
Euclidean and non-Euclidean algebra

Vaughan Pratt
Stanford University

February 14, 2011

Vaughan PrattStanford University () Euclidean and non-Euclidean algebra February 14, 2011 1 / 19



1. Program

In this talk we begin by formulating Postulates 2, 5, and 1 of Euclid’s
Elements algebraically.
The result is a purely spatial axiomatization of the variety AffQ of vector
spaces over the rationals.
Our axiomatization is equivalent to the customary numerical one based
on linear combinations whose coefficients sum to unity.
We then extend this to AffQ[i], complex rationals, via a suitably
axiomatized binary operation x ◦ y giving the point y goes to when xy is
rotated counterclockwise 90◦ about x .
Lastly we axiomatize respectively elliptical and hyperbolic space by
modifying a detail of our algebraic formulation of Postulate 5.
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2. Historical background

It is plausible that the Pyramid at Djoser (2700 BC) was laid out with
the help of cartesian coordinates. Laying out its intricate system of inner
chambers would have been considerably harder if shaped like the Circular
Pyramids of Western Mexico.
In any event it surely did not appeal to anything like Book I of Euclid’s
Elements.
It was over two millennia before the Greeks noticed that the side of the
pyramid’s base (or any square) was incommensurate with its diagonal.
Max Dehn (1926) has speculated that this incommensurability led Euclid
to formulate Books I-IV in purely spatial terms free of any concept of
number.
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3. Euclid’s postulates

Book I gives 23 definitions (e.g. ”A straight line is a line which lies evenly
with the points on itself”) together with the following five postulates.
1. To draw a straight line between any two points.
2. To produce a finite straight line continuously [to any finite multiple of
its length].
3. To draw a circle with specified center and radius.
4. That all right angles are equal.
5. That two lines inclined inwards meet.
Postulates 1-3 are constructions while 4-5 are assertions.
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4. Algebraic formulation

Our algebraic version of Euclid’s postulates starts with the second, which
we modify as, ”to produce a finite straight line as far again.”
If x and y are the endpoints of the given line, we write xy for the point
reached by so producing it and abbreviate (xy)z to xyz .
We axiomatize Postulates 2 and 5 as follows.

xx = x (1)

(xy)y = x (2)

(wx)(yz) = (wy)(xz) (3)

Call these G1, G2, G3.
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5. Expression of Euclid’s 5th Postulate

E α!!
!!

!!
!!

!!
!

X•

Y•

P

�
�
�
��

Hβ

A

C
C
C
C
C
C
C
C
C

@
@

@
@
@

@
@
@
@

BPPPPPPP

PPPPPPP

Q
Q
QQ

C
D

F G

Euclid’s 5th: EX & HY , when inclined inwards, meet when produced.
Euclid’s criterion for “inclined”: α + β < 180o .
Our criterion: existence of a witness triangle ∆AEH with parallelogram
BCGF (centroid D) s.t B,C at midpoints of AE ,AH.
Our version of the 5th: EF and HG , when obtained by extending the
four sides of the skew quadrilateral ABDC , meet when extended.

A→ B → (C → D)= A→ C → (B → D) (G3)
E → F = H → G

G3 xy(zw) = xz(yw) | xywz = xzwy | xywzywz = x | x102102 = x
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6. Consequences

Rename wx(yz) = wy(xz) to xy(zw) = xz(yw).
Then set w = z to obtain xy(zz) = xz(yz). Use zz = z to obtain

xyz = xz(yz)

Call this G2.5. It is weaker than G3, and asserts that the image of a
geodesic under inversion (reflection) in a point (here z) is a geodesic.
(And by G2 inversion in a point is an involution.)
Applications: (i) Non-Euclidean algebra (later).
(ii) Parenthesis elimation. Substitute xz for x in G2.5 and simplify to
yield

x(yz) = xzyz .

Use this and the convention (xy)z = xyz to recursively eliminate all
parentheses from any term (does not need G3).
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7. Equivalent formulations of the 5th postulate

Flat version of Postulate 5:

wxyz = wxy(zee) (4)

= wx(ze)(ye) (5)

= wz(xe)(ye) (6)

= wzy(xee) (7)

= wzyx (8)

wxyz = wzyx

Recover wx(yz) = wy(xz) from this and xyz = xz(yz).
Use G2 three times to convert this to

wxyzxyz = w

Application: Euclidean case of non-Euclidean algebra.
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8. Midpoints

Define the ternary relation M(x , y , z) as xz = y . Call M an operation
when for all x , y exactly one z , denoted x ⊕ y , satisfies M(x , y , z). This
condition can be expressed as follows.

x ⊕ y = z iff xz = y

This equivalence can be split into two equations as follows.

x ⊕ (xz) = z x(x ⊕ y) = y

Theorem 1 x ⊕ y is defined iff |{z | xz = y}| = 1.
For example N ⊕ S (N and S poles) is undefined on the globe.
Theorem 2 If h(A→ B) = h(A)→ h(B) for all A,B ∈ S (i.e. the
category Gsp) then h(A⊕ B) = h(A)⊕ h(B) when A⊕ B is defined.
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9. Centroids

Defining A
n→ B as on Slide 4, generalize midpoint A1 ⊕ A2 to centroid

A1 ⊕ . . .⊕ An as a partial n-ary operation via

A1 ⊕ . . .⊕ An = B iff (A1 ⊕ . . .⊕ An−1)
n→ B = An, n ≥ 3

Split as A1 ⊕ . . .⊕ An−1 ⊕ ((A1 ⊕ . . .⊕ An−1)
n→ B) = B

(A1 ⊕ . . .⊕ An−1)
n→ (A1 ⊕ . . .⊕ An) = An

Theorem 3 For n ≥ 3, A1 ⊕ . . .⊕ An is defined iff A1 ⊕ . . .⊕ An−1 is
defined and |{B | (A1 ⊕ . . .⊕ An−1)

n→ B = An}| = 1.
Theorem 4 The subvariety (!) of Gsp consisting of the flat centroidal
(⊕ total) spaces is equivalent to the category AffQ of affine spaces over
the rationals. (pace Löwenheim-Skolem)
Extends to VctQ by adjoining a constant O as the origin. Further
expansions in the same vein permit Q to be extended to Q[i] (complex
rationals), R, and C (complex numbers).
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10. Geodesic spaces and non-Euclidean algebra

Weaken Postulate 5 to right distributivity,

abc = ac(bc).

Thinking of ba, a, b, ab, etc. as points evenly spaced along a geodesic γ,
right distributivity expresses a symmetry of γ about an arbitrary point c,
namely that the inversion γc in c = . . . , bac , ac , bc, abc, . . . is itself a
geodesic, namely . . . , bc(ac), ac, bc, ac(bc), . . . .
These algebras have sometimes been identified with quandles as used to
algebraicize knot theory. This is wrong because the quandle operations
interpreted in Grp are b−1ab and bab−1, which collapse in Ab to ab = a,
whereas the above is ba−1b which is very useful in Ab.
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Examples

A geodesic space or geode is an algebraic structure with a binary
operation x → y , or xy , of extension (with xyz for (xy)z) satisfying

G0 xx = x G1 xyy = x G2 xyz = xz(yz)
Geometrically, segment A0A1 is extended to A2 = A0 → A1 by producing
A0A1 to twice its length: |A0A2| = 2|A0A1|.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-

COPY
-

SEGMENT
•

A−2 A0•
A0 → A1

A2•
-

EXTENSION

•
A−1 A1•

A3•

Symmetric spaces: Affine, hyperbolic, elliptic, etc.
Groups: Interpret x → y as yx−1y (abelian groups: 2y − x)
Number systems: Integers, rationals, reals, complex numbers, etc.
Combinatorial structures: sets, dice, etc.
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13. The category Gsp

A discrete geodesic γ(A0,A1) is a subspace generated by A0,A1.
A geodesic in S is a directed union of discrete geodesics in S .

Examples: Z, Zn, Q, Q/Z, E (§11). Not R (not fully represented).
Geodesics properly generalize cyclic groups.

Example: E = Z4/{0 = 2}. •1 •2=0 •3
S is torsion-free when every finite geodesic in S is a point.
The connected components of γ(A0,A1) are . . . ,A−2,A0,A2, . . . and
. . .A−1,A1,A3, . . .. These become one component just when A0 = A2n+1

for some n, as with Z3, Z5, etc.

Geode homomorphism: a map h : S → T s.t. h(xy) = h(x)h(y).
Denote by Gsp the category of geodes and their homomorphisms.
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14. Sets

Theorem 5. For any space S, the following are equivalent.

(i) γ(A,B) = {A,B} for all A,B ∈ S (cf. γ(N,S), N&S poles).
(ii) The connected components of S are its points.

(iii) xy = x for all x , y ∈ S.

A set is a geode S with any (hence all) of those properties.

Define USetGsp : Set→ Gsp as USetGsp(X ) = (X , π2
1), i.e. xy

def
= x .

Left adjoint FGspSet(S) = the set of connected components of S .
Cf. D : Set→ Top where D(X ) = (X , 2X ), a discrete space.
These embed Set fully in Top (Pos, Grph, Cat, etc.) and Gsp.

In Top etc. the embedding D preserves colimits.
In Gsp the (reflective) embedding USetGsp preserves limits!

In Set, 1 + 1 = 2 and 2ℵ0 = i1 (discrete continuum).
In Top, 1 + 1 = 2 but 2ℵ0 = Cantor space, not discrete.
In Gsp, 2ℵ0 = i1, discrete (!), but 1 + 1 = Z, a homogeneous (no origin)
geodesic with two connected components.
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15. Normal form terms and free spaces

A normal form geodesic algebra term over a set X of variables is one
with no parentheses or stuttering, namely a finite nonempty word
x1x2 . . . xn over alphabet X with no consecutive repetitions.
Theorem 6. All terms are reducible to normal form using G0-G2. (G2
removes parentheses while G1 and G0 remove repetitions.)
Theorem 7. The normal form terms over X form a geode.
Denote this space by F (X ), the free space on X consisting of the
“X -ary” operations. F ({}) = 0 (initial), F ({0}) = 1 (final).
F ({0, 1}) = 1 + 1 has two connected components 0α and 1α.
It is an infinite discrete geodesic γ(0, 1) = {0 n→ 1} =

Z = . . . , 1010, 010, 10, 0, 1, 01, 101, 0101, . . .

Call this geodesimal notation, tally notation with sign and parity bits.

Geodesimal operations: x
3→ y = yxy , x

−3−→ y = yxyx , etc.
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16. The free space 1+1+1.

3 connected components 0α, 1α, 2α

All points out to ∞ shown. Curvature κ undefined (−∞).
Triangles congruent by defn. but ∠, ∠, and ∠ incomparable.
∃ disjoint inclined geodesics: γ(101, 201) ∩ γ(102, 202) = ∅ (barely!)Vaughan PrattStanford University () Euclidean and non-Euclidean algebra February 14, 2011 16 / 19



17. The curvature hierarchy

All spaces (including 1 + 1 + 1 itself) homogeneous.
Not shown: Sets (xy = x , §3), Dice (xyxy = x , §11).
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18. Dice and subdirect irreducibles of Grv

The edge E = E3 = {1, 0 = 2, 3} is the unique geodesic with an odd
number of points and two connected components.

E3 = Z4/{0 = 2}
E6 = Z8/{0 = 4, 2 = 6}
E12 = Z16/{0 = 8, 2 = 10, 4 = 12, 6 = 14}, etc.

Ab and Grv have the same SI’s (subdirect irreducibles), namely Zpn ,
n ≤ ∞, as groves, except for p = 2 when Z4.2n is replaced by E3.2n in
Grv. (Zp∞ is the Prüfer p-group = the direct limit of the inclusion
Zp0 ⊆ Zp1 ⊆ Zp2 ⊆ . . ..) Key fact: Z4 is a subdirect product of E’s.
E ∈ V iff Z4 ∈ V for all varieties V ⊆ Gsp.
A die is a subspace of En, n ≤ ∞. Equivalently, a model of
xx = xyy = x , xyxy=x .
Dice = HSP(Z4) = SP(E) ⊂ Grv.
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20. The geodesic neighborhood

Operations: xy [yxz ] xy , x−1, e

x (π2
1)

Gsp
xyxz

-� [yxy ]
Heap�yx−1z Grp

xywz = xzwyG3:6

-

'

&
Grv

[yxz ]=[zxy ]

xyxz
-

6

� [yxy ]
Schar

xy = yx6

y − x + z� Ab
x − y� Ring

xy = x
6

Set

[yxy ] = x6

x (π3
2)� Cube

x + x = 06

y + x + z� Cube∗
x + y� Bool

x2 = x
6

Every path in this commutative diagram denotes a forgetful functor,
hence one with a left adjoint. Vertical arrows forget the indicated
equation, horizontal arrows interpret the blue operation above as the
arrow’s label. E.g. the left adjoint of the functor UAbGrp : Ab→ Grp is
abelianization, the arrow to Schar from Ab interprets Schar’s [yxz] as
y − x + z in Ab, the left adjoint of the functor USetGsp : Set→ Gsp
gives the set FGspSet(S) of connected components of S , and so on.
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