Euclidean and non-Euclidean algebra

Vaughan Pratt
Stanford University

February 14, 2011

1. Program

In this talk we begin by formulating Postulates 2, 5, and 1 of Euclid's Elements algebraically.
The result is a purely spatial axiomatization of the variety $\mathbf{A f f}_{\mathbb{Q}}$ of vector spaces over the rationals.
Our axiomatization is equivalent to the customary numerical one based on linear combinations whose coefficients sum to unity.
We then extend this to $\mathbf{A f f}_{\mathbb{Q}[i]}$, complex rationals, via a suitably axiomatized binary operation $x \circ y$ giving the point y goes to when $x y$ is rotated counterclockwise 90° about x.
Lastly we axiomatize respectively elliptical and hyperbolic space by modifying a detail of our algebraic formulation of Postulate 5.

2. Historical background

It is plausible that the Pyramid at Djoser (2700 BC) was laid out with the help of cartesian coordinates. Laying out its intricate system of inner chambers would have been considerably harder if shaped like the Circular Pyramids of Western Mexico.
In any event it surely did not appeal to anything like Book I of Euclid's Elements.
It was over two millennia before the Greeks noticed that the side of the pyramid's base (or any square) was incommensurate with its diagonal. Max Dehn (1926) has speculated that this incommensurability led Euclid to formulate Books I-IV in purely spatial terms free of any concept of number.

3. Euclid's postulates

Book I gives 23 definitions (e.g. "A straight line is a line which lies evenly with the points on itself') together with the following five postulates.

1. To draw a straight line between any two points.
2. To produce a finite straight line continuously [to any finite multiple of its length].
3. To draw a circle with specified center and radius.
4. That all right angles are equal.
5. That two lines inclined inwards meet.

Postulates 1-3 are constructions while 4-5 are assertions.

4. Algebraic formulation

Our algebraic version of Euclid's postulates starts with the second, which we modify as, "to produce a finite straight line as far again." If x and y are the endpoints of the given line, we write $x y$ for the point reached by so producing it and abbreviate $(x y) z$ to $x y z$.
We axiomatize Postulates 2 and 5 as follows.

$$
\begin{align*}
x x & =x \tag{1}\\
(x y) y & =x \tag{2}\\
(w x)(y z) & =(w y)(x z) \tag{3}
\end{align*}
$$

Call these G1, G2, G3.

5. Expression of Euclid's 5th Postulate

Euclid's 5th: EX \& HY, when inclined inwards, meet when produced. Euclid's criterion for "inclined": $\alpha+\beta<180^{\circ}$.
Our criterion: existence of a witness triangle $\triangle A E H$ with parallelogram $B C G F$ (centroid D) s.t B, C at midpoints of $A E, A H$.
Our version of the 5 th: $E F$ and $H G$, when obtained by extending the four sides of the skew quadrilateral $A B D C$, meet when extended.

$$
\begin{align*}
& A \rightarrow B \rightarrow(C \rightarrow D)=A \rightarrow C \rightarrow(B \rightarrow D) \tag{G3}\\
& E \rightarrow F \\
&=H \rightarrow \\
&=
\end{align*}
$$

G3 $x y(z w)=x z(y w)|x y w z=x z w y| x y w z y w z=x \mid x 102102=x$

6. Consequences

Rename $w x(y z)=w y(x z)$ to $x y(z w)=x z(y w)$.
Then set $w=z$ to obtain $x y(z z)=x z(y z)$. Use $z z=z$ to obtain

$$
x y z=x z(y z)
$$

Call this G2.5. It is weaker than G3, and asserts that the image of a geodesic under inversion (reflection) in a point (here z) is a geodesic.
(And by $\mathbf{G} 2$ inversion in a point is an involution.)
Applications: (i) Non-Euclidean algebra (later).
(ii) Parenthesis elimation. Substitute $x z$ for x in G2.5 and simplify to yield

$$
x(y z)=x z y z
$$

Use this and the convention $(x y) z=x y z$ to recursively eliminate all parentheses from any term (does not need G3).

7. Equivalent formulations of the 5th postulate

Flat version of Postulate 5:

$$
\begin{aligned}
& w x y z=w x y(z e e) \\
&=w x(z e)(y e) \\
&=w z(x e)(y e) \\
&=w z y(x e e) \\
&=w z y x \\
& w x y z=w z y x
\end{aligned}
$$

Recover $w x(y z)=w y(x z)$ from this and $x y z=x z(y z)$.
Use G2 three times to convert this to

$$
w x y z x y z=w
$$

Application: Euclidean case of non-Euclidean algebra.

8. Midpoints

Define the ternary relation $M(x, y, z)$ as $x z=y$. Call M an operation when for all x, y exactly one z, denoted $x \oplus y$, satisfies $M(x, y, z)$. This condition can be expressed as follows.

$$
x \oplus y=z \text { iff } x z=y
$$

This equivalence can be split into two equations as follows.

$$
x \oplus(x z)=z \quad x(x \oplus y)=y
$$

Theorem $1 \quad x \oplus y$ is defined iff $|\{z \mid x z=y\}|=1$. For example $N \oplus S$ (N and S poles) is undefined on the globe. Theorem 2 If $h(A \rightarrow B)=h(A) \rightarrow h(B)$ for all $A, B \in S$ (i.e. the category Gsp) then $h(A \oplus B)=h(A) \oplus h(B)$ when $A \oplus B$ is defined.

9. Centroids

Defining $A \xrightarrow{n} B$ as on Slide 4, generalize midpoint $A_{1} \oplus A_{2}$ to centroid $A_{1} \oplus \ldots \oplus A_{n}$ as a partial n-ary operation via

$$
\begin{gathered}
A_{1} \oplus \ldots \oplus A_{n}=B \text { iff }\left(A_{1} \oplus \ldots \oplus A_{n-1}\right) \xrightarrow{n} B=A_{n}, \quad n \geq 3 \\
\text { Split as } \quad A_{1} \oplus \ldots \oplus A_{n-1} \oplus\left(\left(A_{1} \oplus \ldots \oplus A_{n-1}\right) \xrightarrow{n} B\right)=B \\
\left(A_{1} \oplus \ldots \oplus A_{n-1}\right) \xrightarrow{n}\left(A_{1} \oplus \ldots \oplus A_{n}\right)=A_{n}
\end{gathered}
$$

Theorem 3 For $n \geq 3, A_{1} \oplus \ldots \oplus A_{n}$ is defined iff $A_{1} \oplus \ldots \oplus A_{n-1}$ is defined and $\left|\left\{B \mid\left(A_{1} \oplus \ldots \oplus A_{n-1}\right) \xrightarrow{n} B=A_{n}\right\}\right|=1$.
Theorem 4 The subvariety (!) of Gsp consisting of the flat centroidal (\oplus total) spaces is equivalent to the category $\mathbf{A f f}_{\mathbb{Q}}$ of affine spaces over the rationals. (pace Löwenheim-Skolem)
Extends to $\mathbf{V} \mathbf{c t}_{\mathbb{Q}}$ by adjoining a constant \mathbf{O} as the origin. Further expansions in the same vein permit \mathbb{Q} to be extended to $\mathbb{Q}[\mathbf{i}]$ (complex rationals), \mathbb{R}, and \mathbb{C} (complex numbers).

10. Geodesic spaces and non-Euclidean algebra

Weaken Postulate 5 to right distributivity,

$$
a b c=a c(b c)
$$

Thinking of $b a, a, b, a b$, etc. as points evenly spaced along a geodesic γ, right distributivity expresses a symmetry of γ about an arbitrary point c, namely that the inversion γc in $c=\ldots, b a c, a c, b c, a b c, \ldots$ is itself a geodesic, namely $\ldots, b c(a c), a c, b c, a c(b c), \ldots$.
These algebras have sometimes been identified with quandles as used to algebraicize knot theory. This is wrong because the quandle operations interpreted in Grp are $b^{-1} a b$ and $b a b^{-1}$, which collapse in $\mathbf{A b}$ to $a b=a$, whereas the above is $b a^{-1} b$ which is very useful in $\mathbf{A b}$.

Examples

A geodesic space or geode is an algebraic structure with a binary operation $x \rightarrow y$, or $x y$, of extension (with $x y z$ for $(x y) z$) satisfying G0 $x x=x \quad$ G1 $x y y=x \quad$ G2 $\quad x y z=x z(y z)$
Geometrically, segment $A_{0} A_{1}$ is extended to $A_{2}=A_{0} \rightarrow A_{1}$ by producing $A_{0} A_{1}$ to twice its length: $\left|A_{0} A_{A_{2}}\right|=2\left|A_{0} A_{A_{1}}\right| . \quad A_{1} \vec{A}_{2} A_{1}$

SEGMENT
COPY
EXTENSION
Symmetric spaces: Affine, hyperbolic, elliptic, etc. Groups: Interpret $x \rightarrow y$ as $y x^{-1} y$ (abelian groups: $2 y-x$) Number systems: Integers, rationals, reals, complex numbers, etc. Combinatorial structures: sets, dice, etc.

13. The category Gsp

A discrete geodesic $\gamma\left(A_{0}, A_{1}\right)$ is a subspace generated by A_{0}, A_{1}.
A geodesic in S is a directed union of discrete geodesics in S.
Examples: $\mathbb{Z}, \mathbb{Z}_{n}, \mathbb{Q}, \mathbb{Q} / \mathbb{Z}, \mathbb{E}(\S 11)$. Not \mathbb{R} (not fully represented).
Geodesics properly generalize cyclic groups.
Example: $\mathbb{E}=\mathbb{Z}_{4} /\{0=2\}$. $\quad 2=0$
S is torsion-free when every finite geodesic in S is a point.
The connected components of $\gamma\left(A_{0}, A_{1}\right)$ are $\ldots, A_{-2}, A_{0}, A_{2}, \ldots$ and
$\ldots A_{-1}, A_{1}, A_{3}, \ldots$ These become one component just when $A_{0}=A_{2 n+1}$ for some n, as with $\mathbb{Z}_{3}, \mathbb{Z}_{5}$, etc.
Geode homomorphism: a map $h: S \rightarrow T$ s.t. $h(x y)=h(x) h(y)$.
Denote by Gsp the category of geodes and their homomorphisms.

14. Sets

Theorem 5. For any space S, the following are equivalent.
(i) $\gamma(A, B)=\{A, B\}$ for all $A, B \in S$ (cf. $\gamma(N, S)$, N\&S poles).
(ii) The connected components of S are its points.
(iii) $x y=x$ for all $x, y \in S$.

A set is a geode S with any (hence all) of those properties.
Define $U_{\text {SetGsp }}:$ Set $\rightarrow \mathbf{G s p}$ as $U_{\text {SetGsp }}(X)=\left(X, \pi_{1}^{2}\right)$, i.e. $x y \stackrel{\text { def }}{=} x$.
Left adjoint $F_{\text {GspSet }}(S)=$ the set of connected components of S.
Cf. $\mathcal{D}:$ Set \rightarrow Top where $\mathcal{D}(X)=\left(X, 2^{X}\right)$, a discrete space.
These embed Set fully in Top (Pos, Grph, Cat, etc.) and Gsp.
In Top etc. the embedding \mathcal{D} preserves colimits.
In Gsp the (reflective) embedding $U_{\text {SetGsp }}$ preserves limits!
In Set, $1+1=2$ and $2^{\aleph_{0}}=\beth_{1}$ (discrete continuum).
In Top, $1+1=2$ but $2^{\aleph_{0}}=$ Cantor space, not discrete.
In Gsp, $2^{\aleph_{0}}=\beth_{1}$, discrete (!), but $1+1=\mathbb{Z}$, a homogeneous (no origin) geodesic with two connected components.

15. Normal form terms and free spaces

A normal form geodesic algebra term over a set X of variables is one with no parentheses or stuttering, namely a finite nonempty word $x_{1} x_{2} \ldots x_{n}$ over alphabet X with no consecutive repetitions.
Theorem 6. All terms are reducible to normal form using G0-G2. (G2 removes parentheses while G1 and G0 remove repetitions.)
Theorem 7. The normal form terms over X form a geode. Denote this space by $F(X)$, the free space on X consisting of the " X-ary" operations. $F(\})=\mathbf{0}$ (initial), $F(\{0\})=\mathbf{1}$ (final). $F(\{0,1\})=1+1$ has two connected components 0α and 1α. It is an infinite discrete geodesic $\gamma(0,1)=\{0 \xrightarrow{n} 1\}=$

$$
\mathbb{Z}=\ldots, 1010,010,10,0,1,01,101,0101, \ldots
$$

Call this geodesimal notation, tally notation with sign and parity bits. Geodesimal operations: $x \xrightarrow{3} y=y x y, x \xrightarrow{-3} y=y x y x$, etc.

16. The free space $1+1+1$.

3 connected components $0 \alpha, 1 \alpha, 2 \alpha$

All points out to ∞ shown. Curvature κ undefined $(-\infty)$.
Triangles congruent by defn. but \angle, \angle, and \angle incomparable.

17. The curvature hierarchy

All spaces (including $1+1+1$ itself) homogeneous.
Not shown: Sets $(x y=x, \S 3)$, Dice $(x y x y=x, \S 11)$.

18. Dice and subdirect irreducibles of Grv

The edge $\mathbb{E}=\mathbb{E}_{3}=\{1,0=2,3\}$ is the unique geodesic with an odd number of points and two connected components.

- $\mathbb{E}_{3}=\mathbb{Z}_{4} /\{0=2\}$
- $\mathbb{E}_{6}=\mathbb{Z}_{8} /\{0=4,2=6\}$
- $\mathbb{E}_{12}=\mathbb{Z}_{16} /\{0=8,2=10,4=12,6=14\}$, etc.
$\mathbf{A b}$ and Grv have the same SI's (subdirect irreducibles), namely $\mathbb{Z}_{p^{n}}$, $n \leq \infty$, as groves, except for $p=2$ when $\mathbb{Z}_{4.2^{n}}$ is replaced by $\mathbb{E}_{3.2^{n}}$ in
Grv. $\left(\mathbb{Z}_{p^{\infty}}\right.$ is the Prüfer p-group $=$ the direct limit of the inclusion $\mathbb{Z}_{p^{0}} \subseteq \mathbb{Z}_{p^{1}} \subseteq \mathbb{Z}_{p^{2}} \subseteq \ldots$. Key fact: \mathbb{Z}_{4} is a subdirect product of \mathbb{E} 's. $\mathbb{E} \in \mathcal{V}$ iff $\mathbb{Z}_{4} \in \mathcal{V}$ for all varieties $\mathcal{V} \subseteq \mathbf{G s p}$.
A die is a subspace of $\mathbb{E}^{n}, n \leq \infty$. Equivalently, a model of $x x=x y y=x, x y x y=x$.
Dice $=H S P\left(\mathbb{Z}_{4}\right)=S P(\mathbb{E}) \subset$ Grv.

20. The geodesic neighborhood

