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1 Introduction

We consider the relation between event structures and Chu(Set, 2), particularly the full
subcategory Sys of set systems.

2 Event Structures and Configurations

Definition 1 1 An event structure is a structure (E,`) where `⊂ P(E)× P(E).

2 A configuration of the event structure is a subset y of E such that if u ⊂ y and u ` v
then v ∩ y is inhabited. We write C(E) for the set of configurations of E.

There are two interpretations of event structures. In one, E is the set of events and ` is
called the enabling relation. Alternatively, E is the set of propositions, ` is the consequence
relation, and C(E) is the set of models.

Some classes of event Structures By imposing conditions on the allowed conse-
quences, u ` v, one can pick out many interesting classes of event structure. We just
consider a few illustrative ones:

Finite Horn u is finite and v is a singleton.

Information u is finite and v is a singleton, or empty.

Finitary u and v are finite.

Geometric u is finite

Note the implications:

Finite Horn ⊃ Information ⊃ Finitary ⊃ Geometric

We can make a category Events of event structures and turn C into a functor from
Events to Sys. A morphism from (E,`) to (E′,`′

) is a function f : E → E′ such that if
u ` v, then fu `′

fv. With the evident composition and identity, this defines the category
Events.

Then C : Events → Sys is defined by putting:

C(E,`) = (E, C(E))

on objects, and
C(f) = (f, f−1)

on morphisms. One has that C is full on objects, but much more is true. For C has a right
adjoint E where

E(E, Y ) = (E, {(u, v) | ∀y ∈ Y.(u ⊂ y) ⊃ (v ∩ y) 6= ∅})



and
E(f, g) = f

E is full and faithful (on morphisms); indeed Sys is a reflective subcategory of Events,
modulo E , with the reflection being C

(Vaughan how does the attribution go here; as I recall, you already knew the full on
objects part if not phrased in this way ?)

With each class of event structures, given by a condition P one has a full subcate-
gory, EventsP of Events (with the whole category corresponding to the universally true
condition).

Definition 2 A binary condition on sets is preserved by function application iff whenever
f : E → E′ for sets E and E′ and u, v are subsets of E such that (u, v) satisfies the
condition, then also (fu, fv) satisfies the condition.

Let P and Q be conditions preserved by function application and suppose that P implies
Q. Then EventsP is a coreflective subcategory of EventsQ; the coreflection removes all
the consequences that do not satisfy P .

3 Completeness

Let P be a condition preserved by function application, and write EP for the composition
of E and the corestriction to EventsP . This is right adjoint to CP , the composition
of the inclusion and C. In less technical language, we are considering event structures,
or consequence relations satisfying P ; CP yields the set of models; and EP yields the
consequence relations in P that hold of a given set of interpretations.

Now a completeness question arises: for what consequence relations (E,`) in EventsP

do we have that the relations holding in the set of all models of (E,`) are exactly those
holding in (E,`)? That is when do we have:

EP (CP (E,`)) = (E,`)

When this holds, we say that (E,`) is complete.
Certain closure conditions on an event structure (E,`) are at hand here:

Reflexivity u ` v, if u ∩ v 6= ∅

Weakening If u ` v then u ∪ w ` v ∪ w, for any w ⊆ E.

Cut If u ` v, e and u′, e ` v′ then u, u′ ` v, v′ (where, as often, we write comma for
union and confuse a singleton with its unique element).

Definition 3 A finitary relation is a Scott consequence relation (resp. Tarski conse-
quence relation) iff it is satisfies Reflexivity, Weakening and Cut, restricted to finitary
consequences (resp. finite Horn consequence relations).

Theorem 1 1 A finitary relation is complete iff it is a Scott consequence relation

2 A finite Horn relation is complete iff it is a Tarski consequence relation.

3 An information system is complete iff satisfies Reflexivity, Weakening and Cut,
restricted to Information consequences

This notion of a Scott consequence relation and the first part of the theorem are due
to Scott; see Proposition 1.3 in [Sco74]and also [Gab81]. Scott attributes the result to
Lindenbaum, as the proof is the same as the original proof of Lindenbaum’s Theorem.
Nothing similar seems to be available for geometric or general consequence relations.
Complete information systems are, essentially, the same things as Information Systems in
the sense of Scott; see [Sco82, LW81]. (This was also observed in [DG81].)
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4 Characterisation

One can seek to characterise the range of a functor CP . An example is:

Proposition 1 (X, Y ) is in the range of CFinitary (up to isomorphism) iff Y is closed
in the product topology on 2X .

More traditionally, one can seek to characterise the set of models C(E) of a class
of consequence relations (E,`) in terms of some structure obtained from the set sys-
tem (E, C(E)) associated to the consequence relation. For example, one can associate a
topology to C(E) taking as subbasis the Ue (e ∈ E) where:

Ue = {x ∈ C(E) | e ∈ x}

If (E,`) is geometric, then this topology is sober.

Theorem 2 A topological space X can be obtained in this way from a finitary consequence
relation, up to isomorphism, iff it is a compact, totally order-disconnected space

This is due to Droste and Göbel, see [DG81]
Again one may, more simply, consider the subset partial order on C(E).

Theorem 3 A partial order can be obtained in this way from an information system iff
it is a Scott domain.

This is, again, due to Scott; see [Sco82, LW81].

5 Infinitary Consequence

Completeness considers the P -consequences of a consequence relation (E,`). One can
also consider the general, infinitary consequences, that is: E(CP (E,`))

Theorem 4 Let (E,`) be a finitary (resp. geometric) consequence relation. Then u ` v
is a consequence of (E,`) iff it is a weakening of a finitary (resp. geometric) consequence
of (E,`).

The finitary part of this theorem is proved in its contrapositive form by Scott; see Propo-
sition 1.4 in [Sco74]

6 Recursion

The category Events has finite products and sums, and a tensor. Via C these correspond,
up to natural isomorphism, to the corresponding functors on Sys. Turning Events into
a large cpo, one can solve recursive event structure equations by normal least fixed-point
arguments, and hence the corresponding recursive set system equations. The idea of
solving event structure equations and then transferring the solutions to another category
was pioneered by Scott in [Sco82] and laid out in detail by Larsen and Winskel in
in [LW81]; there the other category was that of Scott domains.
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