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Abstract

Classical logic enforces the separation of individuals and predicates,
linear logic draws them together via interaction; these are not right-or-
wrong alternatives but dual or complementary logics. Linear logic is an
incomplete realization of this duality. While its completion is not essen-
tial for the development and maintenance of logic, it is crucial for its
application. We outline the “four-square” program for completing the
connection, whose corners are set, function, number, and arithmetic, and
define ordinal Set, a bicomplete equational topos, meaning its canonical
isomorphisms are identities, including associativity of product.

1 A Postcard from the Edge
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Hi, boss. Just took over source’s shift. Did
you hear about the line and the dot? What
does she see in him? He’s an impractical bore,
goes on forever. I know when to start and stop.
I’m on the day shift these days, boss, my two

vertices do the night shift. When they’re sleep-
ing they look real small, but when they’re on
the job and I’m asleep it’s the other way round,
they’re the long ones. Some call it duality, I
call it common sense. No one does their best
working round the clock.
Yawn, target’s turn. Remember me, boss.

Please? Your faithful • •

Boss
3210 Go Street
Stop Junction

Edges and vertices is a right-sized math metaphor for the stop-and-go of life.
Why be just an edge when you could be a whole line?1 Because breaks make
life interesting. They give maintenance a turn, which is good. And they give
your opponent a turn, which is bad but that’s the breaks in an interesting life.

Category theory and set theory don’t get on too well, but what can you
expect when an irresistible force meets an immovable object? Common sense
suggests that they make up. The trick is for each to recognize the virtues of the
other, and not try to do everything on their own.

In life’s stop-and-go traffic, sets are the brakes and categories the accelerator.
You can’t get smooth motion out of just sets, that’s what the edges of a category
give you: postulated smooth motion that permits breaks but does not require
them. Sets can’t offer this, any smooth motion created purely out of sets must
have breaks everywhere. So dense are Set’s breaks in smooth motion that one
cannot even make sense of them, or so the undecidability in ZF of the continuum
hypothesis seems to be telling us.

But surely you can stop in a category, namely at an object? Yes, but that’s
because ob(C) is a set (not necessarily a small one). This is inevitable: we don’t
know how to broaden our world view by moving away from the set conception
of ob(C), and it seems very plausible to me that there is no such way. All we
know is how to narrow our view, for example by weakening the cartesian closed
category Set as the target of our external homfunctor to the closed category
Ab of abelian groups. You can define an abelian group in Set, but you can’t
define a set in Ab.

This paper outlines preliminary ideas for a program of mathematical fitness.
The two essential ingredients are dual interaction and the category Set.

Dual interaction has the form of an edge in a graph. The source and target
are the duals, the edge is the interaction. At that level of abstraction duality

1http://forum.swarthmore.edu/pow/solu3.html
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and interaction are themselves duals, as witnessed by the interchange of ver-
tices and edges when dualizing a linear order [Pra92]. Furthermore duality and
interaction interact fruitfully as witnessed for concurrency theory by [GP93]
and mathematics by [Pra95], both applications of the Chu construction, the
mathematical quintessence of dual interaction. Dual interaction rests on itself.

The category Set is where categories and sets must get along. We shall give
a new axiomatization of Set that stresses duality and simplicity throughout.
The objects of Set are the ordinals, the morphisms are functions between the
underlying sets of the ordinals.

There are three identifiable levels of duality in this version of Set. Level 0
contains just (whimsically named) position and momentum. Level 1 has two
dualities, the two values stop and go of momentum, and the two values vertex
and edge (or city and highway) of position. Level 2 has four dualities, being
the four edges of a square whose corners in order are number, set, function, and
arithmetic. These seven dualities may be laid out as follows.

Momentum
Stop Go

Posi- • Number Set

tion
•
• Arithmetic Function

There is one further duality that did not seem to fit in here, inside and
outside. On the outside, numbers are stopped, sets are on the go. But the
inside of a number, as an ordinal, seems all rigged up for travel, whereas a set is
discrete inside, no highways at all. This is typical of duality: the elements of any
collection (at least those constructed implicitly or explicitly by the contravariant
power set functor) behave dually to the collection itself.

Without going into details, let us just point out that the duality of number
and set is put to a variety of uses. A good example is the following.

From a set-theoretic perspective, one simplification achieved by this imple-
mentation of Set is in the computation of the membership relation ∈ on the
objects of Set, specifying for all pairs A,B of objects whether or not A ∈ B.
Goldblatt [Gol83, 12.4] gives Osius’ method of computing membership from the
epsilon trees of Set, concisely explained in six pages. In our Set the compu-
tation reduces to the equation ∈ = <. The epsilon trees of this Set make
membership and ordinal comparison one and the same relation on the objects.

It might appear that we have thrown the baby out with the bathwater:
membership couldn’t possibly be that simple. But in fact our Set is equivalent,
in the categorical sense, to all other categories claiming to be Set, and there
is no evident reason for preferring the versions of Set requiring six pages of
computation to our version. In fact quite the opposite, there are good reasons
for preferring ours, for example the following.

3



From a category perspective, one prominent simplification is to the natural
isomorphisms associated with the cartesian closed structure, such as associativ-
ity of product. In our Set these are identities. This has three advantages. First,
we can do true equational logic, writing A× (B ×C) = (A×B)×C instead of
clumsy A × (B × C) ∼= (A × B) × C, without dishonestly misrepresenting the
situation as some do. Second, no additional information need be supplied as to
which isomorphisms are intended. Third, there are no awkward coherence con-
ditions that need be checked, since identities compose to identities, immediately
guaranteeing that “all diagrams commute.”

2 Dual Interaction

The essence of classical first order logic is duality, that of linear logic, interaction.
The interaction should be an edge connecting the two vertices of the duality,
but the interaction of linear logic does not stretch quite far enough on either
side to reach the duality of classical logic.

The duality of classical logic is the simple categorical duality of opposites:
Set and Setop. Duality acts to classify the entities of the language into individ-
uals and predicates, holding them at a respectful distance. Setop is well-known
to be equivalent to the category CABA of complete atomic Boolean algebras,
the essence of propositional or zeroth order logic (though one can quibble about
where to put the infinite propositions). The objects of Set supply first order
logic with its universes; here there is no analogous quibble, a first-order universe
is exactly a set.

Whereas duality in classical logic serves to separate the two kinds of entity
into two classes, interaction in linear logic (LL) draws them together by permit-
ting them to interact. Its two fundamental operations are perp, A⊥, and tensor:
binary tensor A⊗ B and zeroary tensor or unit 1.

Perp acknowledges the connectedness of duality by permitting travel from
an object A to its dual A⊥. This contradicts classical logic’s philosophy of
maintaining the distinction about as completely as one could imagine!

But perp gives only a quantum tunnelling kind of connectedness. Applying
it again just takes you back to where you started, A⊥⊥ = A, giving no hint
of whether there is an “in between” over which perp jumped. Tensor gives a
more creative form of connection by producing an object A⊗ B blending both
the separate concepts of A and B and their knowledge about those concepts,
in a way that not only preserves knowledge but draws all possible inferences
from it relevant to the pooled set of concepts. This is achieved for the concepts
by forming the product space of concept pairs, and for the knowledge by the
familiar process of logical deduction.

A simple example of tensor product is given by the product of two 2-chains
{a < b}, {a′ < b′} in Pos, a square. The “concepts” are the two vertices in
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each poset, which multiply to form four vertices. The four sides of the square
are deduced by holding a vertex of one poset fixed while varying the other, the
universally understood way of observing one half of an interacting pair with the
minimum of interference from the other. (Pos being cartesian closed, that is,
its tensor being ordinary categorical product, this method guarantees no inter-
ference from the stationary object, but this fails when e.g. there are constants
and the stationary point is one of them. But this is just “bleeding over” of
extra information from the supposedly stationary argument, not destruction of
knowledge about the argument being observed; we can overlearn that way but
not underlearn.)

But now consider the diagonal, from (a, a′) to (b, b′). Here we are varying
both objects. Going around either side of the square lets us deduce by transitiv-
ity that (a, a′) < (b, b′). This deduction was made by the tensor product, which
is a very simple yet remarkably effective deduction engine!

The blending process tends to average the knowledge-to-concept balance of
its operands, which can range from coherent (knowing a lot about a little) to
discrete (knowing little about a lot), see [Pra95] for more detailed numerical
aspects of this measure. Perp negates this balance; thus if A is off-center (the
origin) in one direction, A⊥ will be just as off-balance in the other. A ⊗ A⊥

then produces a larger but more balanced object.

Depending on “which way round” one looks at the arguments and the result,
interaction might also appear as par A...................................................

..............

.............................. B, the De Morgan dual (A⊥⊗B⊥)⊥ of
tensor, or as the internal homfunctor or linear implication, A−◦B = A⊥...................................................

..............

.............................. B =
(A⊗ B⊥)⊥.

The asymmetry of linear implication gives it the character of an experimenter
B observing a subject A. We may interpret B−◦C as C enlightened by observing
B, and A−◦(B−◦C) as C’s further enlightenment by A. Thus if specialist A
informs C that Socrates is a man while generalist B declares all men to be
mortal, C can in principle draw the famous conclusion. Commutative linear logic
presumes C to be capable of factoring out all dependencies on the order in which
the information is presented, which it asserts with the identity B−◦(A−◦C) =
A−◦(B−◦C).

But this viewpoint suggests that it might be more natural to view C as
observing A and B in combination, in a form which allows C to see both at the
same time, each seen as clearly as in A−◦C and B−◦C, with C able to combine
information from both. This is what tensor accomplishes, via A−◦(B−◦C) =
(A ⊗ B)−◦C. This identity shifts the responsibility for doing logic from C to
tensor: on the left C must make the inference herself, on the right she need
merely look it up in A⊗B, which has precomputed the inference. A⊗B is the
canonical observer of its constituents, as expressed by the unit A−◦(B−◦A⊗B)
of the adjunction making B−◦− right adjoint to − ⊗ B. This is a theorem of
Hilbert-style LL.

The counterpart theorem to the unit is the counit A ⊗ (A−◦B)−◦B, the
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evaluation map telling us how to apply a “function” f : A → B to an argument
x ∈ A to yield f(x) ∈ B. This looks very interesting. But when we move it
around a little using just the simple rules we’ve already presented, evaluation
reduces to the triviality A⊗B⊥−◦A⊗B⊥. Running this derivation backwards,
we conclude that the rules themselves must somehow incorporate the meaning
of evaluation, since the triviality surely cannot. This is very surprising given
the simplicity of these rules, which do not appear on the surface to embed the
essence of evaluation.

The interactive nature of tensor should be contrasted with linear logic’s sum,
A ⊕ B, their noninteracting parallel play. Its observation by C, (A ⊕ B)−◦C, is
equivalent to (A−◦C)&(B−◦C), the separate observation of A by C with the
separate observation of B by C, which we can restate in terms of plus itself as
((A−◦C)⊥⊕(B−◦C)⊥)⊥ by dualizing everything. With is simply the De Morgan
dual of plus with respect to ⊥, like tensor and par.

This much of linear logic has no specific orientation relative to classical logic;
“concept” and “knowledge” could be interchanged without compromising any
of the language and associated logic seen so far.

A first step towards connecting linear logic to classical logic is made with
two dual unary operations, !A and ?A. These act as projections, projecting the
LL universe in the general direction respectively of the Set and Setop worlds
of classical logic.

They may be represented graphically as terminating the interaction “at each
end” by equipping it with vertices. This gives the vague notion of “in be-
tween” created by tensor a specific direction as well as a tension (“making tensor
tenser”) that stretches out the LL universe towards the poles defined by classi-
cal logic. This tension is a weak reflection of classical logic’s rigid separation of
individuals and predicates.

What LL does not do however is to move the endpoints out as far as the
poles themselves.

Now if you saw an amorphous blob start to orient itself parallel to the line
between two points, and to stretch itself out along the line towards them, what
would you predict would or should happen? If it gets near the poles but stops,
is this ok?

If it turned out there were other equally good poles at the place the blob
stopped, this would make sense. If it turned out that the blob would break if
stretched that far, or if contact with the poles would injure the blob, stopping
early also makes sense.

But if there are no better poles to aim for, and stretching out all the way
only improves the blob’s constitution, I’d recommend that it go for it, wouldn’t
you? This is what I shall try to argue here for the LL blob reaching out for the
classical poles: go all the way, tie yourself to the poles.

As an object of study LL may well be better off detached from everything
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and free to wave around or be waved around by its investigators. But whether
to tie anything down in a lab is very simple. What you stand on or put books
on should be tied down, what you need to pick up and wave around to study
better should not.

My personal interest in LL is not at all as an object of study but as a
framework. The more tightly secured it is, the less effort need be invested on
incestuous study of the lab’s foundations and the more time one has to get some
real work done. The study of foundations is not real work for most of us, it is
merely construction and maintenance incidental to real work.

For specialists in foundations it is of course a legitimate object of study and
being a fulltime maintenance worker is a perfectly respectable occupation. But
maintenance is best done in downtime, which users want minimized. During
uptime, linear logic needs to be properly secured.

The problem of putting LL to work then becomes, where should the endpoints
of interaction be secured?

Given that LL axiomatizes !A as projection onto a cartesian closed cate-
gory, there are a few canonical choices that come to mind: Set, more generally
presheaves SetC (e.g. RGrph, reflexive graphs), more generally still toposes,
and then beyond toposes, Pos (posets) or Cat (categories).

I favor Set for four reasons: audience, simplicity, generality, and number.

Audience. More people understand sets than any of the alternatives. This
could be for any of the remaining reasons, all of which strongly recommend Set
as a useful and usable category.

Simplicity. Mac Lane and Moerdijk’s “First introduction to topos theory”
[MM92] is over 600 pages. Halmos’ “Naive Set Theory,” as an essentially com-
plete first introduction to set theory, is in contrast a mere 100 pages.

Generality. Set appears to reach as far to the “left” or discrete end of
the Stone Gamut as any topos, thereby equipping LL with the largest possible
universe [Pra95].

One might suppose that these arguments would apply a fortiori to the more
general category Pos, or the yet more general one of Cat. However it is a
theorem that enlarging Set to Pos2 Chu(−,−) dual adds nothing to what is
obtained when the Chu construction is used to extend Set out to Setop to create
the Stone Gamut. Furthermore Set confers the additional benefits of a topos,
unlike either Pos or Cat, which though cartesian closed are not toposes.

Number. Our lives are founded on reading, writing, and arithmetic (and
other things but those are less painful to learn). No viable replacement for
arithmetic has been proposed for commerce in millennia, and none is on the
visible horizon either.

But if our lives are founded so fundamentally on numbers, and if mathe-
2Conjecture: Further enlarging to Cat yields 2-Cat and so on up.
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matics is to continue as the important servant it has been to date, it would be
incredibly shortsighted of mathematics to move away from its present arithmetic
foundation when it has no replacement for it!

Although toposes offer a notion of number, namely an element of the natural
numbers object, Set can be understood in a way that make sets and numbers
the same thing. Instead of the set of numbers as an object and a number as
an element of an object, one can think of the set of numbers as just another
number, ω. Logicians split over this, some going for the separation created by
the topos viewpoint, others for the identification created by the set theoretic
viewpoint.

I favor identification for the same reason I favor tying down !A and ?A. For
objects of study, more degrees of freedom are better. For foundations and tools,
fewer. Identifying sets and numbers, and making the natural numbers object
just another number, creates a simple, powerful, very useful, and widely used
structure, the ordinals.

We identify sets and numbers by defining a number to be an ordinal, un-
derstood as the set of ordinals less than it, and by having no other sets than
ordinals. Hence there will be exactly one set of each finite cardinality, but
uncountably many countable sets.

This may seem draconian to say the least! How are we to understand the
difference between the evidently different sets {1} and {2}, for example?

Well, in the category of ordinals, there are two entities perfectly capable
of representing these sets, namely the characteristic functions of these two sets
from the (sufficiently large in this case) ordinal 3 = {0, 1, 2} to 2 = {0, 1}. This is
how Pascal represents sets. If one is expecting sets with larger natural numbers,
Pascal’s implementation is reluctant to take as the domain of the characteristic
function the natural numbers, but only the most applied mathematicians need
have such qualms.

To perform set operations on a pair of such sets, simply compose the appro-
priate Boolean gate: an OR-gate for union, AND for intersection, etc., with the
pair of functions.

If one needs sets with more complex structure, such as the set of all real-
valued functions, one passes to larger ordinals still, in this case 22ω

, and forms an
appropriate subset of it, as a particular function, along with whatever operations
are required.

There really is no generality of representability lost by working in a category
of sets consisting of just the ordinals, and all functions between their underlying
sets.

One last remark: Set only contains sets. It contains the set of reals for
example. However it does not contain the field of reals. For one thing the
field of reals does not transform as a set, but as a field. Set does not cater
for this notion. Standardly one implements algebraic structure with relational
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structure, sets of tuples over the carrier, and topological structure as sets of
open sets. The Chu construction and its applications, not treated here but
which may be found elsewhere [Bar79, LS91, Pra93], is, we have argued [Pra95],
a workable universal framework for much if not most of concrete mathematics.
This is the machinery that should be used in conjunction with this Set to create
“the rest of mathematics,” as the chain of categories Chu(Set,K) where K is
an arbitrary set, an ordinal in our version of Set.

Thus far I have only claimed that giving up global membership is not a
great sacrifice. I will now consider the other side and argue the benefits of a
particular extreme approach to local membership, the identification of number
and set. I have already mentioned the benefit of fewer degrees of freedom. I
will now describe how rich and beautiful such a world can be.

3 Two Kinds of Negative Number

There are not one but two kinds of negative number. One gets up and creates,
the other sits back and annihilates. These represent respectively dynamic and
static ways of extrapolating backwards from the two natural but orthogonal
directions of the natural numbers.

The annihilating kind are the usual negative integers, which annihilate by
interaction with the positive integers according to the familiar law x+(−x) = 0,
yielding zero, whose dynamic interpretation is the empty set.

The creating kind are the objects of Setop, which create by interaction with
the positive integers via the Chu construction [Bar79] to create the Stone gamut
[Pra95]. Although Setop is perhaps most familiar as the concrete category
CABA of complete atomic Boolean algebras, in this context CABA’s are as well
or better understood as sets that transform by antifunctions defined as binary
relations whose converse is a function.

When Kronecker shared the attribution for the integers between God and
us, he did so for the annihilating kind. Had Ramanujan known of the creating
kind, one could imagine his rebutting Kronecker by instead apportioning the
natural numbers to Vishnu the preserver, the annihilating negatives to Shiva
the destroyer, and the creating negatives to the western God of creation.

The two systems arise because numbers, being practical, lead a stop-and-go
life. Edges are more practical than lines and dots. Numbers are harder to see
when they’re on the go, which is why we first notice them when they’re at rest.

At rest, numbers become rigid, both individually and as a group. We call
rigid numbers ordinals, small by default, and their totality a large ordinal or well-
ordered proper class, one for which every nonempty subclass has a least member.
Rigidity of the whole lets us identify every number according to its position in
the whole, independently of any question of cardinality such as finiteness.

9



With numbers at rest so neatly lined up, it takes little imagination to ex-
trapolate their order backwards to create the negative integers.

On the go, numbers lose their rigidity and become flexible sets. The totality
of sets forms a large category Set, a proper class, whose morphisms the functions
are the possible trajectories of the objects of Set. Functions are the hallmark
of complete flexibility, permitting every element of a set to go where it will
independently of every other. Note the future tense: functions look forward.

With numbers on the go, it takes little imagination to extrapolate their
motion backwards to create the creatively negative integers, which I will call the
antisets to avoid confusing them with the standard negative integers, forming the
category Setop. Where the imagination was needed was to see that numbers can
move at all. This idea does take some getting used to, but although unfamiliar it
is not at all deep mathematically, and with some practice you can get perfectly
comfortable with it.

I have already written about the Stone gamut [Pra95], to which the reader
should refer. My thesis, supported by several theorems in that paper, is that the
Stone gamut as the dual interaction of sets and antisets creates the better part
of concrete mathematics, while at the same time revealing more of its common
structure than is apparent from the relational structure viewpoint. For the
interaction, the logic of that common structure is linear logic, and its algebra is
category theory. For the duality at the endpoints of the interaction, the logic is
classical logic, and its algebra is set theory.

4 Stop-and-go Numbers

To summarize, we want a homogeneous universe to keep our foundations as
simple as possible. We shall achieve this by identifying the notions of set and
number, relying heavily on ordinal arithmetic. Our number-sets must be rigid
at rest, cold so to speak, but maximally flexible on the go, warmed up. These
two objectives are combined very simply in the one model by taking numbers
at rest to be ordinals, but transforming as though they were sets by taking as
morphisms all functions, not just those respecting the order. This is not just
a gimmick, it has profound mathematical implications, including the already
mentioned trivial solution to the awkward coherence problem.

The class of sets has traditionally been defined by the axiom system of
Zermelo and Fränkel with Choice, ZFC. (There is no practical advantage to
merely dropping Choice, and the consequences of replacing it with an alternative
are confined to the stratosphere of set theory.)

ZFC proceeds by first laying the ground rules for the behavior of sets, and
then priming the universe with a transitive well-ordered set, to be interpreted
as a set of ordinals. The rules then unroll the rest of the universe, including the
rest of the ordinal hierarchy, itself a large ordinal. (A large ordinal is a transitive
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proper class every nonempty subclass of which has a least element. A class is
transitive when every member is also a (necessarily improper) subclass.)

Without attempting to be self-contained, I will give a complete description
(up to the randomness introduced by Choice) of the bicomplete topos Set de-
fined as having for its objects just the ordinals. “Bicomplete topos” is jargon for
a category with certain additional structure. Rather than say in advance what
that structure needs to be, I will simply describe all of that structure in the
case of Set and then label the parts afterwards. It will be a lot more concrete
that way, and also most of the parts will be very familiar, except perhaps for
the coequalizers, the part of Set people tend to exercise least even though it is
all there, probably because its operation is the most obscure.

Our dual view of objects as numbers when at rest and sets when on the go
is reflected in our organization of Set.

At rest, objects are understood as ordinals, and their algebra is that of
ordinal arithmetic, extended a useful amount, if not all the way, to infinite ordi-
nals. Ordinal arithmetic is characteristically different from cardinal arithmetic;
Birkhoff [Bir42] makes the distinction clear with a beautiful unification of both
systems as one domain of posets with two copies of the arithmetic operations,
cardinal and ordinal.

Our system of arithmetic is much smaller than Birkhoff’s: our posets are
linear and well-founded, that is, well-ordered. Moreover order isomorphism is
identity: we admit just the one well-ordered set of each order type. And our
operations are also more restrictive: we have only Birkhoff’s ordinal operations,
not the cardinal ones (though these can be defined from the ordinal ones, so
this is not a real limitation).

At least almost the same: one difference is that Birkhoff’s exponential pre-
serves only linearity and not well-foundedness. Another is that we admit in-
finitary sums and products, stoically accepting that they are underdefined for
the sake of at least having the operations, complete with “Choice noise.” And
we upgrade the traditional concept of arithmetic with equalizers and coequal-
izers. This ensures that Set is bicomplete, without which we could not claim
equivalence to other versions of Set.

On the go, objects turn into sets, and their algebra becomes that of a cate-
gory equipped with all limits and colimits, as well as cartesian closed structure,
and also topos structure, including the ability to perform induction over the
natural numbers.

Yet these are not separate structures, but merely different views of the same
thing, in a way that will become apparent.
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5 Set via ordinals

We take Set to be the ordinals together with all functions between their un-
derlying sets. There is an evident binary relation of membership well-ordering
the objects, and wherever i ≤ j, Set(i, j) contains the inclusion function as a
distinguished morphism, generalizing the identity functions in Set(i, i).

We remind the reader of three operations on ordinals, monus i− j, quotient
i/j, and remainder i%j (borrowing the C programming language notation),
defined as follows.

i− j < k iff i < j + k

i/j < k iff i < j · k
i%j = i− j · (i/j)

Exercises. (i) j · (i/j) ≤ i. (ii) i%j < j.

We now describe the arithmetic of Set, namely products, subobjects, sums,
equalizers, coequalizers, and exponentials.

Product. Given an ordinal i, the i-product pi =
∏

j<i nj of a family 〈nj〉
of i ordinals is defined up to Choice by induction on i to be the least ordinal
satisfying the following.

The 0-product p0 is 1.

For all j < i, the j-product pj of the family 〈nm〉, m < i is defined by
recursion along with, for all k ≤ j, an auxiliary projection fjk : pj → pk,
namely λn.n%pk. (So fjj is the identity.)

For successor ordinals i = k+1, the definition of pi is completed by requiring
that it have in addition a main projection gk : pk+1 → nk, namely λn.n/pk (a
monotone function).

For limit ordinals, the definition of pi is completed, up to Choice, by requiring
it to be a categorical limit of the diagram whose objects are, for j < i, the
j-products pj of 〈nm〉, m < j, and whose maps are the recursively defined
auxiliary projections between those objects. The projections of this limit to
the recursively defined j-products pj are the auxiliary projections fij : pi → pj

defined at this level.

The counit of i-product at family 〈nj〉, j < i, has for its j-th map, j < i,
the composite gj ◦ fi,j+1 : pi → pj+1 → nj . These are the standard projections
of ordinal product.

The unit of i-product at n (the diagonal dn : n → ni) is the K combinator,
λm.(m,m, m, ...), sending m to the constant i-tuple of m’s.

i-Products act just like counters with i digits; this is lexicographic product
adapted to infinite ordinals.

Compare the key ingredient λn.n%pk, a monotone function, of the explicit
definition of successor products to the underdetermined categorical definition
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of limit products. The latter defines ordinal product only “up to Choice,” God
playing with dice.

That a limit of this (small) diagram exists is immediate by the completeness
of Set. Once one such limit has been found in this version of Set, all ordinals
of the same cardinality become equally eligible, and the first paragraph of the
definition then selects the least ordinal from among these. By definition this is a
cardinal, and so our definition makes all limit products cardinals, a nice feature.
But even though we know exactly which cardinal, the product is only defined
up to an automorphism. The well-ordering of that cardinal is thus completely
uncorrelated with the projections.

This definition is an underdetermined alternative to those of Birkhoff [Bir42]
and Hausdorff [Hau14], who gave fully specified notions of ordinal or lexico-
graphic product. Birkhoff’s definition did not always produce ordinals, though
it did preserve linearity. Hausdorff’s definition did not even send ordinals to
linear orders. The above preserves ordinals, inevitably at the cost of nondeter-
minism at each limit ordinal.

Subobjects Given f : i → 2, the associated subobject is the least j such that
there exists a monotone injection g : j → i such that fg = d1e◦!j . Claim: such
a g : j → i exists and is unique, and is the pullback of d1e : 1 → 2 (the element
1 of set 2 = {0, 1} along f .

Sum. Given an ordinal i and a family 〈nj〉j<i of i ordinals, let s′ = {k <
nj | ∃j < i} (i.e.

⋃
j<i nj) and let f : s′ · i → 2 satisfy f(a, j) = a<nj . Define

the i-sum s =
∑

j<i nj to be the subobject of s′ · i associated to f .

The counit εj : j · i → j of sum at j is λk.k%j. For the unit, define
gj : nj → s′ as gj(a) = (a, j). This factors through s ⊆ s′ as fj : nj → s. The
unit η at 〈nj〉 is then the family 〈fj〉j<i.

Equalizers. The equalizer of f : i → j and g : i → j is the subobject of
i corresponding to the predicate “f(x) =i g(x)” (the subscript i denoting “on
i”). Theorem: this exists and is unique.

Coequalizers. The coequalizer object k of f : i → j and g : i → j is the
subobject of j whose characteristic function p : j → 2 is the predicate “is the
least representative in its block.” The coequalizer h : j → k maps each element
of j to the least representative of its block. Theorem: h exists and is unique.

Exponentials. The exponential ij is defined as the product of j copies of
i (inheriting the infinite product problem when j is infinite). The unit of the
defining adjunction (−j right adjoint to j · −, not − · j) has for its morphisms
linear functions an + b where a is the sum of ((ji)k for 0 ≤ k < j and b is the
sum of ki(ji)k for 0 ≤ k < j. The counit (evaluation map) εi : j · (ij) → i at i is
the function λn.((n/j)/in%j)%i. Evaluation first projects out the function part
of n as n/j and the argument part as n%j, and then evaluates by “shifting”
and “masking” to pick out “digit” n%j in radix i. Claim: εi is the evaluation
map.
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Isbell’s argument at the end of [Mac71, VII.1] shows that we can’t always
make the natural isomorphisms λ, ρ, α identities, even in a cartesian closed cate-
gory like Skel(Set). In the present context Isbell’s argument yields more, namely
that any construction we use to further reduce Set from the ordinals to a skeletal
category must weaken these identities to isos.

What saves the day for ordinals is that when x, y, z are countably infinite, x·y
and (x · y) · z become different infinite ordinals. Isbell’s argument gives insight
into why set theorists find ordinals work better than cardinals: as cardinals,
countable x · y and (x · y) · z have to be the same countable cardinal, ordinals
create useful elbow room.

The above construction is unabashedly committed to Choice, assuming it
from the outset. If Choice “is” false, the product of some family of ordinals is
likely to be a cardinal that cannot be well-ordered. It will therefore be missing
from this version of Set, putting at risk the completeness of Set.

Offsetting this is that the units and counits are specified in complete and con-
cise detail, facilitated by the nonmonotone ordinal functions monus, quotient,
and remainder. Furthermore associativity of binary sum and binary product
are strict, an unusual feature that legitimizes writing = instead of ∼=. Moreover
the construction is sufficiently specific as to make clear that the replacement of
∼= by = in 1 + ω ∼= ω, i + j ∼= j + i, and i · j ∼= j · i is not merely bad form but
simply false. For the former the specified isomorphism, while an automorphism
of ω, is of course not 1ω. And for the latter two equality is false even at the
object level, witness 1 + ω 6= ω + 1 and ω · 2 6= 2 · ω.
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