Modelling Concurrency with Partial Orders*
Vaughan Pratt
Stanford University
Stanford, CA 94305
Pratt@QSU-NAVAJO.ARPA

* Revision of “Some Constructions for Order-Theoretic Models of Concurrency” (1.
To appear in the International Journal of Parallel Programming, 15, 1, ¢. Nov. 1986.
Abstract

Concurrency has been expressed variously in terms of formal languages (typically via
the shuffle operator), partial orders, and temporal logic, inter alia. In this paper we extract
from these three approaches a single hybrid approach having a rich language that mixes
algebra and logic and having a natural class of models of concurrent processes. The heart
of the approach is a notion of partial string derived from the view of a string as a linearly
ordered multiset by relaxing the linearity constraint, thereby permitting partially ordered
multisets or pomsets. Just as sets of strings form languages, so do sets of pomsets form
processes. We introduce a number of operations useful for specifying concurrent processes
and demonstrate their utility on some basic examples. Although none of the operations
is particularly oriented to nets it is nevertheless possible to use them to express processes
constructed as a net of subprocesses, and more generally as a system consisting of com-
ponents. The general benefits of the approach are that it is conceptually straightforward,
involves fewer artificial constructs than many competing models of concurrency, yet is ap-
plicable to a considerably wider range of types of systems, including systems with buses
and ethernets, analog systems, and real-time systems.

Keywords: concurrency, partial order, pomset, temporal logic, computation model.

¢1 Introduction

1.1 An Application

In September 1983 at Cambridge University, England, STL (Standard Telecommuni-
cations Laboratories Ltd) and SERC (Science and Engineering Research Council) jointly
sponsored a workshop on the analysis of concurrent systems(?). The workshop was or-
ganized around ten problems for solution by the attendees. Each problem informally
described a concurrent system to be formally specified.

The first problem was probably the easiest. For whatever reasons, it also attracted
the lion’s share of the attention. The formal solutions presented varied in length from
seven axioms of one line each (Koymans-de Roever) to two or more pages. The following
paragraph reproduces verbatim the statement of the problem.

[P

The “channel” between endpoints “a” and “b” can pass messages in both directions
simultaneously, until it receives a “disconnect” message from one end, after which it neither

1

delivers nor accepts messages at that end. It continues to deliver and accept messages at
the other end until the “disconnect” message arrives, after which it can do nothing. The
order of messages sent in a given direction is preserved.

The solutions that appear in the workshop proceedings(® are complex out of all pro-
portion to the intuitive complexity of the concept. The methods of this paper permit the
following far shorter solution.

TA(((M* x A) x AB)||((M* x B) x BA)) A =F68

The language of this expression is defined in section 2, and the expression itself is
explained in full in section 3.6. For now it suffices to point out that the expression is a
conjunction whose left conjunct algebraically describes a two-way channel and whose right
logically describes the with-disconnect property. M™ is the set of all strings of messages,
and M* x A stamps each A-to-B message m with its origin A by converting m to (m, A).
This sequence of stamped messages is then expanded to a one-way channel, the AB channel,
via (M* x A) x AB, a product. The || forms a two-way channel as the “sum” of the two
concurrently executing one-way channels from A to B and from B to A respectively. The
A linearizes (serializes) each end of the channel, and the m makes the two-way channel
abortable. The expression Qié is the predicate “there was a strictly previous colocated
disconnect” where 0 is the predicate, assumed given, that expresses the property of an
event being a disconnect message.

1.2 Why Partial Orders?

Strings arise naturally in modelling ongoing sequential computation, whether the sym-
bols in the string correspond to states, commands, or messages. Thus the string uvu may
model the sequential execution of three commands wu, v, u, or a transition from state u to
state v followed by a transition back to u, or a sequence of three messages u,v,u trans-
mitted sequentially on some channel.

Strings are linearly ordered sets, or rather linearly ordered multisets (since repetitions
are possible), of symbols from some alphabet. In unison with the workers mentioned at
the end of this section we advocate partial orders in place of linear orders in modelling
concurrent computation. At present however partial orders have nowhere near the popu-
larity of linear orders for modelling concurrent computation. This could be for any of the
following reasons.

(i) Languages and their associated operations, particularly union, concatenation,
Kleene star, and shuffle, provide a natural model for the corresponding programming
language control structures: choice, sequence, iteration, and concurrency. The behavior of
languages under these operations has been studied intensively for more than two decades.
Thus languages provide a familiar and well-understood model of computation. In this
model the linear order on the elements of a string is interpreted as the linear temporal
order of events, and the operations on languages may be interpreted as control structures:
concatenation as begin-end sequencing, star as iteration, shuffle as concurrency, etc.

2

(ii) Every poset is representable as the set of its linearizations. This theorem would
appear to confer on linear orders the same representational ability as partial orders.

(iii) Linear orders appear to be faithful to physical reality. In the practical engineering
world, as opposed say to the physicist’s relativistic world, instantaneous events have a well-
defined temporal order, justifying the assumption of linearly ordered time. Furthermore, in
any rigid system temporal order is well-defined even in a relativistic model. Any departures
from rigidity are assumed to be sufficiently minor in practice as to justify adhering to a
linear-order model.

Reason (i) would lose most of its force if partial orders were to be equipped with op-
erations analogous to those of formal languages that could be interpreted as programming
language control structures. This is just what this paper does; some of the operations
on pomsets that we introduce correspond to more or less familiar programming language
constructs, others are merely candidates for possible future programming or hardware
languages.

Reason (ii) is based on the following well-known theorem, which shows that a partial
order can be represented as the set of its linearizations.

Theorem 1. The intersection of the linearizations of a partial order is that partial
order.

(For the purposes of defining intersection, a partial order is considered to be its graph,
that is, the set of all pairs (a,b) such that a <b.)

This theorem is easily proved under the (non-obvious) assumption that every partial
order has at least one linearization, by showing that any partial order in which a and b are
incomparable can be extended to one in which a < b and to another in which b < a.

This theorem about posets runs into two difficulties when trying to apply it to pro-
cesses modelled as sets of pomsets. The theorem generalizes neither to pomsets nor to sets
of posets, and a fortiori not to sets of pomsets. We will return to this issue in section 2.6,
after the necessary definitions have been given.

Reason (iii), that the engineer’s world is linear in time, fails in at least three situations:
complex systems, nonatomic events, and relativistic systems. Beyond a certain scale of
system complexity it becomes infeasible to keep thinking in terms of a global clock and
a linear sequence of events. A cover story in the magazine Electronics® describes a
growing trend in the design of logic circuits to eliminate global clocks and rely more on
self-timed circuits. On a larger scale asynchrony has been with us for a long time. When
a large number of computers communicate with each other over channels whose delay is
several orders of magnitude greater than the clock time of each computer, the concept
of global time provides neither a faithful account of the concurrent computation of all
those computers nor even a particularly useful one. There is no reason to suppose that the
various instructions streams of these computers are interleaved to form one stream. Indeed
it is much more convenient, both conceptually and computationally (e.g. when computing
with such streams as part of reasoning about them) just to lay down these streams side
by side and call this juxtaposition of streams a model of their concurrent execution. Data

3

flowing between the computers may augment the order implicit in the juxtaposition, but
this relatively sparse augmentation of the order is motivated by the actual mechanics of
communication, unlike the more stringent and totally artificial ordering requirement of
completely interleaving the streams.

A concrete situation that may make this more compelling consists of a ship rolling
somewhere in the Pacific, in satellite communication with another ship in the Indian Ocean.
The events on the buses of the computers on each ship take place with a precision measured
in nanoseconds, but the delay in getting a packet from one computer to another may be on
the order of a second or more. The idea that the totality of events in the two computers
has a well-defined linear ordering can have no practical status beyond that of a convenient
mathematical fiction. Our position is that it is neither convenient nor mathematically
useful. It is just as convenient, and more useful, to work with partial orders.

Nonatomic events provide another situation where linear orders break down. An event
may be more complex than a moment in time. It may be an interval, in the sense of a
convex subset of a linear order. It may be a set of intervals, such as a game punctuated
by timeouts or a TV movie punctuated by commercials. More generally still it may be
some arbitrary set of moments. However even for such complex events it still makes sense
to say that one event may precede or follow another, meaning that every moment of the
first event precedes every moment of the second. Yet such events are clearly not linearly
ordered.

Relativity provides yet another situation where time is not linearly ordered. In any
nonrigid system, that is, one whose components are moving with respect to each other,
simultaneity ceases to be well-defined and two moving observers can report contradictory
orders of occurrence of a pair of events. Any system nontrivially subject to relativistic
effects is a candidate for a partially ordered model of computation. Of course many systems
will not be so subject, but we see it as an advantage of the partial-order approach that it
applies equally well to relativistic and Newtonian (global-time) situations.

In addition to our responses to (i)-(iii), we have the following additional reasons for
preferring partial orders.

(iv) Some concepts are only definable for partial orders, in particular orthocurrence,
which amounts to the direct product of pomsets, which we define in full later. The solution
given above to the problem of specifying the two-way-channel-with-disconnect contains
two essential uses of orthocurrence, along with two less essential uses. The concept is an
extremely natural and useful one for partial orders, but it is not at all obvious how one
would go about defining it in a linear-order model, or even whether it is definable.

(v) A serious difficulty with the interleaving model is that exactly what is interleaved
depends on which events of a process one takes to be atomic. If processes P and () consist
of the single atomic events a and b respectively then their interleaving is {ab, ba}. However
if the same events a and b are perceived by someone else not to be atomic, by virtue of
having subevents, then P and @ have a richer interleaving than abUba. It is reasonable to
consider instantaneous events as absolutely atomic, but we would like a theory of processes
to be just as usable for events having duration or structure, where a single event can be

4

atomic from one point of view and compound from another. In the partial-order model
what it means for two events to be concurrent does not depend on the granularity of
atomicity.

(vi) In some situations pomsets appear to be easier to reason about than strings. For
example it is relatively straightforward to axiomatize the equational theory of pomsets un-
der the operations of concurrence and concatenation (Theorem 5.2(4)). The corresponding
theory for strings has resisted all attempts at its axiomatization. Gischer and the author
have both worked extensively on the problem of whether this simply described theory has a
finite axiomatization. The problem has been posed on two occasions at the (San Francisco)
Bay Area Theory Symposium, generating interest but no answers in more than eighteen
months.

We are not alone in our advocacy of partially ordered sets in one form or another for
modelling concurrency. Partial orders make an early appearance in Greif’s thesis(®. C.A.
Petri has advocated this view of computation for many years. The report by Best et al(®)
and the book by Reisig(") give excellent accounts of how partial orders may be used with
Petri nets. Winskel’s theory of event structures (%910 concerns partial orders on events
in Petri net models of computation. Pinter and Wolper consider partial orders as a model
of temporal logic'V), with an interpretation of incomparability that is very close to ours.
Lamport(?) makes several arguments similar to our own arguments for a nonlinear view
of time in modelling communicating processes. Van Benthem(3) devotes an entire book to
the comparison of the point and period views of time, making the point at the outset that
there are other natural ways to think about temporal events than as instants. Whitrow4)
discusses many models of time, including “time as a type of serial order,” considering both
linear and partial orders. Mazurkiewicz in a recent paper(!® provides several references
to work on this notion in modelling concurrency, dating back to 1977; Mazurkiewicz’s own
trace model comes closest to our pomset model, though it seems to us to lack the full
generality of order obtainable with pomsets, e.g. Gischer’s axiom N(p,p,q,q) = pq|lpq
does not hold for pomsets but it holds for Mazurkiewicz traces because these are derived
as quotients of monoids, which do satisfy the axiom, and quotients preserve equations.
The term used here, “partially ordered multiset,” was introduced by us'9: we used it to
formalize Brock and Ackerman’s("”) extension of Kahn’s model*®19) and subsequently
extended this use21). Various equational theories of pomsets, sets of pomsets, ideals
of pomsets, and their relation to theories of languages, were studied in depth by Gischer
(1) whose thesis remains by far the most extensive treatment of the algebraic theory
of pomsets. In particular he determines for each of a number of equational theories of
pomsets and of languages, under concatenation, concurrence, and other pomset-definable
operations, whether or not they are finitely axiomatizable.

1.3 The Concept of Pomset

A string may be regarded as a finite linearly ordered multiset. Multisets rather than
sets are needed because a string may contain more than one occurrence of the same symbol.
This view of strings has a natural generalization in which “linear” is replaced by “partial,”
yielding the notion of finite partially ordered multiset. Another simple generalization is to

5

omit “finite.” By analogy with the usual contraction of “partially ordered set” to “poset”
we contract “partially ordered multiset” to “pomset.” We call a set of pomsets a process,
generalizing the notion of language as a set of strings.

As we shall see in more detail in the definitions below, a pomset may be defined to
be a vertex-labelled partial order up to isomorphism. (Up-to-isomorphism says that the
identities of the vertices are unimportant and they can be treated as anonymous points).
For our application of pomsets to modelling concurrency, the interpretation we have in
mind for an element of this partial order is an event. The interpretation of e < f is that
event e precedes event f. For structured events, e.g. events that are intervals rather than
instants, this means that the whole of e must precede the whole of f, i.e. e must complete
before f can begin. Two events incomparable under this order may then be interpreted as
being permitted to occur concurrently.

1.4 Pomset Operations

The mental leap from strings to pomsets has much in common with that from reals to
complex numbers. In particular one can encounter complex numbers without previously
having seen a definition of the concept, via operations on real numbers, the canonical
example being to apply square root to a negative number. A similar situation obtains
with pomsets, as Figure 1 (a) illustrates in the application of “pomset multiplication” to
two strings. In this figure vertices denote pomset events and the order on the events is
given by the reflexive transitive closure of the relation implied by the arrows.

0 T 0,7) — (0,R) 0 T 0T
ox] = ! ! [= Ll
1 R (1LT) — (L,R) 1 R 1R

Figure 1. (a) Orthocurrence and (b) concurrence, of strings 01 and T'R.

In Figure 1 (a) we have “multiplied” two strings 01 and TR to yield not a string
but a poset. The multiplication, which we call orthocurrence, may be characterized as
the direct product of partial orders. This multiplication has a very natural and useful
interpretation: if we interpret TR as modelling the sequence Transmit-then-Receive, and
01 as the message 0 followed by the message 1, then the product is immediately recognizable
as the four events Transmit 0, Receive 0, Transmit 1, Receive 1. Furthermore the order is
equally recognizable as the necessary temporal order on these four events! We shall call
pomset multiplication orthocurrence.

The need for pomsets rather than posets becomes apparent when we substitute the
string 00 for 01 in this example. We then have four events consisting of two occurrences
of each of the actions Transmit 0 and Receive 0. This constitutes a multiset with four
elements but with only two distinct elements.

6

Because of this possibility of repetition of actions we draw a distinction between
events and actions. Actions label events, that is, there is a labelling function from events
to actions. An event is an instance or occurrence of its action.

Nonstrings may be produced from strings not only by multiplication but also by
addition, as Figure 1(b) illustrates. We call pomset addition concurrence.

In this paper we introduce a number of other pomset operations besides concurrence
and orthocurrence. They divide naturally into three main groups that we may call combi-
natorial, Boolean, and homomorphisms. In addition to these operations, which constitute
the algebraic portion of a language for describing pomsets, we propose the use of first-
order logic as the logical portion of our language. We give here a brief overview of all these
constructs, leaving their formal definitions to the next section.

The number of operations is quite large compared to the typical logic of programs.
However this seems to come with the territory; there are a number of constructs that make
good sense for pomsets but that do not have a formal analog for the more commonly used
linear models of computation, whereas almost any operation that makes sense for strings
seems to generalize smoothly to pomsets, so the growth seems unavoidable.

Combinatorial operations. The combinatorial operations on pomsets manipulate ver-
tices while keeping their labels more or less constant. Several of these operations come
straight from formal language theory, namely concatenation p;q or just pq, Kleene star
p*, prefix closure m(p), and reverse p~. These pomset operations when applied to finite
linearly ordered multisets, i.e. strings, have their standard meaning. They are joined by
several more pomset and process operations which do not correspond as closely, if at all,
to string or language operations, namely concurrence (sum) p||q, orthocurrence (product)
p X q, N(p) (the quaternary N operation), dagger pf (concurrence closure), double-dagger
pi (expansion closure), augment closure «(p), linearizations A(p), reverse p—, local lin-
earizations A(p), and local concatenation p;q.

The concurrence p|lq denotes the process consisting of two concurrently executing
processes p and ¢, with no order constraints at all between their respective events. It
plays the role in the pomset approach that shuffle or interleaving plays for languages,
namely providing the basic concurrency operator. (Our || notation here agrees with that
of Gischer™® but not with that of a paper of ours!) where we used + instead; we have
reverted to || to avoid confusion with the widespread use of + to denote choice. We stick
to U for our choice operator however to emphasize that it is a pure union.)

The concatenation p;q is the variant of concurrence in which every event of p must
finish before any event of ¢ may begin. This is the basic begin-end sequencing operator.

Prefix closure 7(p) makes a process abortable by permitting it to get only part of the
way through its computation. Augment closure a(p) weakens the notion of concurrency
of two events to mean absence of temporal constraint, so that one may precede the other.
Augment closure is useful when concurrency of two events is to be interpreted as simul-
taneity, or at least as temporal overlap, meaning that neither may precede the other; under
this interpretation one applies augment closure to a process in order to “turn off” that

7

interpretation. Both closures are normally applied to processes that are to be intercon-
nected to form a system. The linearization \(p) is the linear part of the augment closure,
and for finite p is a language (set of strings).

Star means indefinite iteration while dagger means indefinite concurrence; in each
case indefinitely (but finitely) many copies of the argument are “spawned,” and they
run sequentially or concurrently respectively. Double-dagger is a variant of dagger that is
mostly used in the context 1, where it means all finite pomsets on alphabet ¥, analogously
to X* meaning all strings on Y. Since for such processes of purely atomic behaviors we
may express 21 as «(Xt) the utility of I as a separate operation is not clear to us.

Orthocurrence is used to construct the kind of orthogonal concurrency associated with
the lifetime of ports and messages. In a communication channel one can observe a port
and see messages go by, or observe a message and see ports go by. These two behaviors
go on in parallel, but the formal operation of concurrence does not describe how they
combine to form the total channel behavior. The operation we use instead is the dual of
concurrence, namely orthocurrence. Orthocurrence is to concurrence as direct product is
to disjoint union.

The N operation is a four-way concurrence with three order constraints between the
four processes in the shape of an IV; it crops up in various unexpected places. The reverse
operation runs a process backwards.

The two local operations rely on a notion of colocation of events, an equivalence
relation on events which we take to be defined by a fixed equivalence relation on the
alphabet described later. Local linearization A(p) enforces serialization (interleaving) of
colocated events of p while local concatenation p;q is a weaker variant of concurrence
than concatenation in that the p-before-g requirement is applied only locally, namely to
colocated pairs of events. Note that p;q cannot be expressed as either f(p;q) or f(pl|q) for
any operation f because p||q need not contain the information as to which of p or ¢ each
event came from.

Boolean operations. Processes (sets of pomsets) may be combined using union P U Q,
intersection P N @), difference P — @ or P A =Q for clarity, etc. These operations are
exactly as for languages. Union means nondeterministic choice of a behavior from either
argument, intersection yields a process that can only do what both arguments can do (a
form of concurrency that we use later in defining the semantics of a system), and difference
introduces a negation operator.

Homomorphisms. As with the four first-mentioned combinatorial operations and the
Boolean operations, homomorphisms and their inverses exactly generalize the formal lan-
guage notion of homomorphism. A pomset homomorphism carries pomsets to pomsets
by expanding each vertex v of a given pomset to a pomset determined by p(v). Thus if
each vertex is expanded to a two-vertex pomset the net effect of the homomorphism is to
double the number of vertices. A process homomorphism carries each pomset to a set of
pomsets by expanding each vertex v to any one of a set of pomsets determined by pu(v).
Pomset and process homomorphisms are exactly what are obtained by generalizing string
and language homomorphisms to pomsets.

In this paper we do not contemplate any particular language constructs for specifying
particular homomorphisms. As such they have the same status as atomic propositions in
propositional calculus: we don’t know how to specify them, only how to use them. Since
one of the more important applications of homomorphisms is in specifying systems of
communicating processes, a first step towards a language for homomorphisms would allow
the specification of those homomorphisms defined by finite network topologies. Another
important application is in defining functional processes; again a language for this is called
for.

An inverse homomorphism is just the inverse of a homomorphism, in the usual sense
of the inverse of a function. The inverse of a pomset homomorphism maps pomsets to
processes (sets of pomsets). We use it only in the semantics of systems, defined as an
intersection of inverse homomorphisms of processes.

Pomset Logic. The language of first order logic may be used to talk about a pomset by
regarding the pomset as a structure (a set together with some relations). The individuals
of the structure (the elements of the set) are the events (vertices) of the pomset. In one
basic form the language consists of the relation < and for each symbol ¢ € ¥ the predicate
o(u), defined as p(u) = o. First order formulas are built up in the usual way from this
language using variables ranging over events, quantifiers, and Boolean connectives.

Alternatively the temporal logic fragment of this language may be used, in which in
place of quantifiers and event variables there is {¢, denoting Jv[u < v A ¢(v)], a predicate
in the event variable u which holds for just those events followed by an event ¢. This
has the advantage of avoiding mentioning events explicitly; temporal logic is to the first
order logic of events as combinatory logic is to the lambda calculus. In this case the basic
language consists of unary predicate symbols, <>, and Boolean connectives, the language
of propositional temporal logic in which events are not referred to explicitly.

This language, whether full first order logic or the temporal logic fragment, can express
predicates over events. Such a predicate may be interpreted as a predicate over pomsets
by defining it to hold of a pomset just when it holds of all events of that pomset.

1.5 Hidden Nondeterminacy and Fairness.

Implicit in our two-layered notion of a process as a set of pomsets of events is a two-
sided distributivity axiom, that order may be distributed over choice, i.e. concatenation
over union. This axiom is appropriate for partial correctness but not always for issues
relating to termination and deadlock. Milner®!) and others have argued at length the
need for nondistributivity, namely a(bUc) # abUac. The distinction being drawn between
these two sides has to do with the timing of the decision of which side of the union to take;
the left side decides after the a and the right before. By deciding later the left side can only
be better informed about the choice, and may thereby be able to foresee and sidestep a
deadlock. At this level of abstraction the decision appears to be made nondeterministically.
Further, if the decision happens early (right side) the associated choice is “hidden” in the
sense that the a action does not reveal the outcome of the choice, or even that a choice
has been made. This situation may be called hidden nondeterminacy.

9

Modelling hidden nondeterminacy appears to entail a significant degree of conceptual
complexity. For now we wish to work out the other aspects of the pomset approach without
the distraction of this complication, leaving its treatment to later.

This is not however to say that our model will be unusable until nondistributivity is
catered for. Nondistributivity appears to be needed only to draw distinctions involving
hidden nondeterminacy. While a language for describing a system implementation will
presumably need to describe hidden nondeterminacy, this is because it will need to describe
system pathologies in general, of which hidden nondeterminacy is one. However a language
for specifying a system need not make provision for explicitly discussing pathologies since
they may be proscribed globally. The purpose of a language for specifying an object is
to distinguish between the elements of the set of acceptable objects. The corresponding
situation for restaurants is that the word “poison” need not be included in the vocabulary
of menus since there is a global understanding between restaurateurs and their clients
that poison is not one of the options. On the other hand the restaurant kitchen’s first-
aid book should cover the case of a poisoned customer. Menus are to first-aid books as
specification languages are to system description languages; only the latter need be able to
express pathologies such as hidden nondeterminacy. For now we are interested primarily in
applying our language to system specification, though we would like to extend it to treat
pathologies related to nondistributivity when we see a straightforward way.

In addition to hidden nondeterminacy there is the issue of fairness, which is getting
to be a sine qua non of any concurrency model, at least among theoreticians. We have
two reasons for not considering fairness here. The first, applicable only to specification
languages, is the “poison” argument above; we want all our systems to be fair and so don’t
need the concept in a specification language. The second, applicable to more general system
description languages, is that the impact of fairness on the participants in a computation is
felt only after an infinite time. Unfairness is only possible with infinite behaviors whereas
we can only experience finite behaviors. Of course we do not want to participate in even an
initial segment of an unfair infinite computation, but merely replacing such a computation
by a fair one provides no guarantee at all that we will be any happier. What is needed
instead is some notion of local or bounded or rapidly converging fairness. Pending the
development of some algebraically and/or logically tractable notion of fairness that is
more useful than fairness-at-infinity, we have not attempted to deal with fairness in our
model.

1.6 Inappropriateness of Operational Semantics

Our approach to modelling concurrency is denotational, or extensional, in the sense
that we have a concrete mathematical model of a computational behavior, along with
operations on behaviors that yields a particular algebra of behaviors. An alternative ap-
proach has been advocated by Milner(?!). In Milner’s “operational” approach the meaning
of expressions is defined by reductions between expressions, analogous to (-reduction for
the A-calculus. This semantics is operational in the sense that each reduction step may be
interpreted as a step of a global interpreter of the given concurrent program.

10

This model implicitly forces an interleaving view of concurrent computation. The
global computation is serialized by the choice of order of reductions. Our objection to this
model is therefore the same as for any interleaving model. In a computation carried out
by two fast computers miles apart, Milner’s reductions do not correspond to what actually
takes place in the system as a whole. In reality there is no global interpreter carrying out
those steps; instead computation steps are performed locally and mostly independently.
Our complaint applies to any operational semantics that is similar to Milner’s in being
defined to act on the whole program.

62 Definitions

2.1 Pomsets

The following definition of pomset is due to Gischer(®).
A labelled partial order (Ipo) is a 4-tuple (V, X, <, i) consisting of
(i) a vertex set V', typically modelling events;

(ii) an alphabet 3 (for symbol set), typically modelling actions such as the
arrival of integer 3 at port @), the transition of pin 13 of IC-7 to 4.5 volts, or the
disappearance of the 14.3 MHz component of a signal;

(iii) a partial order < on V', with e < f typically being interpreted as event e
necessarily preceding event f in time; and

(iv) a labelling function p : V — 3 assigning symbols to vertices, each labelled
event representing an occurrence of the action labelling it, with the same action
possibly having multiple occurrences, that is, u need not be injective.

A pomset (partially ordered multiset) is then the isomorphism class of an Ipo, de-
noted [V, 3, <, u]. By taking Ipo’s up to isomorphism we confer on pomsets a degree of
abstractness equivalent to that enjoyed by strings (regarded as finite linearly ordered la-
belled sets up to isomorphism), ordinals (regarded as well-ordered sets up to isomorphism),
and cardinals (regarded as sets up to isomorphism).

2.2 Types of Pomsets

It will be convenient to regard all of the following structures as kinds of pomsets.
This provides some useful “coercions;” for example we may construct a power set and then
interpret its elements not only as sets but as pomsets.

Multiset ~ Pomset with a minimal (i.e. empty) order
Tomset ~ Pomset with a maximal (i.e. total) order

String Finite tomset

Poset Pomset with an injective labelling

Set Poset that is also a multiset

Atom A singleton pomset (both a set and a string)

Unit The empty pomset € (hence the empty string, and empty set)

11

2.3 Processes

A process is a set of pomsets, just as a language is a set of strings, and an n-ary
relation is a set of n-tuples. In each case the set structure can be regarded as modelling
variety of one or another kind of behavior.

We write X1 for the set of all finite pomsets with alphabet 3, by analogy with ¥* for
the set of all strings with alphabet Y. The set of atoms of X1 is just X.

Set-of-atoms ambiguity. There is an ambiguity when forming a set of atoms as to
whether the set is meant to be a single pomset or a process consisting of a set of atomic
pomsets. Under the former interpretation the concatenation {0, 1}{2, 3} is a single pomset
with four events, under the latter it is the process {02,03,12,13}. When the ambiguity
arises syntactically we resolve it by always collecting pomset elements using ||, writing
0||1 rather than {0,1}. When the ambiguity arises in giving semantics, as in the section
on systems, where the inverse of a translation between alphabets is considered a function
mapping atoms to pomsets rather than a function mapping atoms to processes, we say
explicitly which interpretation is meant.

The set-of-atoms ambiguity does not arise in formal language theory because an un-
ordered set of atoms cannot be mistaken for a string.

When a pomset is used in a context that appears to require a process, the pomset is
interpreted as a process consisting of a single pomset. Thus {0,1}2 denotes {0,1}{2} =
{02,12}. This convention is as in formal language theory.

2.4 Operations of Pomset Algebra

We give here the formal definitions of those operations on pomsets and processes that
we have found useful and/or interesting. We collect them here under the rubric of pomset
algebra not so much because we have a fixed class of algebras in mind but rather to draw
a distinction with the constructs of pomset logic described in the next section. Informal
descriptions and uses of the operations are listed in section 1.4.

All the combinatorial operations in the following are defined to map pomsets to either
pomsets or processes. Just as with languages concatenation of strings generalizes to con-
catenation of languages, so do operations on pomsets generalize to operations on processes.
For example the orthocurrence P x P’ of processes P and P’ is {p x p|p € P,p’ € P'}.
With this in mind we will always define the action of operations on single pomsets, but
will sometimes give examples of their action on processes.

Concurrence. The concurrence p|[p’ of two pomsets is defined as [V, 3, <, ul||[V’, X/, <’
W =VUuV Bu¥ <uU < pUp] where V oare V' are assumed to be disjoint. This
assumption entails no loss of generality since pomsets are only defined up to isomorphism.
It follows that the cardinality of a concurrence is the sum of the cardinalities of its con-
stituent pomsets, that p U u/, as the union of the graphs of the labelling functions p and
i, is a function, and that < U <’ is a partial order (no interference between p and ¢ and

so no opportunity to violate transitivity).

12

Concatenation. The concatenation p;p’, or just pp’, is as for concurrence except that
instead of < U <’ the partial order is taken to be < U <" U(V x V’). This forces every
event of p to precede every event of ¢q. This larger order is still a partial order.

Syntactically concatenation has higher precedence than any other binary operation
(so pllgr = p||(gr)) and lower than any unary operation (so pg* = p(¢*)). For all other po-
tentially ambiguous combinations we will use parentheses for disambiguation in preference
to having an elaborate hierarchy of syntactic precedences. The ubiquity of concatenation
justifies its special treatment.

0
!
0 T 1 0O — T
0 T
s = | L = >
1 R T 1 - R
!
R

Figure 2. Examples of Concatenation

The N operation. The N of four pomsets N(p, q,r,s) is pr||gs with order augmented
to make all events from p precede all events from s. Figure 3 illustrates N(a,b,c,d) for
atoms a, b, ¢, d, an N-shaped pomset. It is the smallest pomset not expressible in terms of
its atoms using concurrence and concatenation.

a b
U
c d

Figure 3. The pomset N(a,b,c,d).

An identity involving N is A(N(p,p,¢,q)) = AMpq|lpg) ¥). Noting that N(p,p,q,q) #
pq|lpg, this observation of Gischer answers in the negative the interesting question as
to whether theoremhood of A(p) = A(q) implies theoremhood of p = ¢ for all pomset
expressions p and ¢ built up from pomset variables using the language introduced here.
This is discussed further in section 2.6.

Dagger. ptis not a pomset but a process (set of pomsets), namely the set of all pomsets
expressible as a concurrence of finitely many copies of p. That is, pt = {e, p, p||p, p|lp||P; - - -}

13

Example: The dagger of the process consisting of the atomic pomsets 0 and 1 is given
by {0,1}1 = {e,0,1,0]/0,0]/1, 1|1, ...}.

Star. p* is Kleene star: p* = {¢,p,pp,ppp,...}. It is to pt as concatenation is to
concurrence.

Example: {0,1}* ={¢,0,1,00,01,10,11,...}.

Orthocurrence. The orthocurrence p x p’ is defined as [V, %, <, u| x [V/, X/ <’ /] =
[V x V'Y x ¥ < x < uxp]. Analogously to the action of U on < and p in the
definition of concurrence, namely the union of their graphs, the action of x on < and u is
the Cartesian product of their graphs. That is, (u,u’) < (v,v") in p X p’ just when u < v in
pand v’ <" o' in p/, and p(u,u’) in pxp'is (pu(u), ' (u")). Orthocurrence is to concurrence
as Cartesian product is to disjoint union.

Prefiz closure. As with p* and pf, m(p) is not a pomset but a process, consisting of
the set of prefixes of p. ¢ is a prefix of p, written ¢ <, p, when ¢ is obtainable from p by
deleting a subset of the events of p, provided that if event u is deleted and u < v then v is
also deleted.

Example: 7(0||12) = {0//12,12,0]|1,0,1,¢€}

Augment closure. a(p) is the set of augments of p. ¢ is an augment of p, written
p <& q, when ¢ differs from p only in its partial order, which must be a superset of that of

p.
Example: o(0]]12) = {0]|12,012, 102,120, 1(0||2), (0]|1)2}.

Example identity: pllq <a pg.

For the most part we have been avoiding theorems and proofs in this paper. Nev-
ertheless the following theorem and proof is indicative of the methods used for proving
things about pomsets.

Theorem 2. a(7n(p)) = 7(a(p)).

Proof. Suppose ¢ € a(q’) where ¢’ € w(p). Construct ¢ € a(p) by adding to p just
those edges that a contributed to ¢’ and taking transitive closure, possible since p has all
the vertices ¢’ does. Now delete the same vertices from ¢” that were deleted from p to yield
q’, possible since all edges added in forming ¢” must precede those vertices. Furthermore
none of those added edges will be deleted here. Since we have added the same edges and
deleted the same vertices the result must be ¢, showing that a(7(p)) C 7(a(p)).

Conversely suppose ¢ € 7(q") where ¢’ € a(p). Construct ¢” € 7(p) by deleting the
same vertices from p that were deleted from ¢’ to yield ¢, possible since p is less constrained
than ¢’ for the purposes of taking prefixes. Now augment ¢ with just those edges e that
were added to p to form ¢ provided both ends of e are in ¢’’. The result has the same
vertices as ¢, and the added edges will be just those that that were added to ¢’ and that
remained in ¢ after the deletions, showing that 7(a(p)) C a(w(p)). []

Linearizations. The set A\(p) of linearizations of p is the set of all linear augments of

14

Example: A\(0]/12) = {012,102,120}.
Reverse. The reverse p~ is obtained from p by replacing < by its converse.
Example: (0]|12)~ = 0]|21.

Colocation. The next two operations are only defined for alphabets of the form ¥ =
D x C'. The intended interpretation is that C be a set of locations. We shall say that two
events are colocated when each of their labels is a pair and the two labels agree in their
second component.

Local linearization. Sometimes it is appropriate for a concurrence to have some inter-
leaving, typically of colocated events. We say that an augment ¢ of p is locally linear when
all colocated pairs of events u,v in ¢ are linearly ordered in gq. The local linearizations of
p are the minimal locally linear augments of p, that is, those which are not augments of
any other locally linear augments of p.

Example. Abbreviating (0,a), (1,b),(2,a),(3,b) to 0,1,2,3 respectively, A(0||1]/23) =
[N(2,1,0,3),2(0]j31), 0231, (021[1)3}.

Local concatenation. Sometimes it is appropriate for concatenation to enforce order
only locally. The local concatenation p;p’ of p and p’ is that augment of p||p’ obtained
by adding to the order all colocated pairs (u,u’) € V- x V' and then taking the transitive
closure of the result. (Note that this last step is unnecessary for ordinary or nonlocal
concatenation.)

Example. With the abbreviations of the preceding example, (0]/1);(23) = (02]|1)3.

Remark: p;q € A(plq).

Boolean. Processes (sets of pomsets) may be combined using union PUQ), intersection
PN Q, difference P — @, etc. These operations are exactly as for languages.

The next construct, pomset homomorphism, exactly generalizes the notion of string
homomorphism. Following Gischer(®), we shall find it convenient to derive the notion of
homomorphism from the notion of ezpansion of a pomset p = [V, 3, < pu] on alphabet
Y through a ¥-tuple t of pomsets all on a common alphabet ' (that is, ¢ is a function
mapping elements of ¥ to pomsets on ¥). This expansion yields a pomset on 3.

Informally, expansion is the result of substituting ¢(u(u)) for each u in p and flattening
the resulting set of sets of events down to a single set of events, preserving as much of the
order as possible. Formally, for each u in V, let v, denote element v of V;(,(,)) (an event
of the pomset substituted for u). (Without loss of generality we may assume the Vi(,(.))’s
are all pairwise disjoint.) Take W to be the set of all such v,,’s for v ranging over V. Define
<w on W such that v, <y v/, just when either u < ' in p or (u=v'in p and v <’ in
Vi(uuy))- Define pw (vy) = fie(u(u))(v). Then the expansion of p through ¢ is the pomset
[W7 Y, <w, MW]'

Another way to define expansion is to form || ey t(p(u)), the concurrence of ¢(u(u))
over V, then to augment its order with (J, ., Vi(u(u)) X Vi(u(v))-

15

Example. The expansion of the pomset 0||01 through the pair (ab,allb) (i.e. the
function mapping 0 to ab and 1 to al|b) is the pomset abllab(al|b), and through the pair
(al|b, ab) it is al|b||(al|b)ab.

Homomorphisms. A pomset homomorphism from pomsets on ¥ to pomsets on X/ is
determined by a fixed Y-tuple ¢ of pomsets, and is the function mapping p to the expansion
of p through ¢t. A size-preserving homomorphism is the special case in which t is a function
from ¥ to ¥'; it merely relabels the pomset, without having to change the vertex set.
A process homomorphism is one for which ¢ maps symbols to sets of pomsets; it carries
each pomset p to the set of pomsets obtainable by expanding each vertex v in p to some
pomset of t(u(v)) (two vertices with the same label need not be expanded to the same
pomset). This in turn extends to a function from processes in the usual way: the process
P is mapped to the union of those processes mapped to from some pomset of P. When
all the pomsets are strings, pomset homomorphisms are just string homomorphisms and
process homomorphisms are just language homomorphisms.

An inverse pomset homomorphism - maps a pomset p to the set of pomsets {q|h(q) =
p}, and by the obvious extension, maps a set of pomsets to a set of pomsets. That is,
inverse homomorphisms map processes to processes.

The pomset-definable operations. Homomorphisms are obtained from expansions by
fixing the tuple argument ¢. If instead the pomset argument p is fixed, expansion becomes
what Gischer® calls a pomset-definable operation of arity ¥ on pomsets over ¥/. By
taking ¥ to be {0,1} we get all the binary pomset-definable operations. Among these
are those defined by the pomsets 0||1 and 01, recognizable as respectively concurrence
and concatenation. Likewise N(0,1,2,3), where ¥ = {0, 1,2, 3}, defines the operation N.
Gischer® shows that the operations definable by finite pomsets has no finite basis. Of the
operations we have defined previously, the only pomset-definable ones are ||, ;, and V.

Double-dagger. With the notion of pomset-definable operation we are now able to
define Pt for a process P. Pi is the closure of P under all the pomset-definable opera-
tions. This is analogous to the closure of P under the single pomset-definable operation
of concatenation, namely P*.

Example: {0,1}t = {¢,0,1,0/|0,0|1,1|/1,00,01, 10, 11,0(0]|1), N(0,0,1,0),...}.

Identities. (i) pt <a pf <o a(pf). (ii) P* C P 1. (iii) Pt C Pf C a(Pf). (iv) If ¥ is
a process consisting solely of atoms, ¥ = a(X7). (v) A(PT) = A(P1).

2.5 Constructs of Pomset Logic

First-order logic provides an alternative to pomset algebra for describing pomsets. As
a simple example the algebraic expression X*aX*bX*, where a,b € X, may be expressed
logically as Vuv[u < v Vo < u]AJuvju < vAa(u) Ab(v)]. This asserts that in each pomset
the order is total, and that there is an occurrence of symbol a preceding an occurrence of
symbol b. Provided we apply the logical formula only to finite pomsets it expresses the
same set of pomsets as the algebraic expression. In this case the algebraic expression is
shorter than the logical, but it need not always be that way, as we shall see.

16

The logical language consists of formulas including atomic formulas consisting of pred-
icate symbols applied to variables, and is closed under Boolean operations and quantifi-
cation. A sentence (closed formula, one with no free variables) may be interpreted as a
predicate over pomsets (e.g. the formula of the previous paragraph), in which case it may
be interpreted as denoting the set of those pomsets it holds for, which is a process. In this
way sentences may be used to name processes.

The meaning of such first-order formulas is defined in the standard way for first-order
logic. Each pomset is treated as a structure. Variables, whether quantified or free, range
over events; hence an n-ary predicate (one having n free variables) applies to n-tuples
of events of a pomset. A 0-ary predicate (no free variables, i.e. closed) is a first-order
sentence holding or not holding for the pomset as a whole. Where an open (nonzeroary)
predicate is used in a context demanding a sentence (e.g. where the formula is intended
to denote a process), the predicate is implicitly closed with a universal quantifier. In an
expression such as P A —¢ where P is an expression of type process and ¢ is a formula
with a free variable, there is a nontrivial ambiguity as to whether to coerce ¢ or —¢, since
it makes a difference whether the quantifier used to close the formula is inside or outside
the negation. The rule is to keep building up formulas till the coercion is forced, in this
case putting the quantifier outside the negation.

Temporal Logic. As an abbreviation for certain first-order formulas, there is a predicate
“transformer” or modality (¢ (sometimes written F'¢) mapping the unary predicate ¢ to
the unary predicate 1 defined as 1(u) = Jvju < v A ¢(v)]. It means of u that some future
event (future with respect to u) will satisfy ¢. As usual [|¢ abbreviates ={—¢ and says
of event u that ¢(v) holds for all events v > u. These operators have been used to good
effect by Pneuli(?223) and many others in the modelling of concurrency. Originally it was
conceived of solely for linear orders, but it has also been applied more recently to other
orders.

We may apply various decorations to temporal modalities; all denote modifications to
the order relation in the definition of the operator. {»~ indicates that the converse of <,
should be used (temporal reversal). {* denotes that < should be used in place of < (strict
future); with converse it becomes {*. ¢ denotes local future: {¢(u) holds just when ¢(v)
holds for some future v colocated with u, which is to say that the order defining <> is the
intersection of < with the equivalence relation of colocation.

The rule for closing open formulas with universal quantifiers carries over unchanged
to temporal logic; thus <>¢, interpreted as a predicate over pomsets rather than events,
asserts that every event in the pomset is followed later by some other event satisfying ¢.

These various temporal operators provide convenient abbreviations for first-order
predicates on pomsets. In addition they may often provide fragments of theories of such
predicates for which the membership problem is computationally tractable.

Customarily, temporal logic is conducted in some fixed set of pomsets: typically 3¢
(linear time logic) or the set of infinite trees on S (branching time logic). Temporal formulas
are used to specify a subset of these, that is, a process. Processes can be combined and

17

operated on only to the extent that formulas of temporal logic can be so combined (namely
with Boolean connectives) and operated on (namely with temporal operators).

Our methods may be regarded as a form of temporal logic in which processes may
be conveniently viewed as objects, where multiple processes may be discussed in the one
sentence, where there exist many other combinations of processes besides Boolean, and
where processes may combine hierarchically to permit naturally structured compositions
of processes.

Conversely, from the perspective of a practicing temporal logician, pomsets may be
regarded as providing an alternative class of models for temporal logic. The “branching”
structure of pomsets should not however be confused with that of branching-time temporal
logic; the former is conjunctive (all paths are taken) while the latter is disjunctive (only
one path is taken).

2.6 Representability of Pomsets by Languages

In section 1.2 we promised to return to the possibility of representing processes using
languages. There are two issues here. Can sets of posets be represented by languages, and
can pomsets be so represented?

We know of no satisfactory method of coding a set of posets as a set of strings,
efficiently or otherwise, in a way that preserves algebraic properties such as concatenation.
(Notice that the coding given by Theorem 1 does have this property, whence the power of
this theorem.) We remark however that there are more than 2("/ 2)* posets on n elements,
there being that many just by forming bipartite graphs with n/2 vertices on each side.
Since there are only n™ = 2™°82" strings of length n on an alphabet of n letters, the
obvious counting argument suggests that strings of length closer to n? would be needed in
a typical language coding an arbitrary set of n posets. With this in mind, simply writing
out each partial order as the n? elements of an n x n Boolean matrix would seem to be
close to best possible with respect to economy. The result of course has no useful algebraic
properties whatsoever as far as language operations go; for example concatenating such
strings does not yield the result of concatenating the posets. It is an interesting question
as to what is possible here. In the absence of a solution to this we are unconvinced by
arguments defending linear orders on the ground that they can encode partial orders, in
the case of sets of partial orders.

The other issue is whether pomsets can be represented by languages. One simple
answer is that the pomsets alla and aa have indistinguishable linearizations. Hence the
theorem about encoding posets as sets of linear orders does not generalize to pomsets in
the obvious way.

Actually if @ were atomic and al|a meant that the two copies of a could be performed
in either order then a||la and aa really are equivalent. However one advertised feature of the
pomset approach is that it does not depend on whether a behavior is regarded as atomic.
If a could be seen to have internal structure then the two expressions would be different.

One quite general way to formalize this is to regard each symbol of a pomset as
standing for a language. Then aa denotes the concatenation of the two languages while

18

alla denotes their shuffle. More generally, if a pomset has n vertices then it denotes the
shuffle of n languages, one corresponding to each label, with the shuffle restricted so that
a string coming from the language on vertex u must precede one from v just when u < v
in the order.

Under this interpretation Gischer(® has shown that pomsets are equivalent if and
only if they are equivalent under the weaker interpretation in which only languages whose
strings are of length 2 are considered. This captures the intuition that when interpreting
pomset events as strings, only the start and the end of the string are needed to distinguish
pomsets under this interpretation. Moreover he has shown that N (a, a, b, b) = ab||lab under
this interpretation. Since these are distinct pomsets it follows that pomsets cannot be
represented as languages in this way. We know of no other acceptable method of coding
general pomsets as languages.

For the special case where all vertices with the same label are linearly ordered, The-
orem 1 remains true, which we leave as an easy exercise. While this still leaves open the
problem of coding sets of pomsets, this observation may be of some use.

§3 Applications.
In this section we show how the language is used to specify some simple processes.
3.1 Channels

A channel is a process in which events happen in pairs consisting of a transmission
and a receipt of a datum d, expressed by labelling the two events with (d, A) and (d, B)
respectively where A is the transmission end of the channel and B the receipt end. The
pair is ordered (d, A) < (d, B).

The channel behavior corresponding to a string ¢ € D™ of n data being sent down the
channel is represented as 0 x AB, a pomset with 2n events. Figure 4 shows the behavior
for the string o = 01101.

(0,4 — (1,4) — (1,4) — (0,4 — (1,4)

| l | | |
0,B) — (1,B) — (1,B) — (0,B) — (1,B)
Figure 4. The channel behavior 01101 x AB.

If the language L consists of all strings that may be transmitted on a channel then
L x AB denotes the process corresponding to that channel.

19

3.2 The Cons and CarCdr Processes

The Cons process has alphabet D x {A, B,O} where D is a set of data values and
A, B, O are the three ports, respectively two input ports and an output port. Informally
Cons behaves as follows. The first value output from O is the first value input from A;
thereafter all outputs on O are taken in order from B. Further inputs on A are not accepted
and therefore do not appear at all in the behaviors of Cons. Note that this is asynchronous
Cons: many B inputs may have arrived and have to be buffered by Cons before the A
input arrives.

The typical behavior of this process can be diagrammed as in Figure 5.

(3,4)

(7,B) — (2,B) — (5B)
Figure 5. Typical Behavior of the Cons Process

We may represent this process as a sum of products (concurrence of orthocurrences).
There are two products, corresponding to two channels from A to O and from B to O
respectively. The AO channel passes only one datum and hence has the form D x AO,
the BO channel is an ordinary order-preserving channel and so is D* x BO. The sum is
constrained so as to force the one O output from A (and hence all of the AO channel) to
precede all the O outputs from B; thus it is a local concatenation. This yields:

Cons = (D x AO);(D* x BO)

CarCdr. The dual of Cons is CarCdr, a process with one input I and two outputs A
and B, which feeds its first input to A and the rest to B. Like Cons, CarCdr is a sum of
products. We may easily obtain CarCdr from Cons as:

CarCdr = (D x IA);(D* x IB)

The duality of Cons and CarCdr should be clear from the formulas.

20

3.3 The Merge and Spray Processes

Merge. A somewhat different example is given by Merge, which has inputs A and B
and output O and merges its two stream inputs arbitrarily. Similarly to Cons, Merge is a
sum of two products, in this case D* x AO and D* x BO. Locally linearizing this sum has
the effect of merging the outputs, the inputs already being locally linear. Hence we may
define Merge as

Merge = A\((D* x AO)||(D* x BO))

Spray. We might call the dual of Merge Spray. Spray has input I and outputs A and
B, and sends each of its inputs to an arbitrarily chosen output. It is given by

Spray = A((D* x TA)||(D* x IB))
or more simply by Merge™. (Why is CarCdr not expressible as Cons™7?)
3.4 Functional Processes

A functional process F' which computes the function f repeatedly has one input port
I and one output port O, and for each input datum = on I outputs f(x) on O. It may be
defined as

F = h(D* x 10)

where h is a pomset homomorphism which replaces each label (z,0) with (f(z),0) and
leaves the rest of the pomset unchanged. This process is a paradigm for all “memory-less”
processes that merely compute some function of their single input.

This approach generalizes straighforwardly to an n-input process F' computing the
n-ary operation f repeatedly. F' may be defined as

F=h((D")" x (I Lh]l ... [[1n-1)O0)
where h((xo,...,zn-1),1;) = (z;,1;) and h((zo,...,2n-1),0) = f(zo,...,Tn_1).
3.5 Combinational Dataflow and Pipeline Semantics

In its most general form a net connects arbitrary processes using an arbitrary graph
that may have cycles. The next section solves the problem of assigning a semantics to
such a net in its full generality. Here we give a simpler treatment of the special case where
the net is acyclic and each component is an n-ary functional process. This special case
corresponds to the behavior of a so-called combinational circuit, one that when presented

21

with an m-tuple of values at its m inputs eventually yields an n-tuple of values at its n
outputs.

A naive way to specify what the circuit computes is to hold the inputs fixed and
wait for the circuit to quiesce, at which moment the outputs are deemed valid. Once the
outputs have been determined a new set of inputs may be presented, allowing the circuit
to perform a new computation. In practice however, once an output of a component has
been consumed that component can be freed up for the next computation. In this way the
throughput of a complex circuit may be made significantly greater than just the reciprocal
of its delay. This is the principle of pipelining.

The behavior of the pipelined case can be described as the homomorphic image of
an orthocurrence of a sequence of m-tuples (constituting the inputs) with the dependency
relation of the circuit. The dependency relation R¢ for a circuit C' having a set T' of nodes
is a poset with event set T ordered so that s < t just when there is a path in the circuit
from node s to node t (where paths travel through components from input to output).
(For a poset it suffices to give V' and < since ¥ may be assumed to be the vertex set V'
and p the identity function on V.) The process is thus:

F = h((D™)* x R¢)

where h((zg,...,Tm—1),t) = (vs,t) where v, is the value eventually appearing at node ¢
when the circuit is presented with (zg,...,Z,,—1) and allowed to quiesce. Even though h
is defined using quiescence semantics, the process given by this expression imposes only
the minimal order constraint imposed by causality.

3.6 Two-Way Channel with Disconnect

We take for our concluding example the two-way channel with disconnect described at
the beginning of the paper. In formalizing this problem we assume we are given symbols
A and B denoting the two ends of the channel, the set M of all messages that may be
transmitted on the channel, and a predicate § on events that holds just for those events that
are disconnect messages. Using these four objects and our language the desired channel
may be expressed as

TA((M* x A) x AB)||((M* x B) x BA)) A =)F68

We may understand this expression bottom-up. Let E denote the set {A, B} of ends.
M* is the set of all sequences of messages. M* x o for o € E is the set of all sequences
of origin-stamped messages, each of the form (m,o0) consisting of the message m itself
together with its origin o. (Orthocurrence of p with an atom is a somewhat degenerate
application of orthocurrence in that all it really does is “stamp” each event of p with that
atom.) (M™* X 0) x od is a channel of the kind we have already seen many of, with origin
o and destination d. At this point the alphabet has become (M x E) x E, and stays that
way for the remainder of the development. The action ((m,o0),e) consists of the stamped

22

message (m, o) being transmitted or received at e depending respectively on whether or
not e = o.

The concurrence of the AB and BA channels expresses the two-way channel as the
concurrent execution of the two one-way channels. We then linearize the events at each end
with), in order to have a sensible notion of time at each end for the purpose of defining
disconnection of each end. Then we take the prefix closure 7, without which all transmis-
sions would have to have matching receipts, which would preclude the possibility of both
ends being shut down simultaneously by a simultaneous transmission of two disconnect
messages one at each end.

The rest of the expression denies the existence of any event v preceded by a distinct
disconnect event u (one satisfying the predicate §, assumed given) with v and v colocated.
The effect of conjoining this denial with the two-way channel is to restrict the channel to
that subset of it consisting of just those pomsets not having such a two-event sequence
at either end. Using a global instead of a local diamond would have an almost identical
effect, the one difference being that when the disconnect message is transmitted from end
A, end B would appear to shut down just before receiving the disconnect message rather
than just after, a rather fine point. If however we were to apply « in addition to 7w to the
two-way channel, say for the sake of a more natural model, then end B could shut down
well before receipt of the disconnect message because the receipt of the disconnect at B

no longer has to be the earliest event at B that follows the transmission of that disconnect
at A.

This expression improves significantly on our earlier(?420:1) specifications of this ob-
ject, which conveyed the same information (to within a minor bug or two) in some dozen
lines of predicate calculus.

The temporal operator (implicitly an existential quantifier) could be dispensed with
as follows. For languages one may define the predicate asserting the presence of a symbol
or set of symbols s in a string as the set of all strings with this property, which we may
write as X*s¥*. Similarly the set of all finite pomsets containing s may be expressed as
a(s]|Xt) (exercise). We may then take s in this expression to be the set |J{((d x E) x
e)((M x E)xe)le € E} where d € M is the disconnect message, and ¥ to be (M x E) X E),
which would give us the set of all pomsets containing an event strictly locally preceded by
a disconnect message. The logic approach seems much simpler however in this case, and
the temporal operator provides an additional measure of brevity and clarity.

This process provides an excellent example where algebra seems better suited than
logic to one part of the problem but where logic apparently outdoes algebra in another. It
is our thesis that algebra and logic complement each other well in a process specification
language.

Note that it is not just brevity that is important here, but semantic clarity. While
this is hard to judge objectively, we consider the above expression to be not merely short
but also clear in what it expresses.

This two-way channel with disconnect generalizes very simply to a more general com-
munication network, whose one-way channels form a subset F C E? of pairs of edges

23

(excluding pairs (e, €)) of a graph describing the “topology” (connectivity) of an arbitrary
communication net over a set E of channel ends.

A || ((M* xa) xab)) A —Qié
(a,b)eF

In this process a disconnect message from origin a to destination b shuts down a
immediately after its transmission, and b immediately after its receipt. Thus n disconnect
messages may shut down up to 2n ends. It is a worthwhile exercise to verify for this process
as defined above that messages sent from a surviving end to an end shut down by some
other end will be transmitted but not received, as expected.

§4 Systems of Communicating Processes

4.1 Informal Notions

There is a certain sense in which concurrency in a system of communicating processes
(not necessarily sequential processes) can be thought of as conjunction. If we consider the
set R of all possible worlds in which I might be performing action A, and the set S of all
possible worlds in which you might be performing action B, then the system consisting of
the set of all possible worlds in which we might jointly perform A and B is surely RN S.

This suggests that the process (set of behaviors) defined by a system of processes be
taken to be the intersection of its constituent processes.

However there is something missing: nowhere have we made explicit any cooperation,
communication, or coordination in the system. We must be assuming it is built into the
components.

Yet this is not how components are described in component catalogs. No mention is
made for example of a particular printed circuit board into which a given component is to
be plugged. Instead components are described in isolation as self-contained processes.

We take care of this with the notion of a wutilization, a function on processes. A system
of processes is defined not as the intersection of its constituent processes but instead as the
intersection of the utilizations of its constituent processes. A utilization is an application-
dependent concept that contributes to a process the additional knowledge of how that
process is related to its fellow processes.

This concept subsumes many familiar concepts, such as Kahn net semantics'®), and
its extension by Brock and Ackerman to the nondeterministic case(!”), along with simpler
concepts such as the composition of binary relations, but extending also to analog domains,
describing the behavior of a network of resistors in sufficient detail that one can infer say
Thevenin’s theorem. The sorts of components that can be used to build systems are exactly
those we have treated above; thus we can take the CarCdr process defined in section 3.2,
or the two-way-channel-with-disconnect, and wire it into a network of other processes to

24

define a bigger system. We can then take say the orthocurrence or the star of the resulting
system.

This is not done however by adding utilization as yet another operation on processes.
Instead utilization is derived from the existing operations; in fact all we use are inverse
homomorphisms and process intersection.

One last remark before diving into the formalism. The notion of system contemplated
here is extremely general. It covers almost any situation involving sharing. The notion
of sharing that should suggest itself readily to an electrical engineer is the sharing of
component terminals by connecting them electrically. To a programmer sharing may mean
shared variables in memory, or it may mean the sharing that occurs when the components
of a flowchart are connected together: the exit of one command is shared with the entry
to the next. To a physicist it may mean the variables of a physical system; thus when
one body pushes another they share a force (to within sign), by Newton’s law of equal
and opposite reaction. To a mathematician it may be the sharing of variables between a
system of equations, the sharing between two binary relations when they are composed,
or the sharing that goes on between sections in a sheaf(®®). All of these notions of sharing
are contemplated in the following formal model of a system.

4.2 Translations and Restrictions

When a component is incorporated into a system, as when an integrated circuit is
plugged into a printed circuit board, a correspondence is established between component
events and system events. The kind of correspondence we shall consider takes the form of
a function from the alphabet ¥’ of component actions to the alphabet ¥ of system actions.
We shall call such a function a translation t : ¥ — 3 of alphabets. For example the event
consisting of the appearance of 5 volts on pin 3 of an integrated circuit may translate to
the appearance of Boolean 1 on trace 237 of the printed circuit board, this being the trace
to which pin 3 is attached. In this case we would say that the value of the translation at
(5,3) is given by t(5,3) = (1,237). If pin 7 is also attached to this trace then we would
want £(5,7) = (1,237) also.

Given a translation ¢ : ¥’ — ¥ from a component alphabet ¥’ to a system alphabet
Y, and given a system behavior p (a pomset on X), it should be intuitively plausible that
we can cut down or restrict p to just the part of it that involves the component. In fact
merely deleting from p those events whose actions are not in the range of ¢t would seem
to do the job. We shall go two steps further than this. We shall rename the remaining
actions to all be in the alphabet of the component. And when there is an ambiguity
in this renaming caused by ¢ not being injective (one-one) we shall “let them all win” by
expanding each ambiguous event labelled x to a set of temporally incomparable events each
labelled with one of the component actions mapped by ¢ to z. Thus if t(a) = t(b) = x then
any event labelled x expands to two incomparable events labelled a and b respectively.
Doing all this to p converts it into a pomset on Y, that is, the restriction defined by
t: Y — ¥ is a function from pomsets on ¥ to pomsets on ¥’. Since it acts locally on p,
replacing each event by a pomset (actually a set), it must be a pomset homomorphism.
This homomorphism is the restriction corresponding to ¢, which we denote p;.

25

There is an elegant way to express p;. Take the inverse of ¢, a function ¢t~ : ¥ — 2>
Compose with ¢~ the inclusion of 2% into ¥'i defined by the set-to-pomset coercion of
section 2.2. That is, interpret the set ¢t~ (z) C ¥/ as a pomset. We use ¢~ to also denote
this composition, so t~ : ¥ — ¥'f. This makes ¢t~ a function from atoms to pomsets; as
such it determines a pomset homomorphism ¢~ : ¥ — 3’1 mapping system behaviors to
component behaviors. We take p; to be t~T.

It is easily verified that p;, = 1x; (where 1x denotes the identity function on X) and
Ptos = Ps © pt (p preserves composition, albeit contravariantly). This property is central
to verifying that process composition is associative. For those who like category language,
it also establishes that p is a contravariant functor. In more detail, p : Set — Set is the
functor on the category Set mapping the set ¥ (regarded as an alphabet) to the set Xi of
all finite pomsets on X, and mapping the function ¢ : ¥’ — 3 to the function p; : ¥ — X'1.

4.3 Systems and Utilizations

In the following we have in mind a system having the following features. 3. is the
system alphabet, a global set of actions. For example the system may be a printed circuit
board with set W of traces (printed wires), with ¥ = D x W where D is a set of data
values, e.g. {0,X,1}. Thus a typical system action would be (1,237) denoting value 1
appearing on trace 237. [is an index set for the system components; its elements can
be thought of as component names. Thus if the printed circuit board had 93 sockets for
integrated circuits and other components then |I| = 93. In socket i we find a component
whose process (set of possible behaviors) is referred to as P;. The alphabet of P; is ¥;;
thus if socket ¢ has 14 pins then ¥; might be {0, X, 1} x {1,2,...,14}. The correlation
between the actions of component ¢ and those of the system is established by a translation
t; of the kind contemplated in the previous subsection.

We reduce these notions to a formal definition as follows.

Definition 4.1. A system S is a family of pairs (P;,¢;) over an index set I, where
P, C 3,1 is a process on ¥; and t; : ¥; — X is a translation from P;’s alphabet to the
system alphabet.

We then give the semantics of a system.
Definition 4.2. The process realized by S is {p € X I |Vi € I|p,(p) € P;]}.

Another way to express this uses the inverse homomorphism p,. : 2>t 2%1 which
maps the process P; to the process consisting of all pomsets in X1 that are mapped by p;,
to a pomset in P;. An equivalent expression for the process realized by the S in the above
definition is then

mpt_i(Pi)

i€l

These inverse homomorphisms p; are evidently the utilizations promised in the intro-
duction to this section.

26

In category language, the functor mapping p; to its inverse is the contravariant power
set functor on Set. Composing it with the contravariant functor p yields a covariant functor
on Set which maps translations to utilizations. A suitable name for it is the utilization
functor, Uy.

We may obtain the notion of net as a special case of a system. Let D be any set
(the data domain) and let C' and C; be channel sets for the system and for component i
respectively. Then a net is a system for which X =D x C, ¥; =D x C;,and t; : ¥; — 2
has the form t¢;(x,c) = (z, fi(c)) where f; : C; — C'is the i-th connection function. That
is, t; = Ip X f;, where Ip is the identity function on D.

As an example of a system (and of a net), consider a net with channel set {E, F'}
and a component of the net with channel set {C,D}. Insert the component into the
net via a connection mapping both C' and D to E, thus connecting C' and D together.
Let the data domain be {0,1}. Then the corresponding translation t satisfies ¢(0,C)) =
(0, E), t((1,D)) = (1, E), etc., while the corresponding restriction p; satisfies p;((1, F)) =
(L OV, D), pe((1, E)(0, E)(1, F)) = ((1, O)|(1, D)) ((0, C)[|(0, D)), ete.

At this point it is natural to ask, why interpret p;(x) as an unordered pomset when
x is an atom? If p;(x) has more than one event, shouldn’t we be making provision for the
possibility that the component has a pomset containing these two events, but in one order
or the other?

The answer is that any pomset of the component in which these two events are compa-
rable is inconsistent with the system requirement that the two events occur simultaneously.
Even when a process has the two events occurring in both possible orders in different pom-
sets, this is not considered evidence that they can occur simultaneously in that process.
The process must have a pomset in which they occur incomparably, and only that pomset
will be recognized as being able to cause the system action x resulting from the identifica-
tion by ¢ of the two component actions. Hence p;(z) as an unordered pomset is the only
pomset permissible as the “cause” of x.

A brief remark on generality. We noted in the introduction to this section that our
notion of system was very general. To realize the generality we promised however requires
a more general notion of object realized by a system than a set of pomsets. Hence in the
definition of this object as the set of all pomsets on ¥ whose restrictions to the components
are in those components, other sources of elements of that set besides pomsets must be
possible. However we assumed in defining p; that we were dealing with pomsets, when
we resolved ambiguities using unordered pomsets. In the absence of pomsets some other
resolution of the ambiguity must be found; one approach that will cover most cases of
interest is to require the translations to be one-one. This is what happens with sheaves(?%),
discussed below.

It is intuitively plausible that the structure of systems assembled hierarchically in this
manner is associative in the sense that the structure could be flattened out to a single level.
It is an easy exercise to show that this is indeed the case, knowing only that the map from
translation to utilization is a functor and that utilization distributes over conjunction.

27

4.4 Encapsulation.

Thus far we have only shown how to build big processes from smaller ones. We would
also like to be able to shrink these big processes back down by hiding or packaging or
encapsulating that part of the computation that is to be considered internal and leaving
only the external part visible.

This need is met using restriction. The idea is to consider the external actions of the
system as just the actions of another component. In our printed-circuit-board example,
although PC boards usually make outside contact via edge connectors and headers on the
edges of the board, occasionally the connection is made by an ordinary socket located
alongside the component sockets. Topologically at least there is nothing to distinguish the
outside world from just another (large!) component. We already have a mechanism for
relating the actions of such a component to the system actions, namely translation. Hence
for encapsulation purposes it suffices to use an ordinary translation, which we may call the
external translation t.. Then the external behavior of the process Pg realized by system
S is pt,(Ps), the result of restricting Ps to the “external” component e.

We now have enough machinery to build up systems hierarchically. At each stage
form a system behavior as the intersection of the utilizations of the system components,
then restrict that behavior to the external component. The result can then be used as a
component of another system. Or it can be used as an argument to any of the pomset
operations of section 2.

While any processes may be combined in this way, the results may be counterintuitive
unless those processes are prefix closed and augment closed. The role of prefix closure
is to ensure that a system can get part way through a computation even when some
components refuse to carry the computation through to the end. This is essential for a
natural model of how components communicate. The role of augment closure is to permit
a process that orders two events to share both events with a process that does not order
them, the idea being that the second process should have no objection to observing the
order demanded by the first. Augment closure should be applied in this context whenever
incomparability means that order does not matter. If however the meaning of two events
being incomparable is that they must happen simultaneously, in the sense that neither
may precede the other, then augment closure should not be applied, so that these events
remain incomparable. For example the process may be an exam, where it is unacceptable
to have one student leave the exam before another arrives. In this situation the two events
must remain incomparable. Hence while prefix closure seems to be mandatory for system
components, augment closure need not be when incomparability is being interpreted as
simultaneity or overlap.

In the broader context of all pomset operations, it is not desirable to make prefix
closure mandatory. For example, although 7(pq) is equal to w(pm(q)) it is not in general
equal to 7(mw(p)m(q)). The difference between pm(q) and w(p)w(q) is that in the latter,
events of ¢ do not wait for all the events of p (e.g. p may abort and then g may start), unlike
the case in the former. This consideration dictates making explicit all uses of prefix closure.
It is not good enough just to declare in advance that all processes and their associated

28

operations are prefix closed. On the other hand we do have 7(p)7(q) = (7w (p)7(q)). That
is, concatenation preserves prefix closure. Hence prefix closure is at least consistent with
concatenation, if not always desirable.

4.5 Applications of Systems.

This approach to the semantics of systems is very far-reaching. It can model com-
position of binary relations, Kahn semantics(*®), composition of processes via arbitrary
nets, connection via a bus or ethernet where messages may be broadcast by any process
attached to the bus or ethernet to any other such process (since there is no limit to how
many processes may share a channel), and analog circuits such as a net of resistors (since
each of the events and the actions can be a continuum, modulo replacing >1 by pomsets
on ¥ having up to X; vertices when defining the semantics of systems). (For the case
of resistors, and many similar analog systems, where impedances are relevant, it appears
necessary to represent the junctions between resistors as components in order to account
for Kirchhoff’s law.) It can also be extended to deal with real-time systems, where events
are related not merely by their temporal order but by the amount of delay between them:;
the technique(®? is to generalize the notion of partial order to the notion of transitive ma-
trix over a semiring. The utilization approach handles all these diverse systems by being
defined quite abstractly, without regard for the details that characterize any one of these
kinds of systems. Our paper(??) contains examples and more details.

Sheaves. Monteiro and Pereira(?®) present a model of concurrency based on the al-
gebraic geometry notion of a sheaf. To define a sheaf first define a presheaf to be a
contravariant functor F' from a category with objects the open sets of a topological space
X and morphisms their inclusions, to the category Set. Let p§ for V' C U denote the
image under F' of the inclusion from V to U, called the restriction map from F(U) to
F(V). For any s € F(U), called a section over U, abbreviate p¥.(s) to s|y, the restriction
of s to a section over V. Then a sheaf on X is a presheaf on X such that if U is an open
set of X having as open cover a family {V;|i € I}, and {s; € F(V;)|i € I} is a family such
that for all 4,5 € I s; v;nv;, then there exists a unique s € F'(U) such that
sly, = s; for all i € I.

viny; = 8j

In the context of systems of processes the idea is that a section s; is a behavior of
the i-th component or location V; of the system U, where the locations are organized
hierarchically according to the inclusion structure of the V;’s. s|y restricts the behavior s
of location U to the sublocation V' C U. When behaviors can be found for all locations
such that the behaviors agree pairwise on the common portions of those locations, then
there exists a unique system behavior that agrees with all the location behaviors. System
dynamics is provided for by Monteiro and Pereira by assigning to the objects in the image
of F' the structure of monoids.

This approach has some important points in common with our approach, as well as
some important differences. The points of correspondence are as follows. In place of a
category of open sets of a topological space X and their inclusions we use the category
Set whose objects (sets) provide our alphabets and whose morphisms (functions) our

29

translations. By using arbitrary functions rather than inclusions we provide for action
renaming (via non-inclusions) and “short-circuiting” (via non-injections). The concept of
restriction has the same significance for both approaches, and is a contravariant functor
in both cases. The explicit concept of section agreement on intersections, which is the
essence of a sheaf, appears only implicitly in our approach, by virtue of the possibility of
overlap between the ¢;(2;)’s. We do not require the ¢;(%;)’s to cover ¥, but then neither
do we require that the system behavior consistent with a family of component behaviors
be unique. In place of monoids we use processes made up of pomsets, which come with
a built-in solution to the problem of non-injective translations and which also have the
several advantages cited for them in the introduction, not achievable with monoids.

Our approach may be massaged into closer correspondence with the sheaf approach
by replacing the ¥;’s with their images ¢;(X;) as subsets of ¥, and the ¢;’s with the corre-
sponding inclusions from ¢;(X;) into 3, provided the ¢;’s are injective and the ¢;(%;)’s cover
Y (easily arranged by adding a dummy process to complete the cover). There is no loss of
generality in requiring these subsets to be open since in the absence of other requirements
Y. can be equipped with the discrete topology (all subsets open). The information in the
P;’s is now not accessible since the t;’s are gone, so, taking our sheaves to be sheaves of
processes rather than of monoids, we move the P;’s into the restriction functor by having
p map t;(%;) to t;r (P;) where tj is the extension of ¢; to a pomset homomorphism. The
remaining step is to have p map the other subsets of 3, or at least the arbitrary unions
and finite intersections of the ¢;(X;)’s, to appropriate subsets of X1, in order to make p
into a sheaf, though we have not yet worked out the appropriate assignment.

Unfortunately this massaging destroys what we feel is one of the nice features of
our approach, the concept of translation between alphabets, which aptly describes how
components are integrated into systems. We feel that our approach is better presented in
terms of translations than sheaf-theoretically. Also topology and continuity play no role in
our model at present, allowing us to dispense with topological spaces. On the other hand
a possible use for the sheaf approach in our theory might be to cater for least fixed points
of continuous functions, using a nondiscrete topology on Y, though we do not currently
understand this well.

Petri Nets. Petri nets(”) are easily modelled in our framework. Each place fed by m
transitions and feeding n transitions, whether or not all distinct, may be modelled as a
process with m inputs and n outputs. Take the alphabet for all places to be N x {I,0}
consisting of pairs (i, d), a port-direction pair, the port being a number and the direction
being I (in) or O (out). Let m denote the process {0, 1,...,m — 1} consisting of m atomic
pomsets, and similarly for n, and let T' (for token) denote (m x I)(n x O). Then T is a
process whose typical pomset is the string (i, I)(j, O) of length 2, being the concatenation
of the arrival of a token on input ¢ with the departure of that token on output j. For
place/transition nets, where tokens may flow concurrently through a place, form 77 =
a(T7). For condition/event nets, where places may hold only one token at a time, take
T = T*. Then the process modelling this place is o(w(T")), where o(P) = w(P~)~ is
the suffix closure of P. (The role of suffix closure is to permit computations to begin with
tokens having already arrived at some places.)

30

A Petri net is then a system whose components are places, whose system alphabet is
just the set of transitions of the net, and whose translations ¢; (for place k) map (i, 1) or
(7, 0) to the transition to which input ¢ or output j of place k is connected. The system
events then correspond to firings of transitions. The process realized by the system consists
of the usual behaviors of a Petri net(®7), each consisting of a transition-labelled poset (i.e.
pomset) of transition firings. Note that the case |p, (z)| > 1, i.e. transitions x connected
to more than one port of the same place k, is handled correctly.

Kahn Nets. Kahn nets(!®) are defined in terms of least fixed points of a system of
equations involving variables and continuous functions on a domain D* U D“. Kahn nets
are only defined for deterministic processes; however the elegance of Kahn’s model demands
an answer to the question of what is the correspondence between his model and ours.

The answer is that there is a translation from Kahn’s model to ours in which Kahn’s
processes become our processes, at least for finite nets. The key observation in this trans-
lation is that a solution to Kahn’s equations is translatable to a pomset if and only if the
solution is minimal. This is because the translation finds a cycle in the order if and only
the solution is not the least one. This property has been independently observed by Nagat-
sugu Yamanouchi [private correspondence]. We will say more about this correspondence
elsewhere.

65 Conclusions

The notions of event in a partially ordered behavior, and process as a set of behav-
iors, have proved both natural and workable in the specification of concurrent systems.
Techniques from such diverse approaches as formal language modelling of concurrency, the
Brock-Ackerman generalization'” of Kahn’s fixpoint approach to nets (!8) and Pnueli’s
temporal logic(?223) come together naturally in this framework. A variety of notions are
handled gracefully: continuous time (we may take the reals for a vertex set), continuous
data (we may take the reals for a data domain), channels with asynchronous ends (han-
dled by orthocurrence), hierarchical composition (a corollary of our algebraic approach,
as well as of the possibility of hierarchy in systems), multi-access channels such as ether-
nets and buses (since channels in nets need not be directional), and events with real-time
constraints.

We have not developed any formal rules for reasoning with this approach. However
since our approach has substantial overlap with other approaches that have seen much
logical development, we are optimistic about the prospects of filling this gap, partly with
recycled algorithms and partly with new ones.

We have said nothing here about probabilistic processes. It seems to us however that
the existing techniques that have emerged for sequential processes ought to carry over very
smoothly to this framework. One can imagine imposing some notion of measure on events
for the purpose of assigning probabilities to them, and otherwise maintaining much of the
compositional part of the theory unchanged. The idea of flow of probability, under an
appropriate measure, through a net makes just as much sense as flow of data.

31

Finally, we have generally omitted proofs. While some of our claims really have the
status of postulates, e.g. the definition of utilization, there are others that demand proof,
e.g. existence and uniqueness of the extension h™ of any function h : ¥ — A for any
pomset algebra A, the equivalence of utilization-based composition to Kahn composition
for the case of determinate processes, and adherence of utilization composition to the
expected behavior of a variety of difficult cases, including all known Brock-Ackerman-style
anomalies.

ACKNOWLEDGMENTS. Haim Gaifman, Ross Casley, and the members of my con-
currency modelling seminar provided valuable criticism and ideas. The motivational sec-
tion in the introduction was included at the request of the referees, one of whom also
contributed several helpful arguments for and against pomsets that we have gratefully
taken into account.

REFERENCES

[1] Pratt, V.R., Some Constructions for Order-Theoretic Models of Concurrency, Proc.
Conf. on Logics of Programs, Springer-Verlag LNCS 193, Brooklyn, 1985.

[2] Denvir, T., W. Harwood, M. Jackson, and M. Ray, The Analysis of Concurrent
Systems, Proceedings of a Tutorial and Workshop, held Sept. 1983, Cambridge University,
LNCS 207, Springer-Verlag, 1985.

[3] Barney, C., Logic Designers Toss Out the Clock, Electronics 58, 49, 42-45, Dec. 9,
1985.

[4] Gischer, J., Partial Orders and the Axiomatic Theory of Shuffle, Ph.D.
Thesis, Computer Science Dept., Stanford University, Dec. 1984.

[5] Greif, 1., Semantics of Communicating Parallel Processes, Ph.D. Thesis, Project
MAC report TR-154, MIT, September, 1975.

[6] Best, E., C. Fernandez, and H. Pliinnecke, Concurrent Systems and Processes,
Final Report on the Foundational Part of the Project BEGRUND, GMD-Studien Nr.104,
GMD, Sankt Augustin, FDR, March 1985.

[7] Reisig, W., Petri Nets: An Introduction, Springer-Verlag, 1985.

[8] Winskel, G., Events in Computation, Ph.D. Thesis, CST-10-80, Dept. of Computer
Science, University of Edinburgh, 1980.

[9] Winskel, G., A New Definition of Morphism on Petri Nets, Proc. CMU/SERC
Workshop on Analysis of Concurrency, Springer-Verlag LNCS 197, Pittsburgh, 1984.

32

[10] Winskel, G., Categories of Models for Concurrency, Technical Report no. 58,
University of Cambridge, England, undated (rec’d Dec. 1984).

[11] Pinter, S.S., and P. Wolper, A Temporal Logic to Reason about Partially Ordered
Computations, Proc. 3rd ACM Symp. on Principles of Distributed Computing, 28-37,
Vancouver, August 1984.

[12] Lamport, L., On Interprocess Communication, DEC Systems Research Center,
Report No. 8, 1985.

[13] Van Benthem, J.F.A. K., The Logic of Time, D. Reidel, 1983.

[14] Whitrow, G.J., The Natural Philosophy of Time, 2nd ed., Oxford University
Press, 1980.

[15] Mazurkiewicz, Traces, Histories, Graphs: Instances of a Process Monoid, Proc.
Conf. on Mathematical Foundations of Computer Science, Springer-Verlag LNCS 176,
1984.

[16] Pratt, V.R., On the Composition of Processes, Proceedings of the Ninth Annual
ACM Symposium on Principles of Programming Languages, Jan. 1982.

[17] Brock, J.D. and W.B. Ackerman, Scenarios: A Model of Non-Determinate Com-
putation. In: Formalization of Programming Concepts, J. Diaz and 1. Ramos, Eds.,
Springer-Verlag LNCS 107, New York, 1981, 252-259.

[18] Kahn, G., The Semantics of a Simple Language for Parallel Programming, TFIP
74, North-Holland, Amsterdam, 1974.

[19] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel Processes,
IFIP 77, 993-998, North-Holland, Amsterdam, 1977.

[20] Pratt, V.R., The Pomset Model of Parallel Processes: Unifying the Temporal and
the Spatial, Proc. CMU/SERC Workshop on Analysis of Concurrency, Springer-Verlag
LNCS 197, Pittsburgh, 1984.

[21] Milner, R., Calculi for Synchrony and Asynchrony, Theor. Comp. Sci. 25 (1983),
267-310.

[22] Pnueli, A., The Temporal Logic of Programs, 18th IEEE Symposium on Founda-
tions of Computer Science, 46-57. Oct. 1977.

[23] Gabbay, D., A. Pnueli, S. Shelah, and J. Stavi, On the Temporal Analysis of
Fairness, Proceedings of the 7th Annual ACM Symposium on Principles of Programming
Languages, Jan. 1980, 163-173.

[24] Pratt, V.R., Two-Way Channel with Disconnect, in Denvir et al® | section 3.1.3.
(1983)

[25] Monteiro, L.F., and F.C.N. Pereira, Outline of a Sheaf-theoretic Approach to
Concurrency, Proc. IEEE Symp. on Logic in Computer Science, Boston, July, 1986.

33

