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Abstract

The proof-theoretic origins and specialized models of linear logic make
it primarily operational in orientation. In contrast first-order logic treats
the operational and denotational aspects of general mathematics quite
evenhandedly. Here we show that linear logic has models of even broader
denotational scope than those of first order logic, namely Chu spaces, the
category of which Barr has observed to form a model of linear logic. We
have previously argued that every category of n-ary relational structures
embeds fully and concretely in the category of Chu spaces over 2". The
main contributions of this paper are improvements to that argument, and
an embedding of every small category in the category of Chu spaces via
a symmetric variant of the Yoneda embedding.

1 Introduction

Linear logic makes good sense operationally. It is a substructural logic resem-
bling relevance logic in lacking weakening, from + B infer A+ B, and differing
from it in also lacking contraction, from A, A+ B infer A+ B. These inference
rules perform for logic the functions that reflexivity and transitivity perform
for binary relations, which for example turn the eminently decidable single-step
relation for Turing machine configurations into an undecidable reachability rela-
tion. Their omission from linear logic forces proofs into an unconvoluted normal
form by preventing short proofs whose brevity is achieved by clever tanglings.
No theorems need be lost in this way since Gentzen’s cut elimination procedure
can straighten out every forbidden tangled argument into an acceptably smooth
one.
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Linear logic’s denotational semantics is considerably more problematic. Gi-
rard has considered phase semantics and coherent spaces [Gir87], Hilbert spaces,
and most recently Banach spaces [this proceedings]. Phase semantics resembles
Birkhoff and von Neumann’s quantum logic [BvN36], while the other three are
instances of the Curry-Howard isomorphism [How80] whose principal raison
d’étre would appear to be the good match of their respective closed monoidal
structures to the rules of linear logic. Blass [Bla92] and Abramsky and Ja-
gadeesan [AJ94] have interpreted linear logic over sequential games, while Blute
[Blu96] has taken Hopf algebras as a model of noncommutative linear logic.

The problem with all these denotational semantics is that they constitute
relatively specialized corners of mathematics all lacking the sort of generality
associated with the denotational semantics of classical first order logic. Without
that generality, linear logic cannot convincingly be argued to be about mathe-
matical objects in general, only about those objects that conform to the laws
of linear logic. With so thin a connection between proof theory and Platonic
mathematics, the foundational significance of linear logic would appear to be
largely operational.

We pose the question, is this necessary? In particular can linear logic
treat the operational and denotational aspects of general mathematics as even-
handedly as does first-order logic?

Barr [Bar91] and Lafont and Streicher [LS91] have proposed yet another
model of linear logic, namely Chu spaces, or games as Lafont and Streicher
call them. Now the strongest claim made in those papers as to the generality
of Chu spaces is that of Lafont and Streicher, who observe that the category
Vet of vector spaces over the field k& embeds fully in Chu(Set, |k|) and those
of coherent spaces and topological spaces embed fully in Chu(Set,2). This is
far from the sort generality we are looking for.

But in fact Chu(Set, K) is sufficiently general. In previous papers [Pra93,
Pra95] we have demonstrated this by showing that the concrete category of
k-ary relational structures embeds fully and concretely in the category of Chu
spaces over 2%, In this paper we repeat that argument from a fresh perspective,
and then give a quite different Yoneda-like full embedding.

The fresh perspective is that of group theory, where we recast the usual
algebraic notion of a group as an equivalent purely topological notion with the
help of “fuzzy” open sets having eight degrees of membership. This amounts to
our previous embedding [Pra93] disguised as topology and specialized to groups,
which is enough to demonstrate the principle. An immediate application is to
obtain concrete duals of (nonabelian) groups. Although the generalization to
higher arity operations is obvious, the generalization from operations to relations
is slightly less obvious and we supply an argument.

We then show that the category of Chu spaces over K fully embeds every
category C having up to K arrows. The underlying principle of this embed-
ding is that of the Yoneda embedding. However the target of our embedding
depends only the cardinality of C', unlike the Yoneda embedding whose target
depends nontrivially on the structure of C. Furthermore our embedding repre-
sents objects and morphisms simply as binary relations and pairs of functions



respectively, in contrast to the functors and natural transformations used in the
Yoneda embedding. And whereas there are two Yoneda embeddings, we have
only one, as a sort of symmetric blend of the Yoneda embeddings.

The foundational significance of these embeddings is that each supports the
thesis that
Chu(Set, —) as the K-indexed family Chu(Set, K) of categories of Chu spaces
over K can be taken as a universal category for mathematics. Other categories
such as that of directed graphs, and of semigroups, are universal in the sense
that they fully embed all known categories. The additional significance of Chu
spaces is that the embeddings are concrete: viewing objects as sets with struc-
ture specified in one way or another, and morphisms as certain functions between
those sets, the Chu space representation of concrete categories leaves both the
objects and the morphisms unchanged. All that changes is the representation of
the structure associated to those sets. If we think of the choice of representation
of that structure as a mere implementation detail, then Chu spaces constitute
a uniform representation of structure for all mathematical objects that permits
them to inhabit the one universal category.

The connection with linear logic is that the structure of this universal cate-
gory is very close to that of linear logic. It shares this property with the cate-
gories of Hilbert spaces, coherent spaces, etc. The difference is that whereas each
of those categories represents a small fragment of mathematics, Chu(Set, —)
represents all of mathematics in much the same way as do relational struc-
tures as the models of first order logic. Unlike relational structures however
Chu spaces can also represent topological spaces and more generally relational
structures equipped with a topology.

2 The Dual of a Group

If we consider only finite structures, then sets are dual to Boolean algebras,
posets are dual to distributive lattices, semilattices are dual to (other) semi-
lattices, and some structures are self-dual such as free semilattices, chains with
bottom, abelian groups, and vector spaces (finite in dimension). For infinite
structures, Hilbert spaces and complete semilattices miraculously remain self-
dual, but in general a dose of topology needs to be administered to one side or
the other of the duality if it is to survive the passage to infinity. Thus Boolean
algebras are dual to Stone spaces defined as totally disconnected compact topo-
logical spaces, locally compact abelian groups to other locally compact abelian
groups, and so on.

But what is the dual of a nonabelian group?

A naive answer is that it is an object of Grp°, the category obtained simply
by reversing the arrows of the category Grp of groups and their homomor-
phisms, those functions f : A — A’ satisfying f(ab) = f(a)f(b). This answer
has two drawbacks. First, it trivializes the notion of “dual” by making every
group its own dual, and moreover in a way that we could have applied to any
of the structures above that came by their duality more honestly. Second, the



reversed arrows do not have any obvious presentation as functions transform-
ing a concrete structure, calling for a religious conversion to abstract category
theory in order to accept this answer.

Although topology standardly understood is not powerful enough to produce
directly the dual of a nonabelian group, it can if we bend the rules a little. We
shall equip an arbitrary group A with a “quasitopology”! that exactly expresses
the group structure of A, and from this obtain a concrete representation of the
dual of A.

Definition 1 A complex of a group A is any subset of A. (So every subgroup
of A is a complex of A but not vice versa.) A tricomplex of A is a triple?
x = (x1,x2,x3) of complexes z; C A. We shall call such a tricomplex open
when for every a € z1 and b € x5, ab € x3, where ab is the group multiplication.
|

An intuitive connection with topology can be made here if we think of each
open tricomplex or otc of A as a sort of neighborhood of the group opera-
tion. Neighborhoods can be broadened by reducing the first two complexes and
increasing the third, operations that preserve openness. The “tight” neighbor-
hoods are those for which every element of the third complex is the product of
elements from the first two.

Now A is determined by its otc’s, indeed by just those consisting of single-
tons, since the group operation can be recovered from those otc’s of the form
({a}, {b},{c}) (with ¢ necessarily being ab) simply by erasing the set braces.

But there is more to this quasitopology than just representing individual
groups in isolation. The following definition and proposition show that we have
captured the group structure in essentially topological terms.

Definition 2 A function f : A — A’ is otc-continuous when for every otc
(w1, w2, 23) of A, (f~1(x1), f~1(x2), f~(x3)) is an otc of A. n

Proposition 1 f is otc-continuous if and only if f is a group homomorphism.

Proof: Only if. Let a,b € A. Then ({f(a)},{f(0)},{f(a)f(b)}) is an otc
of A’. By continuity, (f~{f(a)}, f~H{f(®)}, f~H{f(a)f(b)}) is an otc of A.
But a € f~*{f(a)} and b € f~1{f(b)}, whence ab € f~1{f(a)f(b)}), that is,
f(ab) = f(a)f(b).

If. Let (21,72, 73) be an otc of A’. We wish to show that (f~1(x1), f~1(x2), f~

isanotcof A. Let a € f~!(z1) and b € f~!(x2). Hence f(a) € z1 and f(b) € xa,
whence f(a)f(b) € z3. But f(a)f(b) = f(ab), so ab € f~(z3).

This result made no use of the group axioms, a matter we will take up
shortly.

Define a concrete dual group to be the set of open tricomplexes of some group
A, which will be the group to which this dual group is dual. We denote this dual

LAs in quasiwabbit.
2In using z rather than X we depart from the usual convention of capital letters for sets
in anticipation of the schizophrenic passage from z C A to a C X.



of A by A+. Given two concrete dual groups A+ and A’ J‘, define a dual-group
transformation between them to be a function f : AL — A’ L such that fis
the inverse image (applied coordinatewise to the otc’s as in the definition of
otc-continuity) of some group homomorphism from A’ to A.

The category of concrete dual groups and their transformations form a con-
crete category isomorphic to Grp°, the category of groups with their morphisms
(namely group homomorphisms) reversed, by Proposition 1.

A brute force way of passing to the corresponding abstract notion is to define
a dual group, or puorg, to be any set standing in a specified bijection with a
concrete dual group, with the evident notion of dual-group transformation via
their respective concrete dual groups, accessed via the respective bijections.
The category of dual groups and their transformations is equivalent (but not
isomorphic) to that of concrete dual groups, and hence equivalent to Grp°, i.e.
dual to Grp.

Abstraction by fiat is of course not in the spirit of abstract algebra, and we
may ask whether this notion of dual group has a more traditional abstract defi-
nition. A more important question for this paper is how all this ties in with the
Chu construction and in particular our claimed universality of it. Fortunately
these questions are closely linked and we can answer them together.

Let © = (x1, x2, x3) range over the otc’s of the group A, and let X denote the
set of all otc’s of A. The membership relation between group elements a € A
and otc’s x € X is given by the truth values of a € x1, a € x5, and a € z3,
which collectively have 2 = 8 possible outcomes. Let us view these outcomes
as the eight possible values of membership of a in x, making =z an “8-fuzzy”
set. We can therefore think of the group as a pair of sets A, X together with
an 8-valued binary relation between them, defined as a function A x X — 8.
Generalizing 8 to K then leads to the following notion of a Chu space.

Definition 3 A Chu space (A,=, X) over a set K consists of a set A of points,
a set X of states, and a function 5 : A x X — K. |

We write 5(a,x) as either a=ga or = |= a. The latter is intended to suggest
x as a model or interpretation, a as a proposition, and x = a as the truth value
of proposition a in state x, where K is the set of possible truth values.

Next we generalize the notion of otc-continuous function to the notion of
Chu transform, as follows. Begin with the observation that, if we identify the
subsets of a set A with their characteristic functions x : A — 2, then the
inverse image function f~! : 24" — 24 can be defined simply as f~l(z) =
z o f, that is, f~!(z)(a) = x(f(a)). Passing to tricomplexes changes this
to f~H(wy, w0, 23)(a) = (z1(f(a)),z2(f(a)),z3(f(a))), but then writing = for
(21,2, 23) Testores the equation to f~'(x)(a) = x(f(a)), except that now
each side ranges over eight values instead of two. Writing g for the restric-
tion of f~! to the set X’ of open tricomplexes, switching the two sides around,
and using the = notation for 8-valued membership, turns the equation into
fa=s = adg(a).

Definition 4  Given two Chu spaces (4,=, X), (A", =, X"), a Chu transform
between them is a pair (f,g) of functions f: A — A’ g : X’ — X such that for



alla € Aand x € X',

flads = adqg(x).
We refer to this condition on (f,g) as the adjointness condition. ]

Chu transforms compose according to (f/,¢')(f,9) = (f'f,99’), easily seen to
be a Chu transform itself, with the evident identities and associativity property.
Hence Chu spaces over K and their Chu transforms form a category, denoted
Chu(Set, K).

Chu(Set, K) is evidently self-dual. The dual of (A,=, X) is the Chu space
(X, |, A), and the corresponding dual of any Chu transform (f,g) is simply
(g, f). That is, if we regard (A, =, X) as an A x X matrix then duality reduces
to mere matrix transposition.

This completely symmetric view of Chu spaces in terms of two sets A and
X connected by a K-valued binary relation = indicates how to define puorgs
more naturally. We had taken A as the carrier and X as a certain set of 8-fuzzy
subsets of A. But by symmetry we could just as well have started with X and
taken A to consist of 8-fuzzy subsets of X, or equivalently triples of ordinary
subsets of X. To translate the specification of an A-based object to that of an
X-based one, reinterpret every formula a € x; as x € a; leaving its truth value
unchanged. Just as we viewed otc’s x = (x1,x2,x3) as the “open sets” of a
group, so may we view the elements a = (a1, as,as) of A as the “open sets” of
a puorg.

The condition we shall impose on A is that it form a group. This might seem
to bring us right back where we started, except that now A is not an arbitrary
set but a subset of 8%. Ordinary topological spaces supply a precedent for
this: the open sets are required to form a concrete frame. Now a frame is a
distributive lattice having all joins including infinite joins and the empty join
or bottom, with meets distributing over all joins. A concrete frame is a frame
whose elements are sets and whose join and meet operations are realized as
union and intersection. To complete this analogy for concrete groups as the
“open sets” of a puorg, we need to realize the binary operation of a group as
some binary operation on a set of 8-fuzzy sets.

Now when we were constructing a concrete dual group starting from the
group A, the defining property of an otc (1,22, z3) was that, for all ajas = as,
a1 € r1 and ay € x5 implies ag € x3. The transpose of this condition is, x € a1y
and x € age implies x € asz, which is to say, ajas = ag implies a11 Nage C ass.
Moreover the converse holds because if ag # ajas then a1 N ase contains the
ote ({a1},{az}, {a1a2}) but asz does not.

This suggests that, in our new definition of an abstract dual group or puorg
starting from a set X, with A consisting of triples of subsets of X, we take the in-
clusion a1 Nasgs C assz to define a ternary relation on A. The analogy with topo-
logical spaces then leads us to the definition of a puorg as a set X with a set A of
triples of subsets of X such that this ternary relation on A is a binary operation
making A a group. A puorg morphism (X, A), (X', A’) is a function f : X — X’
such that for every triplea € A’, f~1(a) = (f~(a1), f*(az), f~1(a3)) is a triple
in A.



Now consider the group A of triples of subsets of X defined in this way. We
might expect to recover X up to isomorphism as the otc’s of A. And indeed
every element x € X must arise as an otc of A, namely the otc (z1, z2, z3) such
that a € z; just when x € q;, as seen from the symmetrical view of X and A.
For let ajas = a3 in the group A, and let x = (z1,z2,23) be a tricomplex of
A such that a1 € x1 and as € x5. Transposing, z € a;; and x € age, whence
x € azz (being part of requirement for ajas = az). That is, a3 € x3, making x
an open tricomplex of A.

There is however no reason why the converse should hold, that is, X may
lack otc’s of A. We may well have an object that transforms dually to A,
but if it lacks even one otc of A, it cannot be isomorphic to the concrete dual
group A+ formed as the otc’s of A. This is because dual groups are constructed
to transform concretely, i.e. via functions, but isomorphisms in any concrete
category must be bijections.

This incompleteness in our definition of dual group can be rectified with one
more condition: that X be saturated in the sense that every otc x of the group
A of opens correspond suitably to an element 2’ € X.

Definition 5 A puorg (X, A) is a set X and a set A of triples of sub-
sets of X, such that (i) the ternary relation on A consisting of those triples
((@11,a12,a13), (@21, g2, azs), (as1, asz, ass)) satisfying a1 Nage C ass is the bi-
nary operation of a group, and (ii) for every otc (z1,x2,x3) of that group A
there exists € X such that for all a = (a1,a2,a3) € A, a € z; if and only if
re€a;,t=123. [ |

Puorg morphisms can now be defined in exactly the same way as for otc-
continuity, thanks to Chu duality.

Definition 6 A function f : X — X’ between two puorgs (X, A), (X', A")
is a puorg homomorphism just when for every a = (ay,az,a3) € A’, f~1(a) =

(f_l(al)’f_l(aQ)vf_l(a3)) €A |

Saturation is expensive: a quick computer check revealed the puorgs dual to
the permutation groups Sy and Ss to have respectively 41 and 20750 elements.
A systematic way of selecting “enough” otc’s would yield a more succinct rep-
resentation, but this takes us too far afield.

3 Generalizing to n-ary Relations

Nowhere did the previous section make any use of the group axioms. We could
just as well have been constructing a dual monoid, or for that matter the dual
of any set with a binary operation. Moreover the arity played no essential role,
and we could have been treating n-ary operations for any n, even infinite or
zZero.

In fact the method generalizes to n-ary relational structures (A, R), R C A™,
which we have proved elsewhere [Pra93, Pra95], but this generalization is slightly



less obvious. We give the proof here in a form that makes clear the connection
with the (somewhat smoother) version of the proof for algebras.

Now a tricomplex 2 = (x1,x2,x3) of a group A can be defined as open just
when, for all a1,a9,a3 € A such that ajas = ag, either a; & x1 or as & xo
or ag € x3. To make this more symmetric, uniformly replace the first and
second components of every tricomplex by its complement, so that the openness
condition becomes, there exists ¢ such that a; € x;. This change does not require
any modification to the definition of otc-continuous because f=1(C) = f~1(C)
(indeed f~! commutes with all finitary and even infinitary Boolean operations).

Definition 7 The n-ary relational structure (A, R) has for its set X of open
n-tuples of subsets of A those ¢ = (x1,...,x,) such that for all (a1, ...,a,) € R,
there exists ¢ such that a; € x;. |

Definition 8 A function f : (A, X) — (4’, X’) is quasicontinuous when for
every
z=(21,...,7,) € X', fHz) = (fHx1),..., [ L(zn)) € X. n

A homomorphism of relational structures (4, R), (A’, R’) is a function f :
A — A’ such that for all (ay,...,a,) € R, (f(a1),..., f(an)) € R'. We denote
by Str,, the category of all n-ary relational structures and their homomorphisms.
Grp for example is a full subcategory of Strs.

Proposition 2 [ : (A, X) — (A, X') is quasicontinuous if and only if f is a
homomorphism of the corresponding n-ary relational structures (A, R), (A, R').

Proof: Only if. Suppose f is not a homomorphism, i.e. there exists
(a1,...,an) € R but (f(a1),...,f(an)) & R'. Then (f(a1),...,f(an)) € X’
where @ denotes the cosingleton A’ —{a}. But a; & f~'(f(a;)) for any i whence
(F7Y(f(a:), ..., f~Y(f(a;))) & X. Hence f is not quasicontinuous.

If. Let (z1,...,2,) bein X', and let (a1, ...,a,) € R. Then (f(a1),..., f(an)) €
R'. Hence there exists i such that f(a;) € x;, that is, a; € f~1(a;). Since this
holds for every element of R, it follows that (f~!(x1),..., f *(z,)) isin X. W

(The passage from operations to relations seemed to complicate the only-if
direction, for which it seemed best to argue the contrapositive.)

This theorem can be stated in more categorical language as a full embedding
F : Str,, — Chu(Set,2"). But unlike many other such full embeddings of
“all algebraic categories” in a universal category, this embedding is concrete in
the sense that the representing object has the same carrier A as that of the
represented object. That is, F' commutes with the respective forgetful functors
to Set. This makes Chu spaces a more useful representation because one can
continue to reason about objects in terms of their ordinary elements.

A natural generalization of this embedding is to topological relational struc-
tures (A, R, O), where R C A™ and O C 24 is a set of subsets of A constituting
the open sets of a topology on A. (R itself may or may not be continuous with
respect to O in some sense, but this is independent of the embedding proved
here.)




Such a structure has a straightforward representation as a Chu space over
2n+1 as follows. Take X = X’ x O where X’ C (24)" is the quasitopology
on A determined by R as in the previous section. Hence X C (24)"*!. The
quasicontinuous functions will then respect both the relational structure and the
topological structure, in the sense that they will be precisely the functions that
are both homomorphisms with respect to the relational structure and continuous
functions with respect to the topological structure. For example the category
of topological groups embeds fully and concretely in Chu(Set, 16).

This is an instance of a more general technique for combining two structures
on a given set A. Let (4,5, X1) and (A4,=,, X») be Chu spaces over K7, Ko
respectively, having A in common. Then (A4, =, X7 x X5) is a Chu space over
the product K x Ky, where a={(x1,29) = (a=},21,a=}y29). If (A, ', X{ x X})
is formed similarly from (A’,:‘;,X{) over K7 and (A’,:‘;,Xé) over Ks, then
it is easily seen that f : A — A’ is (the first coordinate of) a Chu transform
from (A,=, X, x X3) to (A", =', X! x X3) if and only if it is Chu transform
from (A,=,, X1) to (4,5}, X}) and also a Chu transform from (4, =,, X5) to
(A', =5, X}). For if (f,g1) and (f, go) are the latter two Chu transforms, with
g1 : X1 — X and go : X} — X3, then the requisite g : X] x X) — X7 x Xy is
simply g(z1,22) = (91(21), g2(22)).

4 Symmetrizing the Yoneda embedding

We turn from the problem of embedding standard large categories in Chu(Set, K)
to that of embedding arbitrary small categories. The former was a concrete em-
bedding, preserving the underlying sets. Although the objects of an arbitrary
category don’t in general have an underlying set, we may interpret the arrows
to an object as its elements.

If very small K were the goal, we could achieve K = 4 by using the cat-
egory Stry of all binary relational structures (A4, R), R C A2, and their ho-
momorphisms, and composing the above embedding of Stry in Chu(Set,4)
with Kuéera and Hedrlin’s embedding of an arbitrary small category in Stry
[Hed71]. But the latter embedding involves an intricate and somewhat arbitrary
combinatorial representation that undermines the foundational relevance of this
representation.

Instead we shall give a direct embedding involving no combinatorics, in re-
turn for giving up small K. This embedding will be seen to be a symmetric
variant of the Yoneda embedding, with Chu spaces and their transforms in
place of functors and their natural transformations.

There are actually two Yoneda embeddings, obtained by transposing the
homfunctor Hom : C° x C' — Set either as Y : C — Set® or Y’ : €' — (Set®)°
(aka C° — Set®), called respectively the covariant and contravariant Yoneda
embedding. Each is in fact a (covariant) full embedding of C' in a functor cate-
gory, (Setc)° being isomorphic to the functor category (Set®)¢”. The embed-
ding represents objects as functors and morphisms as natural transformations.
For the covariant embedding, the representing functors as functors to Set are



presheaves.

Both Set®” and (Set®)° incorporate the structure of C' in a nontrivial way.
One might reasonably presume that some such dependence on C would be an
inevitable feature of the target given that C is a completely arbitrary category.
But in fact our embedding has almost no such dependence: only the cardinal-
ity of C plays any role in determining the target, which will be the category
Chu(Set, ar(C)) of Chu spaces over the set of arrows of C, And even that
dependence can be eliminated if the target is instead taken to be Chu(Set, —)
defined as consisting of Chu spaces (A4,=, X, K) each furnished with its own
K, with Chu transforms between (A,=, X, K) and (4’,<', X', K’) defined by
regarding both as Chu spaces over K U K’. This category has a tensor product
but no tensor unit.

Our embedding represents each object b of C' as the Chu space (4,;,X)
where A = {f :a —>b|a€ob(C)}, X ={h:b—c|ceobC)}, and
fig = go f, the converse of composition. That is, the points of this space are
all arrows into b, its states are all arrows out of b, and the matrix entries f;h

. f h . .
are all composites a — b — ¢ of arrows in with arrows out.

We represent each morphism g : b — b of C' as the pair (¢, ) of functions
p:A— A ¢ X' — X defined by o(f) = f;9, ¥(h) = g;h. This is a Chu
transform because the adjointness condition ¢(f);h = f;4¢(h) for all f € A,
h € X’ has f;g;h on both sides. In fact the condition expresses associativity.

If the set of arrows to b is understood as forming the carrier of b then the
domain of ¢ is simply that carrier. Under that interpretation this representation
is concrete (faithfulness will be seen momentarily).

At this point we have constructed a functor F': C'— Chu(Set, ar(C)).

Proposition 3 F' is full and faithful.

Proof:  For faithfulness, consider g,¢' : b — b'. Let F(g) = (¢, 1/)) F(g) =
(¢',¢'). I F(g) = F(¢') then g = 159 = (15) = ¢'(15) = 159’ = ¢'.

For fullness, let (¢, ) be any Chu transform from F(b) to F(b'). We claim
that (p,) is the image under F of ¢(1;). For let F(p(1p)) = (¢',¢'). Then
¢'(f) = fioly) = fro(ly); 1y = fi 1y yp(ly) = fwmﬂ—ﬂﬂ‘mm%WZ
. Dually ¢’ = . [ |

The adjointness condition can be more succinctly expressed as the dinatural-
ity in b of composition mgp. : C(a,b) x C(b,c) — C(a,c). The absence of b from
C(a, ¢) collapses the three nodes of the right half of the dinaturality hexagon to
one, shrinking it to the square

Cla,b) x O ¢) =% C(a,b) x C(bc)
Pg X 1 Mabe

Cla,b') x C(b',c) e C(a,c)

Here 1 X 1)4 abbreviates C(a,b) x C(g,c) and ¢4 x 1 abbreviates C(a, g) x
C(t',c). Commutativity of the square asserts ¢q(f);h = f;94(h) for all f :
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a — band h: b — c. By letting a and ¢ range over all objects of C' we extend
this equation to the full force of the adjointness condition for the Chu transform
representing g.

Had we not been talking about Chu transforms, we would have interpreted
the dinaturality in b of composition mp. as merely expressing associativity. But
the calculation of associativity from the diagram essentially passes through the
adjointness condition, making that connection the prior one.

Comparing this embedding with the covariant Yoneda embedding of C' in
Setco, we observe that the latter realizes ¢4 directly while deferring 1, via the
machinery of natural transformations. The contravariant embedding is just the
dual of this, realizing v, directly and defers ¢,. Our embedding in Chu avoids
functor categories altogether by realizing both simultaneously.

5 Conclusion

We have exhibited embeddings in Chu of two quite different notions of “general”
category. One is that of relational structures and their homomorphisms, possibly
with topological structure and the requirement that the homomorphisms be
continuous. The other embedding mirrors the Yoneda embedding in some key
details yet is more elementary (if one accepts that Chu transforms are more
elementary than natural transformations), and its target is independent of any
property of the embedded category except possibly its cardinality if we use
Chu(Set, ar(C)) instead of Chu(Set, —).

Both embeddings are concrete in a reasonable sense. The first is concrete in
the ordinary sense of the representing object (A, 5, X) having as its underlying
set A the carrier of the represented relational structure. The second is concrete
with respect to arrows-to as elements.

Quite a few categories are known that are universal to the extent of fully
embedding all small categories, as well as all algebraic categories. However
those embeddings are highly artificial, relying on the ability of such objects
as graphs and semigroups to code the compositional structure of morphisms
that compose at an object to be so represented. Any representation based on
clever coding introduces irrelevant complexity into the mathematics of objects so
represented. Furthermore the coding obscures the ordinary elements of concrete
objects, further undermining our intuitions about concrete objects.

These embeddings provide a sense in which the denotational semantics of
linear logic can be understood to be at least as general as that of first-order logic.
This is not to say that the generality is achieved at the same level. A model
of first order logic is a relational structure, and the models of a given theory
form a category. A model of linear logic on the other hand is the category itself,
whose objects are the denotations of mere formulas.

This is the basic difference between first order or elementary logic and lin-
ear logic. First order logic reasons about the interior of a single object, the
domain of discourse being the elements or individuals that exist in that object
together with the relationships that hold between them. Linear logic reasons
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instead about how things appear on the outside, understanding the structure of
objects externally in terms of how they interact rather than internally in terms
of what they might contain. The fundamental interaction is taken to be that of
transformation of one object into another. Elements and their relationships are
not discussed explicitly, but their existence and nature is inferred from how the
objects containing them interact.

This being the essence of the categorical way of doing mathematics, linear
logic so construed must therefore be the categorical logic of general mathematics.
As such it is sibling to intuitionistic categorical logic, whose domain of discourse
is confined to cartesian closed mathematics, having as its exemplar category
Set. The thesis we have defended here is that the examplar category of general
mathematics is Chu(Set, —).
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