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Abstract

Dynamic algebras combine the classes of Boolean (B ∨ ′ 0) and regu-
lar (R ∪ ; ∗) algebras into a single finitely axiomatized variety (B R 3)
resembling an R-module with “scalar” multiplication 3. The basic result
is that ∗ is reflexive transitive closure, contrary to the intuition that this
concept should require quantifiers for its definition. Using this result we
give several examples of dynamic algebras arising naturally in connection
with additive functions, binary relations, state trajectories, languages,
and flowcharts. The main result is that free dynamic algebras are residu-
ally finite (i.e. factor as a subdirect product of finite dynamic algebras),
important because finite separable dynamic algebras are isomorphic to
Kripke structures. Applications include a new completeness proof for the
Segerberg axiomatization of propositional dynamic logic, and yet another
notion of regular algebra.
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1 Introduction

We propose, with Kozen [Koz79c], the notion of a dynamic algebra, which in-
tegrates an abstract notion of proposition with an equally abstract notion of
action. Just as propositions tend to band together to form Boolean algebras,
as Halmos [Hal62] puts it, with operations p ∨ q and p′, so do actions organize
themselves into regular algebras, with operations a∪b, a; b, and a∗. Analogously
to the proposition p∨q being the disjunction of propositions p and q, and p′ the
complement of p, the action a ∪ b is the choice of actions a or b, a; b, or just ab,
is the sequence a followed by b, and a∗ is the iteration of a indefinitely often.

Just as p∨ q and p′ have natural set theoretic interpretations, namely union
and complement, so do a ∪ b, a; b, and a∗ have natural interpretations on such
concrete kinds of actions as additive functions, binary relations, trajectory sets,
languages, and matrices over regular algebras, to name those regular algebras
that are suited to dynamic algebra. The section below on examples illustrates
this.

It is natural to think of an action as being able to bring about a proposition.
We write 〈a〉p, or just ap, pronounced “a enables p,” as the proposition that
action a can bring about proposition p. A dynamic algebra then is a Boolean
algebra (B ∨ ′ 0), a regular algebra (R ∪ ; ∗), and the enables operation
3 : R×B → B.

Motivation. An important problem in computer science is how to reason
about computer programs. The proposals of [Flo67, Hoa69, Sal70, Dij76, Con77,
Pra76] are representative of a class of methods (by no means the only class) that
may be exemplified by the following.

Let x:=5 denote the program for setting the value of the program variable x
to 5. Then 〈x:=5〉x=5 asserts that setting x to 5 can make x equal to 5, which
is necessarily true and so is the same (abstract) proposition as the top element
1 of the Boolean algebra of all such propositions. Thus 〈x:=5〉x=5 simplifies
to that 1. On the other hand 〈x:=x + 1〉x=5, again viewed abstractly, is not
1 but rather is the same abstract proposition as x=4. (The “1” in “x + 1” is
numeric 1, distinguished by context from Boolean 1.) And 〈(x:=x − 1)∗〉x=0
must be x ≥ 0, as it is not possible to make an initially negative variable zero
by decrementing it indefinitely.

These observations about x:=5, x:=x+1, etc., depend on the nature of pro-
gram variables, numbers, arithmetic, assignment, and so on. However there are
also more universal observations one can make, at a level that knows nothing
about programs that manipulate variables and numbers. For example no pro-
gram can bring about the truth of false; that is, a0 = 0. Moreover, a program
can bring about p∨ q just when it can bring about p or it can bring about q, i.e.
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a(p∨ q) = ap∨aq. One of a or b can bring about p just when either a can bring
about p or b can, i.e. (a∪ b)p = ap∨ bp. And ab can bring about p just when a
can bring about a situation from which b can bring about p, i.e. (ab)p = a(bp).
(In full, 〈a; b〉p = 〈a〉(〈b〉p). We rely on the sorts to indicate whether ; or 3 is
intended.)

Suppose now that either p holds, or a can bring about a situation from which
a can eventually (by being iterated) bring about p. Then a can eventually bring
about p. That is, p ∨ aa∗p ≤ a∗p. (We write p ≤ q to indicate that p implies
q, defined as p ∨ q = q.) In turn, if a can eventually bring about p, then
either p is already the case or a can eventually bring about a situation in which
p is not the case but one further iteration of a will bring about p. That is,
a∗p ≤ p ∨ a∗(p′ ∧ ap). This is the principle of induction, in a simple Boolean
disguise as can be seen by forming the contrapositive and replacing p′ by q
to yield q ∧ [a∗](q ⊃ [a]q) ≤ [a∗]q, where [a]p, p ⊃ q abbreviate (ap′)′, p′ ∨ q
respectively. [a] is the dual of 〈a〉, and [a]p asserts that whatever a does, p will
hold if and when a halts.

The notion of a test program p? is also useful. A test cannot bring about a
different situation; moreover p? cannot bring about even the present situation
unless p already holds. Thus p?q = p ∧ q. Tests are of use in defining certain
well-known programming constructs such as if p then a else b = (p?a)∪(p′?b),
and while p do a = (p?a)∗p′?. We will have little to say about tests in this
paper.

Outline. The remainder of the paper is as follows. Section 2 supplies the
main definitions. Section 3 gives the basic result, that the regular operation ∗ of
a dynamic algebra is reflexive transitive closure, or quasiclosure to be precise1.
Section 4 illustrates the abstract concept of dynamic algebra with five concrete
examples of dynamic algebras that arise in practice, and also gives some coun-
terexamples. Section 5 gives the main results, that free dynamic algebras are
residually Boolean-finite (isomorphic to a subdirect product of dynamic algebras
with finite Booolean component), and that free dynamic algebras are residually
finite.

Section 6 gives several applications of these results. Using the fact that every
finite separable dynamic algebra is isomorphic to a Kripke structure we apply
the first part of the main result to show the completeness of the Segerberg ax-
iomatization of propositional dynamic logic [Seg77], which we state in algebraic
form as the equality of two varieties. Using the second part of the main result
we show that separable dynamic algebras and Kripke structures generate the
same variety and so have the same equational theory, both Boolean and regular.

1Alternatively one may restrict attention to separable dynamic algebras when character-
izing the definitional content of the Segerberg axioms, avoiding the awkwardness of “quasi”
[Pra80b, Pra90].
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Finally we explore a new definition of the notion of regular algebra, a surpris-
ingly controversial class given the importance of some of its instances. Section
7 tidies up some loose ends. Section 8 supplies some algebraic prerequisites as
a convenient reference for the reader who may need prompting on some of the
definitions; in the text we refer thus8 to this section.

For us the most interesting parts of the paper are Theorems 3.4 (∗ is reflexive
transitive closure) and 5.3 (existence of filtrations). We find it surprising that
an equational system can define reflexive transitive quasiclosure exactly, that
is, with no nonstandard models. While it may not come as a surprise to those
familiar with the Fischer-Ladner filtration result [FL79] that it can be obtained
in an algebraic form, those familiar with the various efforts to obtain the com-
pleteness result may find it of interest that the filtration result itself need be
the only subtle part. Lemma 3.1 is the key to the rest of the paper, filtration
included, but it is not a difficult lemma.

2. DEFINITIONS

Syntax. We define the following classes of algebras.

Class Symbol Similarity Type
Boolean algebras B (B ∨ ′ 0)
Regular algebras R (R ∪ ; ∗)
Dynamic algebras D (B R 3)
Test algebras E (D ?)

The types are:

∨ : B ×B → B ′ : B → B 0 : B
∪ : R×R→ R ; : R×R→ R ∗ : R→ R
3 : R×B → B ? : B → R

We write p∧ q for (p′ ∨ q′)′, 1 for 0′, [a]p for (ap′)′, p ≤ q for p∨ q = q, a ≤ b
for ∀p(ap ≤ bp).

Semantics. A Boolean algebra is a complemented distributive lattice, proper-
ties all definable equationally. A dynamic algebra (B R 3) satisfies the following
equations.

1. B is a Boolean algebra.
2a. a0 = 0
2b. a(p ∨ q) = ap ∨ aq
3. (a ∪ b)p = ap ∨ bp
4. (ab)p = a(bp)
5a,b. p ∨ aa∗p ≤ a∗p ≤ p ∨ a∗(p′ ∧ ap)
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These axioms are obtained from Segerberg’s Hilbert-style axioms [Seg77] for
propositional dynamic logic [FL79] in the same way one may obtain Boolean
identities from a Hilbert-style axiomatization of propositional calculus. Note
that axiom 2a is obtained from the modal logic inference rule of Necessitation,
namely from p infer [a]p. We have discussed the motivation for all of these
axioms in the previous section.

A test algebra satisfies:

6. p?q = p ∧ q.

We will not prove anything about test algebras in this paper. Although they
introduce a little complication into some of the arguments, the reader should find
it straightforward to extend most of the results below about dynamic algebras
to test algebras2. We mention converse among the open problems of Section 7.

Predynamic Algebras. A predynamic algebra is any algebra similar to (having
the same similarity type as, but not necessarily satisfying the equations for) a
dynamic algebra. Free predynamic algebras, i.e. term or word algebras, are
used in this paper in the definition of FL-set.

Separability. If ap = bp for all p we call a and b inseparable and write a ∼= b,
an equivalence relation which we shall later show to be a congruence relation
on dynamic algebras. Following Kozen [Koz79c] we call separable any dynamic
algebra in which inseparability is the identity relation. We let SDA denote the
class of separable dynamic algebras.

Separability can be expressed with the first-order sentence ∀a∀b∃p(ap =
bp → a = b) (i.e. ∀a∀b(∀p[ap = bp] → a = b)). This being a Horn sentence
[Coh65, p235], it follows that SDA is closed under direct products [Hor51].
Example 7 shows that SDA is closed under neither homomorphisms nor subal-
gebras.

3. BASIC RESULT

In this section we prove the fundamental theorem of dynamic algebra. We
present this result before giving the examples, partly because it helps somewhat
in understanding the examples, partly because its proof does not deserve to be
buried deeper in the paper.

Actions as Functions. Although we have taken the type of 3 to be
3 : R × B → B we could equivalently have taken it as 3 : R → (B → B);
the reason for the former was so that it would be clear that we were defining
an ordinary algebra. The latter type is consistent with our use of the notation

2A subsequent detailed treatment of test by Németi showed that this assessment was naively
optimistic
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〈a〉p—we may think of 〈a〉 as a function on B. Our use of the alternative nota-
tion ap is to suggest that we may think of a itself as a function on B. All that
is lacking is extensionality; that is, we may have ap = bp for all p ∈ B yet not
have a = b. The lack of extensionality does not prevent us from appearing to
be able to define operations such as composition by saying that (ab)p = a(bp)
for all p.

Accordingly we shall think of the elements of R as quasifunctions, having all
the attributes of functions save extensionality. In a separable dynamic algebra
they become functions.

Recall that a ≤ b means that ap ≤ bp for all p. It follows that ≤ on
quasifunctions is reflexive and transitive but not antisymmetric, and so is a
quasiorder. In a separable dynamic algebra it becomes a partial order.

The content of axioms 2a,b is now clear. Axiom 2a says that all quasi-
functions are strict (0-preserving), and axiom 2b that they are finitely additive
(preserving joins of finite non-empty sets).

Continuing in this vein, axioms 3 and 4 leave no doubt that ∪ is pointwise
disjunction and ; is composition. In the absence of extensionality we must con-
sider these apparent functionals to be be quasifunctionals, which are operations
on quasifunctions with which the relation of inseparability is compatible (a ∼= a′

and b ∼= b′ implies a ∪ b ∼= a′ ∪ b′ etc.), easily seen from axioms 3 and 4 to be
the case for ∪ and ;.

Axiom 5 however is nothing short of inscrutable. It may be made a little
more symmetric by rephrasing it as p ∨ (p′ ∧ aa∗p) ≤ a∗p ≤ p ∨ a∗(p′ ∧ ap),
using Boolean manipulation on 5a. This can then be broken up into p ≤ a∗p
together with the even more symmetric p′ ∧ aa∗p ≤ p′ ∧ a∗p ≤ a∗(p′ ∧ ap).
The lower and upper bounds on p′ ∧ a∗p seem to be referring to the start and
end of the “interval” during which p remains false, an interval which must exist
when p′ ∧ a∗p holds. This intuitive analysis, while suggestive, is however not a
characterization of ∗. The following supplies a more satisfactory formal analysis.

Let a!p = {q | p ∨ aq ≤ q}. Let minS be the least element of the partially
ordered set S when it exists, and undefined otherwise. (This is in contrast to
the infimum

∧
S of S, which may exist but not be in S.)

We propose the following alternative to 5a,b.

5′. a∗p = min(a!p).

Axiom 5′ is not an acceptable equational identity for the purpose of defining
a variety because of its use of min and !. Nevertheless it exactly characterizes
∗, as the following lemma shows.
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Lemma 3.1. 5a,b and 5′ are interchangeable as axioms.

Proof: (→). Assume 5a,b. 5a asserts that a∗p ∈ a!p. Now consider arbitrary
q ∈ a!p. We show that a∗p ≤ q. We have:

p ≤ q (p ∨ aq ≤ q)
Hence a∗p ≤ a∗q (isotonicity, from 2b)

≤ q ∨ a∗(q′ ∧ aq) (5b)
= q ∨ a∗0 (p ∨ aq ≤ q)
= q. (2a, 1)

(←). Assume a∗p = min(a!p). Then a∗p ∈ a!p, so 5a holds. For 5b it suffices
to show that p ∨ a∗(p′ ∧ ap) ∈ a!p, since a∗p ≤ q for any q ∈ a!p.

p ∨ a(p ∨ a∗(p′ ∧ ap)) = p ∨ (p′ ∧ a(p ∨ a∗(p′ ∧ ap))) (1)
= p ∨ (p′ ∧ (ap ∨ aa∗(p′ ∧ ap))) (2b)
≤ p ∨ (p′ ∧ ap ∨ aa∗(p′ ∧ ap)) (1)
≤ p ∨ a∗(p′ ∧ ap) (5′ → 5a)

Notice that we used only isotonicity of a, namely p ≤ q implies ap ≤ aq, in
the → direction, not additivity. If we relax axiom 2b to require only isotonicity
we get isodynamic algebras, which we shall consider in Section 6 in discussing
regular algebras. In Section 6 we show that isotonicity is inadequate for the ←
direction.

From Lemma 3.1 we infer that ∗ is a quasifunctional, since if a ∼= a′ then
a∗p = min(a!p) ∼= min(a′!p) = a′

∗
p, so a∗ ∼= a′

∗. Thus ∼= is a congruence
relation. We now address the question of characterizing which quasifunctional
∗ is. We define a quasiclosure operator to be as for a closure operator8, except
that idempotence is replaced by quasi-idempotence, fx ≤ ffx and ffx ≤ fx,
which for regular elements means fa ∼= ffa where ∼= is inseparability.

Lemma 3.2. ∗ is a quasiclosure operator.

Proof:

(Isotonicity.) If a ≤ b then for all p, b!p ⊆ a!p, whence min(a!p) ≤ min(b!p),
thus a∗p ≤ b∗p, whence a∗ ≤ b∗.

(Reflexivity.) p ≤ a∗p, so ap ≤ aa∗p ≤ a∗p, for all p, whence a ≤ a∗.
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(Quasi-idempotence.) a∗p = min(a!a∗p) = a∗a∗p, so a∗p ∈ a∗!p. But if
q ∈ a∗!p then p ≤ q, so a∗p ≤ a∗q ≤ q, whence a∗p = min(a∗!p) = a∗∗p.

We call the quasiclosure system associated with ∗ the system of asterates,
the word “asterate” being Conway’s [Con71, p25]. By the definition of a closure
system8, an asterate is a fixed point of ∗.

There are of course many quasiclosure operators, and merely being one is
not a remarkable thing in a variety. So which quasiclosure operator is this? We
say that the quasifunction a is reflexive when p ≤ ap for all p, and transitive
when aa ≤ a. Thus a is reflexive and transitive when for all p, p ∨ aap ≤ ap,
i.e. ap ∈ a!p, the characterization we use in the next proof.

Lemma 3.3. a is an asterate iff a is reflexive and transitive.

Proof: (→) ap = a∗p ∈ a!p.

(←) a∗p = min(a!p) ≤ ap, and ap ≤ a∗p, so a∗p = ap.

Thus the system of asterates coincides with the set of reflexive transitive
quasifunctions, making ∗ reflexive transitive quasiclosure. From all this we infer
the following “representation theorem” for dynamic algebras.

Theorem 3.4. Every dynamic algebra is a Boolean algebra B together with a
set of strict finitely additive quasifunctions on B closed under the quasifunction-
als of pointwise disjunction, composition, and reflexive transitive quasiclosure.

Note that when a is reflexive, aap = ap iff a∗p = ap, for all p.

This theorem is very helpful in reasoning about dynamic algebras. It does
not however make as satisfactory a connection as does Theorem 6.2 with the
intuitions of computer scientists, which tend to be oriented towards the notion
of state as providing a “place” for predicates to hold in, and for programs to
travel between. Example 2 below, Kripke structures, amplifies this intuition.

4. EXAMPLES

This section is meant to be suggestive rather than encyclopedic, and is kept
short by omitting proofs and lengthy explanations3. The reader will however
find the following lemmas helpful in understanding Example 1.

Lemma 4.1. The set a!p is closed under arbitrary meets when they exist.

Proof: Let S ⊆ a!p, and suppose
∧

S exists. Then for any r ∈ S,
∧

S ≤ r so
p ∨ a(

∧
S) ≤ p ∨ ar ≤ r. Hence p ∨ a(

∧
S) ≤

∧
S (

∧
S being the greatest lower

3The equational theories of most of these examples are the same [Pra79a].
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bound on S), so
∧

S ∈ a!p.

Corollary 4.2. In a complete lattice (hence in a complete Boolean algebra)
min(a!p) always exists and is

∧
(a!p).

Let X be a set of subsets of a lattice B, and write aS for {as | s ∈ S} for
any S in X. We call the quasifunction a X-additive when a(

∨
S) =

∨
(aS)

for all S in X for which
∨

S exists. We call a respectively strict; isotone;
finitely additive; continuous; and completely additive; when a is X-additive for
X respectively {∅}; the set of nonempty finite chains of B; the set of nonempty
finite subsets of B; the set of directed sets of B; and the power set 2B of all
subsets of B.

Lemma 4.3. The three quasifunctionals ∪ ; ∗ on quasifunctions on a complete
lattice preserve X-additivity for any X.

Proof: Let S ∈ X. For ∪ we have (a ∪ b)(
∨

S) = a(
∨

S) ∨ b(
∨

S) =
∨

(aS) ∨∨
(bS) =

∨
((a ∪ b)S). For ; we have (ab)(

∨
S) = a(b(

∨
S)) = a(

∨
(bS)) =∨

(a(bS)) =
∨

((ab)S). For ∗ we have (
∨

S) ∨ a(∨(a∗S)) = (
∨

S) ∨ (
∨

(aa∗S))
=

∨
(S ∪ aa∗S) ≤

∨
(a∗S), so

∨
(a∗S) ∈ a!(

∨
S). For any r ∈ a!(

∨
S) we argue

as follows. Let s ∈ S, so s ≤
∨

S, so a!(
∨

S) ⊆ a!s, whence a∗s = min(a!s)
≤ r (min(a!s) exists by Corollary 4.2). So

∨
(a∗S) ≤ r. Hence

∨
(a∗S) =

min(a!(
∨

S)) = a∗(
∨

S).

Thus if a and b are strict, so are a ∪ b, ab, and a∗. The same holds with
“strict” replaced by “isotone,” “finitely additive,” “continuous,” or “completely
additive.”

Example 1: Full dynamic algebras. Given a complete Boolean algebra B =
(B ∨ ′ 0), let R be the set of all strict finitely (resp. completely) additive
functions on B and let 3 : R × B → B be application of elements of R to
elements of B. By Lemma 4.3, R is closed under ∪, ; , and ∗ when assigned the
interpretations of Theorem 3.4. Hence by that theorem (B (R ∪ ; ∗) 3) is a
dynamic algebra. We call it the full (resp. completely full) dynamic algebra on
B. Note that the completely full algebra has fewer functions than the full one.
Both are of course separable.

The class of full dynamic algebras contains some pathological cases, as Ex-
ample 6 will show. Examples 2-5 however give algebras encountered in ordinary
practice.

Example 2: Kripke structures. Given a set W (the set of possible worlds, or
states), let B be the power set algebra on W . Then the full Kripke structure on
W is the completely full dynamic algebra on B, a separable dynamic algebra.
A Kripke structure on W is a subalgebra of the full Kripke structure on W .
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The class KRI consists of all Kripke structures. The class of dynamic algebras,
being a variety, is closed under taking subalgebras, whence Kripke structures
are dynamic algebras. They are not however necessarily separable ones since
SDA is not closed under subalgebras, as Example 7 will show.

Completely additive functions on the complete Boolean algebra of subsets
of W correspond to binary relations on W . This is because the set of functions
f : W → 2W (binary relations) naturally corresponds to the completely additive
subset of the set of functions f : 2W → 2W . The correspondence is as follows.
If f : W → 2W is a binary relation, the corresponding g : 2W → 2W satisfies
g(U) = ∪{f(u) | u ∈ U}. Conversely, any completely additive g : 2W → 2W

must satisfy g(U) = ∪{g(u) | u ∈ U}, by complete additivity, so the restriction
of g to the atoms of 2W corresponds naturally to a function f : W → 2W .

From this it should be clear that the operations of pointwise disjunction and
composition correspond exactly to those of union and composition for binary
relations. Reflexive transitive closure for functions on lattices similarly corre-
sponds to reflexive transitive closure for binary relations since the definition of
reflexive transitive closure depends only on ∪ and ; and these have already been
shown to correspond. Note that we need to start from the full power set algebra
to avoid omitting any closures and getting the wrong reflexive transitive closure;
“smaller” Kripke structures are obtained as subalgebras after ∗ is defined.

Because of this correspondence we will define binary relations on W to be
completely additive functions on 2W .

Kripke structures supply quite satisfactory models of programs. The ele-
ments of the sets constituting the Boolean part of a Kripke structure model the
states of one or more computers. Each Boolean element is then a predicate on
states; for example the formula x ≥ 0 denotes the set of states in which the
variable x is non-negative. The regular elements correspond to binary relations
on the set of states. The relations in turn correspond to the edges of a graph
whose vertices are the states. Each edge is labelled with a program. The whole
graph then presents a picture of all the possible states of a system together with
all the possible state transitions, each labelled with its agent.

The graph enjoys certain closure properties. For example there exists be-
tween two states a transition labelled either a or b just when there exists between
those states a transition labelled a ∪ b. There exists a path between two states
consisting of transition a (to some state) followed by transition b just when
there exists a transition ab between those two states. There exists a (possibly
trivial) finite path of a’s between two states just when there exists a transition
a∗ between those states (whence for every state and every program a there is a
transition a∗ leaving and returning to that state).

Because of the importance of Kripke structures in computer science, the
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question arises as to whether the equational theory of dynamic algebras does
justice to Kripke structures. The next section lays the groundwork for show-
ing in the section after it that the classes KRI and SDA (Kripke structures
and separable dynamic algebras) generate the same variety and so have the
same equational theory. Both the Boolean and regular theory are of consider-
able importance in reasoning about programs, the former dealing with program
correctness and termination, the latter with program equivalence.

Example 3: Trajectory algebras. These constitute a variation on Kripke
structures in which B is as before, while the completely additive functions in
R are replaced by sets of non-empty strings over the set W of states. The
regular operations are as follows. ∪ is set union, ; is “fusion product,” in
which ab = {u . . . v . . . w | u . . . v ∈ a and v . . . w ∈ b}, and a∗ = W ∪ a ∪
aa ∪ aaa ∪ . . .. (Fusion product differs from concatenation in that there is a
requirement of “compatibility” between the strings being “fused.” Thus the
fusion product of {ab, cd} with {de, bc} is {abc, cde}, while the concatenation is
{abde, abbc, cdde, cdbc}.) Finally ap = {u | u . . . v ∈ a and v ∈ p}.

In a Kripke structure a program can be considered a set of pairs of states,
each pair having an initial and a final state. In a trajectory algebra a program
is a set of state trajectories, each trajectory having an initial state, intermediate
states, and a final state.

Trajectory algebras supply a natural example of a nonseparable dynamic
algebra. This is because two sets of trajectories may differ only in their inter-
mediate states, and hence exhibit the same functional behavior on B.

Other modalities besides 3 suggest themselves for trajectory algebras, such
“throughout” and “sometime during.” An axiomatization of such modalities
appears in [Pra79b].

Example 4: Linguistic Algebras. Let Σ∗ denote the set of finite strings over
some alphabet Σ. A language is a subset of Σ∗. Recall that a field of sets is a
set of sets closed under union and complementation relative to its union. We
define a regular algebra of languages to be a set of languages closed under union,
concatenation, and reflexive transitive closure. A finitary-linguistic dynamic
algebra over a given alphabet is an algebra consisting of a field of languages
(with complementation being relative to Σ∗), a regular algebra of languages,
and the operation of concatenation, all languages being over the given alphabet.
Every finitary-linguistic dynamic algebra is a dynamic algebra.

In connection with programs Σ may be considered to be the vocabulary
of commands the computer can issue. A program is then a set of command
sequences. There seems to be no natural interpretation of propositions in this
setting.
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Σω denotes the set of infinite-to-the-right strings over Σ. A linguistic dy-
namic algebra differs from a finitary linguistic dynamic algebra in that B is a set
of infinitary languages (subsets of Σ∗ ∪ Σω). Every linguistic dynamic algebra
is a dynamic algebra.

With some thought the reader may verify that a∗(ap∧ap′)′ = 1 is an identity
of finitary-linguistic dynamic algebras but not of linguistic dynamic algebras,
and hence not of dynamic algebras.

Every finite Kripke structure is a homomorphic image of a linguistic dynamic
algebra (see [Pra79a] for a proof). It follows from this and the results below
that the Boolean equational theory of linguistic dynamic algebras coincides with
that of dynamic algebras.

An application of linguistic dynamic algebras is to Pnueli’s tense-logic treat-
ment of non-terminating processes [Pnu77]. Though no semantics is proposed
in [Pnu77], the subsequent development of temporal logic has been based sub-
stantially on propositions as a set of sequences.

Example 5: Flowchart Algebras. Let D = (B R 3) be a separable dynamic
algebra, and let V be a finite set of dimensions. Take B′ to be the direct power
BV , whose elements are Boolean vectors that combine pointwise under ∨ and ′,
using the corresponding operations of B.

A regular matrix is a function a : V 2 → R. Regular matrices combine point-
wise under ∪ using the corresponding operation of R. They are multiplied in
the usual way for matrices, taking ∪ and ; from R as “addition” and “multi-
plication” respectively. When a is a 1 × 1 matrix (|V | = 1) with sole element
b ∈ R, a∗ is the 1× 1 matrix with sole element b∗. When V can be partitioned
into two non-empty subsets V1, V2, inducing a corresponding partition of a as
the block matrix

(
A B
D C

)
,

then, following Conway [Con71], a∗ is taken to be the matrix

(
(A∗BC∗D)∗A∗ (A∗BC∗D)∗A∗BC∗

(C∗DA∗B)∗C∗DA∗ (C∗DA∗B)∗C∗

)
.

Separability is used to ensure that this definition of a∗ does not depend on
the choice of partition of V .

A set of such matrices closed under these three operations forms an algebra
R′. The operation 3′ multiplies matrices by vectors in the usual way, with the
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∨ of B as “addition” and the 3 of D as “multiplication.” The algebra (B′ R′ 3′)
we call a flowchart algebra.

Every flowchart algebra is a dynamic algebra.

Flowchart algebras supply a natural solution to the problem of treating pro-
grams algebraically. The traditional method is via “elimination of goto’s,” using
various program transformations that non-trivially manipulate the structure of
the original program. Flowchart algebras permit an algebraic treatment of the
original “goto-laden” program. The set V supplies vertices for a graph; each
Boolean vector gives a possible labelling of the vertices with facts from B, while
each matrix defines a labelling of the edges of the graph with programs from R.

In this formulation the vertex labels are the complements of the formulas
used in the programming milieu to annotate flowcharts as described in [Flo67],
the complement being attributable to our use of 3 as “possible” where program-
ming custom calls for the dual “necessary.” Axiom 5b in this setting amounts to
the so-called “Floyd induction” principle; the reader familiar with [Flo67] will
find the axiom more recognizable if the contrapositive is taken and p replaced by
p′ (as just mentioned) to yield p∧ [a∗](p ⊃ [a]p) ≤ [a∗]p, where [a]p abbreviates
(ap′)′ and p ⊃ q abbreviates p′ ∨ q.

Example 6: A non-standard dynamic algebra. This example shows that
there exist dynamic algebras in which a∗p =

∨
{aip | i ≥ 0} fails. Let B be the

power set algebra of N ∪ {∞} = {0, 1, 2, . . . ,∞} and let D be the full dynamic
algebra on B, a specialization of Example 1. Now let a be the function mapping
p ⊆ N ∪ {∞} to {n + 1 | n ∈ p} ∪ {∞ | p is infinite}. That is, a(p) forms
the set of successors of the elements of p (with ∞ + 1 defined as ∞) together
with ∞ when p is infinite. Observe that a is strict and finitely additive but
not continuous and so not completely additive. Then

∨
{ai0|i ≥ 0} = N, while

min(a!{0}) = N ∪ {∞}.

Kozen [Koz79c] calls a dynamic algebra ∗-continuous when it satisfies a∗p =∨
{aip | i ≥ 0}. His definition of a dynamic algebra includes ∗-continuity as a re-

quirement, along with conditions on R axiomatizing it as a regular ∗-continuous
algebra, in place of Segerberg’s 5a,b (which then becomes a theorem). Let us
call this class CDA (for ∗-continuous DA). Example 6 contradicts SDA ⊆ CDA.

It can be shown that KRI ⊆ CDA, whence not all dynamic algebras are
isomorphic to Kripke structures. Kozen has asked whether every ∗-continuous
dynamic algebra is isomorphic to a Kripke structure.

One might ask whether CDA forms a variety. Now SDA ⊆ HSP(KRI)
(the variety generated8 by KRI), as we show later. But since KRI ⊆ CDA,
HSP(KRI) ⊆ HSP(CDA), whence SDA ⊆ HSP(CDA). Example 6 is in SDA
but not in CDA, whence CDA is not a variety.

13



The last two examples are not examples of dynamic algebras so much as
examples of their behavior under various operations.

Example 7: Loss of separability under homomorphisms and subalgebras. Let
D = (({0, P, P ′, 1} ∨ ′ 0) ({A,B} ∪ ; ∗) 3) such that BP = 1, Ap = Bp = p
otherwise, and such that D is a dynamic algebra (whence ∪ ; ∗ are determined,
D being separable by construction.) Let h : D → D satisfy h(P ′) = h(0) = 0,
h(P ) = h(1) = 1, h(A) = A, h(B) = B, a homomorphism as the reader may
verify. The homomorphic image h(D) is not separable. Furthermore h(D) is
also a subalgebra of D. Hence SDA is closed under neither homomorphisms nor
subalgebras. That separability is expressible with a Horn sentence ensures that
SDA is closed under direct products.

Example 8: Effect of homomorphisms on the regular component of a sep-
arable dynamic algebra. It may have occurred to the reader that the class of
regular components of separable dynamic algebras might make a good candi-
date for the class of regular algebras, whatever they might be. This is discussed
in more detail in the section on applications. Here we show non-preservation of
this class under homomorphisms.

Let B be the power set algebra on the set of all finite strings on an arbitrary
alphabet. Let R consist of those elements of B containing λ (the empty string),
with ∪ ; ∗ having their standard interpretations on languages. Let 3 be con-
catenation. Then (B R 3) is a dynamic algebra, separable because {λ} ∈ B.
Let R′ be ({I,A, A∗} ∪ ; ∗) with I ≤ A ≤ A∗, asterates I,A∗, I acting as
multiplicative identity, AA = A, all remaining products equal to A∗. This is
not the regular component of any dynamic algebra because A is reflexive and
transitive but not an asterate, contradicting Lemma 3.3. Define h : R → R′ so
that {λ} goes to I, infinite sets to A∗, finite sets to A, visibly a homomorphism.
This establishes that the class of regular components of separable dynamic alge-
bras is not preserved under homomorphisms. The example is Conway’s [Con71,
p102], minus the element 0.

5. MAIN RESULT

The main result has two parts. The first part states that every free dy-
namic algebra is residually Boolean-finite. The second part states that every
free separable dynamic algebra is residually separable-and-finite. The first part
is adequate for showing completeness of the Segerberg axiomatization of propo-
sitional dynamic logic, and the reader wishing to see only that result may skip
the second part. The first part is however inadequate for the next application,
that every free separable dynamic algebra is residually KRI (isomorphic to a
subdirect product of Kripke structures), whence every separable dynamic al-
gebra is a homomorphic image of such a subdirect product. This is a useful
representation theorem for dynamic algebras, though not as strong as showing
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that every dynamic algebra is isomorphic to a Kripke structure, which Example
6 showed to be false for our notion of dynamic algebra.

We approach the main result via an abstract version of the modal logic
technique of filtration, which in a Kripke structure setting is the process of
dividing a Kripke model of a given formula p by an equivalence relation on its
worlds to yield a finite Kripke model of p. Fischer and Ladner [FL79] showed
that filtration could be made to work for propositional dynamic logic just as
well as for modal logic. We extend their result to show that filtration does not
depend on any special properties of Kripke structures but works for all dynamic
algebras, even ones that are not ∗-continuous in Kozen’s sense [Koz79c]. Our
proof is little more than the abstract version of that of [FL79]. We attend first
to some prerequisites.

The reader may wish to look at the account of generator sets and free al-
gebras in Section 8. We let P,Q, . . . , A,B, . . . ,X, Y, . . . range over the set of
generators in B,R, B ∪ R respectively, and write B0, R0, D0 for the respective
generator sets.

Lemma 5.1. The regular component of any subalgebra of a dynamic algebra
D = (B R 3) containing the regular generators of a generator set of D coincides
with R.

Proof: Left to the reader.

The Boolean analogue of this lemma is false; the Boolean generators generate
only part of the Boolean component (consider AP etc.).

FL-sets. An FL-set is a Boolean subset F of a predynamic algebra such that

p ∨ q ∈ F → p, q ∈ F
p′ ∈ F → p ∈ F
ap ∈ F → p ∈ F

(a ∪ b)p ∈ F → ap, bp ∈ F
(ab)p ∈ F → a(bp) ∈ F

a∗p ∈ F → p, aa∗p ∈ F

These rules form a generative system with source set8 the Boolean elements
of a free predynamic algebra, i.e. terms; we call the associated closure operator
FL-closure, FL(X).

Lemma 5.2. (Fischer-Ladner [FL79].) The FL-closure of a finite Boolean
subset of a free predynamic algebra is finite.

See [FL79] for a proof.
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Filtration. We are now in a position to state and prove the central theorem
of this paper, which asserts the existence of filtrations.

Theorem 5.3. Given an SDA-free8 dynamic algebra D = (B R 3) and a
finite subset Bg of B, there exists a dynamic algebra D′ and a homomorphism
f : D → D′ injective on Bg, with f(D) finite and separable.

We call f a filtration, and f(D) a filtrate, of Bg.

Proof: Our construction of D′ and f from D and Bg proceeds via a series of
steps given by the following diagram.

6 6

6

--

�
�

�
�

��7

-

-

�
c

h

h

FL

G G

fh

∪

∪

∪

∪∪

∪∪

BgBg”

BfBf”

B′BF ”

Bx

D′DD”

The components of the diagram are as follows. The arrows trace the order of
construction, except for the top two arrows which represent homomorphisms. D
and Bg are given. D” is a free predynamic algebra generated by the generators
of D and h : D” → D is the homomorphism fixing those generators (whence
h is onto). Bg” is c(Bg) where c : B → B” is a choice function satisfying
hc(p) = p; c exists by the Axiom of Choice and because h is onto. (This use
of choice can be eliminated at the cost of a little more complication.) Bf” =
FL(Bg”), finite by Lemma 5.2, and BF ” = G(Bf”), the subalgebra generated
by Bf”. Bf = h(Bf”), finite because Bf” is, and B′ = h(BF ”) = h(G(Bf”))
=8 G(h(Bf”)), finite because finitely generated Boolean algebras are finite. D′

is the full, hence completely full, dynamic algebra on B′ (see Example 1 above;
thus D′ is separable and finite). Since B′ is a finite and hence complete sublattice
of B it defines a closure operator8 J on B. The homomorphism f agrees with
J on B0 (the Boolean generators of D) and maps each regular generator A to
“JA”, the function on B′ that takes p to J(Ap), which the reader may verify is
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strict and finitely additive and so in R′. Such an f exists since D is SDA-free.
Bx is the set of all fixed points of f , a Boolean subalgebra of B as it happens.

The one inclusion shown in the diagram that requires verification is B′ ⊆ Bx.

Claim (i). For all a ∈ R” and p ∈ B′, fh(a)p ≥ h(a)p.

Claim (ii). For all ar ∈ BF ”, fh(a)h(r) = h(a)h(r).

We prove these claims by induction on R”, proving (i) explicitly. For (ii)
replace ≥ by = and p by h(r) uniformly in the proof of (i). (We need h(r)
rather than p in (ii) to make use of BF ” being an FL-set.) We write α, β for
h(a), h(b). Lemma 5.1 justifies confining the induction to R”.

fh(A)p =
∧
{q ∈ B′ | q ≥ h(A)p}

≥ h(A)p.
fh(a ∪ b)p = (f(α) ∪ f(β))p

= f(α)p ∨ f(β)p
≥ αp ∨ βp (Note1)
= h(a ∪ b)p.

fh(ab)p = f(α)f(β)p
≥ αβp (Note2)
= h(ab)p.

fh(a∗)p = f(α)∗p
= min(f(α)!B′p)
≥ min(α!B′p) (Note3)
≥ min(α!Bp) (Note4)
= h(a∗)p.

Notes. (Each note applies to claim (i) or (ii) or both as indicated.)

1. (ii) (a ∪ b)r ∈ BF ” implies ar, br ∈ BF ”, BF ” being FL-closed.

2. (ii) Similarly (ab)r ∈ BF ” implies a(br), br ∈ BF ”.

3. (i) Since f(α)q ≥ αq for all q by induction, f(α)!B′p ⊆ α!B′p.

(ii) a∗r ∈ BF ” implies a(a∗r) ∈ BF ”, so f(α)α∗p = αα∗p by induction,
so α∗p ∈ f(α)!B′p, so min(f(α)!B′p) ≤ α∗p = min(α!B′p), with equality then
following by 3(i).

4. (i) Since B′ ⊆ B, α!B′p ⊆ α!Bp.

(ii) Since α∗p ∈ B′, α∗p ∈ α!B′p, so min(α!B′p) ≤ α∗p = min(α!Bp).

Claim (iii). For all r ∈ BF ”, fh(r) = h(r).
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We proceed by structural induction on BF ”. The first step in the follow-
ing uses the construction of f on generators, P ∈ BF ”, and that h preserves
generators.

fh(P ) = h(P )
fh(p ∨ q) = fh(p) ∨ fh(q)

= h(p) ∨ h(q)
= h(p ∨ q).

fh(p′) = fh(p)′

= h(p)′

= h(p′).
fh(ap) = fh(a)fh(p)

= fh(a)h(p)
= h(a)h(p) (by (ii))
= h(ap).

We infer that B′ = h(BF ”) ⊆ Bx. This completes the defense of the diagram,
establishing that D′ is finite and separable, and f fixes Bg. Clearly f(D) is
finite. To see that f(D) is separable it suffices to observe that the Boolean
component of f(D) is B′ since B′ ⊆ Bx; in fact B′ = Bx as it happens. The
regular component of f(D) may be smaller than that of D′, but that will not
compromise separability.

We now give the first part of the main result. Recall that a dynamic algebra
is Boolean-finite when its Boolean component is finite.

Theorem 5.4. (Main result, first part.) Every free dynamic algebra D is
residually Boolean-finite.

Proof: Take the separating set of congruences to consist of the kernels of the
filtrations of the doubletons of D, together with the congruence relation that is
the complete relation on the Booleans and the identity relation on the regular
elements. The filtration kernels separate the Booleans while the other relation
separates the regular elements. The corresponding quotients are Boolean-finite,
by Theorem 5.3 for the kernels and obviously for the other.

The reader may at this point wish to skip the second part of the main result
and go the next section, where the Segerberg completeness result is proved
without depending on the second part.

Theorem 5.5. (Main result, second part.) Every free separable dynamic
algebra is residually separable-and-finite4.

4In fact every free dynamic algebra is separable, as Németi [Ném82] subsequently pointed
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Proof: Take the kernels of the filtrations of the doubletons of D as for Theorem
5.4, possible because free separable dynamic algebras are SDA-free. This set
separates the Booleans. It also separates a 6= b, since by separability there
exists p such that ap 6= bp, whence ap 6∼= bp for some congruence, so a 6∼= b for
that congruence. Hence the kernels form a separating set. The corresponding
quotients are separable and finite by Theorem 5.3.

For this theorem to be of any use, free separable dynamic algebras must
exist. As Example 7 shows, SDA is not a variety and hence not a guaranteed
source of free algebras. However HSP(SDA), the variety generated by SDA,
does have free algebras, which we can show supply the necessary free separable
dynamic algebras.

Lemma 5.6. Every free HSP(SDA)-algebra having at least one Boolean gen-
erator is separable.

Proof: Let D be a free HSP(SDA)-algebra. If a 6= b in D then there exists D′

in SDA and a homomorphism h : D → D′ which maps a, b to distinct elements8.
Since D′ is separable there must exist p ∈ B′ such that h(a)p 6= h(b)p. If we take
g : D → D′ to be a homomorphism agreeing with h on the generators of R and
satisfying g(P ) = p, we have g(aP ) = g(a)g(P ) = h(a)p 6= h(b)p = g(b)g(P ) =
g(bP ), whence aP 6= bP . Hence D is separable.

We do not know whether this lemma holds when there are no Boolean
generators5. Fortunately for our application all we need are free algebras with
at least a given number of generators.

6. APPLICATIONS

The first application uses the first part of the main result to show the com-
pleteness of the Segerberg axiomatization of propositional dynamic logic. Com-
pleteness of this system, as with other modal logics, is traditionally measured
with respect to Kripke structures. In the program logic application this is be-
cause of the satisfactory way in which Kripke structures model computation,
as discussed in Example 2. We first prove an easy result about finite Kripke
structures.

Theorem 6.1. Every finite separable dynamic algebra is isomorphic to a
(finite) Kripke structure.

out. This is an immediate consequence of the initiality of free algebras which my prior three
months of exposure to the techniques of algebraic logic had been insufficient to make leap out
at me at the time. In this revision I have accordingly dropped “separable” from the abstract’s
wording of the main theorem.

5Solved affirmatively by I. Nemeti [Ném82].
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Proof: Let D = (B R 3) be a separable finite dynamic algebra. Then by the
fact that every finite Boolean algebra is isomorphic to the power set algebra of
its atoms, and by separability, D is isomorphic to a subalgebra of the full (hence
completely full by finiteness of B) dynamic algebra on the power set algebra of
the atoms of B, which is by definition a Kripke structure.

Let KRI+ be the class of Kripke structures together with the class of Boolean-
trivial dynamic algebras, viz. dynamic algebras with one Boolean element, and
let DA be the class of dynamic algebras. Recall that HSP(C) is the variety
generated8 by class C.

Theorem 6.2. DA = HSP(KRI+).6

Proof: Certainly KRI ⊆ DA, and trivially the Boolean-trivial algebras are
dynamic algebras, so since DA is a variety, HSP(KRI+) ⊆ DA. Conversely, by
Theorems 5.4 and 6.1 every free dynamic algebra is in SP(KRI+), whence every
dynamic algebra is in HSP(KRI+), being a homomorphic image of some free
dynamic algebra.

Although KRI+ is a bigger class than KRI its Boolean theory cannot be
decreased since the Boolean theory of Boolean-trivial algebras must include all
Boolean identities holding in KRI. Thus Theorem 6.2 supplies an algebraic form
of the Segerberg-Parikh completeness result for propositional dynamic logic.
The connection with the Hilbert-style form of Segerberg’s axiom system is easily
made along the lines one would use to translate identities of Boolean algebra
into their corresponding Hilbert-style axioms.

There are two unsatisfactory aspects to Theorem 6.2. First KRI+ is some-
what artificial compared with KRI. Second the regular theory of KRI+ is trivial
(has only identities x=x) since the regular theory of Boolean-trivial dynamic al-
gebras is trivial, whereas the regular theory of KRI is quite rich. The following
shows just how rich it is.

Theorem 6.3. The projection of KRI on its regular coordinate (i.e. the class
of regular components of Kripke structures) is the class of regular algebras of
binary relations.

Proof: The former is certainly included in the latter. Conversely, any regular
algebra of binary relations on a set W is the regular component of a subalgebra
of the full dynamic algebra on W , a Kripke structure.

Hence the regular theory of KRI is the theory of regular algebras of binary
6Németi [Ném82] subsequently found the “right” strengthening of this result, to “every

free dynamic algebra is representable” (i.e. isomorphic to a Kripke structure.
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relations. Thus a connection with KRI would be much more rewarding than
the connection with KRI+. The axiom of separability supplies exactly that
connection inasmuch as it supplies the missing regular theory, as the following
shows.

Theorem 6.4. HSP(SDA) = HSP(KRI).

Proof: Since KRI is the closure under subalgebras of full Kripke structures,
which are separable, we have HSP(KRI) ⊆ HSP(SDA). Since free algebras in
SDA are residually separable-and-finite, they are residually KRI by Theorem
6.1. Furthermore every separable dynamic algebra is a homomorphic image of
some free separable dynamic algebra by Lemma 5.6, so HSP(SDA)⊆ HSP(KRI).

Combining Theorems 6.2 and 6.4 we infer that HSP(SDA) may be defined
axiomatically by the dynamic algebra axioms (whose completeness is given by
6.2) together with an appropriate set of axioms for binary relations. There is
unfortunately no finite equational axiomatization of the latter [Red64], though
the dynamic algebra axioms plus the axiom of separability is only a quantifier
away from being one, namely the quantifier of p in the axiom of separability,
∀p[ap = bp] → a = b. The system of Salomaa [Sal66] comes similarly close, to
within a nonstandard inference rule7

Regular Algebras. Is there such a thing as a regular algebra? Unlike such
satisfactorily defined classes as groups, rings, lattices, Boolean algebras, and
even dynamic algebras, regular algebras have an identity problem: there is
no agreed-on definition of a regular algebra. Moreover, a monograph by J.H.
Conway [Con71] gives some insight as to why.

Conway exhibits five classes of algebras of type (R ∪ ; ∗ 0 1), called X-
Kleene algebras for X ranging over S,N,R,C,A, in order of strictly increasing
size. S (Standard) consists of complete lattices under ∪ in which ; is asso-
ciative and distributes over all joins, and a∗ =

∨
{ai | i ≥ 0}. Furthermore,

0 and 1 are additive and multiplicative identities respectively. N (Normal) is
S(S) and R (Regular) is HSP(S), where S(S) is the closure of S under subal-
gebras and HSP(S) is the variety generated by S (closure under subalgebras
and homomorphisms—S is already closed under direct products). C is a vari-
ety strictly larger than HSP(S) axiomatized by a finite set of axioms together
with a∗ = (an)∗a<n, essentially Kleene’s axiom schema (11) of 7.2 [Kle56]. A

7Although Salomaa’s system is presented as a schema, its form suggests that it should be
easy to cast it as a universal Horn theory. Kozen [Koz91] has recently shown a certain lack of
substitutivity in Salomaa’s axioms that appears to prevent doing this directly. Kozen provides
a universal Horn theory that does generate the equational theory of regular algebras, using
two conditional axioms rather than the single one that would have been expected on the basis
of Salomaa’s axiomatization.
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(Acyclic) is a finitely axiomatized variety whose significance is not apparent to
us; it is Kleene’s system less the infinite schema.

Kozen [Koz79c] has proposed a definition of regular algebra, of the same
similarity type as Conway’s, as a join semilattice in which ; is associative and
distributes over finite joins and over

∨
{ai|i ≥ 0}, the latter, defined as a∗, being

the only infinite joins required to exist.

Theorem 6.4 suggests that the regular components of separable dynamic
algebras might constitute an interesting class of regular algebras. Let R =
({0, 2, 1} ∪ ; ∗) where 0 ≤ 2 ≤ 1 (defining ∪), 1 is the only asterate, and ; is
integer multiplication modulo 4 (so 2;2=0). This is Conway’s third example of
a S-algebra on p.101 of [Con71]. However Kozen has pointed out to us that in
any separable dynamic algebra, if a ≤ I (where Ip = p for all p), aa = a. Thus
R is not the regular component of any separable dynamic algebra.

It is the case that every regular algebra of binary relations is the regular
component of a separable dynamic algebra, namely a subalgebra of a full Kripke
structure where all the Boolean elements are retained (to maintain separability).
Furthermore every regular algebra of languages on the alphabet Σ is isomorphic
to a regular algebra of binary relations; the isomorphism maps the language L to
{(u, uv) | u ∈ Σ∗, v ∈ L}. Hence the regular components of separable dynamic
algebras include all regular algebras of binary relations and of languages. Since
these are of central importance in the theory of regular algebras we might be
forgiven for excluding apparent oddities such as the example immediately above.

To do so however would be to exclude some well-motivated algebras. Kozen
has pointed out to us that (N min + K0) is such an algebra, where N =
{0, 1, 2, . . .}, min(9, 5) = 5 etc., and K0 is the constantly zero function. This
algebra is of central importance in the computation of minimal cost routes in
networks; given a choice of routes one wants the cheaper of the two, whence
min; the cost of a sequence of two routes is the sum of their costs, whence +;
and the cheapest way to travel a route an arbitrary number of times is not to
venture forth even once, whence K0.

To avoid excluding such algebras we propose to relax axiom 2b of the dy-
namic algebra conditions to:

2i. ap ≤ a(p ∨ q).

We call such algebras isodynamic; every dynamic algebra is an isodynamic
algebra as is easily verified. To see that the converse does not hold, let B
have elements 0, P, P ′, 1 and let A be the function on B mapping P ′ to P
and fixing everything else. A is isotone but not finitely additive. Take R to
be ({A,A∗} ∪ ; ∗) where A∗ maps P ′ to 1 and fixes everything else, with
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∪ pointwise disjunction and ; composition. Take 3 to be application. Then
(B R 3) is an isodynamic algebra, as may be verified by calculation.

A more interesting example takes B to be the power set algebra on N and
R to contain for each i ≥ 0 the function Ai on 2N that removes the least i
elements from its argument. These functions can be seen to be isotone but not
finitely additive. Define Ai ∪ Aj = Amin(i,j), Ai;Aj = Ai+j , and (Ai)∗ = A0.
Taking 3 to be application, it can be verified that (B R 3) is a separable isody-
namic algebra whose regular component is isomorphic to the above-mentioned
(N min + K0) algebra.

One would hope that Example 1 generalizes in the obvious way to isodynamic
algebras. Suppose it did. Consider the full isodynamic algebra on {0, 1, 2}, with
of course a∗p = min(a!p). Lemma 4.3 works for isotone functions so there is
no question about ∪ and ; and ∗ being defined. Now let us write p as

∑
i∈p 2i,

e.g. {1, 2} is written as 6. Let A be some isotone function such that A1 =
A2 = 2, A3 = A5 = 7. Then A!1 = {7} and 2 ∈ A!2, so A∗1 = min(A!1) = 7
and A∗2 = min(A!2) = 2. But 1 ∨ A∗(1′ ∧ A1) = 1 ∨ A∗(6 ∧ 2) = 1 ∨ A∗2
= 1 ∨ 2 = 3, contradicting axiom 5b. Thus “full isodynamic algebras” are
not isodynamic and so Example 1 does not generalize. Incidentally this shows
why isotonicity is inadequate for the← direction of Lemma 3.1; if this direction
worked with isotonicity the remaining arguments leading up to Example 1 would
all go through for full isodynamic algebras. We do not at present have any nice
characterization of which isotone functions on a complete Boolean algebra satisfy
axiom 5b under the min(a!p) interpretation of a∗p.

We now exhibit a regular component of a separable isodynamic algebra which
is not in HSP(SDA). Let P generate a four element Boolean algebra B, and take
A to be the function on B mapping P to P ′ and fixing the rest of B. Take I to
be the identity function on B. Then A(A ∪ I)P = 1 but AAP = AIP = P ′ so
A(A ∪ I)P 6= (AA ∪AI)P . Hence A(A ∪ I) 6= AA ∪AI, contradicting a law of
HSP(SDA). The closest we can come to this law is ab ∪ ac ≤ a(b ∪ c). However
(a ∪ b)c = ac ∪ bc holds8. Note also that Theorem 3.4 holds, so ∗ is reflexive
transitive closure in a separable isodynamic algebra.

With the above in mind we identify the class of regular components of sep-
arable isodynamic algebras as an interesting class of regular algebras.

7. LOOSE ENDS

Complexity. The set of valid formulas of propositional dynamic logic has
been shown to be complete in deterministic exponential time, the lower bound

8This asymmetric distributivity is also encountered in connection with the subsequent
extensive literature on bisimulation [Mil80]; by the time I became acquainted with this litera-
ture I had forgotten about this aspect of isodynamic algebras, and only noticed the connection
while making these annotations.
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appearing in [FL79], the upper bound in [Pra80c]. (A simpler proof of the
upper bound appears in [Pra79a].) The intimate connection between that theory
and the equational theory of dynamic algebras establishes the same complexity
result for the latter. The theory of separable dynamic algebras has the same
complexity since its theorems are those of dynamic algebras together with a = b
if and only if aP = bP (P any propositional variable) is a theorem.

Origin. The origin of dynamic algebra is in dynamic logic ([Pra76], see also
[Pra80a]), whose origin is in turn in modal logic. It is rather surprising that
the calculus of binary relations was not incorporated into the Kripke semantics
of modal logic earlier. As pointed out at the end of [FL79], the classical modal
logics K, T, S3, S4, and S5 are all special cases of dynamic logic (S5 requires
converse), so that decidability of satisfiability for each of these logics follows
from the procedure given in [FL79] for propositional dynamic logic. Closely
related logics, all addressed specifically at programming, are those of Hoare
[Hoa69], Salwicki [Sal70], Dijkstra [Dij76], and Constable [Con77]. Example 4
makes a connection with the logic of Floyd [Flo67].

Terminology. We had originally called dynamic algebras Hoare algebras, af-
ter [Hoa69], which contains a Gentzen-like form of the dynamic logic theorems
given in [Pra76] and extended by Segerberg to a propositionally complete sys-
tem. We adopted Kozen’s term “dynamic algebra” after seeing [Koz79c]. Some
time later we realized that Kozen’s definition of a dynamic algebra was strictly
stronger than ours because of its assumptions about continuity; we have yet to
resolve this terminological conflict9. The term “separable” is also Kozen’s, as
is the analogy of dynamic algebras to modules with regular elements acting as
“scalars.”

There is a close similarity between the axioms for dynamic algebras and those
for modules. One might call a dynamic algebra a Boolean semimodule with ∗

(cf. [SS78] which employs a concept of semimodule, though neither Boolean nor
having ∗).

Open Problems. We repeat Kozen’s problem, is every ∗-continuous dynamic
algebra isomorphic to a Kripke structure? 10

We have treated neither tests, p?, nor converse, ă . Converse formalizes
the idea of running a program in reverse, and was studied in this context in
[dBdR72]. See [Par78] for a complete axiomatization of converse (essentially
a(ă p)′ ∧ p = 0 and ă (ap)′ ∧ p = 0). Is there an algebraic analogue of our

9We subsequently agreed [Koz81b] that a dynamic algebra was any model of the Segerberg
axioms, and a ∗-continuous dynamic satisfied the additional condition a∗ =

∨
i<ω

ai along

with distributivity of ∪ over such joins.
10Solved negatively by Kozen [Koz80a], further strengthened by Nemeti [Ném81].
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Lemma 3.1 for converse?11

What is the axiom rank and base rank [Coh65, p173] for dynamic algebras?
The base rank is at most 3 since the Segerberg axiomatization only requires 3
variables in each axiom.

What reasonable axioms exist for regular complement (complement in the
regular algebra) in dynamic algebra? We propose the term “complemented dy-
namic algebra” for a dynamic algebra expanded by adding regular complement.12

A related question that the reader may find better defined deals with the
problem of recognizing identities for the complemented linguistic dynamic alge-
bras ((2L ∨ ′) (2L ∪ ; ∗ ′) 3) where L = S∗ ∪ Sω and S is an arbitrary
alphabet. Is this problem even decidable?13

8. BACKGROUND

A grasp of the ideas in one of [Bir67, Coh65, Gra68] is more than sufficient
preparation for this paper. The following first aid may prove convenient for the
reader comfortable with the definitions of subalgebra, homomorphism, direct
product, lattice, and Boolean algebra.

Minor Points. We use poset for partially ordered set, sup(remum) or join

for the least upper bound
∨

S of a subset S of a poset, and inf(imum) or
meet for the greatest lower bound

∧
S. Note that

∨
∅ exists in a poset P just

when P contains a least element, as it does when P is a Boolean algebra. A
directed set is a non-empty set which contains upper bounds on each of its finite
subsets. A complete sublattice of a poset P contains all its meets and joins as
defined in P . The power set algebra on the set X is a complete Boolean algebra
consisting of all subsets of the set X. A field of sets is any subalgebra of a power
set algebra, necessarily Boolean, not necessarily complete or atomic; conversely
every Boolean algebra is isomorphic to a field of sets [Sto36]. Being complete
and being atomic are independent for infinite Boolean algebras and both true
for finite ones.

Heterogeneous Algebras. As is shown in [BL70], all of the following carries
through for heterogeneous algebras of the sort used here, in our case having up
to two carriers B and R and up to eight operations, ∨ ′ 0 ∪ ; ∗ 3 ?, of various
types. Direct products and homomorphisms respect type in the heterogeneous

11Solved affirmatively by the author [Pra81b].
12Solved negatively, long ago, by Monk [Mon64], since equipping the regular part with

complement recreates relation algebras, making the Boolean part redundant. However the
tractability resulting from segregating the regular and Boolean parts, in particular decidability
and representability, is then lost [Bri81, Pra90].

13It is undecidable since it embeds the (undecidable) word problem for semigroups. Tarski
remarked on this situation early on in his development of relation algebras [Tar41].
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case; one would not find a Boolean element paired with a regular in a direct
product, nor a homomorphism mapping a Boolean element to a regular.

Closure Operators. A closure operator on a poset P is an isotone reflexive
idempotent function f on P; that is, x ≤ y implies fx ≤ fy, x ≤ fx, and
ffx = fx. A closure system on a poset is the set of fixed points of some closure
operator. Every complete sublattice L of a poset P is a closure system with
associated closure operator J(x) =

∧
{y ∈ L|x ≤ y}. P itself need not form a

complete lattice, though it must have a greatest element, which will appear in
every complete sublattice as

∧
∅. When P is a complete lattice, every closure

system of P is a complete sublattice of P.

Generative Systems. A system of rules of the form, “if u is in the set then
so are v, w, . . .,” is called a generative system. The set of all subsets of a given
source set each meeting all the rules is clearly closed under intersection and so
forms a closure system. Hence associated with any generative system and source
set is a closure operator on the power set of the source set.

Generator Sets. The set of subalgebras of an algebra A is closed under
intersection and so forms a closure system. The associated closure operator G
yields for each subset X of A the subalgebra G(X) generated by X. X is called
a generating set of G(X), and the elements of X are called generators. A useful
property of G is that it commutes with homomorphisms; h(G(X)) = G(h(X))
for any subset X of A and homomorphism h from A.

Free Algebras. Given a class C of similar algebras, an algebra A of the same
similarity type, not necessarily in C, is C-free when it contains a generating set
A0 such that any function from A0 to an algebra in C extends to a homomor-
phism, necessarily uniquely by the previous paragraphs. When such an A is in
C we call A a free C-algebra. (The standard notion of “free” is the latter; we
need the former, C-free, for Theorem 5.3.)

Any non-trivial class closed under subalgebras and direct products has free
algebras [Coh65, p138].

Varieties. A class of similar algebras closed under subalgebras, direct prod-
ucts, and homomorphisms is called a variety; equivalently [Bir35], a variety
is any class defined by a (possibly infinite) set of equational identities. Thus
Boolean and dynamic algebras form varieties, being defined purely by equational
identities.

The class of all varieties of a similarity type is closed under arbitrary inter-
section (take the variety defined by the union of their theories) and so form a
closure system, so that the variety generated by any class of similar algebras
always exists. We write HSP(C) for the variety generated by class C. If a 6= b
in any free algebra A of HSP(C) then there exists an algebra A′ of C and a
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homomorphism h : A → A′ for which h(a) 6= h(b). (This is because any law of
C algebras must be a law of HSP(C) algebras.)

A set of congruences on an algebra A is called separating when no two
elements of A are related in every congruence. A is residually P , P being some
property of algebras, when A/ ∼= is P for each congruence ∼= in some separating
set of congruences on A.

If A is residually P then A is isomorphic to a substructure of a direct product
of P algebras, which themselves are homomorphic images of A (the natural
homomorphism onto the quotient). Substructures of direct products obtained
in this way from separating sets of congruences are called subdirect products.
Thus given a class C of residually P algebras it follows easily that HSP(C) =
HSP(P)∩H(C) where HSP(C) is the variety generated by C and H(C) ⊆ HSP(C)
is the class of homomorphic images of C.

Varieties always have free algebras. Lemma 5.8 shows that free separable
dynamic algebras with at least one Boolean generator exist.

Letting SDA denote the class of separable dynamic algebras, we point out
that both free dynamic algebras and free separable dynamic algebras are SDA-
free, an essential aspect of Theorem 5.3.

Deductive Systems. It is a well-publicized fact that the pure predicate cal-
culus has a deductive system that is complete in the sense that it can be used
to prove from a set Γ of first-order formulas, the non-logical axioms, any first-
order formula valid in the axiomatic class consisting of all models of Γ. Less
well-publicized is the fact that the rules permitted for manipulating equations in
high school algebra is complete in the same sense, with pure equations in place
of first-order formulae and varieties in place of axiomatic classes. The rules
invariably include implicitly those in the following system, whose only logical
axiom is X = X for some variable X.

Symmetry: x = y ` y = x.

Transitivity: x = y, y = z ` x = z.

Replacement: x1 = y1, . . . , xn = yn ` f(x1, . . . , xn) = f(y1, . . . , yn) for any
n-ary f .

Substitution: s(X) = t(X) ` s(y) = t(y) for any variable X and term y, i.e.
the substitution of y for all occurrences of X in the theorem s = t.

These rules form a generative system with source set pairs of elements of a
word algebra, and the associated closure operator is called deductive closure.
The system is complete in the sense that the deductive closure of a set of axioms
coincides with the set of equations holding identically in the variety defined by
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the axioms. The proof is easier than for the first-order case, see e.g. [Hen77].

The significance of this fact for us is that we need not get involved in the
details of deductive closure since this is now all taken care of for us. Our only
obligation is to ensure that any given system of axioms really does define the
same variety as that generated by the class of models we are interested in.

Retrospective citations. At this publication date of 1990 there are certain
bibliographic items appearing subsequently to the 1979 appearance of this memo
that are worth mentioning here.

Surveys on dynamic logic: Harel [Har84], Kozen and Tiuryn [KT89].

Papers on dynamic algebras (by no means a complete list): [Koz79d, Koz79c,
Koz79a, Koz79b, Koz80a, Koz80b, Koz81b, Koz81a, Ném81, Koz91, Pra90].

Related work in the relation algebra (RA) community: Brink on Boolean
modules [Bri81], Ng and Tarski on RAT’s (RA’s with transitive closure) [NT77,
Ng84], both discussed in [Pra90].

Propositional Mu-calculus. Pratt [Pra81a] defined a propositional mu-calculus
by turning Lemma 3.1 into a minimization construct, and showed that it was
decidable. This mu-calculus was subsequently extended by Kozen [KP83].

Reflections. The present paper had two motivations. First I wanted to round
out the diagram in [Pra79a] of inclusions among theories of various models of
propositional dynamic logic. I had given algebraic proofs of all inclusions in that
diagram except one, namely the inclusion of the theory of Kripke structures in
that of dynamic algebras. This inclusion was available via Parikh’s proof of com-
pleteness (with respect to Kripke structures) of Segerberg’s axioms, but it was
by no means obvious how to algebrize Parikh’s proof, nor whether algebrization
would strengthen the result (it didn’t).

Second I had become quite frustrated with the existing proofs of complete-
ness of Segerberg’s axioms [Seg77] for PDL. My previous attempts to understand
this completeness theorem resulted in [Pra80c], which drew principally on the
techniques of Beth tableaux. I hoped that algebrization of the completeness
theorem would shed light on why Segerberg’s axioms should be complete.

I was very pleasantly surprised to find that many of the tedious calculations
in [Pra80c] could be absorbed into general theorems of universal algebra and
algebraic logic. This reduced the completeness proof to the calculations of the
present paper. It also abstracted the essence of the result as a factorizability
property: every free dynamic algebra can be factored as a subdirect product
of finite dynamic algebras. This expression of the completeness result has the
advantage of making no mention of Kripke structures, remaining in the abstract
domain of dynamic algebras. Yet the basic argument is essentially Fischer and
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Ladner’s original finite model argument, translated to the more general set-
ting of dynamic algebras. Moreover it is milked not just for decidability but
completeness of the Segerberg axioms, the main and intended payoff of this
generalization.

I was less pleasantly surprised to find later on that hardly any computer
scientists understood enough algebra to comprehend even the statements of the
theorems, let alone their proofs. The essentially universal reaction seemed to be
that I had now stopped studying dynamic logic and had turned my attention
to algebra, a branch of pure mathematics having no bearing on the practical
problems of reasoning about computer programs. Dexter Kozen was of course
an exception to this rule, as were Istvan Németi, Hajnal Andréka, Fran Berman,
Vera Trnkova, and Jan Reiterman. But many people whom I had expected to
appreciate the elegance and simplicity of the algebraic approach were not only
unmoved by it but saw no contribution whatsoever to the overall understanding
of dynamic logic, let alone the fundamental one I was claiming!

Fortunately or otherwise I did not fully appreciate this lack of response un-
til the late 1980’s. By that time I had ventured considerably deeper into the
labyrinths of abstraction, going so far as to apply enriched category theory to
modelling concurrency [CCMP91]. Here the lack of response was more im-
mediately noticeable, and correspondingly more quickly diagnosed. The clear
diagnosis was that the most sympathetic readers of the computer science lit-
erature can follow only so much abstract nonsense before they get out of their
depth and must make an expensive investment in order to keep going.

I know of only two fixes for this problem. The first is for the perpetrators of
such impenetrabilia to restrict themselves to the absolute minimum of abstract
nonsense sufficient to achieve the end at hand. The second is to give the field
at large the necessary encouragement it needs to get caught up.

My assessment is that the first of these fixes has two problems: it leads to
unnecessarily clumsy exposition, and it is at best a stop-gap solution to the
basic problem. In the long run only the second fix will have any lasting value.
The more comfortable the field as a whole becomes with the “power tools” of
abstract reasoning, the faster it will move forward.

Acknowledgments. D. Kozen was a most helpful source of ideas and pointers
into the literature. J. Halpern provided many helpful comments on an early draft
of the paper. Comments of I. Németi and D. Pigozzi substantially improved this
publication version.
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