
Linear process algebra
LPA

Vaughan Pratt
Stanford University

October 19, 2011

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 1 / 28

1. Motivation

Goal: Define ”concurrent process”

Uses (or, why do semantics?)

Denotational semantics for operational models and realizations of
concurrency.

Concurrent programming language design:
Refine existing approaches and operations,
Suggest new ones.

Compiler verification.

Reconcile documentation (manual) with implementation.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 2 / 28

2. Requirements

Expressive denotational semantics for Petri nets, UML, MSC,. . .

Cater for nondeterminism

Definability of termination and runtime.

Useful family of definable operations.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 3 / 28

3. Attractions

The organization of LPA parallels both linear algebra and point set
topology in certain fundamental ways.

Its algebra parallels that of linear logic: the definable operations
include all the additive, multiplicative, and exponential operations.

These give two reasons for the name ”linear process algebra.”

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 4 / 28

4. Definition of Process

A process (A,X) consists of a set A of events a, a′, . . . together with a
set X of possible configurations or states x , x ′, . . . of those events.

Each event can be in any of four event states or scalars:

ready 0, ongoing , done 1, cancelled ×

Denote {0, , 1,×} by K , structured as the following (upward) directed
reflexive graph (3 + 4 = 7 edges).

K =

•1

• • ×
�

�
�•0

State: a function x : A → K . (State vector, painting,. . .)

Hence X is a subset of the set KA of all functions from A to K .

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 5 / 28

5. Analogies

Process Language ⊆ Σn Topological space Vector space
graph K alphabet Σ Sierpinski space field R etc.
event position point vector
state word open set functional

Difference: Only linear algebra has scalar multiplication.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 6 / 28

6. Matrix view

A state can be viewed as an A-dimensional vector over K , having
coordinates xa = x(a). Orient it to make it a column vector of height A.

All vectors in X share the same index set. Hence all the states can be
placed side by side to create an A× X matrix P with entries
Pax = x(a) = xa.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 7 / 28

7. Examples

Sequence a.b
a 0 11
b 00 1

• 11
1

•
0

• 00

(note segue)

Choice a + b
a 0 1××
b 0×× 1

•1×
@

@
@

×

•×1
�

�
�

×
• 00

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 8 / 28

8. Concurrence vs mutex

Concurrence a||b a 0 10 10 1
b 000 111

•11
�

�
�

1 @
@
@

1

•10
@

@
@

0

• • 01
�

�
�

0

• 00

mutex(a, b)
a 0 1010 1
b 000 111

•11
�

�
�

1 @
@
@

1

•10
@

@
@

0

• 01
�

�
�

0

• 00

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 9 / 28

9. Late vs early branching

Late branching a(b + c)
a 0 11111
b 000 1××
c 000×× 1

•11×
@

@
@

1 ×

•1×1
�

�
�

1×
•100

00

•000

Early branching ab + ac
a 0 111 111
b 000 1××××
c 0××××00 1

•11×
1 ×

•10×
@

@
@

0×

•1×1
1×

•1×0
�

�
�

×0

•000

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 10 / 28

10. Concurrent time complexity

Motivation: mutex(a, b) should take longer than a||b.

Step: a pair (x , y) of states of X such that ∀a ∈ A, (xa, ya) is an edge of
K .

Run: a finite or infinite sequence x0, x1, . . . of states every consecutive
pair of which is a step.

Time of a run: one less than the number of steps in it.

Examples. a||b takes time 1 while mutex(a, b) takes time 2.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 11 / 28

11. Higher dimensional automata

Introduced by P in POPL’91.

A state can be understood as a face of an A-dimensional cube, whose
dimension is the number of ongoing events in that state.

mutex(a, b): a square with the interior missing: 32 − 1 = 8 states.

(3, 2) mutex: Three children each allowed to ride one of two ponies once
around the track. Process is a 3D cube with 33 − 1 = 26 states.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 12 / 28

12. Distinguished states

Initial state: All events are ready (zero vector).

Write x0 for the (necessarily unique) initial state when it exists.

Disposed-of event: either done or cancelled.

Final state: all events disposed of.

Write XF for the set of final states of (A,X).

Parfinal state: a state x for which there exists x ′ ∈ XF such that (x , x ′)
is a step. (Optional stopping point, corresponding to final states in
automata theory. Note that a step can only cancel a ready event or finish
an ongoing event, it cannot finish a ready event.)

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 13 / 28

13. Types of processes

Initialized: Initial state x0 exists.

Connected. ∀x ∈ X there exists a finite run x0, x1, . . . , x .

Nonblocking. Every ongoing event is permitted to complete. Formally,
for every state x ∈ X in which some event a is ongoing (xa =) there
exists a state y with ya = 1 and having a run from x to y .

Prefix closed. All states parfinal. (So no obligation need be fulfilled.)

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 14 / 28

14. Operations

Concurrence (A,X)||(B,Y) = (A + B,X × Y)

(x , y) ∈ X × Y maps a ∈ A + B to x(a) and b ∈ A + B to y(b).

Application: noninteracting concurrency (”parallel play”).

Sequence (A,X).(B,Y) = (A + B,X × {y0} ∪ XF × Y).

Meaning: As for concurrence but restricted to states in which either
(B,Y) has not yet started or (A,X) has terminated. Note: no attempt
to segue.

Choice (A,X) + (B,Y) = (A + B, {(x0, y0} ∪ X ′ × {×} ∪ {×} × Y ′)
where X ′ denotes X less x0 and likewise for Y ′.

Meaning: An initial state, together with states of X with B cancelled,
and states of Y with A cancelled.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 15 / 28

15. Orthocurrence

Orthocurrence (A,X)⊗ (B,Y) = (A× B,F) where F is the set of all
states x : A× B → K such that x(−, b) : A → K is in X and
x(a,−) : B → K is in Y .

That is, all A× B matrices whose rows are states of B and whose
columns are states of A.

Example:
Trains T then t, stations S then s.

Tt ⊗ Ss

TS 0 11111111111
Ts 00000 11111
tS 000 10 10 111
ts 00000000000 1

•1111
111

•1110
�

�
�

11 0 @
@
@

1 10

•1100
@

@
@

1 00

•1 0 •1010
�

�
�

10 0

•1000
000

•0000
Applications:
Flow of one process through another.
Communication via flow of data through a channel.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 16 / 28

16. Process maps

Map f : (A,X) → (B,Y):
a function f : A → B
s.t. ∀y : B → K in Y (all states of the target)

the inverse image yf = A
f→ B

y→ K of y by f is in X .

Analogies: Language homomorphisms, continuous functions, and linear
transformations are all definable in this way.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 17 / 28

17. Processes as Transformable Entities

Conventional approach: An algebraic structure is a set, more generally a
topological space, equipped with certain operations and satisfying certain
equations, and transforming via continuous operation-preserving
functions called (continuous) homomorphisms.

This approach: An algebraic structure with topology is an object of a
dense extensional pointed category.

This is simpler than it sounds because functors and natural
transformations are not mentioned, only categories themselves.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 18 / 28

18. Crash course in categories

(. . . as distinct from category theory)

Approach: via the notion of free category G ∗ on a graph G .

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 19 / 28

19. Free categories

Directed multigraph: a graph G = (V ,E) permitting multiple edges
between two vertices. Graph for short.

Path in G : a finite sequence p of consecutive edges of G .
Write E ∗ for the set of paths in G .
E ∗ contains one empty path for each vertex.

Identity i : V → E ∗: i(v) is the empty path at V .
i(v) is the identity for concatenation where defined.

Concatenation: a partial binary operation defined on two paths iff they
are consecutive.

Concatenation is associative: p(qr) = (pq)r .

Free category G ∗ on a graph G : The algebra of paths in G under the
operation of converse of concatenation.

Terminology: object = vertex, morphism = path.
Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 20 / 28

20. Categories

Parallel: running between the same pair of vertices.
(Applicable to both edges and paths.)

(Directed graph: a graph whose parallel edges are equal.)

Path congruence: an equivalence relation on parallel paths compatible
with concatenation.

Category: the quotient of a free graph by a congruence.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 21 / 28

21. Processes

A process is rigid when it has only one self-map (namely the identity).

A1. There exist two rigid processes 1 and K with four scalar maps
0, , 1,×from 1 to K .

An event of P is a map from 1 to P.

A state of P is a map from P to K .

Scalars are therefore simultaneously states (of 1) and events (of K).

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 22 / 28

22. Actions and extensionality

It is convenient (but not necessary) to use the language of set theory.
Write AP and XP for the sets of respectively events and states of P.

Let h : P → Q be a map.

Define the left action of h to be the function ĥ : AP → AQ defined by
ĥ(a) = ha.

Dually the right action of h is the function ȟ : XQ → XP defined by
ȟ(y) = yh.

Call two parallel maps equivalent when they have the same left and right
actions.

A2. (Extensionality) Equivalent maps are equal.

(A2 can be phrased without reference to sets thus. If for all events a of
P and states y of Q, fa = ga and yf = yg , then f = g .)

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 23 / 28

23. Adjointness

Two functions f : AP → AQ , g : XQ → XP are said to form an adjoint
pair from P to Q when for all events a of P and states y of Q,
yf (a) = g(y)a.

Proposition. The left and right actions of a process map form an adjoint
pair.

Proof.

y ĥ(a) = y(ha) (definition)

= (yh)a (associativity)

= ȟ(y)a (definition)

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 24 / 28

24. Density

Concept of new entity: one that is adjoined to the ambient category.

An ordinary map is one that is neither an event nor a state.

A3. (No new maps) Any new ordinary map is equivalent to an old one.

Proposition (density). For any two processes P,Q for which P is not 1
and Q is not K , every adjoint pair of functions from P to Q is the pair of
actions of some map g : P → Q.

A1-A3 define what it means to be a category of processes and their maps.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 25 / 28

25. Completeness

A1-A3 did not require that every process exist, in fact they are satisfied
when 1 and K are the only processes and the scalars are the only maps.

A weak requirement would be that whatever operations have been
defined are total. A4 is a stronger requirement.

A4. (Completeness) Every new object is isomorphic to an old one.

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 26 / 28

26. Linear algebra

Defined in the same way as LPA, except that A1 is modified as follows.

A1’. There exists an object K , with a set k of scalar maps from K to
itself forming a field.

Unlike the scalar maps of LPA (and of topology), those of linear algebra
are composable. Composition denotes multiplication in the field (more
generally any ring).

Addition is defined on parallel vectors, and is abelian. This is neatly
achieved by assuming that homsets are abelian groups instead of sets.

A2-A4 work the same way. This gives one justification for referring to
this process algebra as linear. The other is that the operations of
concurrence P||Q and orthocurrence P ⊗ Q correspond to linear logic’s
operations of sum P ⊕ Q and tensor P ⊗ Q.

Orthocurrence as a process operation was introduced by P in 1983.
Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 27 / 28

FIN

Vaughan PrattStanford University () Linear process algebraLPA October 19, 2011 28 / 28

