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Abstract. Enriched categories have been applied in the past to both
event-oriented true concurrency models and state-oriented information
systems, with no evident relationship between the two. Ordinary Chu
spaces expose a natural duality between partially ordered temporal spaces
(pomsets, event structures), and partially ordered information systems.
Barr and Chu’s original definition of Chu spaces however was for the
general V -enriched case, with ordinary Chu spaces arising for V = Set
(equivalently V = Pos at least for biextensional Chu spaces). We ex-
tend time-information duality to the general enriched case, and apply
it to put on a common footing event structures, higher-dimensional au-
tomata (HDAs), a cancellation-based approach to branching time, and
other models treatable by enriching either event (temporal) space or
state (information) space.

1 Introduction

Although the present paper is about enrichment in concurrency, the framework
facilitating this treatment is the duality of time and information, the title of
the author’s CONCUR’92 talk [1] at Stonybrook NY exactly a decade ago. The
abstract began with

The states of a computing system bear information and change time,
while its events bear time and change information.

The introduction expanded on this by beginning

The behavior of an automaton is to alternately wait in a state and per-
form a transition or event. We may think of the state as bearing informa-
tion representing the “knowledge” of the automaton when in that state,
and the event as modifying that information. At the same time we may
think of the event as taking place at a moment in time, and the state as
modifying or whiling away time.

This view organizes states and events into two complementary spaces, state
spaces or automata and event spaces or schedules, whose distances are respec-
tively information deltas and time deltas. The two spaces are interderivable, and
are shaped similarly (linearly) by sequential behavior but strikingly differently
by concurrency.



This was then and remains today the underlying principle of our event-
state symmetric view of behavior, independently of whether sequential or con-
current. The basic framework for this view then was complete semilattices,
modified to cater for conflict by replacing bottom by top. Within a month of
writing [1], V. Gupta and I [2] had simplified and generalized this framework
via Chu spaces [3], which has remained our current view for the past decade
[http://chu.stanford.edu/].

Yet earlier [4] we had applied categorical enrichment to a unified treatment
of ordered time, real time, etc., but at that stage of thinking did not have the
notion of information as dual to time. What we did have was a puzzle as to
why Girard’s Linear Logic (LL) should look so like our Process Specification
Language (PSL) except for the self-duality of LL, which PSL lacked. We raised
this issue at the end of [4] in the following paragraph.

A recent noncartesian logic is Girard’s linear logic [5]. Like PSL, linear
logic distinguishes ordinary and tensor product. Like Boolean logic but
unlike PSL, Girard’s linear logic is self-dual, giving rise by de Morgan’s
law to two binary operations dual to the two products. This prompts the
following question. Why should self-duality survive the diverging of the
two products?

But while [1] answered that puzzle with time-information duality it did so
only for ordered time and not for the generalized metrics of [4], leaving this as
a loose end.

In between [4] and [1] we introduced the notion of higher dimensional automa-
ton (HDA) [6] as an algebraic topological form of automata theory supporting
Papadimitriou’s geometric view of concurrency control [7] in terms of higher-
dimensional state spaces, in which mutual exclusion takes the form of a hole.
At that time we were unable to answer Boris Trakhtenbrot’s question after our
POPL talk as to how HDAs were related to event spaces, leaving another loose
end which we only recently tied up using triadic Chu spaces [8].

We found ourselves subsequently drawn more strongly to the duality puzzle
than to HDAs, intuiting that the latter should rest on the former which therefore
needed to be understood first. We have since written extensively on this topic
[http://chu.stanford.edu/], and with V. de Paiva also organized a LICS work-
shop on Chu spaces. This is not to say that HDAs have gone neglected: thanks to
the efforts of a number of researchers, in particular Eric Goubault, HDA theory
has since ripened into a relatively popular research area with some dozens of pa-
pers, two workshops, and a special issue of MSCS [9]. The upshot has been that
both Chu spaces and HDAs have received their fair share of attention during
the past several years.

The purpose of this paper is to tie up the remaining loose end involving
enrichment, accomplished by passing from ordinary to enriched Chu spaces. This
passage provides a common framework with the metric space approaches to both
information systems [10] and temporal systems [4], not by unifying them however
but by placing them on opposite sides of the duality of states and events. The



key idea is to apply the way a metric on V lifts to a metric on a V -category to the
rows and columns of a matrix to yield separate metrics of time and information.

Enriched Chu spaces greatly simplify this reconciliation to the point of au-
tomating it. Ordinary Chu spaces are a sort of halfway-house between univer-
sal algebra and category theory. Enriched Chu spaces make the corresponding
connection for enriched categories, in the process enriching universal algebra
analogously.

Ironically the original definition of Chu spaces [3] was for the enriched case,
with ordinary Chu spaces receiving only a passing mention.1 The first detailed
treatment of ordinary Chu spaces was by Lafont and Streicher, and they were
subsequently adopted by Gupta and Pratt [2, 11] for the purpose of modeling
behavior at a more fundamental level than possible with higher dimensional
automata.

2 Event-State Duality

Computation is traditionally taught with a focus on states, a point of view that
has permeated computer science so thoroughly that event-oriented models are
in a distinct minority even at CONCUR. One could imagine a parallel universe
in which computer science had focused instead on events, with advocates of a
state-oriented perspective in the minority. The situation is rather like the old
philosophical problem of the primacy of mind or matter, with science having
chosen Hume over Berkeley, matter over mind. Or for that matter the general
preference in mathematics of sets over categories.

Just as Russell along with Eccles and Popper advocated a return to the
more symmetric view of matter and mind contemplated both by millennia-old
yin-yang philosophy and by Descartes in 1647, so does event-state duality take
a more symmetric view of events and states, defining them in such a way that
each can be understood in terms of the other. The duality of events and states
goes hand in hand with that of time and information as the respective met-
rics on event spaces and state spaces. Event-state duality permits a process to
be viewed equally well as a state-based automaton or an event-based sched-
ule. These views are structurally different: automata (or transition systems) are
state-based, and branching is disjunctive: the process goes down only one branch.
Schedules are event-based, and branching is conjunctive: parallel events all oc-
cur. These structural differences notwithstanding, each view fully determines the
other, and moreover simply by matrix transposition!

Event-state duality can be understood in terms of element-predicate duality.
The essence of duality is reversal, as with negation of reals which reverses their

1 This exclusive attention to the enriched case in the original literature has created
the impression in some quarters that Chu spaces are an inaccessibly abstract notion.
This does not do justice to the simplicity of ordinary Chu spaces as mere matrices,
and moreover matrices over a mere set, unlike the matrices of linear algebra which
are over a field.



order while interchanging max and min as well as floor and ceiling. Complement-
ing the elements of a Boolean algebra, De Morgan duality, similarly reverses its
order while interchanging the roles of true and false and of conjunction and dis-
junction. And taking the opposite Cop of a category C reverses its morphisms
while interchanging limits and colimits, categorical duality. This third exam-
ple generalizes the first two when made categories by interpreting a ≤ b as a
morphism from a to b.

Element-predicate duality arises as an instance of categorical duality for a
category C as follows. Two objects g and k (not necessarily distinct) are chosen
to play the roles of respectively a singleton object and a truth values object.
(An obvious and natural choice for the category of sets is g = 1 = {0} and
k = 2 = {0, 1}. Less obvious but equally natural choices exist for many popular
categories, e.g. for (locally compact) Abelian groups the integers under addition
as the free group on one generator and the unit circle of the complex plane under
multiplication as its dual.) This choice determines for every object a both the
elements of a and the predicates on a, as respectively the morphisms from g to
a, and from a to k. When necessary for disambiguation we refer to these as g-
elements and k-predicates. Note that the set C(g, k) of morphisms from g to k are
simultaneously the g-elements of k and the k-predicates on g, constituting the
set of truth values which we denote henceforth by K. Application of a predicate
to an element is accomplished by composition to yield a truth value.

Categorical duality reverses the orientation of the morphisms of C while in-
terchanging elements and predicates by interchanging the roles of g and k: g now
serves as the truth values object while k acts as the singleton. In this process the
set of truth values remains unchanged, since what used to be both g-elements
of k and k-predicates on g have become both g-predicates on k and k-elements
of g. That is, the set K is invariant under dualization! Furthermore application
of predicate y to element x prior to dualization yields the same truth value as
application of x (now a predicate) to y (now an element) after dualization.

A given choice of g and k establishes for every object a of C a triple (A, r,X)
where A is the set C(g, a) of elements of a, X is the set C(a, k) of predicates on
a, and r : A × X → K is the application function defined by r(a, x) = x(a).
Such a triple expresses those aspects of a that can be understood in terms
of the interaction of its elements and predicates via application (realized as
composition).

A Chu space over K is any triple A = (A, r,X) where A and X are sets
and r : A×X → K is an arbitrary function called the matrix of the Chu space.
Dualization exchanges A and X and transposes the matrix.

Besides viewing elements and predicates more symmetrically, this element-
predicate approach to Chu spaces also views set theory and category theory
more symmetrically. From the categorical perspective a Chu space is an object
of a category C together with some2 incident arrows. From the set perspective

2 Replacing “some” by “all” when C is small embeds C fully in chu(Set, ob(C)) [13].
That is, taking K to be sufficiently large permits the objects of any small category to
be represented as Chu spaces in such a way that the morphisms of C become exactly



a Chu space is a generalized topological space whose set X of “open sets” need
not be closed under union or finite intersection, and which allows |K| > 2; its
morphisms can be understood as simply those functions for which the inverse
image of open sets is open, exactly as for topological continuity.

Event-state duality arises as the case of element-predicate duality in which
a process A as an object of a category C of processes is understood as having
events for elements and states for predicates. We call such a process a schedule.
Dualizing C as Cop turns states into elements and events into predicates; we call
the objects of Cop automata. Dualizing an object leaves it as the same process
with the same events and the same states, changing only which are the elements
and which the predicates.

A morphism of Chu spaces (A, r,X) → (B, s, Y ) is a pair of functions (f :
A → B, g : Y → X) satisfying the adjointness condition s(f(a), y) = r(a, g(y))
for all a ∈ A and y ∈ Y . Dualizing interchanges f and g, thereby reversing the
morphism since f and g are oppositely orientated. The category of Chu spaces
over K and their morphisms is denoted Chu(Set,K).

Define r̂ : A → KX as r̂(a)(x) = r(a, x) and ř : X → KA as ř(x)(a) = r(a, x).
We refer to r̂(a) as row a of the matrix r, and ř(x) as column x.

A Chu space is extensional when ř : X → KA is an injection (no re-
peated columns in the matrix), separable when r̂ : A → KX is an injection
(no repeated rows), and biextensional when both extensional and separable.
Biextensional Chu spaces are to Chu spaces as posets are to preordered sets: the
former collapses “isomorphic” elements (those lying on a cycle in the case of pre-
ordered sets, those indexing equal rows or columns in the case of Chu spaces) to
a single element. The subcategory of Chu(Set,K) consisting of its biextensional
Chu spaces has been denoted chu(Set,K), or “little Chu” by Barr. Every mor-
phism (f, g) of little Chu from A = (A, r,X) to B = (B, s, Y ) is representable as
the Chu space (A, t, Y ) where t(a, y) = s(f(a), y) = r(a, g(y)): the columns of t
come from A and its rows from B, and t uniquely determines f and g. (f, g) is
reconstructed from (A, t, Y ) by taking f(a) to be the location in B of row a of
t, and dually g(y) for the location in A of column y of t.

For extensional Chu spaces we can identify each state x with the column
λa.r(a, x), a function A → K. This identification permits r to be dropped be-
cause we can recover it via r(a, x) = x(a). In this case a Chu space is a pair
(A,X) where X ⊆ KA.

3 Examples

The table in Figure 1 below is taken from [12]. Each of the four columns (a)-
(d) corresponds to a choice of K, respectively {0, 1}, {0, , 1}, {0,×, 1}, and
{0, , 1,×}. The elements of K are the possible values of an event in a given
state, with 0, , 1,× corresponding to the respective adverbs before, during, after,

the Chu morphisms between the representing Chu spaces, used recently by Hughes
and Pavlović to solve the thirty-year old problem of generalizing Dedekind-McNeille
lattice completion to categories.



and instead. In a given state an event has value 0 when it has not yet started,
when it is happening, 1 when it is finished, and× if it has been canceled. The

four corresponding automata, with edges oriented to point upwards, indicate the
transitions an event may make. These transitions enrich the structure of K and
we shall ignore them for the moment, treating K as merely a set, i.e. focusing
only on its points.

(a)

•1

•0
(b)

•1
•
•0

(c)

•1
•×

��•0
(d)

•1
• •×
��•0

a||b ?=
ab + ba

a 0101
b 0011 = a 0101

b 0011
a 0 10 10 1
b 000 111 6= a 0 1010 1

b 000 111
a 0101
b 0011 = a 0101

b 0011
a 0 10 10 1
b 000 111 6= a 0 1010 1

b 000 111

a(b + c)
?= ab + ac

a 0111
b 0010
c 0001

= a 0111
b 0010
c 0001

a 0 11111
b 000 100
c 00000 1

= a 0 11111
b 000 100
c 00000 1

a 0111
b 001×
c 00×1

6= a 01111
b 001××
c 0××01

a 0 11111
b 000 1××
c 000×× 1

6= a 0 111 111
b 000 1××××
c 0××××00 1

Figure 1. Examples of event-state duality

The 16 matrices denote the Chu spaces corresponding to the four processes
a||b, ab+ba, a(b+c), and ab+ac for each of the four choices of K. Rows represent
events and columns states. The first matrix, expressing a||b with K = {0, 1}, has
all possible states for two events, respectively neither a nor b done, a done, b
done, and both done. The matrix under it also has four states: nothing done, a
done, a and b done, and a and c done. All 16 spaces are biextensional.

The table shows how adding a third value to K serves to distinguish either
a||b from ab+ba or a(b+c) from ab+ac, but not both, depending on whether the
value is or×. To make both distinctions requires both additional values. This is
developed in considerably more detail in [12]. The point here is to illustrate and
motivate the kinds of primitive structures that might play a role in enrichment-
based semantics, in particular as the V we now describe.

4 Enrichment

Posets abstract the notion of a set of sets ordered by inclusion: the elements
of the inner sets disappear. The ordinary category Pos of posets is even more
abstract: the elements of the outer sets also disappear, but we still have one
straw left to grasp at: the monotone functions between two posets form a mere
set. The notion of a poset as a category whose “homsets” are not sets but objects
of a certain symmetric monoidal closed category V , the chain 2 in the case of
posets, is abstract nonsense taken to the max. The defining characteristic of a
V -category or enriched category is that its morphisms from object a to object b
band together not as a set but as an object of V , with the characteristic features
of a category being reformulated in terms of V .

Lawvere [14] has provided an attractive way of conceptually taming V -
categories, by viewing the objects of V as distances, and V -categories as gener-
alized metric spaces satisfying a suitable triangle inequality over such distances.



Besides being good pedagogy, this view nicely connects enrichment with the
Gauss-Kleene-Floyd-Warshall connection that was emerging in computer sci-
ence simultaneously with and completely independently of the development of
enriched categories [15]. That connection applied semirings to create a common
algebraic framework for the Roy-Warshall transitive closure algorithm [16, 17],
Floyd’s shortest path algorithm [18], Kleene’s algorithm for translating nonde-
terministic finite state automata into regular expressions [19], and even Gauss’s
algorithm for inverting a matrix. These O(n3) algorithms can be made instances
of the same algorithm parametrized only by choice of semiring, which plays the
role for this common algorithm that V plays for enrichment. The uniform ex-
pression of this common algorithm in terms of semirings was first described by
Robert and Ferland [20].

The ordinary triangle inequality takes the form

d(a, b) + d(b, c) ≥ d(a, c)

where d(a, b) is a nonnegative real constituting the distance from point a to point
b of a space. The Fréchet axioms for ordinary metric spaces are the ordinary
triangle inequality together with

d(x, y) = d(y, x) (symmetry)
d(x, x) = 0

d(x, y) = 0 ⊃ x = y

The first step in generalizing the Fréchet axioms is to restate d(x, x) = 0 as
d(x, x) ≤ 0, or better yet as 0 ≥ d(x, x) to give it the same orientation as the
triangle inequality. Absent negative distances this rewording changes nothing.

The next step is to drop the second and fourth axioms. Not only do they get
in the way of the connection to enrichment, they are not even well motivated in
many practical situations. Counterexamples to symmetry abound: the distance
between the base and the summit of a mountain measured in climbing days, the
distance along an asymmetric toll road measured in dollars, and so on.

If we view points zero distance apart as somehow isomorphic, the fourth
axiom identifies isomorphic points. This is analogous to the role of antisymmetry
in partially ordering a preordered set (one whose order relation ≤ is reflexive
and transitive) by identifying points x, y that are isomorphic by virtue of lying
on a cycle x ≤ y ≤ x. The practice in surveying of measuring only the horizontal
component of distance refutes the fourth axiom in that it makes vertically aligned
points isomorphic; the axiom is restored however in the plan view projecting
vertical lines to points.

The third step is to view the ordering ≥ on ordinary real-valued distances as
an instance of v, the generic ordering relation for generalized distances (the re-
versal is intentional), and real addition as an instance of a commutative monoid
operation x · y. Here distances are viewed as forming a preordered monoid
(V,v, ·, 1), with v being a reflexive transitive binary relation on V and · and 1
furnishing V with the structure of a commutative monoid. That is, · is associa-
tive and commutative, and 1 is the identity for ·. (Caveat: the generic · and 1



typically revert to + and 0 when the objects of V are numeric.) We also require
that · be monotone in each argument with respect to v; the property of being
closed actually makes it additive (s · (t ∨ t′) = s · t ∨ s · t′).

We can now define the notion of generalized metric space over a gener-
alized metric (V,v, ·, 1), namely as a set X of points with a metric d : X2 → V
satisfying the following generalizations of the remaining two Fréchet axioms.

d(x, y) · d(y, z) v d(x, z)
1 v d(x, x)

The preorder v and the monoid · are to be understood as essentially inde-
pendent structures on V , associated with respectively strength and length of
distances. Whereas strengths are compared via the preorder, lengths are added
via the monoid. Borrowing a convention from 2-categories, we picture length as
horizontal (like a road) and strength as vertical (as in a Hasse diagram).

Strength and length are sometimes incorporated into a single number. The
canonical example is distance as an upper bound, where d(a, b) = 3 means that
any trip from a to b traverses at most 3 units of length. For example a process
presented with different inputs of the same length may follow state trajectories
of different lengths. If some path from state x to state z passes through state
y, and all paths from x to y take at most 5 seconds, and from y to z at most 7
seconds, then any path from x to z via y can take at most 12 seconds. But paths
through some other state w may have d(x,w) = 4 and d(w, z) = 9, preventing
us from ruling out the possibility of taking 13 seconds to get from x to z. This
reasoning shows why the relevant form of the triangle inequality for upper bounds
is d(a, b) + d(b, c) ≤ d(a, c).

Geodesics constitute lower bounds: the length of a geodesic from a to b
is a lower bound on the length of an arbitrary path from a to b. Ordinary
metric spaces are based on geodesic distance and therefore instantiate the generic
comparison relation v with the reverse order ≥ on the reals, the appropriate
order for lower bounds, with the geodesic triangle inequality being the ordinary
d(a, b) + d(b, c) ≥ d(a, c).

Distances need not be simple numbers. A natural notion of distance is an in-
terval [s, t] giving a range of possible distances. In this case [s, t] v [s′, t′] defined
as s ≥ s′ for the lower bounds and t ≤ t′ for the upper as per the preceding two
paragraphs. But this makes v reverse inclusion for intervals, the natural infor-
mation ordering for such applications of intervals as interval arithmetic where
strength is measured by the narrowness of the interval. Upper and lower bound
distances t can be seen to be the respective special cases [−∞, t] and [t,∞] of
interval distances. Intervals are added via [s, t] + [s′, t′] = [s + s′, t + t′], with the
identity interval being [0, 0].

One last generalization remains, namely of the preorder v on V to the mor-
phisms of a category structure on V . Viewing a preorder as a category with at
most one morphism between any two objects, this generalization amounts to
dropping the cardinality bound |V (a, b)| ≤ 1 on homsets of V .



The elements of the preorder are now understood as objects. The · operation
becomes a functor V 2 → V , and is renamed ⊗; likewise 1 becomes an object of
V and is renamed I (except in linear logic where it remains 1 and the terminal
object is denoted >). The result is a symmetric monoidal category V , a
category equipped with a monoid in the form of a tensor product ⊗ and tensor
unit I, whose monoid laws now take the form of suitable natural transformations
which join ⊗ and I as part of the signature: αstu expressing associativity and λs

and ρs expressing the identity laws. These natural transformations themselves
obey certain nonobvious coherence laws, most notably a pentagonal diagram for
α and a triangular diagram for λ and ρ [21, §VII-1] [22, §1.1]. When these three
natural transformations are identities V is called strict monoidal .

We further require that V be closed , meaning that tensor have a right adjoint
in each argument. That is, to each object s of V is associated an isomorphism

V (s⊗ t, u) ∼= V (t, s−◦u)

natural in t and u, that is, an adjunction, with the functor s−◦− right adjoint
to the functor s⊗−. The functor s−◦− is called the internal hom, and serves as
a generalized metric on V .

We are now ready for the general notion of enriched category or V -category.
Definition. A V -category A = (O, d, m, j), or category enriched in V ,

consists of a set O of objects, a function d : O2 → ob(V ) constituting the metric,
and families of morphisms of V , namely compositions muvw : d(u, v)⊗d(v, w) →
d(u, w) and identities ju : I → d(u, u), such that certain reasonably obvious
diagrams commute expressing associativity of composition and the left and right
identity laws [22, §1.2].

The class of V -categories is itself a category V -Cat whose morphisms are
V -functors. The basic constituents of a V -functor F : A → B are a function FO :
ob(A) → ob(B) and an ob(A)2-indexed family Fuv : d(u, v) → d(FO(u), FO(v))
of morphisms of V such that certain diagrams commute expressing functoriality
[22, §1.2], or [4] for definitions coordinated with this process perspective.

V itself is a V -category whose homobjects are given by its internal hom a−◦b.
We use this fact later in Plotkin’s theorem about chu(Q-Cat, Q).

5 Quantales

A large and useful class of monoidal closed categories is given by quantales [23].
A quantale with unit (Q,

∨
,⊗, 1) is a complete-semilattice-ordered monoid,

equivalently a one-object3 V -category where V is the category CSLat of com-
plete semilattices, equivalently a monoid object in CSLat. As such it is a (pose-
tal) monoidal closed cocomplete category, the symmetric case of which is ob-
tained as commutative quantales (s ⊗ t = t ⊗ s). This case provides a suitable
V for constructing V -categories. A number of quantales (not under that name)
applicable to various metrics of computational interest are described in [4].

3 Dropping the one-object restriction yields the more general notion of quantaloid [24].



The finite linearly ordered commutative quantales with bottom 0 and unit 1
form an interesting and useful special case. As shown in [4] there are 2n−2 such
having n ≥ 2 elements, necessarily satisfying 0 6= 1 (if 0 = 1 then s = s ⊗ 1 =
s⊗ 0 = 0 violating n ≥ 2).

These have the following picturesque characterization. Pick any chain (Q,
∨

)
with n elements. Holding it vertically with smaller elements lower, grasp the j-th
element from the top, 1 ≤ j ≤ n − 1 (so the bottom element is not eligible).
Let the portion of the chain above the grasped element fall over (i.e. rotate 180
degrees about the grasped element) so as to dangle down beside the other half
of the chain. Arbitrarily interleave the two halves, preserving their respective
orders, to give a second linear order on Q, while keeping the original bottom at
the bottom and the grasped element at the top. The first and second orders on
Q have the same bottom element.

We now define (Q,
∨

,⊗, 1) as follows. Take
∨

to be supremum (least upper
bound) in the first linear order, so 0 (sup of the empty set) is its bottom (the
original bottom). Define ⊗ to be infimum (greatest lower bound) in the second
linear order, with 1 as its top (the grasped element).

This interleaving can be done in
(
n−2
j−1

)
ways. Summing this over 1 ≤ j ≤ n−1

yields the promised result 2n−2. Exactly one of these ways is a Heyting algebra
or cartesian closed poset, namely when j = 1, the one case in which the two
orders are the same, making ⊗ infimum (greatest lower bound) in the first linear
order.

The unique such quantale for n = 2 is not only a Heyting algebra but a
Boolean algebra, unlike the rest. As such it is the quantale to use for V in
the analysis of partial orders (more generally preorders) as a V -category. For
n = 3 we have one Heyting algebra and one non-Heyting algebra, denoted 3 and
3’ in [4]. 3’ is the quantale structure implicit in the “prossets” of [25], which
are 3’-categories, and is also the appropriate quantale structure to impose on
K = {0, , 1} for modeling HDAs as triadic Chu spaces [8]. 3 is the quantale
structure implicit in Gaifman’s treatment of the distinction between incidental
and causal order [26], where the schedules he defines amount to V -categories for
V = 3.

Ordinary metric spaces restricted to nonnegative integer distances but sup-
plemented with distance ∞ can be understood as the quantale (N∪{∞},

∧
,+, 0)

(taking the quantale’s
∨

operation to be N’s
∧

amounts to reversing the stan-
dard order on N).4 It does not fit the preceding pattern because it is infinite,
and because ⊗ as integer addition is not idempotent.

The ordinary metric is appropriate for delay between events in sequential
computation. When n unit-time events must happen sequentially the time to
pass through the resulting n+1 states is n, which the ordinary metric arrives at
by adding the distance vector between the initial and final state, which consists
of n 1’s. This remains the case whether the sequentiality is a consequence either
of the order being specified, or of the events being performable in any order

4 Some useful variations: (Z ∪ {∞,−∞},
∧

, +, 0), (R≥0 ∪ {∞},
∧

, +, 0), (R ∪
{∞,−∞},

∧
, +, 0).



(but pairwise mutually exclusively, e.g. ab + ba), or anything in between (e.g.
abc + cba + cab, omitting the other three permutations).

While this metric is exactly right for sequential computation, it fails to recog-
nize the performance benefits of concurrency. If instead of addition we take ⊗ to
be

∨
in N (

∧
in the quantale’s order), we obtain an ultrametric space which in

this case is also a (complete) Heyting algebra. This metric is appropriate when
all events are performed in parallel, giving the expected result that n unit-time
events performed in parallel need take only unit time; more generally when the
events take different times, their max.

Practical computation is of course somewhere in between these extremes of
sequential and concurrent, entailing an appropriate blend of the two metrics to
get a satisfactory estimate of running time. We return to this later.

6 Enriched Chu Spaces

An ordinary Chu space is a triple (A, r,X) where A,X are sets, i.e. objects of
the category Set, and r : A × X → K is a function, a morphism of Set. The
passage to the enriched case generalizes Set to an arbitrary monoidal closed
category V with pullbacks. A and X are objects of V , r is a morphism of V ,
and Chu morphisms are pairs (f : A → B, g : Y → B) of morphisms of V . The
adjointness condition is rephrased in the evident way as the diagram

A⊗ Y
f ⊗ Y- B ⊗ Y

A⊗X

A⊗ g

? r - K

s

?

The enriched case of little chu(V, k) is defined so that r̂ : A → KX and
ř : X → KA are not merely monos but extremal monos. A mono f is extremal
when for all factorizations of f as the composition g ◦ e of a morphism g with an
epi e, e is an isomorphism. In Set every mono is extremal, which is why we did
not need this distinction for ordinary Chu spaces. In Pos extremal monos satisfy
not only monotonicity as usual but also its converse f(x) ≤ f(y) → x ≤ y.

The idea is that the monotonicity of r̂ and ř put upper bounds on the struc-
ture of A and X respectively, while extremality forces those upper bounds to
be attained. This is intended to pin down the structure on each of A and X to
exactly that determined by the induced structure on respectively the rows and
columns of the matrix.

For example if K is furnished with a binary operation +, this operation lifts
pointwise to both the rows and columns of r, thereby furnishing both A and X
with that operation. Any equational properties enjoyed by the operation in K,
such as associativity or commutativity, lift to these induced operations on A and
X.



For at least one large and useful class of symmetric monoidal categories this
works sufficiently well as to make this induced structure on A and X redundant:
A and X can be left discrete and their structure inferred entirely from the matrix,
made precise by the following unpublished theorem of G. Plotkin.

Theorem 1. (Plotkin) For any quantale Q, chu(Q-Cat, Q) is equivalent (in
fact isomorphic) to chu(Set, |Q|).

This theorem is remarkable in that alterations to the structure of a given
quantale Q leaves the ordinary category chu(Q-Cat, Q) unchanged. What does
change is the induced structure on A and X, but such changes have no impact
on the morphisms! The changes are felt only for chu(Q-Cat, Q) understood as
a Q-category, where the induced structures on A, X, A−◦B and so on track
changes to the structure on Q.

Plotkin’s isomorphism in the ordinary case covers many choices of V of prac-
tical interest, though certainly not all. In these cases enrichment can be made
attractively simple: start with ordinary Chu spaces over K, enrich K in the
usual manner of furnishing a set with algebraic or relational structure, enrich A
from the matrix by reflecting the structure of KX into A via r̂ : A → KX , and
dually for X via ř. Call this simplistic approach to enriched Chu spaces light
enrichment .

Plotkin’s theorem gives enough situations in which light and classical en-
richment agree up to category isomorphism that it is natural to ask what the
downside might be of substituting light enrichment for classical even when the
results are not identical, that is, when the structure on K is not quantalic. Light
enrichment is conceptually simple and intuitively appealing. With these advan-
tages in mind we experimentally adopt light enrichment as the preferred method
of enrichment for Chu spaces, leaving open the very interesting question of when
this can cause problematic discrepancies with classical enrichment in practical
situations.

7 Time and Information as Induced Metrics

We define time and information as generalized metrics on the spaces of events and
states respectively. Classical enrichment provides these directly in the objects A
and X when these are drawn from a suitable category of generalized metric
spaces. Light enrichment allows the metrics on A and X to be inferred via the
matrix r from the structure assigned to K = ob(V ), as follows.

The distance between two vectors (either rows or columns) over K is itself
a vector over K determined pointwise from the given vectors via the distance
metric on V as the enrichment of K, namely its internal hom s−◦t. This vector
distance is then converted to a scalar distance by combining the components of
the vector with the tensor product of V . This calculation of metrics on rows and
columns is a core part of the proof of Plotkin’s theorem.

For ordered time, the case V = 2 where 2 is the 2-element chain understood
as a commutative quantale (hence as a symmetric monoidal closed category)



makes V -Cat the category Ord of preordered sets. Here distances d(u, v) are 0
and 1 giving the truth value of u ≤ v, respectively false and true. Bit vectors
u,v are compared coordinatewise, with 0 in those positions where u is 1 and
v is 0, and 1 in all other positions. The tensor product here is conjunction and
so the corresponding scalar is 1 just when every bit in the comparison vector
is 1: a single counterexample makes it false. For example the comparison of
010011101 with 010010101 first yields the vector distance 111110111, which is
then converted to a scalar distance by forming the conjunction of those 9 bits to
yield 0, the truth value of 010011101 ≤ 010010101. In this way the order on 2 lifts
to a preordering of A and of X (a partial ordering, i.e. satisfying antisymmetry,
in the biextensional case).

For real time, the ordinary metric space (N∪ {∞},
∧

,+, 0) encountered ear-
lier provides a notion of sequential time. If n events happen sequentially their
respective durations should be combined with +. This is true regardless of what
order is specified for them. In particular ab, ba, ab + ba, and a||b all take the
same time.

Parallel time recognizes the performance gain possible with a||b over ab, ba,
and ab + ba. For a||b the appropriate metric is (N ∪ {∞},

∧
,∨, 0). If n events

happen independently then the time required is that of the slowest, whence their
times should be combined with ∨. For the other three combinations we retain
the sequential metric.

The situation becomes more interesting with arbitrary processes (A,X) whose
set X of states is an arbitrary subset of KA. The first question to ask here is
whether any reasonable notion of running time is possible for such general pro-
cesses, independently of whether enrichment is of any use here.

As shown in [12], the presence of in K permits a very simple yet natural
notion of distance between any two states x, y of (A,X). Form the power graph
KA derived from any of the four graphs of Figure 1, each understood as being
reflexive but not transitive (unless vacuously so as in 1(a) and 1(c)), as proposed
in [12]. For any given process (A,X) take its transition system to be the full
subgraph of KA having as vertices the states of X, denoted KA ∩X. Define the
distance between states to be one less than the usual shortest-path metric in a
directed graph, or ∞ when there is no path or only infinite paths.

In the absence of value the primitive transition systems for single events
are those of Figure 1 (a) and (c). These are automatically transitive by virtue of
having only paths of length one, whence the power graph KA is transitive and
hence in fact a power poset. This means that if there is a path from x to y in KA,
there is a path of length 0 directly from x to y that survives the removal of any
states other than x or y; if not then the distance is ∞. This is effectively the all-
or-nothing poset metric; substituting 1 for 0 and 0 for ∞ yields the conventional
values for this metric.

Now we could instead take the distance from x to y to be the Hamming
metric, which counts the number of events that change in that passage. This
metric, which satisfies the ordinary triangle inequality, has two drawbacks. First
it does not take the efficiencies of concurrency into account, corresponding in-



stead to the time required to perform the events sequentially. Second, like the
all-or-nothing poset metric it is invariant under removal of intermediate states.

Both these drawbacks are overcome with the metric obtained via KA as
above with the graphs K of either Figure 1 (b) or (d), in which an event requires
2 steps, or time 1 after subtracting the 1, to get from 0 to 1, namely via .
There is a path of length 1 from the initial (all-zero) state to a given final state
(all events done or cancelled) if and only if the state in which the events that
are done in the final state are all in state (assuming at least one of these) and
the rest are 0 or ×. Removal of that state constitutes an obstacle, calling for a
longer path around that obstacle, provided one exists (otherwise that final state
is deemed unreachable).

Taking K = {0, , 1}, we may illustrate this with the example of three chil-
dren (A = 3) taking turns riding n ponies. For n = 3 the relevant process (A,X)
is the 3-cube with |X| = 27 states, whose cells consist of the 33 triples over K,
broken down as 8 0-cells or vertices, 12 1-cells or edges, 6 2-cells or faces, and 1
3-cell or interior, the usual organization of the 3-cube. In this case we can pass
from 000 via to 111 in two steps, which the subtraction of 1 makes time 1.
For n = 2, is no longer available and a shortest path (by no means unique)
is 000 to 0 to 11 to 111, taking time 2, the time required for two children
to ride both ponies and then let the third child have its turn. For n = 1 we can-
not do better than 000 to 00 to 1 0 to 11 to 111, or time 3, the completely
sequential case.

8 Process algebra

The method of shortest paths in KA ∩ X is a globally defined measure. For
programs built up by composition, a more appropriate way to compute running
time is by induction on program structure. We repeat here the Chu space def-
initions of four basic process algebra operations given in [12]. These are based
on the following notions of conjunction, disjunction, and termination X[A] for
Chu spaces. Note that these definitions do not assume disjointness of A and B,
although some applications will force them to be disjoint. For more details see
[13].

A ∧ B def= (A ∪B, {z∈2A∪B | z \A ∈ X ∧ z \B ∈ Y })

A ∨ B def= (A ∪B, {z∈2A∪B | z \A ∈ X ∨ z \B ∈ Y })

X[A] def= (A, {1,×}A)

We then use these operations to define the following four basic process algebra
operations, respectively concurrence, sequence, choice, and orthocurrence.

A||B def= A ∧ B

AB def= A ∧ B ∧ (B−A = 0 ∨ X[A]) ∧ (B = 0 ∨ X[A−B])



A+ B def= (A ∪B = 0) ∨ (A 6≤× ∧ B−A =×) ∨ (B 6≤× ∧ A−B =×)

A⊗ B def= (A×B, {z∈KA×B | z(λ, ∀) ∈ X ∧ z(∀, λ) ∈ Y })

Concurrence A||B simply collects the events of A and B subject to the sep-
arate constraints of each (conjunction). Sequence AB is the same with the ad-
ditional constraint that in every state either B has not yet started or A has
terminated (the nondisjoint case treats A and B even-handedly). Choice A+ B
starts out in the all-zero (initial) state and embarks on one of A or B (A 6≤ ×
consists of those states of A in which at least one event has progressed to or 1)
while simultaneously cancelling the unchosen events. Orthocurrence A⊗B forms
all states on A × B that are “bilinear” in both A and B. (Here z(λ,∀) denotes
λa.z(a, b) with b universally quantified in the containing proposition, and dually
for z(∀, λ). This makes z(λ,∀) and z(∀, λ) respectively the columns and rows of
the A×B matrix z.)

We now specify the distance between states of each of these combinations.
For the first three (all but orthocurrence) we are comparing two vectors x, y
indexed by the event set A ∪ B, with no assumption that the event sets A and
B are disjoint. We are given the distances from x \A to y \A and x \B to y \B,
call these s and t respectively. For all three operations we combine s and t as
s⊗ t.

What varies between the operations is the choice of ⊗. For A||B and A+ B
we take ⊗ to be ∧. Thus for V = 2, mere reachability, we require that y \A be
reachable from x \A and y \B from x \B. For numeric metrics ∧ becomes max.
For AB, in the reachability case we continue to take ⊗ to be ∧ (to complete AB
we must complete both A and B). In the numeric case however we take ⊗ to be
+.

Having abruptly exhausted the space-time side of this instance of writer-
reader duality, we content ourselves with foreshadowing a future expansion of
this paper addressing the following concern. Metrics based on enrichment via
the simple V ’s considered here are calculated only from path endpoint informa-
tion, making them intrinsically oblivious to intermediate obstacles of the kind
so adroitly handled by the intransitive KA ∩ X metric. Moreover the metrics
computed inductively on process algebra terms employ mixed metrics, which
only gets worse with expansions of process algebra to additional operations such
as mutual exclusion, asymmetric conflict, etc. Thus the elegant and accurate
KA ∩X metric would appear hard to arrive at either via enrichment or induc-
tively, a serious concern for both techniques!
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