed (right closed) when — ® b (a ® —) has a right adjoint. When both exist
it is called biclosed. When C' is symmetric, either left closed or right closed implies biclosed, and in this case
we simply call it closed. The right adjoint to — ® b is notated —°: C' — C and defined by an isomorphism

Hom(a ® b,c) and Hom(a,c?) natural in a and c. Setting a to I yields via A the natural isomorphism

—— _, Hom(I,— . _
b— c¢=1 — c? that is, Hom is naturally isomorphic to Hom': C°? x C' — C omL) Set. In this sense —

represents Hom(b, ¢), making it the internal hom(functor). As R’ in example (3) below shows, I need not
determine ® and hence the internal hom even up to isomorphism, showing that it is possible for the internal
hom to contain information not present in the external hom even together with I.

Since left adjoints preserve colimits, we have in any closed category (A+ B)®@ C 2 A® C + B® C and
C®(A+B)=2(C®A+ C® B when the coproduct A + B exists and A®0 = 02 0® A when the initial
object 0 exists.

A category D with all finite products determines the cartesian symmetric monoidal category (D, x,1). When
the latter is closed (common but not universal, e.g. Top), D is said to be cartesian closed.

3.2 Examples of Monoidal Categories

We illustrate the above definitions with the monoidal categories we will be using in KL. Most of these will
be closed and bicomplete, the kind we are most interested in.

(1) Each successor ordinal n+1, as an n+1-object category with (";2) morphisms ¢ — j where 0 < i < j <n,
forms the cartesian closed category algebraic topologists call [n]. That is, the symmetric monoidal structure
is (n+1,A,n), and the right adjoint of A, the internal hom —~, must be the largest a such that a A b < ¢,
namely n when b < ¢ and ¢ otherwise. The product of two such cartesian closed ordinals or cco’s is the cco
[m] x [n] = [m +n].

But the category n+1 = [n] admits other monoidal structures, all strict since n+1 has no nonidentity
isomorphisms, and all bicomplete. Of these, 2" are idempotent (z ® x = x), since each is representable as
a permutation of {0,1,...,n} whose domain partitions into two blocks on one of which the permutation is

monotone and on the other antimonotone.

Such a permutation can be written down by writing 0,1,2,...,1 (the monotone block) from left to right
and then reversing direction so as to write I + 1,1 4+ 2,...,n (the antimonotone block) from right to left
interleaved arbitrarily with the monotone block, leaving I at the far right. For n = 3 this can be done
in eight ways, namely 0123, 01352, 0312, 0321, 3012, 3021, 3201, 3210, here distinguishing the two blocks by
writing the second as subscripts. Then z ® y is taken to be the earlier of x and y in the permutation. Since



I is always at the right end of the permutation it will always be the identity of x ® y. For ® to be a functor
it suffices that it be monotone, which the reader may verify.

For n > 0 exactly half of these are closed. For to be closed we require that for any b and ¢ there be a largest
a for which a®b < ¢. Setting ¢ = 0 shows that 0® b must be 0 for all b, whence a necessary condition is that
the permutation start with 0. But this is also sufficient since there then exists a solution in a to a ® b < ¢,
namely a = 0; finiteness then ensures a largest solution. These then are the idempotent closed ordinals or
ico’s.

There is therefore a unique ico 2, namely [1]. Here ® is A and I = 1. (The nonclosed one has ® = V and
I = 0.) This category provides the metric for preordered sets. This two-valued cartesian closed logic is
that of ordinary precedence, where for any pair u, v of events there are two cases: either u is constrained to
precede v, or not.

There are two closed categories on 3, each appearing implicitly in one of H. Gaifman’s two papers on
concurrency. In each, the elements of 3 represent strengths of temporal precedence constraint between two
events, with 0 representing no constraint. In the noncartesian case, call it 3’, 1 represents nonstrict temporal
precedence and 2 strict, with 1®2 =2 (u < v < w — u < w). This structure is hidden in the two-relation
“prosset” model [GP87] used in the proof of Kahn’s principle relative to a pomset-based semantics of nets
[Pra86].

For the cartesian closed 3, 1 denotes “temporal” or accidental order and 2 causal [Gai89]. Here 1 ® 2 = 1,
that is, if v accidentally precedes v whereas v causes (necessarily precedes) w, then we may only infer that
u accidentally precedes w. Thus one may identify the logic of causal and accidental precedence with the
cartesian closed category 3.

Of the four idempotent closed categories on 4, described by the first four permutations on the list five
paragraphs above, the second and third have the same I, namely 2, but their internal homfunctors differ
at 1'. Composing Hom(I,—) with either yields the external homfunctor for 4, whence the category and I
together are not sufficient to determine either ® or the internal homfunctor. However neither of these are
cartesian closed, and in fact for all n the cartesian closed structure is the unique one with I = n. We do not
as yet have a natural application for any of the structures on 4.

(2) We have already discussed Set with ® taken to be cartesian product, as a basic example of a nonstrict
category. This monoidal structure for Set is cartesian closed, and will always be the one we have in mind
when referring to Set as a monoidal category. In the case of Set the internal homfunctor is identified with
its external one.

(3) Let R denote the real numbers together with co and —oo with the usual ordering and considered as a
category in the usual way. Now R, is bicomplete, and furthermore is cartesian closed with a ® b = a A b,
I = o0, and internal homfunctor ¢® = oo for b < ¢ and ¢ otherwise (cf. the cartesian closed ordinals above).
R, is isomorphic to its opposite R{’, the reals with their order reversed and with ® now V. RY’ is the
metric used for so-called ultrametric spaces.

However a more useful closed structure for our purposes will be that obtained by taking tensor product to
be not min but +, making the unit 0, and with co + (—00) = —o0, necessary in order to be closed. We
denote it by R, or R, when there might be confusion. To be closed requires ¢’ satisfying a +b < c=a < ¢,
for which ¢ = ¢ — b is the patently obvious solution. Hence R is bicomplete and closed, but of course not
cartesian closed since, as we saw with the ordinals, a category admits at most one cartesian closed structure.

We use R to represent lower bounds on delay. A distance of 5 units from event u to event v means that
v must wait at least 5 units after u. Thus a delay of 0 from u to v simply asserts that v follows u, not
necessarily strictly.



Now a delay of -5 units from u to v indicates that v may precede u by at most 5 units. Hence we can express
upper bounds as negative lower bounds in the opposite direction. So to indicate that v must follow u by 2
to 5 units we bound from below the delay from u to v by 2 and that from v to u by -5.

Combining these two directions, we may read the two oppositely oriented edges between u and v as together
defining an interval.

Here as with R, R is isomorphic to its opposite R°P, the reals with their order reversed, however this time
with the only change to the monoidal structure being oo + (—00) = oo, this being the one bit of asymmetry
in R. As we have seen, R°P is the monoidal structure associated with ordinary metric spaces.

A sometimes useful closed subcategory of R°P, namely R2P, is obtained by omitting the negative reals and
—oo [Law73]. The internal homfunctor then becomes truncated subtraction, in which negative differences are
rounded up to 0. This is the category of generalized metric spaces; if the further restrictions are made that
distances be symmetric and distinct points are a nonzero distance apart then we have the usual category
of metric spaces and their contractions, modulo a detail about constant factors in the contractions. RY
may be similarly truncated and its I set to 0 to yield Lawvere’s basic example [Law73] of a cartesian and a
noncartesian closed structure on the same category with the same I.

(4) Take SR to be the category with objects arbitrary sets of reals and with morphisms X — Y just when
X CY. This poset is cartesian closed when we take ® = N and I = R. As with R however we shall prefer
a different, hence noncartesian, closed structure, namely X @ Y ={z+y |z € X,y € Y} with I = {0}, and
with internal homfunctor Z¥ = {z e R| {z} + Y C Z}.

The meaning of a set as a delay is that it consists of the disallowed actual delays. Thus (), like —co in R, is
no constraint while R, like oo, disallows all delays.

We may now find R and R°P, as well as R°P truncated at 0, as subcategories of SR. We note in particular
that R + 0 = 0, corresponding to co + —oco = —oo in R.

(5) Any monoid (M, -, €) automatically forms a strict monoidal category by taking the set M as a discrete
category. Alternatively M may be taken as indiscrete (the maximal preorder on M). We refer to these as
discrete and indiscrete monoids respectively.

For a discrete monoid to be closed means simply that for all b, ¢, a +b = ¢ has a solution in a, whence closed
discrete monoids coincide with groups. No nontrivial discrete monoid has finite products or coproducts.

An indiscrete monoid on the other hand is trivially closed with all limits and colimits. Only the fact that it
is strictly monoidal saves it from total anarchy. A nonstrict monoidal codiscrete category is no more than
an arbitrary binary operation on a pointed but otherwise indiscrete set; nevertheless all such are bicomplete
and closed.

(6) The category Pos of partially ordered sets forms a subcategory of the cartesian closed category Pros
of preordered sets. The tensor product is direct or cardinal [Bir42] product of preorders. The cartesian
closed structure of Pros is inherited from that of its underlying metric, namely the cartesian closed 2. The
following section on enrichment treats the passage from the metric to the spaces in this example and the
next two.

By the same token Gaifman’s computations with distinct accidental and causal orders [Gai89] form a sub-
category of a cartesian closed category of such computations with cycles allowed. As with Pros the cartesian
closed structure is inherited from that of its underlying metric, here 3.



The Gaifman-Pratt “prossets” or preordered specification sets [GP87], each consisting of a set with an
irreflexive partial order < and a preorder <, with u < v < w — u < w, form a subcategory of a noncartesian
closed category of “preprossets” in which < is itself just a preorder, but still meeting the condition u < v <
w—u<w.

3.3 Monoidal Functors

Monoidal functors, as the appropriate morphisms of monoidal categories, should preserve both the monoidal
and category structure. Just as strict monoidal categories motivate monoidal categories, so do strict monoidal
functors motivate monoidal functors. A strict monoidal functor F:D — D’ between monoidal categories
D, D is a functor F: D — D’ between their underlying categories satisfying Fr®' Fy = F(z®y) and I’ = FI
for objects and similarly for morphisms. (The unit morphism is often written 1 instead of I or 1;.)

Definition A lax monoidal functor (F,7,t): (D,®,I,ca, A\, p,v) — (D', &', I',a/, N, p’, ") consists of a functor
F:D — D', a natural transformation 7,,: Fz ® Fy — F(z ® y), and a morphism ¢: I’ — FI of D', with
certain coherence conditions requiring that natural transformations constructed from 7 and ¢ commute
with a, A, p,~v and all the other natural transformations corresponding to the equations of the theory of
commutative monoids [EK65].

When 7 and t are both isomorphisms or both identities we call F' respectively strong or strict. For the
remainder of this paper the default will be strong, that is, we take “monoidal functor” to mean “strong
monoidal functor.” In particular we take the morphisms of the category SMON of large (symmetric)
monoidal categories to be the strong monoidal functors.

We wish to be able to refer to the “points” of spaces. This is accomplished by the next definition.

Definition. The category COSMON is the slice (comma) category SMION | Set. Its objects are pairs
(D,U) called semiconcrete monoidal categories, where D is a (large) monoidal category and Up:D — Set
is a monoidal “forgetful functor” for D. The morphisms F: (D,U) — (D’,U’) of COSMON are monoidal
functors satisfying U = U'F, 7y = 7y 7F, ty = ty/tr.

Our interest in COSMON is that its members carry enough structure to support the definitions of the op-
erations D! and D> £ constructing categories of spaces and labeled spaces. While this adds some complexity
to the development of enrichment, it does demonstrate the feasibility of adding such structure when needed.
It would be particularly useful to have a characterization of what structures can be so added.

All the examples of monoidal categories in our list above belong to COSMON; of these, only the discrete
monoids are not bicomplete. Set, Pos, etc. are large objects in COSMON. The ordinal 1 is the null object
of COSMON.

Our insistence on the identity U = U’F’, as opposed to just a natural transformation from U to U’F, makes
for a clean division of labor between COSMON, where the kind language KL operates, and the objects of
COSMON, where PSL operates. The significance of this identity is that, via functors of COSMON, KL
may act on kinds without disturbing the underlying sets of objects of those kinds.

For example when we replace a numeric metric by a Boolean one we identically preserve the vertex sets of
the affected behaviors; only the distances between their elements change, from numbers to truth values. In
PSL on the other hand we work in a fixed object D of COSMON, where we may do violence to vertex sets
and alphabets via morphisms of D, but where we cannot change to another D and so have no control over
the metric or the kind of alphabet.
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As a pleasant fringe benefit the bidirectionality of the identity in U = U’F permits the domain of > to consist
of all pairs F, G of functors of COSMON, not just those for which there exists a natural transformation
from U'F to U. However this benefit would accrue even from a natural isomorphism h: U — U’F (assuming
h commutes with both 7 and t), whereas identity results in total separation of the domains of KL and PSL.

3.4 Examples of Monoidal Functors

(1) Consider functors F,G:R — 2, defined by F(z) = (x > 0) and G(z) = (x > —o0). Each functor
equips its target with an interpretation. F' interprets v < v as saying that u must precede v, while G
makes it say that v can only precede u by a bounded amount. Only G however is strong monoidal, since
F(1+ —1) = F(0) = 1 while F(—=1) A F(1) = 0. It is straightforward to show that G and the constantly
true functors are the only strong monoidal functors from R to 2. In fact with the obvious order on the
functors from R to 2 to make 2R a category, we have 2R 2 2 in COSMON, with the constant functor in
2R corresponding to 1 in 2.

Now consider any functor F' from 2 to R. F must send 1 to 0, so F'(0) cannot be positive. Moreover
F(0) = F(0A0) = F(0) + F(0) whence F(0) must be either —co or 0. Hence R? & 2 (again with R? made
a category via the obvious order on its two functors), with the constant functor in R? corresponding to 1 in
2.

(2) The endofunctor /2 from R to R that simply halves its argument is clearly monoidal. This is a
“speedup” functor that allows one to pass to a world where everything happens twice as fast. In fact from
F(a+b) = F(a)+ F(b) and F(0) = 0 we infer that the linear speedups and slowdowns and their negations
(time reversals) are the only functors, and thus we have RR 2 R. The oo and —oo slowdowns are included,
with the convention that 0 ® co =0 = 0 ® —oo. Their range in each case is isomorphic to the noncartesian
closed ordinal 3’ with the convention that co/co = 00, —c0/00 = —00, co/n = 0 for all other n € R and
likewise for the / — co speedup.

(3) We leave it to the reader to verify that 22 =2 2 with the constant functor corresponding to 1 as always.

4 Enriched Categories and the ! Operator

We now introduce the basic notions of enriched categories. Our hope is that these will be made more
accessible via definitions that are not only close at hand but presented from the same perspective as the
applications. Enriched categories or V-categories are treated briefly by Arbib and Manes [AMT75] and
exhaustively and precisely by Kelly [Kel82]. Section I-8 of Mac Lane also touches on them, without calling
them such. As far as we are aware ours is the first proposed engineering application of Lawvere’s vision
[Law73] of enriched categories as a combined generalized metric and logic.

4.1 D-categories

The essence of an enriched category may be found in an ordinary category C. Write 6(u,v) for the set of
morphisms from u to v. Associated with each triple u, v, w of objects of C is a function My d(u,v) X
§(v,w) — 6(u,w) defining composition. And to each object u there is a function j,: {-} — §(u,u) picking
out the identity element 1, € §(u,u).
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We pass from this account of an ordinary category C' to the notion of a category C' enriched in D, or D-
category, by requiring each 6 (u, v) to be an object of D instead of a set, and each M., and j,, be a morphism
of D instead of a function. The class of objects of C' do not participate in this passage: the objects of C'
remain a class. A functor F': A — B participates partially in this passage: when we view it as the D-functor
F: A — B, its object part remains unchanged but its action on morphisms, viewed for each pair uv of objects
of A as a function F,,:64(u,v) — 6Z(F(u), F(v)), becomes a morphism of D between homobjects 64 (u,v)
and 6B (F(u), F(v)) of A, B respectively.

From this viewpoint, ordinary categories and functors between them are Set-categories and Set-functors,
that is, categories and functors enriched in Set.

Definition. A D-category A = (V,0,m,j), or category enriched in D, consists of a set V, a function
5:V? — ob(D), and families of morphisms of D, namely compositions m.,y: 6(u,v) @ 6(v,w) — §(u,w)
and identities j,: I — 0(u,u), such that for all objects u, v, w in V the following diagrams commute. These
diagrams express associativity of composition, and the left and right identity laws, explained below.

For D = 2 the diagrams expressing the associativity and identity laws hold vacuously since D is an ordered
set. Thus composition and identity become

Myvw: U<V AN Vv<w — u<w
Ju: u<u

expressing respectively transitivity and reflexivity. Thus 2-categories (categories enriched in 2, as opposed
to 2-categories which here are Cat-categories) are just preorders.

For D = R°P, also an ordered set, we again may ignore the associativity and identity laws. Here we get

Maypw:  d(u,v) + d(v, w) > d(u, w)
Ju: 0>d(u,u)

For D = Cat we obtain ordinary 2-categories, along the same lines as for D = Set but with the addition of
2-cells between morphisms of the same homset.

4.2 D-functors

Definition. A D-functor F: A — B where A and B are D-categories consists of a function F:V, — Vg
between object sets together with a family F,,:d4(u,v) — dp(Fu, Fv) of morphisms between homobjects
satisfying the following conditions stating that compositions and identities are preserved.

The elements of a D-functor are depicted on the left of the following figure, and compose in the obvious way
as shown on the right.
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It can be seen that 2-functors are monotone functions, R-functors and R°P-functors are expanding and
contracting maps respectively, and Set-functors are ordinary functors. In our computational application
a D-functor is an event map which maintains all temporal constraints, though the result may have more
constraints than the source.

4.3 Enrichment as a Function

We now define the object part of the functor —!: COSMON — COSMON. Given a semiconcrete monoidal
D define D! to be the category D-Cat of small categories enriched in D.

D! is symmetric monoidal as follows [EK65]. The tensor product of two D-categories A and B is defined to
have as objects the cartesian product V4 x Vg, and homobjects

8((u,v), (u',v")) = 6a(u,u') @p dp(v,v").

The symmetry of D ensures that appropriate composition morphisms can be defined and that D! is symmetric
to boot. The corresponding unit I is the one-object category with homobject 6;(-,-) = Ip.

To make D! semiconcrete we define the forgetful functor Up,: D! — Set mapping each D-category A to its
underlying set V4 of objects and each D-functor to its object map. Up, is monoidal by the above definition
of ® for D!. In our application U yields the event set U(b) of a behavior b.

We summarize the above as follows.

Lemma 1 If D is an object of COSMON then so is D!.

4.4 Enrichment as a Functor

We now define the action of ! on morphisms of COSMON.

Definition Given a monoidal functor (F,7,¢): D — &, define the functor (F,r,t)! = (F!,71,¢!): D! — &! as
follows:

13



F! takes a D-category A to the E-category F1A = (V,§,m, j) defined by

V = VA (that iS, UDI = U’D/!F!)
5(“7 U) = F((SA(ua ’U))
muv'w = F(’r.rj‘fyw)TéA(u,v)(;A(v,w)
Ju =F(it
F! takes a D-functor G: A — B, to that E-functor F!G which has the same object function and takes (F!G)y,

to F(Gyuy). Thus F! acts only on the distances within a behavior, and on the “distance comparison” part of
a morphism of behaviors.

For D-categories A and B and objects u and u’ or A, and v and v’ of B, define

(T!)(u,v)(u’,v’) = T5A(u,u’),63 (v,0")-

By the definition of F'!, F!Ip, is an £-category with a single object. Thus there is a unique possible object
map for tl: [¢) — F!lp,. t! on homobjects must be a map from I¢ — FIp; define this map to be t.

Lemma 2 If (F,7,t): D — & is a morphism of COSMON then so is (F!,7!,t!): D! — &L

We omit the straightforward, though tedious, proof.

Finally, by checking that ! preserves composition and identities, we obtain the following.

Theorem 3 ! is an endofunctor on COSMON.

4.5 Examples

(1) Section 2 contains a figure illustrating the example (a;®b) ® (¢;% d) of orthocurrence.

The triangle inequality requires the upper bounds on diagonals across squares and rectangles to be at most
the sum of the bounds encountered along any path around the sides, e.g. 5 from ac to bd. This is exactly
the effect obtained by defining tensor product of spaces (enriched categories) in terms of the addition (tensor
product) of the underlying metric. Had we defined tensor product of spaces in terms of ordinary product in
the metric (min), we obtain the next example, ordinary product of spaces.

(2) Consider the monoidal functor F: R — 2 which takes —oo to 0 and all else to 1. Application of F! to
each of the illustrated examples of Section 2 with vertex labels deleted to make them objects of R!, produces
the corresponding object of 2!, a poset, in effect by erasing the edge labels.

4.6 Continuity of !

We now show that ! enjoys certain continuity properties. These will be used in section 7 to show that all
KL kinds are bicomplete and closed, which in turn ensures that PSL is well-defined.

Proposition 4 If D has an initial object 0 and a natural isomorphism A ® 0 = 0 then D! has coproducts.
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The natural isomorphism A ® 0 = 0 always exists when D is closed.

A discrete category is a copower in Cat of 1, that is, the coproduct of a set of one-object categories, yielding
the following similar result:

Proposition 5 If D has an initial object 0 and 0@ A= 0= A®0, then the forgetful functor Up,: D! — Set
has a left adjoint D:Set — D! taking a set S to the corresponding discrete D-category (dps(u,v) = I if
u=wv, 0 otherwise).

The dual result to this, though not with a dual proof, is:

Proposition 6 If D has a final object 1, Up,: D! — Set has a right adjoint E:Set — D! taking the set X
to the corresponding chaotic (codiscrete) D-category (dps(u,v) =1 for all u,v).

Meanwhile, for the case of general colimits we refer to a result of [BCSW83].
Theorem 7 If D is cocomplete and D is closed then D! is cocomplete.

There is also a similar but much easier result about limits. PSL needs limits for local product and hence
local concatenation.

Theorem 8 If D has limits of (small) type J, then so does D!.

If any one theorem could be considered at the heart of enriched categories it is the following. Kelly’s proof
([Kel82] p.55, see also Lawvere [Law73] p.153) is dauntingly formal, to which we offer an informal counterpart.

Theorem 9 If D is complete and closed then D! is closed.

Proof  The objects of the D-category C® are of course just the D-functors from B to C. What is less
obvious is the appropriate homobject 65 (U, V) abstracting the homset of natural transformations between
any two D-functors U, V of CB. The natural and unnatural transformations are given by [Iycp0c(Ub,VD);
we seek its subobject [, dc(Ub, VD) (an end [Mac71] p.219) consisting of just the natural ones.

Now for D = Set such a transformation 7 determines, for all b, b, two functions p,,o,:d5(b, ") — dc(Ub, V'),
that is, two elements of ¢ (UD, Vb’)‘SB(b’b'). Here p, takes f:b — ¥ to V(f) o 73, while o, takes the same f
to 1y o U(f). But these are just the two sides of the square

which must be equal for 7 to be natural. Encapsulating “for all b,b’” as a product over b, € B and
generalizing to arbitrary D (formalized in Kelly’s proof), we may therefore obtain the desired homobject
0o (U, V) as the equalizer of

dce (U, V) H dc(Ub,Vb) H 5 (UD, Vb )50,
beB bb'eB
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This construction required an exponential, two products, and an equalizer, for which it suffices that D be
complete and closed. 1

5 Comma Categories and the > Operator

Given a space p and a labeling set or alphabet 3, we label the underlying set U(p) of points of p with a
function p:U(p) — X. For p a poset this is the notion of pomset or partially ordered multiset as a labeled
partial order.

Our framework can be simplified by dropping the assumption that ¥ is set and instead associating with the
category supplying ¥ a functor V' that somehow interprets ¥ as a set. Our labeling function then becomes

w:U(p) — V(5).
But this is what it means to be an object of the comma category (U]V). Moreover the morphisms of this

comma category from p:U(p) — V() to p/:U(p') — V(X'), namely pairs of maps f:p — p’ and t:3 — ¥/
such that V(t)u = p/U(f), turn out to be just what we need.

5.1 The Function >

Given categories D, £ in COSMON (i.e., both symmetric monoidal equipped with monoidal functors
(U,tu,tv): D — Set, (V,7v,ty): E — Set, respectively), we define D> to be the comma category U | V.
Recall that this is the category whose objects are triples (z, s, u) where u: Uz — Vu, and whose morphisms
are pairs (f, g) such that the following square commutes:

D> € can be made symmetric monoidal by defining the tensor product

to be the outer square of

The unit object of D> £ is taken to be Ip . ¢ = (Ip,h, I¢), where h = tvtl}l

(In fact one may use these definitions for ® and I in the case where V' is only lax monoidal; U must still be
strong monoidal).

Now we must show that this product is associative and symmetric, and has I for its identity. We treat only
associativity, the other natural transformations being treated similarly.

Recall that associativity in a monoidal category D is a natural isomorphism ., .~ mapping the functor
(2® 2") ® 2": D* — D to the functor z ® (2’ ® 2”"): D* — D.
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Take oy in D>E, where p:x — y, p': 2’ — ', 22" — y”, to be the pair (a7, 0yyry) of associativity
transformations in respectively D and £. This is a well-defined morphism because V(«)(p® (' @p”")) is equal
to (p® ') ® uw")U(«), using properties of monoidal functors and natural transformations. The coherence
conditions on ap ., ¢ are established similarly.

We complete the definition of the object D> & by defining its underlying set, via the following functor to
Set.

We shall derive the properties of this functor that we shall need at the end of this section.

5.2 > as a Functor

To complete the description of the functor > we describe its action on morphisms (i.e., functors) F,G
of COSMON. Recall that we impose the condition U = U’F in the definition of the morphisms F of
COSMON as well as the condition that F be strong monoidal. The functor F > G: COSMON 2 —
COSMON acts thus:

>

where 7y projects onto D as before and F > G takes each morphism (f, g) of D> € to (Ff,Gg) = (U'Ff,V'Gg).

We now need to verify that F' > G is strong monoidal. This involves exhibiting a morphism 7 o ¢ (F > G){z, g, u)®
(F>G){y,v,v) — (F>G)({(z,u,u)®(y,v,v)) of D' 1> &’ for any pair (z, u, u), (y,v,v) both in D> &, namely

that given by pairing 7p: Fx X Fy — F(x ® y) with the corresponding 7. That this is indeed a morphism

of D' > &' depends on the commutativity of the squares appearing in

which follows from the 7y = (U'rp)7ys condition in the definition of COSMON. That the morphisms
TF > (; constitute a natural transformation and that they satisfy the appropriate coherence conditions di-
rectly follows from the corresponding naturality and coherence conditions on 7 and 7.

5.3 Continuity of >

We now wish to lift limits and colimits that exist in the component categories to comma categories defined
from them. To do this we must deal with functors into comma categories.

The following lemma can be applied whenever functors into a comma category are to be defined. It states
that defining a functor from a category J into (U|V'), where U: A — C and V: B — C, is essentially equivalent
to defining functors F: J — A and G:J — B and a natural transformation from UF to VG. Furthermore,
natural transformations between such functors are essentially equivalent to a pair of natural transformations
satisfying a certain commutativity condition.

For any functor F: X — Y denote by F” the functor from the functor category X7 to Y’ defined by
“left-composition with F”. Then we have:

Lemma 10 (U [ V)’ = (U7 | V).
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Outline of Proof  The comma category U | V has the projections mo: U |V — A and 71: U |V — B, and
defines a natural transformation v: Uy — Vry. (In fact this is an alternative definition of the concept of a
comma category.)

Hence, given a functor, F:J — U |V, we can define functors moF:J — A and 7 F: J — B, and a natural
transformation vo F: UmgF — Vm F. This defines an object of the comma category (U7 | V7). It is routine
to extend this mapping to a functor (U | V)’ — (U | V) and show that it is an isomorphism of categories.
|

From this lemma we may obtain the following very useful theorem. Tarlecki [Tar85] proves the weaker version
of this theorem in which J is not a parameter of the theorem, in that A and B are required to have all limits
rather than just J-limits. The lemma in Mac Lane’s treatment of Freyd’s Adjoint Functor Theorem [MacT71,
V.6]) treats only the case A =1 of Tarlecki’s theorem.

Theorem 11 Let U: A — C and V:B — C be functors, and J be a category. If A and B have all J-limits
and V preserves J-limits then the comma category (U | V) has all J-limits

Proof  Let F:J — (U|V) be an J-diagram in (U | V). Then by lemma 10, F' can be considered as a
triple, (Fy, u, Fo) where
Fll J — A
FQI J — B
M UF1 — VF2

Since A and B have J-limits, both F; and F, have limits. Denote their limiting cones by A':lim F} — F;
and A\2:lim Fy — F5 respectively.

Since V preserves J-limits, V (lim F3) is a limit of V Fy, with limiting cone V' \2.

Now the composite natural transformation
U(lim Fy) — UNUF, — pVF,

is a cone from U (lim F}) to V F3, so by the universal property of limits there exists a unique arrow p such that
the following diagram of functors and natural transformations commutes. (Note: in this and the following
diagrams an object of C' represents the constant functor to that object and an arrow of C' represents the
“constant” natural tranformation between such constant functors.)

1
U(lim Fy) —2 UR,
P{ ®

2
V(lim Fy) —2 VFy

Now we claim that (lim Fy, p,lim F5) is the limit of F', and that the limiting cone is defined by the pair of
natural transformations (!, A?).
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For suppose we have an object, (A, f, B) and a cone k: (A, f, B) — F. & can be considered as a pair of
natural transformations, k': A — F; and k%: B — F5. Since F; and F5 have limits there must exist unique
maps a: A — lim F} and b: B — lim F, which factor x' and 2 through A' and A? respectively.

Consider the following diagram of natural transformations.

UA ! - VB
\Ua Vb/
ust | U(limFy) —=2 V(lim Fp)  |ve?
/J/\l v,\x
\ Y
UF, a ~V Fy

The outer square of this diagram commutes because « is an arrow in the comma category. The two inner
triangles commute by definition of @ and b. The lower inner square commutes by definition of p. Now we
wish to show that the upper inner square commutes. We do this by showing that the cone (V2).(Vb).f
is identical to the cone (VA?).p.(Ua). Since there must be a unique arrow which factors this cone through
the limiting cone VA2, we can conclude that the arrows (Vb).f and p.(Ua) must be identical. This is the
required commutativity condition. But we have

definition of b
= u.(Uk') outer square commutes
= w.(UX).(Ua) definition of a
= (VA?).p.(Ua) lower square commutes

(VA2).(Vb).f

|
—~
<
=
N
~

This proves the required commutativity, which shows that (a,b) is an arrow in U | V and that it factors &.
That (a,b) is the unique such arrow follows from the fact that a must factor x* through the limiting cone
Al so a is the unique such arrow. Similarly, b must factor x2 through A2, and so is unique. H

Note that the proof gives an explicit construction of limits in a comma category when the conditions of the
theorem are satisfied.

The same technique allows us to construct colimits:

Corollary 12 If A and B have all J-colimits and U preserves J-colimits then U |V has all J-colimits.

Proof:  For any functor U: A — C, let U°P be the corresponding functor U°P: A°? — C°P. Observe that

(U V)P = (VPLU®P).

With rather more work we may show that under appropriate conditions U | V' is closed.
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Theorem 13 Suppose that A and B are monoidal closed, and that C is monoidal. Suppose further that
F: A — C is a strong monoidal functor, that G: B — C is (lax) monoidal, and that A has all pullbacks. If F
admits a right adjoint, R, then F | G is closed.

Proof Outline: The proof is in three stages. Under the assumptions of the theorem we show:

1. R is monoidal and hence that RG is monoidal;
2. F'| G is isomorphic to 1 4 | RG; and finally

3. For any monoidal functor H: A — B, 1 4| H is closed.

We adopt the following notation. Suppose that F' has right adjoint R. For any arrow g: FA — B denote the
adjoint transpose by gf: A — RB. Dually, denote the adjoint transpose of f: A — RB by f: FA — B.

Observe that for appropriate arrows f, g and ¢’ we have

d9)" = (Rg)g*
(9(F) = 4.

The dual results, (ff/)" = (f*)(Ff") and ((Rg') f)b = ¢'f* will also be useful.

We now proceed with the proofs of the three lemmas which prove the theorem.

Lemma 14 Let F': A — C be strong monoidal and have a right adjoint, R. Then R is monoidal.

Proof.  Let : FA® FB — F(A® B) and QAS: I — FI be the isomorphisms which make F' monoidal.
Define ¢: RX ® RY — R(X ® Y)) to be the adjoint transpose of the composite

F(RX @ RY) " FRX © FRY *5 X @ Y,
and 1: I — RI to be (¢~ )%
To show that ¢ and qAS make R into a monoidal functor, we must show that they satisfy the coherence
conditions. We give here the proof of the associativity condition. The proofs of the other two conditions are

similar.

F' is monoidal, so we know that the following commutes:

p®1 o
(FRX® FRY)® FRZ —— F(RX®RY)®FRZ — F((RX®RY)® RZ)

« Fa

1®¢ o
FRX ® (FRY ® FRZ) — FRX ® F(RY ® RZ) — F(RX ® (RY ® RZ))
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Rearrange to obtain the equation

alp el =(1ee ) Fa.

Compose both sides of the equation with € ® (¢ ® €). Then the left hand side of the new equation is:

(e@(c@e))alp™  @1)p~"
= a’ @e)g!
= a((e(Fy))@e)p™!
ale®e)p ' F(yp®1)
o’ F(y @ 1)

The right side of the new equation is

(e@(e@e)(10o o H(Fa)

= (e® )¢ Y(F )

= (e® (e(Fy)))o~

= (e®e)p” 1F(1®1/J)(Fa)
WF(1@y)(Fa)

Apply £ to both sides of the new equation and simplify using the properties of # to obtain the required
condition

(Ra)p(d @ 1) = (1@ ).

Lemma 15 Let R:C — A be a right adjoint of F', considered as a monoidal functor as described in the
previous lemma. Under the conditions of the theorem F'| G and 1 4 | RG are isomorphic monoidal categories.

!
Proof. To each object FA L, @B associate the corresponding object A L RGB. 1t is straightforward
to show that this correspondence can be extended to an isomorphism of categories.

Now we show that the tensor product of the two categories coincide.

Let v be the natural transformation GB; ® GBy — G(B; ® Bs). Let ¢ be the natural isomorphism F'A; ®
FAy — F(A; ® Ay). Denote the corresponding transformation for R by v, recalling that 1 = ((e ® €))%
Hence, the transformation for the composite functor RG is (Ry).

Consider two objects, F'A; ELR GB; and FAs ELR G Bs. Applying f and then taking the tensor product in
1] RG results in the composite arrow

f1®f2

AL @ Ay 2 RGBy @ RGB, Y RG(B, © B,).

We want to show that this arrow is identical to the result of first taking tensor product in F' | G and then

applying f, namely
((fr® f2)97 ).
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But we have

(Ry)v(ff @ f5)

= (Ry )((f ® €)o 1) (f1 ® f2) definition of v
= (Y@ 1 F(fi ® fg)) properties of f
(’Y(€®€ (fHy e F(f)e~ 1) ¢ is natural
(VP (f]) @ eF (f5)6 ")’

= (v(/1® f2)¢ )u7

as required. N

Lemma 16 Let A and B be closed monoidal categories, and H: A — B be a monoidal functor. Suppose that
A has pullbacks. Then the monoidal category 1 4 | H is closed.

Proof:  Denote the natural transformation HB; ® HBy — H(B; ® Bs) by 7.

Let (A4, f1,B1) and (Aa, fa, B2) be two objects of 1 | H. We show that tensor product has a right adjoint
by constructing an object universal from the functor (41, f1, B1) ® — to (A, fa, Ba).

Consider the pullback

X i > H[Bl, Bg]
(He)v)?
T [HBl, HBQ]
[f1,1]
[1, fo] w
[A1, Ag] > [A1, HBo]

We will show that the top line of this diagram is the required universal object. Firstly, we claim that the
universal arrow to (As, fa, Bo) is given by

fi®m
AT X HB; ® H[By, Bs] H(B; ® [B1, Ba])
o He
A2 f2 ‘HBQ

To see that this square commutes, apply b to both directions around the pullback square. It is immediate
that ([1, fo]m1)® equals (fom?). For the other direction, observe from standard properties of adjunctions that

[f1,1] = (e(f1 ® 1))*. Hence,

(Lf, U ((He)y)rms)’
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[f1, 1P (1@ (He)y)H) (1 @ )
c(1® (He))")(f1 @ 72)
= (He)y(f1 @ m2),

as required.

Suppose now that there exists a commuting square

fi®g
A RY HBy @ HC H(B;® ()
P Hgq
A f HB,

B is closed, so ¢ can be factored into €(1 ® ¢*). By the naturality of -, (H(l ® qu))w is equal to v(1 ® Hq*),
so we obtain
fop = (He)y(fr ® (Hg")g).

Applying f to both sides of this equation shows that the following square commutes.

g H(q")
Y~ HC . H|[By, B,]
(fi®1)*
p* (A1, HB, ® H[B1, Bo]
(1, (He)v]
[17f2]
[A1, As] [A1, HBs)]

Consider the right side of this square. Observe that

[, (Hep)(fr @ 1)F = ((He)y(fr @ 1))
Now consider the right side of the pullback square that defines X.

[fL1((Hey)t = (e(fi @ 1)F((He)y)*
(e(f1 @ (1@ (He)y)h))?
(e(1® ((Hey) ) (@ 1))
(He)y(f1 ®1))*

So we know that the right arrow of this square is the same as the right arrow of the pullback square defining
X. But then there must exist a unique map r:Y — X such that ms = (Gq*)g and 75 = p*. The first
equation is precisely the condition that (s, ¢*) be a well-defined map from (Y, g, C) to (X, ma, [Bi1, Ba]). The
second shows that (s, ¢!) factors the original map (p,q) through the counit of the adjunction. Uniqueness
follows from the unique factorization of ¢ through € and properties of pullbacks. N

Our original application of the D > £ construct was to partially ordered multisets or pomsets. A pomset
p = (P,u,X) is just a poset P, labeled by a function p: V(P) — X for some set X, where V(P) is the set of
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vertices or points of P. This makes it an object of Pom = Pos > Set (following the convention whereby the
identity functor 1get is contracted to Set in this context). A morphism of pomsets f: (P, u, ¥) — (P’, ', 3')
consists of a monotone event map f: P — P’ on the underlying posets together with an alphabet map or
translation t: ¥ — X' from ¥ to X’ such that tu = p/f (i.e., the event map and translation are consistent
with respect to the labelings). We can view Pom as the full subcategory of Prom = 2! > Set, the latter
generalizing the notion of pomsets by allowing P to be a preorder.

5.4 The Forgetful Functor for D> &

We have already defined the forgetful functor U: D> & — Set as

This makes the underlying sets of objects of D > £ those of objects of D. If the objects of D are spaces while
those of D> & are labeled spaces, the underlying sets of the latter are the same as those of the former, i.e.
the labels are ignored.

We now give conditions under which this forgetful functor has a left adjoint. We have no information on
right adjoints.

Lemma 17 Let F: A — C and G:B — C be functors having left adjoints F' and G', respectively. Suppose
further that F'F' is the identity functor on A (so that C can be seen as a coreflective subcategory of A.) Then
the projection functor (F | G) —— A has a left adjoint.

Proof:  Let n“:C — GG'C be the unit of the adjunction G’ 4 G. I claim that the “free (F' | G) object on
an object C” can be defined by

G
FF'C=C "5 GG'C,
and the unit of this adjunction is the unit of the adjunction F’ - F, denoted nf': C — FF'C = 7n(F'C,n“,G'C).3

For suppose that p: C' — (A, f, B) is an arrow of C. By definition of 7, the codomain of p is FA, hence p
corresponds to an arrow

o A

The adjunction G’ 4 G then ensures the existence of a unique ¢ making the following diagram commute

FA

3FF'C = C but it is not necessary that nf be the identity arrow of C, although it is always an automorphism.
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Thus (pb7q> is an arrow factoring p. Properties of the two adjunctions ensure that it is the unique such
arrow. This completes the proof.

Corollary 18 Let D and £ be objects of COSMON, and suppose that D has an initial object O preserved
by tensor product with any object. Let Ug have a left adjoint. Then the forgetful functor from D!> & also
has a left adjoint.

Proof: By proposition 5 Up, has a left adjoint D taking any set X to the discrete category DX. Note that

Up,DX = X. So the lemma applies, and the projection D > € —— D has a left adjoint. By composition
with D we obtain a left adjoint to Up_g. B

6 Abstract Specification of the Operations

Having established the categorical framework for our abstract treatment of time, we now define the operations
of our algebras of behaviors. The sense in which time is abstract is that a fixed category D of spaces is assumed
to be given as a parameter. The definitions may therefore refer to D, but will not assume that D has any a
priori structure such as labels on points or a metric between points. Each choice of D determines an algebra
of behaviors, really a class of behaviors since we impose no cardinality bounds on the number of events in a
behavior, other than the requirement that the events of a behavior form a set.

Most operations are of arity a small integer. On occasion however, e.g. when certain arguments are required
to have the same domain or the same codomain, the arity will be a graph, meaning that the arguments will
be organized as a functor from that graph. For example if the arity is the 3-vertex 2-edge graph of shape <
(two edges pointing to the right) then the arguments are two morphisms with a common domain. This is
made uniform by regarding each integer arity n as a discrete (edge-less) graph with vertices 1 through n.

Disjoint Concurrence, dconcur(p, q), notation p+q. The disjoint concurrence of behaviors p and ¢ performs
both p and g concurrently, that is, unconstrained in time. It is defined as the coproduct p + ¢ in D.

Disjoint Concatenation, dconcat(p,d,q), notation p;¢q. The disjoint concatenation of behaviors p and ¢
with delay d performs both p and ¢ as in disjoint concurrence, but in the order p, then a delay d: I + I — d,
then ¢. It is defined by the pushout

where the top morphism is the sum 7, + m4:p X ¢ +p x ¢ — p + ¢ of the two projections m,:p x ¢ — p and
TgpXqg—qfrompxg,and [+ N)Qr=ZIQr+IQr=r+r.

Concurrence, concur(p — k < ¢), notation p||xq, or p||¢ when k is supplied by context. The concurrence of
behaviors p and ¢ over k performs both p and g concurrently, coordinated by k. It is defined as the coproduct
of the morphisms p — k and ¢ — k in D/k, the comma or slice category of morphisms to k (“objects over”
k), itself a morphism to k and thus retaining the coordination.

Concatenation, concat((p,d,q) — k), notation p;¢q. The concatenation of p with ¢ performs both p and
q concurrently, coordinated by k, but in the order p, then a delay d, then ¢. It is defined as for disjoint
concatenation, with the pushout formed in D/k.

Local disjoint concatenation, ldconcat(d,p — L < ¢), notation pféq. The local disjoint concatenation of
behaviors p and g with delay d performs p and ¢ concurrently except that events of p at a given location
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must be followed by a delay d: (I + I) — dy before performing events of ¢ at that location. It is defined
analogously to disjoint concatenation via the pushout

where L_:p X1 ¢ — p x q is the standard embedding, namely the equalizer L, o7, and L, o w4, and the rest
is as for disjoint concatenation.

Local concatenation, piz 14518 the appropriate combination of concatenation and local disjoint concatenation.

Orthocurrence, orthocur(p, ¢), notation p ® gq. The orthocurrence of behaviors p and ¢ consists of the flow
of p and ¢ past each other. It is defined as their tensor product p ® q.

Unit, unit, notation I. The unit is a one-event behavior that flows by unnoticed. It is defined as the unit I
of D, being the unit for orthocurrence.

Observation, observe(q,r), notation r?. The observation of behavior ¢ by behavior r is the result of observing
every stage of every event of ¢, where the stages of an event of ¢ are defined as the events of r. It is defined
by the adjunction p ® ¢ — r = p — r9, that is, —7 is right adjoint to — ® q.

Product, product(p,q), notation p x q. The product of behaviors p and ¢ consists of all pairs (a,b) of
constituents a of p and b of ¢, with all the structure of p and ¢ preserved coordinatewise. It is defined as
their ordinary (categorical) product p X q.

Local product, 1product(p — L <+ ¢), notation p X, q. The local product of behaviors p and ¢ consists of all
pairs (a, b) such that a and b are L-colocated (conceptually, at the same location | € L). It is defined as the
pullback

7 The Kind Language KL

The kind language KL consists of terms naming certain kinds in COSMON. KL terms are among those
terms that can be built up from ground terms 1,2,3,3’, R, R°?, and SR using the operations ! and >.

We make each ground kind semiconcrete by taking its underlying set functor U to be the constant functor
yielding a singleton.

Some terms in this language are neither useful nor well-behaved, for example 2>1!, which denotes a category
that is not closed. In forming D > £ we shall restrict D to terms built using ! and t>. That is, we forbid D
to be a ground term, as in 2 > 2. In addition, in forming & > £ we shall restrict £ to terms of the form D!
and ground terms. That is, we forbid £ to be built using .

The reasons for these restrictions have to do with which adjoints the various forgetful functors have. The
forgetful functor we defined for ground types two paragraphs back has a left adjoint, namely the constant
functor yielding the initial object. However it cannot have a right adjoint since it does not preserve the
initial object. While we could easily fix this by redefining U(0), we could not as easily fix the fact that U
must map I to a singleton (being monoidal) but I 4+ I to a doubleton if U has a right adjoint, impossible
since I + I = I in all our ground types.

Moreover the forgetful functor we defined for D> £ has a right adjoint, but we have no guarantee that it has
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a left adjoint, and no guarantee (needed for Theorem 11) that the forgetful functor of £ in D > £ preserves
all limits.

These two considerations therefore warrant our restrictions on KL terms.

Theorem 19 Fvery KL term names a closed bicomplete category.

Proof:  This follows by induction on the structure of terms of KL. For the base case, ground kinds are
closed and cocomplete by definition. For compound terms the theorem follows by induction from Theorems
7, 8, 9, and 11, Corollary 12, Theorem 13, and the fact that the forgetful functors of the basic kinds and
those constructed by ! and > have the necessary continuity properties and adjoints. 1

KL kinds include 1! = sets, 2! = preordered sets, 1!> 1! = multisets, 2! > 1! = ordered multisets, 1!! =
categories, 2!! = order-enriched categories, 1!!! = 2-categories, 3! = causal spaces, 3'! > 1! = prossets, and
RP°P! = premetric spaces. It should be straightforward to verify these correspondences from what has been
said thus far about the ground kinds and the operations.

This language provides a succinct system of names for a usefully broad range of categories of datatypes.
It suffices to name such a category D to be assured of the presence of all operations definable by universal
constructions (limits, colimits, adjunctions, etc.) from the monoidal category structure of D.

8 Conclusion

8.1 Directions For Further Work

We mention briefly some projects we have in mind.

Working over Cat. Our techniques would appear to extend straightforwardly to monoidal 2-categories,
where the forgetful functors are not to Set but to Cat. This turns the labeling function from the underlying
set of a behavior to (the underlying set of) an alphabet into a labeling functor. Its functoriality can be put
to good use, as in conveniently naming the closed category of order ideals.

Extensions to KL. Currently, methods for specifying subkinds of dynamic kinds are somewhat ad hoc, e.g.,
posets are acyclic 2-categories. It would be useful to have operators that would produce subkinds for a
wide variety of D, such as a single approach to producing partial orders (as opposed to preorders) and say
symmetric metric spaces.

It would also be useful to have operators for constructing new metrics. Indeed the present supply of metrics
has been constructed ad hoc. Some uniform way of constructing them would be useful.

Such operators would be additions to the kind language KL. The only operations we have admitted thus
far to KL are ! and >. We do not however intend by any means that these be all. To fit in with ! and >
however these operations would need similar continuity properties.

Stochastic delay. Another possible choice for D is that of a category of probability distributions. In other
words for each pair of events u, v we specify a probability density function p,,: R — [0, 1] for the associated

27



delay. Consecutive delays would be combined using convolution

oo

Puv @ pow(y) = / Puv(T) pow (y — )dxdy

— 00

The main problems include finding a suitable ordering on distributions and dealing with the fact that the
various distributions on delays are not independent. There is also the question of the proper treatment of
distributions which are not well behaved and continuous (e.g., the Dirac delta function).

8.2 Summary

We have described a model of concurrency consisting of two orthogonal parts, one dealing with kinds of
behaviors, the other with the behaviors themselves.

Kinds are taken to be semiconcrete monoidal categories, objects of COSMON. A “kind language” KL is
provided for naming a few basic kinds and combining them with operations ! and > to form compound
kinds. The ! operation turns a metric into a category of spaces with that metric. The > operation combines
two kinds by using one as a source of structures and the other as a source of alphabets with which those
structures may be labeled. Kinds namable in this way are called KL kinds.

Behaviors are taken to be objects of a given kind D an object of COSMON. A “behavior language” PSL
is provided for naming basic behaviors and combining them with a useful library of operations suitable
for concurrent programming. Although typical behaviors contain much structure, including a metric and a
labeling function, this is only typical and not required. In general nothing is assumed about the “internal”
structure of a behavior, which may well be just a simple atomic value. We are however given operations
for assembling behaviors to form larger behaviors, namely limits, colimits, and a tensor product. These
operations belong to the language PSL.

PSL is thus a true algebra of behaviors. Even though the PSL operations are defined uniformly across
the spectrum of KL kinds, their action on complex KL kinds would appear to be as useful as if PSL had
been defined to operate explicitly on spaces with metrics and labeling functions. Yet the meaning of PSL is
defined no differently for “atomic” behaviors than for behaviors with complex structures. Thus PSL acts as
an algebra of behaviors in assuming no structure within its elements yet being able to recreate that internal
structure “from outside.”

The division of labor between KL and PSL is completely orthogonal. “Motion” via functors of COSMON,
from which KL operations are drawn, has no influence on the point sets of spaces and individual alphabets
making up any given object D of COSMON. This independence finds its expression in the identity U = U’'F
relating underlying sets, which says that underlying sets of points and functions between them pass through
F completely unscathed. Conversely, motion via functors of D, from which PSL operations are drawn,

takes place relative to a fixed D and hence has no influence on the metrics and alphabet kinds making up
COSMON.

That PSL operates on the “individuals”—objects and arrows—of a fixed D gives it the character of a first
order language. Since formation of D-functor spaces is an operation of PSL, the proper analogy is with ZF as
a first order theory, where sets of individuals are also individuals. That is, ZF and PSL are both “internally
closed,” both by virtue of working in a closed universe.

Unlike ZF however, which operates in the cartesian closed universe of sets, PSL operates in a closed universe
that is not presumed to be cartesian closed, whence the need to distinguish between tensor product ® and
ordinary product x in PSL.
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This distinction arises in a natural and inevitable way from an elementary and familiar observation: the
temporal accumulation operator need not be product. That it is product (conjunction) in the two-valued
metric logic underlying ordered time is not a necessary facet of the logic of time.

A recent noncartesian logic is Girard’s linear logic [Gir87]. Like PSL, linear logic distinguishes ordinary
and tensor product. Like Boolean logic but unlike PSL, Girard’s linear logic is self-dual, giving rise by de
Morgan’s law to two binary operations dual to the two products. This prompts the following question.

Why should self-duality survive the diverging of the two products?

To bring the concepts of PSL together we have drawn heavily on some basic techniques that have evolved
in category theory within the past three decades, most notably those of closed categories and enriched
categories. These techniques in the dry context of a mathematics text can seem dauntingly abstract. But
just as there are good and bad cholesterols so it is with abstractions: the bad daunt and the good clarify. In
adapting these techniques to computing practice we have tried to leave the good abstractions intact, namely
those that simplified matters or seemed to bear on computation.

One defect of our account is that it has put relatively little emphasis on the logical character of PSL. The
adjunctions and compositions pervading our framework contain all the essential elements of a modern logic,
yet we have not made this logical character as explicit as we might. This may just be a reflection of the
algebraic perspective which nurtured this work. We hope that the proper balance of algebra and logic here
will become clear in due course.

[Added in press: Since writing the above more than a year ago, we have made considerable progress towards
understanding the roles of duality and linear logic in this model. From one point of view there is a duality
between order in schedules and geometry in automata [Pra91], whereby true concurrency in schedules has a
natural representation in automata in terms of surfaces and volumes.

From a slightly different viewpoint a more symmetric duality ideally suited to modeling linear logic as
envisaged above may be obtained by the trick of moving some of the automaton structure over to the
schedule side to make the two sides of the duality perfectly symmetric [Pra92]. This symmetry then permits
both sides of the duality to be regarded as elements of a single model, by analogy with the negative and
positive propositions of propositional logic, which are mixed in together.]
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