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The dual of a true concurrency schedule appears to be a false concurrency automaton, a

paradox we resolved in a previous paper by extending the latter to higher dimensions.

This extension may be formalized via such discrete geometries as n-categories, simplicial

complexes, cubical complexes, and Chu spaces. We advocate the last as having a clear

notion of event, a well-defined process algebra uniformly extending that for event

structures, and ease of extension beyond the basic before-during-after analysis.

1. The notion of higher dimensional automaton

A natural question for automata theory is how to represent two independent events a

and b as an automaton without committing to their order of occurrence. The obvious
traditional automaton
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Figure 1

allows for the possibility of either order of occurrence. This automaton consists of four
states and four transitions for a total of eight discrete elements. The two digits of each
global state denote the local states of events a and b respectively, with 0 denoting un-
started and 1 done.

However this representation tacitly commits to the well-definedness of the order of
occurrence, with its implication that a run of this automaton must choose one of the
two available paths from 00 (both events unstarted) to 11 (both events done). There is
a hidden assumption of excluded middle, or mutual exclusion as it is more usually called
for concurrent processes.
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The existence of this choice is reasonable for events that actually are mutually exclu-
sive, such as two otherwise independent actions that are to be performed by an agent
that can only do one thing at a time. But for events that are truly independent, such
as a Mars rover picking up a rock in the same second that an operator in Houston
is sending the rover a command, the communication delay of several minutes renders
irrelevant their order of occurrence. Certainly from relativistic considerations, and ar-
guably from engineering ones also, such a choice is not even absolutely defined, being
observer-dependent.

This independence may be represented by abandoning automata altogether in favor
of partially ordered schedules of events, with the above example represented as a set of
two events unconstrained as to their order. This is the approach underlying the event
structures of (NPW81) and the partially ordered multisets or pomsets of (Pra82).

But while it is convenient to abandon automata for this purpose, it does not follow that
it is necessary. Higher dimensional automata permit this lack of commitment to choice to
be represented in an extension of the automata-theoretic framework by representing the
independent performance of n events as an n-dimensional entity in the automaton. In
the example of Figure 1, the empty interior of the square is filled with a two-dimensional
surface or 2-cell representing the independent occurrence of a and b, bringing to nine the
number of discrete components of the automaton.

Had there been three events, we would have started with a 3-cube, namely an eight-
state automaton having twelve edges, a total of 20 elements. Filling in the six faces
represents the independent occurrence of any two out the three events, while filling in
the interior of the cube represents the independent occurrence of all three events. All
told we then end up with 8 + 12 + 6 + 1 = 27 = 33 events.

For n independent events there are 3n cells, of dimension from zero up to n, with each
cell representing the “local” states of the n events, each of which may be either unstarted,
active, or done. The possibility of an event being in the “active” state generalizes the
0-dimensional notion of state to higher dimensions. The dimension of such a generalized
state is the number of events that are active in that state. In this view a transition in
the usual sense becomes a state in which exactly one event is active. A state with more
than one active event represents a notion of “joint transition” as a surface, volume, or
higher-dimensional cell.

Returning to the original two-event process, the case of mutually exclusive occurrence
of the two events may be obtained from the solid square by removing its interior. The
requirement that a precede b (precedence) may be met by further removing the lower left
state and attached edges. The requirement that not both a and b be performed (conflict)
may be met by instead removing the lower right state and attached edges.

In general any process may be understood as the set A of all events it is capable of
performing, typically infinite for processes that can loop or recurse, together with some
subset of the set {unstarted,active,done}A constituting the possible states of the process.
This is programming as sculpture: start from a sufficiently large cube and hew out the
desired process by chiseling away the unwanted states. This point of view has been taken
elsewhere in the higher-dimensional automata literature (Gou93; FGR98).
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While this view is attractively simple conceptually, it is not by itself a practical way of
specifying a concurrent process. An alternative approach is composition, in which com-
plex processes are built from smaller ones with suitable operators, including intrinsically
concurrent operators such as asynchronous parallel composition. Yet another approach
is transformation, in which new processes are constructed from old by reshaping them
appropriately.

These three activities, sculpture, composition, and transformation, are simultaneously
compatible and complementary, and can therefore usefully be taken as a basis for concur-
rent programming. Very loosely speaking they correspond respectively to subalgebras,
products, and homomorphisms, which play central and complementary roles in the alge-
braic approach to both logic and programming. Practicality aside, it is a good question
(not addressed here) to what extent any two, or even one, of sculpture, composition, and
transformation can fill in for the omitted approaches.

A premise of this paper is that sculpture on its own suffices at least for the abstract
modeling of concurrent behavior, if not for its practical specification.

2. Origin of higher dimensional automata

2.1. The short story

The geometrical view of automata is implicit in A. Mazurkiewicz’s algebraic notion of
independence via partial monoids (Maz77; Maz84). It is made more explicit and put
to practical use in C. Papadimitriou’s model for database concurrency control (Pap86,
chap.6), with however no accompanying formal notion of an automaton. Higher dimen-
sional transitions make a brief appearance at the end of M. Shields’ paper on deterministic
asynchronous automata (Shi85). The explicit notion of higher dimensional automaton as
an extension of traditional automata theory was introduced by the present author at
POPL’91 (Pra91).

We arrived at the idea of “filling in the holes” of traditional automata by noticing a
paradox implicit in the main theorem of (NPW81), the duality of prime event structures
as event schedules and prime algebraic domains as state automata dual to schedules.
While the event structures of that paper, interpreted as schedules, were by design a model
of true concurrency, their dual prime algebraic domains were unmistakably automata of
the “false concurrency” kind, with Figure 1 a case in point having {00, 01, 10, 11} as its
family of configurations. A perfect duality between true and false models of concurrency
is paradoxical: for this distinction to be meaningful there must be something missing
from the interpretation of prime algebraic domains as conventional automata.

One evident difference between schedules and automata is that with the former the
passage from a ≤ b to b ≤ a can be accomplished by moving a and b smoothly past each
other in time. We asked what was the dual of this smoothness for automata. Somehow
the ab path must transform smoothly into the ba path. The only sensible way this could
happen was via a surface connecting the two. Familiarity with the geometric represen-
tation of natural transformations of two functors, namely as 2-cells between those two
functors viewed as two 1-cells having a common start and end, facilitated our arrival at
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this picture. From here it was an easy step to our formalization in that paper of higher
dimensional automata in terms of higher dimensional cells in n-categories.

At question time after my presentation of (Pra91), Boris Trakhtenbrot asked from the
front row, what is the relationship between HDA’s and event structures?† Despite having
addressed the issue in section 7 of (Pra91), focusing on persistence of conflict, I had no
good answer to the question, a conflict that persisted for me until the solution presented
here struck me several years later after gaining much experience with Chu spaces (Bar79,
appendix).

The general problem here is to reconcile the respective motivating intuitions and sup-
porting formalisms underlying the event-based and geometry-based approaches to con-
currency. Event structures replace the traditional state-based view of computation by the
view of a‖b as a set {a, b} representing two events unconstrained as to order. In contrast
the geometry-based approach retains the state-based view and models a‖b as the evident
four-state “square” automaton accepting ab + ba but with its square interior filled in as
described above.

The question then becomes, can these be understood as simply the one notion of
concurrent computation seen from two compatible perspectives, or is there some incon-
sistency preventing the reconcilation of these two models of concurrency?

We believe that Chu spaces are superior to event structures for organizing event-
based computation. Chu spaces form a structurally attractive category (Bar79; LS91;
Bar91; Bar99), with incidentally a wide range of other applications including concurrency
(BG90; BGdP91; GP93; Gup94; VGP95), linear logic (dP89; Bar91), games (Bla95), and
universal algebra (Pra93; Pra95).

There are two main reasons for pursuing Trakhtenbrot’s question. First, both HDA’s
and event structures are attractive models of concurrency, raising the question of whether
their respective intuitions about the nature of concurrency are compatible. Second,
HDA’s and event structures draw on complementary areas of mathematics: much of
the HDA work since its introduction (GJ92; GC93; Gou93; Gun94; Gou95b; Gou95a;
Gou96a; Gou96b; BJ96; Tak96) has drawn on methods in algebraic topology, in particu-
lar homotopy and homology, whereas event structures tend to depend more on methods
from domain theory and logic, especially those involving duality, with some notable excep-
tions (vG91; SC96) that strive for a more elementary realization of geometry than either
the ω-categories of our original formalization (Pra91) or the homological approaches.
Given these reasons it is both intrinsically interesting in principle and important in prac-
tice for concurrent programming language design to understand how the one notion of
concurrency can shift its emphasis in this way between these substantially different areas
of mathematics.

What are some essential differences between HDA’s and event structures?
Two basic differences involve conflict and duality. HDA’s can express not only per-

sistent but also transient conflict, whereas event structures cater better to schedule-
automaton duality.

† More precisely, he asked about the relationship with event spaces (Pra92), but that distinction is a

negligible one compared with the difference with HDA’s.
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Persistent conflict, notated a#b (in the binary case), means that at most one of a or b

can happen. Transient conflict, as in mutual exclusion, means that a precludes b (again for
the binary case) only temporarily, e.g. while a is executing. Whereas HDA’s can express
both kinds of conflict equally directly, event structures express only persistent conflict
directly, and deal only clumsily with transient conflict. An unlabeled event structure
with two events a and b can express their persistent conflict directly as a#b, by design.
To express a mutex b however, it is rendered as ab + ba, which instead of two unlabeled
events requires four labeled events, two labeled a and two labeled b, with each of the two
events of ab in persistent conflict with each of those of ba. HDA’s do much better here,
expressing the same concept simply by omitting the interior of the square.

On the other hand, event structures dualize easily to acyclic automata, or families
of configurations as they are called in the event structure literature. Dualization is ac-
complished simply by taking the configurations to be those sets of events satisfying the
constraints defining the event structure. Identifying sets of events with their characteris-
tic functions to 2, dualization can be understood as “homming into” an object k (here the
set 2), in general Hom(−, k) as the usual notion of representable contravariant functor. In
contrast, HDA’s as typically defined have no obvious dualization to higher dimensional
schedules, or to any plausible notion of schedule.

Both transient conflict and schedule-automaton duality are too important to neglect.
Transient conflicts of various kinds pervade the theory of concurrency control of databases
(Pap86). And it is overly restrictive to limit the representation of computation to just
one of automata as states connected by transitions or schedules as events separated
by temporal constraints: the features of interest of a given computational process are
seen more clearly sometimes as a schedule, sometimes as an automaton, just as physical
interactions are seen best in terms of waves or particles depending on the circumstances,
with no sharp boundary at the crossover.

Since both models have worthwhile advantages absent from the other, we cannot simply
discard one. We therefore propose the following tightening of Trakhenbrot’s question. Can
the definitions of HDA’s and event structures be adjusted in a way that would overcome
the respective limitations of each relative to the other, yet without compromising in any
way either the formal capabilities or underlying intuitions of either model?

The solution we propose is Chu spaces over 3. These extend Chu spaces over 2, which
model event structures. The extension can be understood as extending event structures
to higher dimensions by interpreting the new (middle) element of 3 as ongoing activity,
a notion absent from ordinary event structures which has only the two-valued logic of
before and after.

We treat this solution in detail in the latter part of the paper. In the following we
examine in more detail how we arrived at a geometric model of concurrency.

2.2. The details

We now give a more detailed account of our reasoning up to this point, starting from the
problem of giving a compositional semantics for concurrent processes. Such a semantics
will consist of a class of mathematical objects representing processes, together with a
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family of operations for synthesizing larger processes from smaller ones, and a family of
constants representing primitive processes.

For processes that are sequential, which we think of as a special case of concurrent
processes, one possible representation of processes is as binary relations on a set W

of worlds or states. A natural family of operations for this representation is that of
regular expressions, with + (choice) acting as union on binary relations, concatenation
(sequence) acting as composition, Kleene star ∗ (iteration) acting as reflexive transitive
closure, and the constant 0 denoting the empty binary relation. Another representation
of processes is as sets of finite and infinite strings over an alphabet of actions, with the
regular operations then interpreted as usual for formal languages.

Interleaving semantics provides a straightforward way to extend the latter to concur-
rent processes. A major advantage of interleaving semantics is that the representation of
processes can remain unchanged. Instead one augments the operations with operations
for combining concurrently executing processes. The most basic of these is the shuffle
or interleaving operator, which given two sets of strings yields all strings obtainable by
arbitrarily interleaving two strings one from each set.

However the idea of representing the joint execution of events a and b as the choice of a

followed by b or b followed by a does not agree with intuition. When these two events are
widely separated in space but very near in time, their relative order is normally either an
irrelevant detail or entirely meaningless. One would like to say therefore that the events
are independent.

One model capturing this independence is the Petri net (Pet62). Independent tokens
of a net may fire at independent times.

A more algebraic model is Mazurkiewicz’ notion of a trace (Maz77; Maz84) as the
identification of strings differing only in the immaterial order of some of their symbols.
Such an identification removes the element of choice from these ostensibly competing
strings. (Mazurkiewicz provides only for pairwise mutual exclusion, so that one cannot
remove the interior of the 3-cube without also removing a parallel pair of faces, but it
should be possible to extend Mazurkiewicz traces to higher orders of independence by
formulating a suitable notion of partial monoid based on higher dimensional automata.)

Yet another model is the partially ordered multiset or pomset (Gra81; Pra82; Pra84;
Gis84; Gis88). This model starts from the idea of a string over an alphabet Σ as repre-
senting a sequential computation whose actions are drawn from Σ. Such a string may be
defined as a linearly ordered multiset of symbols, with the order being that of the symbols
in the string: a < b when a appears earlier than b. This definition then permits concur-
rency to be introduced by generalizing to partially ordered multisets or pomsets. Two
symbols of a pomset that are incomparable in the temporal order are then considered to
be independent, meaning that their order of execution is undefined. As a generalization
of the idea of a formal language as a set of strings, a pomset process is defined as a set
of pomsets over a common alphabet Σ.

One approach to formalizing the notion of multiset over an alphabet Σ is as a labeled
set A whose labels are drawn from Σ and whose elements constitute occurrences of
elements of Σ in the multiset, with each element of Σ being permitted to occur multiple
times. In this approach the set A is a partially ordered set or poset (A,≤) rather than a
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pomset. The labeling is then realized with a function λ : A→ Σ, with each a ∈ A being
understood as an occurrence of λ(a), making a pomset a structure (A,≤,Σ, λ).

2.3. Event structures

Prime event structures (NPW81) enrich this partial-order model of computation with a
symmetric irreflexive binary relation # denoting conflict , subject to the requirement
that if a#b and b ≤ c then a#c. When events a and b stand in this relation it signifies the
impossibility of both events happening: once one has happened, the other is forbidden
to ever happen. By default event structures are unlabeled and consist just of a set A

together with the two binary relations of order and conflict. Labeled event structures add
to event structures a labeling alphabet Σ of actions and a labeling function λ : A → Σ.
The meaning of an event a with label λ(a) is that a is an instance or occurrence of the
action λ(a). Labels permit an action to occur more than once in a process.

The notion of label allows us to distinguish events, transitions, and actions as follows.
The primitive notion is that of event: the defining property of an event is that it is
permitted to occur at most once. A transition is a located or situated event, that is, an
event together with contextual information about the state of other events. In Figure 1
there is one event a associated with two transitions, namely one for which b is unstarted
and the other for which b is done, and similarly one b event but two b transitions. An
action is an event type or event label, such as “hit the nail on the head” or “add one to
x,” and may occur more than once.

With these distinctions drawn, cells of a higher dimensional automaton can be seen to
be transitions. In the example of the 3-cube, namely three independent events with no
constraints, each of the six 2-dimensional faces is a transition representing the indepen-
dent occurrence of two of the three events, and is situated at one end of the third event,
with its mate being a parallel face situated at the other end.

Actions for HDA’s are as for ordinary event structures, namely event labels. The notion
of an action is clearly important: for automata they are the symbols of the automaton’s
alphabet, without which the automaton is just a graph with no way of distinguishing
behaviors that clearly should be different and with no reason to have more than one edge
running from one state to another.

It is intuitively clear that action instances should be consistent with the event structure
implicit in the cubical structure of an HDA, and hence that there should a well-defined
notion of event. We return to this point later when we argue the preferability of Chu
spaces over cubical sets for modeling HDA’s.

2.4. Families of Configurations

We now develop this informal notion of a cell more formally in terms of a notion of state
of either a poset (A,≤) or an event structure (A,≤,#). Their definition leads to the
duality of schedules qua posets and automata qua sets of states.

A state of a poset is a subset B ⊆ A such that if b ∈ B and a ≤ b then a ∈ B. In the
literature on ordered structures such a subset is standardly called an order ideal , or
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sometimes a downset , but we shall refer to it simply as a state. A state or configuration
of an event structure is as for posets with the additional requirement that if a#b holds
then no state may contain both a and b.

An event structure homomorphism is a function f : A → B between event sets
A and B that is monotone with respect to the order and preserves conflict: if a#b

then f(a)#f(b). (This is a different notion of morphism of event structures from that
proposed by Winskel (Win84; Win88).) It should be clear from this definition that states
can be understood as homomorphisms to the two-event event structure 0 < 1, a chain
(linearly ordered set) having the empty conflict relation. The latter event structure plays
an analogous role to the two-point three-open-set Sierpinski space in topology, namely
as a kind of truth-value object, allowing states of an event structure to be viewed as
predicates on that structure. The idea of events as elements and states as predicates
leads naturally to the Chu space view of processes we shall introduce later.

We now study the set of states of a poset. With a little thought one sees that a poset’s
state set is closed under arbitrary (including empty and infinite) union and arbitrary
intersection. (The empty union is the empty subset of A while the empty intersection
is the whole of A.) Furthermore every set of subsets of a set A enjoying these closure
properties arises in a unique way as the states of some partial order (A,≤).‡

Less obvious is that both A and ≤ can be reconstructed, up to order isomorphism,
knowing only the partial ordering of these subsets and not the elements of the subsets or
the set from which those elements are drawn. More precisely, we are given a poset (L,≤)
which is isomorphic, as a poset, to the set of states of (A,≤) ordered by inclusion. An
alternative characterization of such a poset (L,≤), that is even more abstract by virtue
of not mentioning (A,≤), uses the fact that (L,≤) must be a complete lattice: every
subset M ⊆ L has both a least upper bound or sup

∨
M and a greatest lower bound or

inf
∧

M in L. Furthermore the lattice is completely distributive: a ∧
∨

i bi =
∨

i(a ∧ bi)
and a ∨

∧
i bi =

∧
i(a ∨ bi). So instead of merely a poset (L,≤) we may assume we start

with such a complete and completely distributive lattice (L,
∨

,
∧

).
But these properties are still not enough. The unit interval [0, 1] of reals, standardly

ordered, is a complete completely distributive lattice under max and min, yet it is not
isomorphic to the lattice of states of any poset since it does not contain a gap (ordered pair
a < c of elements with no third element a < b < c between them). This counterexample
therefore tells us we need to constrain L further.

To do so we identify the compact elements of a complete lattice L, defined as those
elements x ∈ L satisfying

∨
{y < x} < x. We write K(L) for the set of compact elements

of L. We call the complete completely distributive§ lattice L a profinite distributive

lattice when every element x ∈ L is representable as x =
∨
{y ∈ K(L)|y ≤ x} (or

equivalently, as the sup of some subset of K(L)).

‡ To extract the order on A from the given set of subsets of A, take a ≤ b just when every subset
containing b contains a. What is more work to show is that the order so defined gives rise to exactly

this set of subsets of A as its states.
§ A complete lattice is completely distributive when x ∧ (

∨
Y ) =

∨
y∈Y

(x ∧ y) for all x ∈ L and

Y ⊆ L.
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Theorem 1. Every profinite distributive lattice (L,
∨

,
∧

) is isomorphic to the lattice of
states of some poset (A,≤).

The proof of this well-known theorem is short enough to repeat here, see also (NPW81)
for a similar argument.

Proof. Not surprisingly one takes A to be K(L), ordered as in L. Now consider the map
that takes x ∈ L to {y ∈ K(L)|y ≤ x}. This map is clearly monotone, and is injective
because x can be recovered as

∨
{y ∈ K(L)|y ≤ x}, by the definition of profinite. If it is

not surjective then it must be because there exist distinct order ideals Y, Z of A for which∨
Y =

∨
Z in L. Without loss of generality let a ∈ Z − Y . But then a ≤

∨
Z =

∨
Y

whence a = a ∧
∨

Y =
∨

y∈Y (a ∧ y) by complete distributivity of L. Since a is not in
the order ideal Y , we must have that for all y ∈ Y , a 6≤ y, so a ∧ y < a. But then by
compactness of a we must have

∨
y∈Y (a∧y) < a, contradicting the above equality. Hence

the map is surjective and so can be taken as the promised isomorphism.

The converse of this theorem then constitutes a duality between the category Pos of
posets and the category of profinite distributive lattices, called StoneDLat by Johnstone
(Joh82) on account of having an alternative characterization in terms of Stone topology.

Theorem 2. Every poset (A,≤) is isomorphic to the poset of compact elements of some
profinite distributive lattice.

Proof. Take the lattice of states of (A,≤). The compact elements of this lattice are just
the principal order ideals of the poset, those order ideals of the form {b ≤ a} for some
a ∈ A, which are in an obvious bijection with A. Furthermore this bijection is monotone
and hence an order isomorphism.

3. Cubes

Our original definition of HDA (Pra91) was based on n-categories. These are discrete
higher-dimensional structures whose n-cells have only two boundaries, source and target
(domain and codomain), independently of n. Such n-cells have been called globs or some-
times globes. In contrast an n-simplex has n + 1 boundaries (e.g. a triangle has 3 edges,
a tetrahedron has 4 faces), while an n-cube has 2n boundaries (e.g. a square has 4 sides,
a cube has 6 faces). Discussions with Rob van Glabbeek shortly after the appearance of
(Pra91) convinced me that n-cubes were preferable to either n-globs or n-simplices as
the basic n-cells representing the concurrent execution of n events, and also led to his
note (vG91).

This leads to two natural questions: what is a cube, and how are concurrent processes
defined in terms of them? The two approaches we see as most workable are cubical
complexes and Chu spaces over 3.

A cubical complex is a set of n-cubes for various integers n ≥ 0 along with their faces
of all lower dimensions, some of which may be shared with other cubes. For example two
3-cubes may have a face in common representing the concurrent execution a‖b‖(c; d) of
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event a, event b, and event sequence c; d, with the shared face parallel to the ab plane at
the junction of c and d, as shown below.
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Or one 2-cube may bend back to join its final vertex to its initial vertex, forming the
iteration (a‖b)∗: do a and b in parallel and when both are finished do them both again
and so on.

A Chu space over 3 is a set A of events together with a subset X of the “solid” cube
3A having 2A as its 0-cells. The dimension of the Chu space is that of the largest cube
in X, which may be finite even though A is infinite.

An advantage of cubical complexes is that iteration can be represented directly in the
form of cycles in the complex. In this way a finite cubical complex can represent poten-
tially infinite behavior. The drawback of Chu spaces here is that they do not admit cycles.
They can however represent any behavior representable by a cubical complex by expand-
ing or “unfolding” cycles to their infinite acyclic counterparts. A similar distinction arises
between finite state automata and formal languages: the latter can be understood as the
unfoldings of the former, more precisely the paths in those unfoldings.

An advantage of Chu spaces is that they make explicit both the events and the states
of the process, attaching equal importance to them. Cubical sets do not specify their
associated events, and only in sufficiently simple cases is it unambiguous what events
coordinatize each cube.

We regard the advantages of cyclic structure in cubical complexes as not offsetting the
disadvantage of not knowing the events of a process.

The advantages of cyclic structure do not as one might first think reside in the finite
representability of infinite behavior. Much reasonable infinite behavior is finitely repre-
sentable in terms of Chu spaces as the least solution to a finite set of finitely presented
recursive equations, or as the Kleene star (iteration) of a finite or finitely presented Chu
space. Cycles are merely an intuitively appealing representation of iteration.

However we do not have a counterpart for higher dimensional automata of Kleene’s
theorem that every ordinary automaton is trace-equivalent (though not bisimilar) to a
regular set. Thus cycles for HDA’s may well have an advantage in greater expressive
power.

One can however question the practical benefits of such expressivity. Cycles permit
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arbitrarily knotted and otherwise topologically convoluted structures, to a much greater
degree with HDA’s than with ordinary finite automata. We are unable to defend cubical
sets on the ground that they offer cyclic structures that can be readily understood by
code maintainers yet that cannot be represented algebraically. We therefore take the
position that little is lost by limiting programmers to those infinite behaviors that are
representable algebraically via recursion and iteration.

We had originally intended to treat cubical complexes anyway, in particular the pre-
sentation of the category of cubical sets in terms of an algebraic theory defined as the
category of finite bipointed sets. However some of our early readers have suggested we
get to the point and treat what we really believe in, which we now do.

4. Chu spaces

In the cubical set approach to higher dimensional automata an automaton is a (possibly
infinite) set of cubes of various dimensions. In the Chu space approach one starts instead
with a single cube of very large, possibly infinite, dimension and “sculpts” the desired
process by removing unwanted faces. The axes of the starting cube constitute the events,
initially a discrete or unstructured set. The removal of states has the effect of structuring
the event set. For example sculpting renders two events equivalent, or synchronized, after
all states distinguishing them have been removed.

The sculpture way of looking at Chu spaces does not reveal the intrinsic symmetry of
events and states. An alternative presentation that brings out the symmetry better is
as a matrix whose rows and columns are indexed by events and states respectively, and
whose entries are drawn from the set 3 = {0, 1, 2}. The columns of this matrix constitute
the selected faces of the cube.

Chu spaces have several advantages over cubical sets for formalizing higher dimensional
automata. First, the transition from ordinary event structures to higher dimensional
event structures is made simply by allowing one additional truth value. Second, events
are well-defined; with cubical sets one sometimes cannot tell whether an axis of one
cube is associated with the same event as an axis of another. Third, the duality of
events and states implicit in event structures extends without complication to the higher
dimensional case. And fourth, the full gamut of both the process algebra and the linear
logic operations as defined on two-valued Chu spaces, when suitably stated, carries over
to the three-valued case with no change to the wordings of the definitions.

A little more formally, a Chu space is simply a matrix over a set Σ, that is, a rectangular
array whose entries are drawn from Σ, for example 011

001 . The smallest useful alphabet is
2 = {0, 1}, which is appropriate for representing ordinary event structures, whose events
may be either not done or done. The alphabet of principal interest for higher dimensional
automata is 3 = {0, 1, 2} for unstarted, active, and done. We will consider even larger
Σ’s later on. We now give the formal definition.

Definition 3. A Chu space A = (A, r,X) over a set Σ, called the alphabet , consists of
a set A of events constituting the carrier , a set X of states constituting the cocarrier ,
and a function r : A×X → Σ constituting the matrix .
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We distinguish between an event a as an index of a row of the matrix and the row
so indexed, which we define as the function ra : X → Σ satisfying ra(x) = r(a, x). The
meaning of a row is that it represents an event as an information-dependent value, namely
one that varies from state to state. When the representation is faithful , meaning that
distinct events are represented by distinct rows, the Chu space is said to be separable .
We think of events as intensional and their representation as rows as extensional.

Similarly each state x indexes a column rx(a), making the type of a column A → Σ.
The meaning of a column is that it represents a state as a time-dependent value, one that
varies from event to event. When this representation is faithful the Chu space is called
extensional , and biextensional when in addition it is separable.

Thus the same matrix has two dual interpretations, namely as two sets A and X each
of whose elements is interpreted in terms of its interactions with all the elements of the
other set.

Definition 4. Given two Chu spaces A = (A, r,X) and B = (B, s, Y ), a Chu trans-

form from A to B is a pair (f, g) consisting of functions f : A→ B and g : Y → X such
that s(f(a), y) = r(a, g(y)) for all a in A and y in Y , the adjointness condition.

Chu transforms compose via (f ′, g′) ◦ (f, g) = (f ′ ◦ f, g ◦ g′). Well-definedness and
associativity of this composition are readily verified. The category Chu(Set,Σ) has as
objects all Chu spaces over Σ and as morphisms the Chu transforms between them. Chu
transforms play the role for Chu spaces that linear transformations play for vector spaces,
continuous functions for topological spaces, etc.

4.1. From event structures to Chu spaces

An event structure with set A of events and family X of configurations may be represented
as the Chu space (A,∈, X), thinking of the membership predicate a ∈ x as a function
A×X → 2 (so the alphabet is 2 = {0, 1}).

The event structure homomorphisms between two event structures can be shown to
coincide with the continuous functions between their respective representing Chu spaces.
This gives a strong sense in which the information in an event structure has been captured
by its representing Chu space.

4.2. HDA’s via Chu spaces

The Chu notion of higher dimensional automaton takes it to be a Chu space over the three
letter alphabet {0, 1, 2}, or {0, 1

2 , 1} as some authors prefer. The three letters represent
the three states an event can be in, namely before, during, and after. Following the
convention by which the events and states of a Chu space index respectively the rows
and columns of that space’s matrix, each state x of a Chu space specifies the states of
the events a in that state, namely r(a, x). We view x as a global state and r(a, x) as the
local state or “microstate” of event a in state x.

The column rx(a) defined as λx.r(a, x) is a function from A to 3, i.e. an element of
3A. The set of all columns of a Chu space thus constitute a subset of 3A.
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Its intended interpretation is as the totality of possible (permitted) state vectors. That
is, elements of 3A not appearing as columns of the Chu space are understood as being
disallowed.

4.3. Process Algebra of HDA’s

In this section we develop a four-operation process algebra of higher dimensional au-
tomata based on their representation as Chu spaces. The beauty of this process algebra
is that the passage from ordinary automata to higher dimensional automata is accom-
plished simply by increasing Σ from 2 = {0, 1} to 3 = {0, 1, 2}, entailing no modification
at all for two of the definitions, and at most attention to minor details for the other
two. Other operations are also definable, such as synchronous concurrence, restriction,
and (with strong caveats) recursion as shown by Gordon Plotkin. The four we treat here
however will suffice to illustrate the general idea of process algebra operations interpreted
over Chu spaces.

The operations we define are, in order (leaving the more difficult ones to the end), con-
currence (noninteracting parallel composition), orthocurrence (not standard for process
algebra, but we believe important nonetheless), choice, and sequential composition. The
definitions are given independently of the structure of Σ as far as possible. Concurrence
and orthocurrence make no assumptions about the structure of Σ. Choice assumes that
Σ contains an element 0 as the initial state of an event. Sequence assumes both an initial
and a final element of Σ.

Readers wishing to experiment with the Chu spaces that can be so built, and whose
web browser has Java enabled, can visit the site http://boole.stanford.edu/live,
Chu Spaces Live. This site offers a calculator for Chu spaces accompanied by a tutorial
with many exercises. For ordinary event structures set K (synonymous with Σ) to 2, for
higher-dimensional automata set K to 3, for the two Anger-Rodriguez examples we treat
later, set K to respectively 4 and 6. The notation used there is that of linear logic, with
⊗ rendered in ASCII as ∗ and ...................................................

..............

.............................. as #.
Concurrence
The asynchronous parallel composition or concurrence A‖B (linear logic: A + B)

of two processes A = (A, r,X),B = (B, s, Y ) is defined relatively straightforwardly as
(A + B, t, X × Y ) where t(a, (x, y)) = r(a, x) and t(b, (x, y)) = s(b, y). Its operational
meaning is the process in which both A and B can happen independently of each other.

Looked at from the event structure side of the duality, concurrence simply juxtaposes
two event structures. On the state side, the product of states is formed, which corresponds
to the standard parallel composition for finite state automata.

Writing 1 for the discrete singleton Chu space 01 over 2, this definition of concurrence
makes 1‖1 the Chu space 0011

0101 , the discrete doubleton. Switching to Chu spaces over 3 but
continuing to write the discrete singleton as 1, we have that 1 is 012 , and 1‖1 is a 000111222

b 012012012 ,
again the discrete doubleton but this time over 3.

These two versions of the discrete doubleton may be depicted as follows.
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On the left is the prime algebraic domain of states of a two-event discrete event struc-
ture, with the initial state 00 drawn at the bottom (so these automata are rotated 135◦

counterclockwise from the orientation adopted at the start of the paper). On the right is
the corresponding higher dimensional automaton.

Each of these automata can be constructed using the Chu calculator when first visited
by setting K to 2 or 3 and then clicking on +. (This relies on the inputs to the operation
initially being the discrete singleton 1.)

Orthocurrence
The tensor product or orthocurrence (Pra85; Pra86; CCMP91) A ⊗ B of two pro-

cesses A = (A, r,X),B = (B, s, Y ) is defined as (A × B, t, Z) where Z is the set of
Chu transforms from A to the transpose B⊥ = (Y, r ,̆ B) of B (r (̆y, b) = r(b, y)). and
t((a, b), (f, g)) = s(b, f(a)).

This definition does not at first sight seem symmetric in A and B. However the def-
inition makes B ⊗ A = (B × A, t′, Z ′) where Z ′ is the set of Chu transforms (g, f)
from B to A⊥ and t′((b, a), (g, f)) = r(a, g(b)). By adjointness, r(a, g(b)) = s(b, f(a)), so
t′((b, a), (g, f)) = t((a, b), (f, g)). Thus up to bijection A ⊗ B and B ⊗ A have the same
carrier, cocarrier, and matrix, that is, they are isomorphic as Chu spaces.

The intended operational meaning of orthocurrence is “flow-through,” as with the flow
of a system A of trains through a system B of stations, a river flowing along its bed, a
system of signals flowing through a circuit made up of gates, or two particle systems in
collision.

In addition to this operational interpretation, orthocurrence is intimately linked to the
transformational structure of Chu spaces via the definition of the “internal homfunctor”
A−◦B, namely the Chu space whose points are the Chu transforms from A to B. This
can be defined either as (A ⊗ B⊥)⊥ or (B ⊗ A⊥)⊥, these definitions being isomorphic
though not identical. Using A⊥⊥ = A (transposition is an involution), the first definition
makes A⊗ B equal to (A−◦B⊥)⊥ while the second makes it (B−◦A⊥)⊥.

These standard relationships from linear logic can be related back to the operational
interpretation as follows. A state (f, g) of A⊗ B can be understood either as a variable
state f(a) of B where a ∈ A is the parameter of variation, or as a variable state g(b) of
A as b varies over B. The requirement that B “looks the way it should” from each point
(event) of A, and dually A looks sane from each B vantage point, constitutes a joint
constraint on the overall sanity of each state of A⊗ B.

For each choice of state (f, g), the function t((a, b), (f, g)), now with only a and b left
to vary, may be thought of as an A×B crossword puzzle whose rows and columns must
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both spell out sensible words: the a-th row must represent a state of B while the b-th
column must represent a state of A. The following illustrates this.

A basic example of orthocurrence consists of two trains a followed by b travelling
through two stations c followed by d. The two trains are represented by the Chu space
a 011
b 001 and the two stations by c 011

d 001 . Their tensor product is
(a, s) 011111
(a, t) 000111
(b, s) 001011
(b, t) 000001

, consisting of the four

possible train-station pairs: train a at station b, etc. Ordering the six states (columns)
by inclusion yields the poset shown on the left.
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On the right is its higher-dimensional counterpart. As with concurrence, orthocurrence
can be calculated with the Chu calculator. Set K to 2 or 3 as desired, then concatenate 1
with itself to form 011

001 when K = 2 and 01222
00012 when K = 3. In either case call that space

p, then form p⊗ p. This will produce a 4× 6 Chu space when K = 2, namely
011111
000111
001011
000001

, and

a 4× 13 Chu space when K = 3, namely
0122222222222
0000011122222
0001201201222
0000000000012

.

In the former case the 6 states constitute the six possible solutions to the 2×2 crossword
puzzle for which the legal words both down and across are 00, 10, and 11, namely 00

00 ,
10
00 , 10

10 , 11
00 , 11

10 , and 11
11 . Reading out a solution row by row yields the four elements of the

corresponding column of the above 4× 6 Chu space.
In the latter case the 13 states correspond to J.R. Allen’s 13 primitive relationships

between two intervals (All84). These are the 13 solutions to the 2× 2 puzzle whose legal
words both down and across are 00, 10, 20, 21, and 22. The event of a train arriving at a
station corresponds to one of the four possible coincidences of endpoints of two intervals
as they slide past one another. Later on we consider extensions of Allen’s interval algebra.

Choice
The choice AtB of processes A = (A, r,X),B = (B, s, Y ) is defined as (A+B, t, X +

Y ) where t(a, x) = r(a, x), t(b, y) = s(b, y), and t(a, y) = t(b, x) = 0. That is, the events
of A t B are formed as the disjoint union of those of A and B. Its states partition into
two kinds: those assigning 0 to all events of B, corresponding to choosing to execute A,
any state of which is permitted in A t B, and vice versa: choose B and set all events of
A to 0.
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This should raise no questions when A and B each have a zero state (all events 0). If
however B say lacks a zero state, choosing A would seem to force B into a disallowed zero
state. To resolve this we view the choice of A as forcing B into the zero state whether or
not it is allowed.

A plausible alternative definition of choice is to take the dual point of view of processes
as state spaces rather than event spaces and take choice to be sum in this dual view. This
is the same as defining choice to be product in the normal event-oriented view, namely
(A×B, t, X + Y ) where t((a, b), x) = r(a, x), t((a, b), y) = s(b, y).

One difficulty with this definition is that the choice of a process having at least one
event over a process with no events yields a process with no events, which is clearly not
satisfactory. One might resolve this difficulty by postulating an additional dummy event
for every process but then all the other operations would need to cater for the dummy
event, complicating the process algebra.

Sequence
We begin by defining sequential composition or sequence A;B for an enriched notion

of process, namely one furnished with subsets I and F of X containing respectively the
initial and final states of the process. Then A;B = (A + B, r, Z) where Z ⊆ X × Y

consists of those states (x, y) such that either x ∈ FA or y ∈ IB .
The resulting process A;B should be similarly enriched, which we arrange by defining

IA;B = Z ∩ (IA × Y ) and FA;B = Z ∩ (X × FB). That is, (x, y) is initial in A;B when x

is initial in A, and is final in A;B when y is final in B.
Provided we specify I and F for all primitive processes, and also by induction for

all compound processes (with sequential composition as our first example), sequential
composition is then defined on all processes namable with this process algebra. This raises
two issues. First, there is the question of whether different names for the same process
(as an unenriched Chu space) assign the same I and F . Second, sequential composition
remains undefined for processes having no name.

Both issues can be resolved simultaneously by having a rule for determining I and F

from the unenriched Chu space. For Chu spaces over 2 in their role as a generalization of
ordinary event structures, one choice is to take F to consist of all maximal states, those
which do not allow any further events to occur, and dually I to consist of all minimal
states (which for ordinary processes will be just the empty state). One limitation of this
approach is that it does not distinguish deadlock states, which might not be maximal
yet which cannot make progress.

For Chu spaces over 3 however, adopting the same criterion raises questions that don’t
arise for 2. Consider for example a maximal state having an active event. Maximality of
the state means that the active event cannot terminate. It would seem unreasonable to
allow B to start while A still has active events. Thus one must answer the question, may
F contain a state in which an event is active? With dual motivation the same question
must be answered for I.

As another example, suppose A consists of one event a, which is permitted to be either
unstarted or done but never active. Are the two states of a to be considered part of a run
in which the active state of a is skipped, or simply two alternative states of a stationary
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process, one having no permitted state transitions? In the former case only the done
state would be final, but in the latter both states could well be considered final.

Yet another example would be a maximal chain that is disconnected, which can happen
for example when there are two consecutive cells where only one event changes state,
namely from 0 to 2 without passing through 1, and furthermore no other connected chain
properly extends the chain that runs up to that 0 point. When such a discontinuous chain
arises we may interpret the discontinuity as resulting from a deadlock state. This suggests
requiring that final states be connected. But disconnected is not a reliable indicator of
deadlock, which can occur even when there is no extension of that chain that starts
strictly above the point of deadlock.

It seems to us that circumstances should be allowed to dictate these answers: different
needs may have to be met in different ways.

5. Beyond three-valued time

The essential difference between ordinary event structures and their higher dimensional
counterparts is their logic. The former in effect have only two truth values, corresponding
to “before” and “after” as the two times for events. Higher dimensional automata can
be understood as introducing “during” or “middle,” making them a sort of intuitionistic
logic for concurrency. In this section we consider other states an event may be in besides
merely before, during, and after, extending the temporal logic of higher dimensional
automata beyond three values.

5.1. Quantales

Definition 5. A quantale (Mul86; Ros90; AV93) is a complete join-semilattice Q (and
hence a complete lattice) with an associative binary operation x ⊗ y, its multiplication,
that distributes over arbitrary sups on both sides (x⊗

∨
i yi =

∨
i(x⊗yi) and (

∨
i xi)⊗y =∨

i(xi⊗y), including the empty sup x⊗0 = 0 = 0⊗x). A quantale with unit contains an
element 1 satisfying 1⊗x = x = x⊗1. A quantale is called commutative when it satisfies
x⊗ y = y ⊗ x for all x, y, and idempotent when it satisfies x⊗ x = x for all x.

Besides the trivial singleton quantale, the basic quantale is the two-element chain
0 < 1, a semilattice, with meet as its multiplication and hence 1 as its unit. It is both
commutative and idempotent. We associate this quantale with ordinary event structures.
As another example, there is just one commutative idempotent quantale 0 < 1 < 2 having
1 as its unit, which we have elsewhere called 3′ (CCMP91), and which we associate with
higher dimensional automata.

Every quantale admits a unique implication, residual, or “distance measure” x → y,
defined as the maximal z satisfying x ⊗ z ≤ y (and a second dually defined implication
y ← x when not commutative, but our quantales will all be commutative). Implication
for the quantale 3′ can be straightforwardly calculated as satisfying 0→ x = 2 = x→ 2
for all x, 1→ 1 = 1, and otherwise x→ y = 0.

We now generalize the notion of poset (as used e.g. in specifying event structures). A
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Q-schedule A = (A,→) is a set A of events together with a Q-valued distance measure
a → b on A satisfying the triangle inequality (a → b) ⊗ (b → c) ≤ a → c, and also
1 ≤ a → a when Q has a unit 1. A homomorphism of Q-schedules A = (A,→),
B = (B,→′) is a function f : A→ B such that for all a, b ∈ A, a→ b ≤ f(a)→′ f(b),
that is, an expanding (distance-nondecreasing) function.

For Q = 2, the unique two-element quantale, a Q-schedules is simply a preordered set
(A,≤) where ≤ is a reflexive transitive binary relation (but need not be antisymmet-
ric), while a homomorphism of such is a monotone function. For Q = 3′, our 3-element
quantale for HDA’s, a Q-schedule is a generalization of posets to what Gaifman and
Pratt called a “prosset” (GP87), namely a structure (A,≤, <) with two transitive binary
relations, one reflexive and the other irreflexive, such that a < b implies a ≤ b. The lat-
ter restriction is equivalent to having a single binary relation having three truth values,
corresponding to “no restriction,” ≤, and <. The multiplication x ⊗ y of 3′ works as
expected: ≤ ⊗ <, < ⊗ ≤, and < ⊗ < are all < while ≤ ⊗ ≤ is ≤.

As already remarked, every quantale Q comes with its own distance metric. This allows
Q to be understood schizophrenically both as a quantale and as a Q-schedule. A state of
a Q-schedule A is a homomorphism from A to Q understood in this way as a Q-schedule.
For the two-element quantale a state can be seen to be simply an order filter or “upset.”
While this is the order dual of the notion of state for conflict-free event structures, this
discrepancy is due merely to interpreting the distance a → b in a Q-schedule as the
strength of constraint on whether b may precede a rather than vice versa.

The distance metric of 3′ is given by the table 222
012
002

, whose rows and columns are indexed

by 0,1,2 (before,during,after) respectively. Whereas each of 0 and 2 is distance 2 from
itself, 1 is at distance only 1 from itself. The effect of this is that when b ≤ a in a
3′-schedule, a and b can both be in state 1 (during), but not when b < a.

Why quantales? Although Heyting algebras are more general than Boolean algebras,
quantales are more general still, making quantale-based logics more broadly applicable
than those based on Heyting or Boolean algebras. This is especially important for logics
of time where x ⊗ y denotes the accumulated delay of the consecutive delays x and y,
which might be truth values, integers, reals, etc., and x ≤ y denotes the relative logical
strengths of such delays. Furthermore quantales have enough structure to support many
useful constructions. These two considerations taken together make quantales very useful,
a theme that we have expanded on in some detail elsewhere (CCMP91). One might call
this general subject algebraic temporal logic.

5.2. Generalizations of Allen’s interval algebra

F. Anger and R. Rodriguez (AR91; RA93b; RA93a) have generalized Allen’s 13 primitive
relationships or states to richer situations motivated by relativistic considerations. In
Allen’s interval algebra a pair of endpoints one from each interval can only stand in three
relationships to each other: before, at, or after. The first Anger-Rodriguez extension adds
a further relationship catering for the situation where the endpoints are so far apart in
space that it is hard to be sure about the “at” case: the best one can say in this situation
is that neither endpoint is in a light cone of the other, so one settles for “near.”
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The principal difference between “at” and “near” is that, whereas it is not possible for
both endpoints of one interval to be simultaneously at one endpoint of the other, they
can both be near that endpoint, in the sense that neither of them are in the light cone
of that endpoint.

When interval endpoints are replaced by trains and stations, the corresponding dis-
tinction between at and near is that of stop and through trains. The stop train stops
at the station while the through train only gets “near” it, from say the point of view of
a passenger desiring to alight. A slow-moving observer may make its observations at a
rate sufficient to guarantee that it never sees two stop trains simultaneously in the same
station, but if two express trains rush through sufficiently close together the observer’s
window of observation may be wide enough to give it the impression that both trains were
in the station at the same time. This provides a second more down-to-earth application
for the Anger-Rodriguez refinement of Allen’s interval algebra besides relativity.

Anger and Rodriguez calculate that there are 29 configurations of this refinement.
These can be seen to correspond to the 29 states of the tensor product of the two-event
eight-state Chu space 01232333

00002213 with itself, with Σ = 4, as may be verified with the Chu
calculator. Here 0, 1, 2, and 3, as the possible values of an interval endpoint in a given
state, denote respectively before, at, near, and after, from the perspective of an observer
watching that endpoint go by. The eight states are readily verified to be exactly the
allowed combinations of states of two consecutive endpoints (or trains) as seen by an
observer. The absence of a 11 state expresses the illegality of both endpoints of the
interval being at an observer. However state 22 is legal, corresponding to both endpoints
being near the observer. The significance of the other states, both those present and
those absent, should be clear.

Orthocurrence computes the global behavior resulting from the observations of the two
endpoints of one interval by each of the endpoints of the other interval. In doing so it
extends the 13-cell HDA to a structure that is not obviously an HDA (since Σ is now 4
instead of 3), but which can nevertheless be viewed as an HDA. 22 of the 29 resulting
cells can be described as all possible ways of changing 1 to 2 in the original 13 cells. In
particular the 6 vertices contain no 1’s and so remain unchanged. The 6 edges contain
one 1 and hence are duplicated to become 12 edges. And the one surface contained two
1’s, namely 3110, and hence is quadruplicated to become the four surfaces 3110, 3120,
3210, and 3220, bringing the total to 22. The remaining 7 cells are 2200, 2020, 2220,
2222, 3222, 3322, and 3232. All but the last 7 have all their faces; for example the surface
3210 has all four edges 3010, 3310, 3200, and 3230, but the surface 2200 has only edges
2000 and 3200, lacking 2300 and 0200.

On the face of it a Chu space over 4 is something beyond an HDA. However at and near
clearly have something in common not shared with before and after, namely proximity
to the station and a sense of activity (in both cases the observer on the station sees a
train in action). Thus it is reasonable to take the dimension of a cell to be the number
of 1’s and 2’s in it. For example the two three-dimensional cells are 2220 and 3222 while
the only four-dimensional cell is 2222. This conflation allows us to view Chu spaces over
4 as cubical structures and hence higher dimensional automata.

Whereas the 13-cell HDA had trivial homotopy, the 29-cell is multiply connected and
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contains holes. This indicates the emergence of choice in the structure. For example
the parallel edges 1000 and 2000 represent the choice of the first train stopping at the
first station or rushing through. They are homotopically distinct because there is no
connecting surface between them through which the 1000 path may be deformed to
become the 2000 path. Similarly the four surfaces 3110, 3120, 3210, and 3220 represent
four choices no two of which can be deformed into each other.

The question arises as to the appropriate quantale structure to impose on {0, 1, 2, 3}.
We take it to be the commutative quantale satisfying 0⊗x = 0, x⊗x = x, and x⊗y = 3

elsewhere, making the multiplication table
0000
0133
0323
0333

. The corresponding table for the residual

x→ y is
3333
0103
0023
0003

.

The nonzero entries of the latter table constitute the following automaton.
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(By transitivity there is a transition from 0 to 3 labeled 3, not shown.) The self-loops
at 0, 1, 2, and 3 are labeled respectively 3, 1, 2, and 3. In this framework an Allen
interval is modeled as a schedule with two events a, b, corresponding to the initial and
final endpoints of the interval, such that the distances, in the sense of (CCMP91), are
given by the table ab

a 30
b 23

. A state of this schedule is as before a Q-homomorphism to Q.

The 2 on the self-loop at state 2 of the automaton allows both a and b to be in state 2
simultaneously, since the distance between a and b is 0 or 2, both of which are less or equal
to the 2 on the self-loop at 2, satisfying the expanding condition for a Q-homomorphism.
The 1 on the self-loop at state 1 prevents a and b from being in state 1 simultaneously
because the distance from b to a is 2 which is incomparable with the 1 on the self-loop.
The 0 from a to b in the schedule forces a to precede b. In this way the eight states of the
above Chu space representing an Allen interval are arrived at as all the homomorphims
from the interval to Q.

An unsatisfactory aspect of this quantale is that it lacks a unit. And indeed any lower
bound on a→ a must be a lower bound on both 1→ 1 = 1 and 2→ 2 = 2, and hence 0,
i.e. no bound at all. Question: does there exist a four-element quantale Q with unit such
that Q as a Q-schedule has the desired effect of preventing simultaneity in state 1 while
allowing it in state 2?

This generalization of the Allen algebra admits a further refinement dealing with the
passage from “before” to “near”. Light cones being well-defined, there must be an instant
at which the observed endpoint makes this passage, call it “enter” (actually the endpoint
is exiting from the “before” half of the light cone of the observer but entering the “near”
region). Dually there is a passage out of the “near” region into the “after” light cone,
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call it “exit.” No such refinement is necessary for the passage from “before” to “at” since
“enter”, “at”, and “exit” all coincide, this being the apex of the light cone.

For this extension Anger and Rodriguez find 82 configurations. Once again these may
be presented as the states of the tensor product of a certain Chu space with itself. We
work with Chu spaces over 6, with 0, 1, 2, 3, 4, and 5 as shorthand for respectively
before, enter, near, at, exit, and after. A little inspection will convince the reader that
the two-event 15-state Chu space describing this situation is 012345245245555

000000111222345 . Deleting those
columns containing either 1 (entry) or 4 (exit) changes it back to the 8-state space (after
suitable renaming).

Visualizing this 82-state automaton as a higher-dimensional automaton is not as daunt-
ing as it looks. Take each of 1, 2, 3, and 4 as contributing 1 to the dimension, these being
regions of activity, and 0 and 5 contributing 0 as before, being quiescent regions. The
binary choice we had before, of being either at or near, remains binary but the near
alternative is refined to the sequence enter;near;exit, with the expected combinatorial
blowup leading to 82 states. The simple edge 2000 now turns into the three-edge chain
1000;2000;4000, and similarly for all other states containing 2’s.

On the other hand we confess to some pessimism as to the existence of a suitable 6-
element quantale as the appropriate structure for its alphabet. Notions of this complexity
may be beyond the reach of the quantalic point of view.

There is something dissatisfying about assigning the enter (1) and exit (4) states the
same dimension as that of the near state. But since they refer to activity of an event, they
should not have zero dimension either. Intuitively they are the glue attaching the near
state to its endpoints; as such they might be considered infinitesimal vectors tangent to
the near edge at its endpoints. More generally it would seem reasonable to associate qual-
itatively different geometric elements of a higher dimensional automaton with distinct
elements of Σ.

That orthocurrence exactly describes the above complex situations, while at the same
time interpreting linear logic’s tensor operation compatibly with its process algebra in-
terpretation, indicates to us that it should viewed as among the central operations of
process algebra, with concurrence as its closest sibling and choice and sequence nearby.

What is particularly appealing here is that the one definition of orthocurrence correctly
predicts all three of the 13-element, 29-element, and 82-element variants of the Allen
interval algebra. Moreover it created insightful geometric structure for them, allowing
them all to be viewed as components of what is basically a diamond with a spike at each
end.

This suggests that orthocurrence, originally introduced just for pomsets, is a robust
notion that not only extends gracefully to higher dimensional automata but that can
be relied on to accurately describe a wide range of types of interacting (flow-through)
situations, and to furnish them with insightful structure into the bargain. That it also
accurately models linear logic’s tensor product, to the point of full completeness of at
least the multiplicative fragment MLL (DHPP99), makes its general applicability all the
more plausible.
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