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1 Introduction

We consider two kinds of recursive equations in categories of the form Chu(K,z): type
equations and value equations. Throughout it is assumed that K is monoidal closed,
complete and co-complete.
Type equations have the form
A2 F(A)

where F' is a given composition of some of a given set of functors over Chu (K, z) and we
seek A, an object in Chu(K,z). This is of particular interest when we consider a Chu
object A = (X4,Ya,m) as a kind of event structure (think of X4 as the set of events,
and Y4 as the set of configurations).
Value equations have the form
a = foa

where, for some object z in Chu(K,z), f : ¢ — x is given and we seek a : 1 — z. This is
of particular interest when we consider a Chu object as a type of computations (think of
X 4 as the set of elements of the type, and Y4 as the collection of open sets).

We are particularly interested in Chu(Set, 2), and so in Sections 2 and 3 we consider
type equations in Chu(Set,2) where the allowed functors are covariant. Even so, as we
see in Section 2 these equations may not have solutions. In Section 3 we see a case where
they do. In Sections 4 and 5 we consider value equations, obtaining negative results in
Section 4 for Chu(Set, 2) and similar cases, and positive results in Section 5 if instead K
already allows value recursion. Finally, in Section 6, we obtain positive results for general
type equations, assuming suitable enrichment of K.

2 Covariant Type Equations: A Negative Result

We consider type equations where F is composed from constants, sum, product, tensor
and @. It turns out that they do not all have solutions because, it seems, of the interaction
between tensor and .

First, consider this equation in Chu(Set, 1):

A= ((B®(B® A))+ B) x B

where B is, say, (2,3)—the third component being omitted as it is determined. Then,
setting A = (X,Y), we have that

X 2 (287 % (2 x X)) +2) x 2

and
Y2 ((3x (3% xY?)x3)+3

But then neither X nor Y are empty and X has greater or equal cardinality than 23X,
which is impossible.



Turning to Chu(Set, 2), consider the same equation with, now, B being the image of
(2,3) in Chu(Set, 2), that is (2,3, m), where m is constantly 1. Then the equation does
not have a solution in Chu(Set,2) either. For if (X,Y,m) is a solution, then (X,{y €
Y | Vo € X.m(z,y) = 1}) is a solution to the first equation.

3 Covariant Type Equations: A Positive Result

We consider equations where F' is composed from constants, sum, product and tensor. We
restrict ourselves to the case where the constants are extensional Chu spaces (the general
case is likely also possible, but seems not to be of much interest).

It is easy to see that if A and B are extensional, so are their sum, product and tensor.
It is convenient to consider the full subcategory Sys of set systems which is equivalent to
the full subcategory of the extensional spaces. A set system is a space (X,Y, m) where Y’
is a collection of subsets of X and m(z,y) = 1 iff z € y; when writing such spaces we will
omit the (determined) third component.

By the above remarks, the constructions sum, product and tensor can be defined
also on Sys. More technically, it has sums and products, and there is a tensor which is
naturally equivalent to the tensor on Chu(Set,2), modulo the evident inclusion functor
I: Sys — Chu(Set, 2).

Here are the definitions:

Finite Products
The terminal object is (1,0). The product of (X,Y) and (X',Y’) is (X x X', Z)
where Z ={yx X' |yeY}U{X xy' |y €Y'}

Finite Sums
The initial object is (0,{0}). The sum of (X,Y) and (X’,Y”’) is (X + X', Z) where
Z={y+ylyeY,y ey}

Tensor Products
The unit is: (1,{1}). The tensor product of (X,Y) and (X', Y’) is (X x X', Z)
where Z ={W C X x X' |Va’ e X''W~ 2/ €Y/ Vz e X Wz €Y}

We now proceed by: considering Sys as a large cpo; showing all the operators F'
on Sys, built up from constants, and finite sums, products and tensor products, are
continuous; and then using the usual least-fixed point apparatus to solve the type equation.

The partial order on Sys is defined by:

(X,V)< (X, Y)if XCX andVy' €Y'y’ NnXeY

One easily verifies that this defines a large partial order. The least element is Ogys. If
(X, Y)) is a directed system, its lub is (X,Y") where X is the union of the X and Y is
{y cX | Viyn X, € Y)\}

The proofs that sum, product and tensor product are continuous monotone operators
on Sys are omitted (as are all proofs in this note!). Let F be a continuous operator
on Sys; let Fi, be the lub of the sequence of its iterates, F"(0gys). This is the least
fixed-point of F', and so solves the equation A = F(A) (up to equality!).

Let us now consider the categorical aspects of the solution of the equation. First to each
inclusion (X,Y) < (X’,Y”) in Sys there is an inclusion morphism ¢ : (X,Y) — (X', Y”)
where ¢ has first component the inclusion of X in X’ (and recall that morphisms with
extensional domain are determined by their first component; they are monos iff the first
component is 1-1). These inclusion morphisms are preserved by sum, product and tensor
product. So in considering continuous operators I on Sys let us now assume they are
also functors on Sys that preserve inclusion morphisms.



Now consider a directed system Ay = (Xy,Y)). This yields a system A of inclusion
morphisms. There is a cone p : A — \/, Ay where the py are inclusion morphisms. This
cone is universal in Sys (and also in Chu(Set, 2)). Evidently, F preserves such colimiting
cones of inclusion morphisms, as it preserves inclusion morphisms and is continuous. It
follows by the Basic Lemma in [SP82] that

nr: F(Fy) — Foo

is the initial F-algebra where nr is the identity.

Next, suppose that F extends to a functor F’ on Chu(Set,2), in the sense that is
F’o[ is naturally equivalent to IoF. Then np : F(Fy) — Fx is also the initial F'-algebra,
again by applying the Basic Lemma.

There other operators possible, such as choice:

(X.Y) ¥ (X, V") = (X + X' {inl(y) |y € Y} U{inr(y)) |y € Y"})

where inl : X — X + X’ and inr : X’ — X + X' are the usual injection functions. There
should be many more possible operators; for example operations on schedules include
some kind of semi-colon. It is not clear what the right generalisation of this is. An
interesting question: what are the automata-definable operations; do they coincide with
the functors over “the system of subsets” part of Chu(Set, 2) that are continuous in the
above sense? The idea of using a (large) cpo here goes back to Scott’s method of solving
domain equations using information systems.

4 Recursion at the level of values: Negative Results

In this and the next section, fix L to be a category with a terminal object.

Definition 1 An object x has the fized-point property if every f : x — x has an fized-
point, that is an a : 1 — x such that foa = a. The category L is said to have fixed-points
if every object in it has the fixed-point property.

Proposition 1 Suppose that L has an initial object that has the fized-point property.
Then the initial and terminal objects are isomorphic. Further, every object has the fized-
point property, in the trivial sense that the fized-point of a morphism is the unique map
from the initial object.

Thus as the initial and terminal objects in Chu(Set, 2) are distinct, Chu(Set, 2) does
not have the fixed-point property. On the other hand the proposition also shows that
there is a general difficulty, as Chu(K, ) has initial and terminal objects. So, by the
proposition, recursion will be generally available in only a trivial sense.

According to the view I put forwards in my LICS paper, one way to go now is to
think of the maps here as linear and expect fixed-points of the continuous ones, which
are defined relative to a co-monad, ! (as in linear logic). So suppose that ! is a co-monad
over L.

Definition 2 L has !-fized-points if every f :lv — x has a !-fized-point, that is an a :
11 — x such that foa = a, where composition in the co-Kleisli category is intended.

In other words, L has !-fixed-points iff the co-Kleisli category has fixed-points.

Proposition 2 Suppose that L is a monoidal closed category with an initial object. Let
'+ L — L be a co-monad, and suppose that L has !-fixed-points. Then if there is a
morphism from I to 1, the initial and terminal objects are isomorphic.

So we cannot even make Chu(Set,2) into a category with !-fixed-points in any rea-
sonable way (and we shall argue next why the assumption that there is a morphism from
I to !1 is reasonable).



5 Recursion at the level of values: Positive Results

We show that we can transfer good recursive structure from K to Chu(K,z). Let us
assume that we have a co-monad ! on K which makes it a model of intuitionistic linear
type theory, in the sense of Seely [See89]. (So, in particular, we make the assumption
11 = ], rather stronger than that considered above). Write G :Chu(K,x)— K for the
evident forgetful functor, and F for its left adjoint.

Proposition 3 Chu(K,x) is a model of classical linear logic, in the sense of Seely [See89]
with co-monad FoloG. Further, if K has !-fized-points, then Chu(K,z) has Fol-G-fized-
PoInts.

An example would be to take K to be CPO_ the category of cpos with bottom and
strict continuous maps, and ! to be the lifting functor. And there are many more similar
examples, e.g. varying the notion of continuity, passing to categories rather than partial
orders, or taking certain categories of algebras.

It seems very likely that many more properties transfer, but I do not consider them
here, as I am still working on what the properties associated to recursion should be.

6 General Recursive Type Equations

Here we would like to solve type equations in Chu(K,z) where F' is built up out of
constants, product, tensor and (-)*. This implies that Chu(K, z) has fixed-points and so
a zero object. It is appropriate to use the CPO j-enriched theory of [SP82]. This says
that to solve equations of the above form in a category L it suffices that:

e L is CPO | -enriched
e [ has w-limits
e [ is built up out of locally continuous functors, which may be of mixed variance.

A functor is locally continuous if it preserves lubs of increasing w-sequences, that is if it
is CPO-enriched.

So let us assume that K is CPO | -enriched and that products, sum and tensor are
locally continuous. Then all the requirements hold:

Proposition 4 1 Chu(K,z) is CPO, -enriched
2 Chu(K,z) has w-limits
8 Product, tensor and (-)* are locally continuous

In particular one can take K to be CPO_ . A generalisation of this proposition would be
a test for a more general theory of enrichment and recursive type equations.
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