
Linear process algebra

Vaughan Pratt

Stanford University, Stanford CA 94305-9045, USA
pratt@cs.stanford.edu

Abstract. A linear process is a system of events and states related
by an inner product, on which are defined the behaviorally motivated
operations of tensor product or orthocurrence, sum or concurrence, se-
quence, and choice. Linear process algebra or LPA is the theory of this
framework. LPA resembles Girard’s linear logic with the differences at-
tributable to its focus on behavior instead of proof. As with MLL the
multiplicative part can be construed via the Curry-Howard isomorphism
as an enrichment of Boolean algebra. The additives cater for indepen-
dent concurrency or parallel play. The traditional sequential operations
of sequence and choice exploit process-specific state information catering
for notions of transition and cancellation.1

Keywords: concurrency, event, state, duality, linear logic, Curry-Howard

1 Background

Computation itself, as distinct from its infrastructure (operating systems, pro-
gramming languages, etc.) and applications (graphics, robotics, databases, etc.),
has two main aspects, algorithmic and logical. The algorithmic aspect serves pro-
grammers by providing techniques for the design and analysis of programs. The
logical aspect serves language designers, compiler writers, documentation writ-
ers, and program verification by proposing suitable concepts for the operations
and constants of a language (abstract syntax), giving them meanings and names
(semantics and concrete syntax), showing how to reason about them (logic), and
studying their structure (abstract algebra).

Originally computation was performed on a single computer under the control
of a central processing unit. Parallel and distributed computing emerged from
the infrastructure with the advent of multiprocessors and networking, enhancing
the applications at the expense of complicating both the algorithmic and formal
aspects of computation. This paper focuses on the latter.

Formal methods divide broadly into logical and algebraic. On the logical side
we find Amir Pnueli’s temporal logic [45], which speaks of a single universal
process from the point of view of a neutral observer. Pnueli has called this
kind of specification endogenous to distinguish it from exogenous modal logics
of programs such as dynamic logic [46, 32].
1 More recent follow-up remarks and expansions on this paper may be found at
http:boole.stanford.edu/pub/LPA.

2

In the algebraic approach process calculi provide one (but certainly not the
only) framework. The most prominent of the early such calculi are Hoare’s Com-
municating Sequential Processes (CSP) [33, 7], Milner’s Calculus of Communi-
cating Systems (CCS) [38], and Bergstra and Klop’s Algebra of Communicating
Processes (ACP) [5, 2, 6].

Each of these calculi imputes a certain nature to the process concept. Their
differences raise the question of whether they are theories of essentially different
entities or are merely refinements of a common core conception differing only in
their emphases on secondary aspects.

A similar question arose millennia ago about the core of geometry, and was
answered in turn by Euclidean geometry which postulated lines and circles as
primitive concepts, cartesian geometry which expressed them as ax + by + c = 0
and (x− x0)2 + (y − y0)2 = r2, and linear algebra as a source of more abstract
spaces within which to conduct cartesian geometry and much else besides. Each
in turn shed light on its predecessor. Yet all of them can be seen to be about
Euler’s notion of affine space as a common framework, with Euclidean geometry
adding notions of metric and angle, linear algebra adding an arbitrary origin, and
cartesian geometry doing both via the basis imputed by its coordinate frame.

Both space and computation can be understood either denotationally—what
they are—or operationally—how to construct things. Euclid’s account of Eu-
clidean space was operational in that a good number of his postulates and propo-
sitions promised constructions in space rather than properties of space. Linear
algebra on the other hand is founded on a denotational framework, with matrix
inversion M−1 for example being defined denotationally as a solution in N to
MN = I before addressing questions of existence, uniqueness, and construction.
The modern conception of Euclidean space is entirely denotational, making Eu-
clid’s operational treatment of the two-dimensional case of his eponymous space
seem somehow nonmathematical to the modern reader, its trend-setting logical
formulation notwithstanding.

Concurrency has likewise had both operational and denotational accounts.
Among the former, perhaps the best known are Petri nets [42] and Plotkin’s
Structured Operational Semantics (SOS) [44]. The considerable popularity of
both can be taken to mean that concurrency is best treated operationally, or
that its denotational treatment is problematic, or both.

It cannot however be taken to mean that no one has tried. The denota-
tional semantics of concurrency can be considered to have begun with the idea
of sequential processes as sets of computation traces, by analogy with formal lan-
guages as sets of strings, with concurrency introduced via the shuffle operation
[15, 68]. However this semantics captures neither branching (timing of nondeter-
minism) nor independence (determinism of nontiming), both of which can be
seen as a deficiency not of the operations but of sets of traces themselves. In
that model all decisions in a computation are reduced to the choice of a single
trace, ignoring both the order in which the decisions were made and their timing
relative to other events. Independence of a and b on the other hand is expressed

3

as the choice ab+ba, introducing both order and choice when neither are relevant
to independence.

Branching time was first formalized denotationally by Milner’s synchroniza-
tion trees [38]. The implied distinction was formalized by Park in terms of a
relation of bisimilarity [41] expressing lock-step equivalence. Bisimilarity is a
more refined equivalence of processes than mere equality of two sets of traces,
which is too coarse to distinguish a(b+c) from ab+ac. Subsequently a hierarchy
of congruences intermediate between trace equivalence and bisimilarity emerged:
Figure 1 of [73] partially orders the 11 semantics by their relative positions in
the linear time/branching time spectrum.

Independence, or “true concurrency,” was formalized denotationally early
on by Greif [28] in terms of events partially ordered by time as a semantics
for Hewitt’s actor framework, and later by Mazurkiewicz via traces quotiented
by an equivalence relation of independence on the alphabet Σ extended to a
congruence on the free monoid Σ∗ [37]. Yet later Grabowski [27] and Pratt [48,
17] further abstracted Mazurkiewicz traces with a notion of partially ordered
multiset or pomset. In the latter two models choice was expressed by defining a
process to be a set of traces or pomsets.

All these semantics of independence were explicitly or implicitly based on the
notion of multiset over an alphabet of symbols as a set labeled with symbols.
Identifying unlabeled strings with ordinals, a string can be defined as a labeled
ordinal, with the length of a string being the underlying ordinal. Pomsets gen-
eralize labeled ordinals to labeled posets.

Nielsen, Plotkin and Winskel’s notion of event structure (A,≤,#) [39, 76–
78] formalizes independence as for pomsets, namely with a partial order ≤, with
two differences. First it conflates the two-level set-of-pomsets approach to the
one level used in treatments of branching time by expressing choice in terms
of an irreflexive symmetric conflict relation a#b on events satisfying a#b ∧ b ≤
c ⇒ a#c. Conflict creates the choice of which of the conflicting events not to
perform, and is the only kind of choice expressible by event structures. Second
the unlabeled event structures are taken to be the primary object of study, which
is analogous to studying strings over a one-letter alphabet, i.e. ordinals, instead
of general strings. Unlabeled event structures are already interesting enough in
their own right without labels.

But while unlabeled event structures can easily represent a||b, a and b acting
independently, it is unclear how they can distinguish it from ab + ba, a and b
acting in either order. Gaifman and Pratt [14] addressed this distinction with a
notion of prosset (E,≤, <) with a reflexive weak and irreflexive strong partial
order satisfying a < b ⇒ a ≤ b, with a process defined as a set of prossets as for
traces and pomsets. Both relations order events by time, with the difference being
that only a ≤ b permits the simultaneous occurrence of a and b. Independence
can be expressed with the requirement that if two prossets of a process differ only
in that a ≤ b holds in one and b ≤ a in the other then the process also contains a
prosset differing from those two in omitting both constraints, thereby expressing
their independence. If however a < b and b < a hold in the respective prossets

4

then this is understood to mean ab + ba, the mutually exclusive execution of a
and b in either order.

A quite different way of drawing this distinction is with the notion of a
higher dimensional automaton [54] or HDA based on combinatorial geom-
etry. This approach abandons events and reverts to states. However the concep-
tion of state is an n-dimensional one in which a process consists of combinatorial
cells whose dimension gives the number of ongoing events in that cell. While the
0-dimensional cells correspond to the ordinary notion of state, the 1-dimensional
cells look more like transitions, while the higher-dimensional cells express con-
currency and have no counterpart in ordinary automata theory. This approach
amounts to an automata-theoretic formalization of Papadimitriou’s geometric
treatment of concurrency control [40], as well as ST-bisimulation [18] and deter-
ministic asynchronous automata [71]. Higher dimensional automata have since
been studied by many authors [74, 26, 25, 19, 29, 21, 20, 22, 23, 70, 10, 72, 70, 12,
63], leading Eric Goubault to found a series of conferences on the geometry and
topology of computation, GETCO, and a special issue of MSCS [24].

My own perspective on concurrency has evolved gradually over the past three
decades [47–61, 31] by way of pomsets, prossets, event structures, higher dimen-
sional automata, and finally Chu spaces. The last were so interesting in their
own right as to distract me from process algebra in order to study their appli-
cations to mathematics for a few years before returning to their process algebra
applications [63–65, 67]. [67] in particular made the observation that the usual
two values 0 and 1 of Chu spaces, denoting event states of ready (not yet started)
and done, could be extended with either or both of the intermediate value of
transition and the alternative value × of cancelled. These permit respectively
higher-dimensional automata and what we now call cancellation automata to be
represented as Chu spaces. In particular we show how van Glabbeek’s example
of a higher dimensional automaton not expressible as a Petri net [75, Fig.11]
can be expressed instead as a pure cancellation automaton, one with no higher
dimensional cells.

This paper serves the dual purposes of an up-to-date tutorial on the repre-
sentation of processes as Chu spaces over K = {0, 1, ,×}, which we propose to
call linear processes, and its relationship to these earlier models, along with an
update on recent work. The Chu representation of concurrent processes is not
as well known in concurrency circles as I feel it should be, despite having been
in the literature for two decades [8, 9, 31, 30], justifying the tutorial part. The
emphasis here is more on rationale, intuition, definitions, and perspective and
less on a formal theorem-and-proof development of the theory; for more in-depth
technical details see [62] for the relevant theory of Chu spaces and [67] for more
on process algebra based on transition and cancellation.

Algebra traditionally starts with operations and laws forming a theory, e.g.
the theory of commutative rings or of fields, leaving the values to emerge as the
elements of models of the theory. Useful algebra however is often motivated by its
intended or primary model, e.g. the ring of integers or the field of rationals, and
for this reason it is preferable to begin with the intended values as motivation

5

for the operations, and to let both drive the laws rather than vice versa. This
is the approach we follow here in starting with Chu spaces as the values, then
explicitly defining operations on them, and lastly considering what form the laws
should take and what they are.

2 Chu spaces as generalized linear algebra

The previous section noted the diverse notions of process, some based on events,
such as pomsets and event structures, others on states, such as information sys-
tems, synchronization trees, and higher-dimensional automata. A common core
compatible with both kinds needs somehow to cater for and reconcile both events
and states. To unify such diversity would appear to call for a complex frame-
work; in particular one would not expect the simplest conceivable framework
meeting the brief desiderata of the previous sentence to be up to the job on its
own. Nevertheless that is what we propose and study here.

We take for our core notion of (unlabeled) process simply a set of events, a
set of states, and a binary relation between them, and nothing else. We write
these as respectively A, X, and r : A×X → K, where K is a set (such as {0, 1})
making r a K-valued binary relation. A map h : P → Q transforming process
P = (A, r,X) into process Q = (B, s, Y) is defined as an adjoint pair (ĥ, ȟ)
of functions ĥ : A → B, ȟ : Y → X, meaning one that satisfies s(ĥ(a), y) =
r(a, ȟ(y)) for all a ∈ A and y ∈ Y . The maps from P to Q are all and only those
pairs of functions satisfying these conditions.

In general such a structure is called a Chu space over K, with the category
of such and their maps being denoted by Chu(Set,K). Chu spaces can be
specialized to particular applications by a suitable choice of K. Before developing
the process concept further, by way of background we first consider other areas
whose objects can be organized as Chu spaces.

The paradigmatic example is linear algebra over a given field k. This is more
than just an analogy: as pointed out by Y. Lafont [34, 35] it is the special case
K = |k|, the set of elements of the field. Each vector space V is represented as
the Chu space Ṽ = (|V |, r, |V ∗|) whose points are the vectors of V , whose states
are its functionals or dual points, namely the linear transformations comprising
the vectors of the vector space V ∗ = kV (treating k as a one-dimensional vector
space over k) and r : V × V ∗ → K is the inner product for V , satisfying
r(v, g) = g(v) for each vector v ∈ V and functional g ∈ V ∗. In mathematics
inner product r(v, g) is customarily written (v, g), in physics as 〈g|v〉 (bra 〈g|
and ket |v〉). It can be shown that each linear transformation h : U → V is
represented uniquely as the pair (h, λg.gh) : Ũ → Ṽ constituting a morphism of
the Chu spaces representing respectively U and V . That is, the category Vctk

of vector spaces over k and their linear transformations fully embeds in the
category Chu(Set,K), creating a bijection between homsets Vctk(U, V) and
Chu(Set,K)(Ũ , Ṽ).

As another instance, Y. Lafont [34, 35] has further pointed out that the points
and open sets of a topological space S can be treated by analogy with respectively

6

the vectors and functionals of a vector space, with r taken to be the two-valued
relation of membership of a point in an open set. The counterpart of the one-
dimensional space is the Sierpinski space with two points and three open sets,
while each continuous function h : S → T is represented uniquely as the pair
(h, h−1) : S̃ → T̃ where h−1 is the inverse image function associated to h. We
give a great many more such examples elsewhere [62, 66].

The term “linear” is also motivated by Girard’s linear logic, LL, a substruc-
tural logic applicable to sequent-based proof theory. The “multiplicatives” of LL,
namely perp P⊥, tensor P⊗Q, its De Morgan dual P

...
..............
.............................. Q = (P⊥⊗Q⊥)⊥ and the

multiplicative units 1 and ⊥, constituting multiplicative linear logic MLL, make
essentially the same connection with Boolean algebra via the Curry-Howard iso-
morphism as do their counterparts for linear process algebra. Furthermore the
extension of MLL to MALL with the “additives” P ⊕ Q and P&Q of LL, as
respectively direct sum (coproduct) and direct product as notated by Girard
(we will write P&Q as the more customary P ×Q), also find application in both
LL and LPA.

3 Linear processes

In this section we define processes as structures. Just as the Chu representation
of linear algebra over a field k took K = |k|, and of topological spaces, K =
{0, 1}, so do we define linear processes Chu spaces over the set K = {0, , 1,×}.
Organizing processes as Chu spaces makes events and states equally primary,
paralleling Hamilton’s reorganization of Newton-Langrange mechanics in 1837
by putting position and momentum on the same level.2

The elements of K constitute the four possible states an event can be in,
namely ready 0 (i.e. not yet started), transition , done 1, and cancelled×.3 The
intuitive meaning of transition is as in “Shh, the event is in progress”, while that
of cancellation is as in “Sorry but the event has been cancelled.”

Thinking of these four as local states, we interpret the value of r(a, x) as the
local state of event a in state x. The latter is a global state or state vector in the
sense that it can be interpreted extensionally via the function X → (A → K)
mapping each x in X to the function λa.r(a, x) : A → K, which we call the
extension of x. Dually the extension of each event a is the function λx.r(a, x) :
X → K. We can refer to a row of a matrix either intensionally by its index a or
extensionally by the row itself, and dually for columns.

Following Barr’s terminology [4] we call a Chu space extensional when if
two columns have the same extension then they have the same intension; that is,
there are no repeated extensional columns. Topological spaces can be understood
as extensional Chu spaces by identifying their open sets with the extensions of
states. Dually a Chu space is separated when two rows with the same extension
2 Hamiltonian mechanics took 90 years to catch on in physics; hopefully event-state

symmetry will not take that long!
3 This is sufficient for a theory of ideal processes. In practice processes need to be

abortable, which a fifth state, aborted, could address. We leave this to future work.

7

have the same intension; this corresponds to the notion of a T0 topological space.
A biextensional Chu space is one that is both extensional and separated, all
rows and columns distinct. The above representation of vector spaces as Chu
spaces is biextensional.

Viewed as event structures, Chu spaces are unlabeled. As with the theory of
event structures we draw the distinction between events and actions. An event
constitutes an instance of an action; it can happen only once, whereas an action
can happen many times.

We take events to be more basic than actions on the ground that the order
in which things happen in a process is an ordering of events, not of actions.
This is not to say that actions are unimportant but that the structure of events
independently of their labels is already of considerable interest in its own right.

A labeled process over an alphabet Λ of actions is a pair (P, λ) where P =
(A, r,X) is an unlabeled process and λ : A → Λ labels each event a with the
action λ(a) of which a is an instance.

4 Processes as transformable entities

The preceding section defined a process over a set K as a structure (A, r,X)
where r : A × X → K. In this section we instead define processes analogously
to how Zermelo-Fraenkel set theory, ZF, defines sets. Whereas all individuals of
a model of ZF are sets, those of our theory are of two sorts, processes P,Q, . . .
forming a class P and process transformations or maps h : P → Q forming a
class M. And whereas the language of ZF consists of a single binary relation
∈ of membership on a homogeneous domain of sets, ours consists of one binary
operation, three unary operations, and two constants. Besides permitting a more
axiomatic definition, this perspective distinguishes the events of a process P from
its states by exhibiting them as maps respectively to and from P 4 and makes
the event-state schizophrenia of the elements of K more explicit by exhibiting
them as states of the generic one-event process 1, which of course they are, as
well as events of K, which of course they are.

The binary and unary operations are just those for a category, namely com-
position m : M2 → M , source and target s, t : M→ P and identity i : P →M.
Moreover they satisfy the usual laws, namely s(i(P)) = t(i(P)) = P , m(k, h)
or kh for short is defined just when s(k) = t(h), s(kh) = s(h), t(kh) = t(k),
(kh)j = k(hj) (associativity), and i(P) or 1P for short is both a left and right
identity for composition.

As usual a map h : P → Q is an isomorphism when it has an inverse h−1 :
Q → P in the sense that both h−1h and hh−1 are identity maps, namely 1P and

4 Early on [31, 30] we took events and states to be respectively columns and rows
for consistency with linear algebra, which traditionally identifies the points and
functionals of a vector space with respectively columns (maps to the space) and
rows (maps from it), but found this unnatural in thinking about processes and
subsequently reversed the correspondence.

8

1Q respectively. Processes are isomorphic when there is an isomorphism between
them.

The only process-specific part of the language consists of two constant pro-
cesses 1 and K, satisfying four axioms, A1-A4, the first two of which are ele-
mentary (first order).

Definition 1. A process P is rigid when the only map P → P is the identity
1P .

Axiom A1 The processes 1 and K are rigid.

Definition 2. An event is a map from 1, while a state is a map to K.

Events to P and states from P are considered to belong to P , as in “event
(state) of P .” Variables ranging over events and states are written a, b, . . . and
x, y, . . . respectively. An ordinary map is one that is neither an event nor a
state.

For convenience we denote by AP and XP the sets of respectively events and
states of P . The following two propositions are routine.

Proposition 1. 1 has one event, while K has one state.

Proposition 2. The events of K are precisely the states of 1. (So they have a
dual identity as events and states.)

Definition 3. The state of an event a of P in state x of P is the state xa of 1
(and an event of K).

We distinguish states of processes from states of events by considering them
respectively global and local states. By proposition 2 local states are events of
K. Composition of states with events of a process is the axiomatic counterpart
of r in the structural definition (A, r,X).

Given any map h : P → Q we define its left action ĥ to be the function
λa.ha mapping each event a of P to the event ha of Q, and its right action ȟ
to be the function λy.yh mapping each state y of Q to the state yh of P . The
types of these actions are respectively ĥ : AP → AQ and ȟ : XQ → XP .

Proposition 3. For any map h : P → Q, its left and right actions satisfy
xĥ(a) = ȟ(x)a for all a ∈ AP and x ∈ XQ.

Functions AP → AQ and XQ → XP satisfying this condition are said to be
an adjoint pair of functions between P and Q.

Proof. The two sides expand to respectively x(ha) and (xh)a, which are equal
by associativity.

Definition 4. Two maps h, k : P → Q with the same left and right actions are
called equivalent.

9

Axiom A2 (Extensionality) Equivalent maps are equal.
Thus far all definitions and propositions have been equivalent to elemen-

tary or first order ones; the second order constructs are inessential and can be
translated into first order ones. By introducing two process operations P ⊗ Q
and P−◦Q we could continue the ZF analogy with further elementary axioms.
However a hybrid approach involving counterfactuals (whose explication in the
absence of a self-contained foundation requires falling back on ZF) allows this
transformation-based axiomatization to be completed much faster using just two
more axioms, neither one elementary in the sense of first order logic but both
elementary in the sense of being intuitively clear. We leave to another occasion
the development of a purely first order theory of processes replacing A3 and A4.

The purpose of Axiom A3 is to ensure that all possible maps are present
between the processes of the model. We state it as a counterfactual which con-
templates the possibility of additional ordinary maps not already in whatever
the model happens to be, and denies this possibility in a positive way. It is coun-
terfactual in that it refers to a map that does not yet exist, a notion absent from
first order logic. “Ordinary” is essential here since adding new events or states
to a process would make it a different process.

Axiom A3 (No new maps) Any new ordinary map is equivalent to an old
one.

A3 together with A2 implies that M has no proper extension. That is, M is
maximal and the contemplated counterfactual is impossible.

The following establishes uniqueness up to isomorphism of such a maximal
M, namely the set of all pairs of actions.

Proposition 4. (Density) For any two processes P,Q for which P is not 1 and
Q is not K, every adjoint pair of functions between P and Q is the pair of actions
of some map g : P → Q.

This notion of density is due to Gabriel and Ulmer [13] by analogy with
density of the rationals in any extension thereof, namely any Archimedean field.
Here it means, informally speaking, that all possible maps between two processes
are present.

Proof. Suppose some adjoint pair between P and Q is realized by no map. Then
a map g : P → Q with this pair as its actions can be adjoined, along with
all required composites hgf : P ′ → Q′ not already present where f : P ′ → P
and h : Q → Q′. No other maps than these need be adjoined (there is no
chain reaction) since by associativity any map of the form h′(hgf)f ′ is of the
form (h′h)g(ff ′) and hence is already adjoined. All compositions are uniquely
determined by the actions of g and those of the f ’s and h’s.

Since the possible pairs of actions between two processes form a set this
maximum is well-defined.

Axiom A4 similarly depends on the counterfactual notion of extending P
(whatever processes exist in the model at hand) with additional processes, sub-
ject to maintaining the preceding axioms. When a process is added, its events

10

and states and how they compose as maps of AK are considered part of the
addition, and these are thereafter left undisturbed by any further extensions of
either M or P. As part of this addition, all new morphisms needed to satisfy A3
are added. This is a weak denial of the impossibility of new processes in that it
takes “new” to mean new up to isomorphism.

Axiom A4 (No new processes) Any new process is isomorphic to an old
one.

As defined earlier P and Q are isomorphic when there exists an isomorphism
h : P → Q. We need A3 for this, without which processes that an external ob-
server would judge isomorphic might nevertheless lack the requisite isomorphism
witnessing their isomorphism.

In the following “equivalent” means in the sense of equivalent categories.

Proposition 5. (Completeness) All models of these axioms are equivalent.

Proof. For any two sets A,X and any function r : A ×X → AK there exists a
process P and bijections α : A → AP , and ω : X → XP , such that r(a, x) =
ω(x)α(a) (composition). It follows that every model of these axioms is equivalent
to the category of Chu spaces over AK , as defined in the preceding section, when
its morphisms from (A, r,X) to (B, s, Y) are taken to be all adjoint pairs (f, g) of
maps f : A → B and g : Y → X, that is, maps satisfying s(f(a), y) = r(a, g(y))
for all a ∈ A and y ∈ Y .

5 Linear Process Algebra

We turn now from linear process semantics, what processes are, to process alge-
bra, how to name them compositionally and reason about them.

The operations of Linear Process Algebra, LPA, are orthocurrence P ⊗ Q,
concurrence P ||Q, sequence P ;Q or just PQ, and choice P +Q. In defining oper-
ations we assume that all processes are extensional (states with equal extensions
are equal, i.e. no repeated columns). The extensional collapse of a process P is the
result of making P extensional by identifying states of P with equal extensions.
Since some of the operations below do not necessarily preserve extensionality we
enforce it by automatically collapsing extensionally the result of every operation.

Dual P⊥. Duality makes the connection between processes viewed as a sched-
ule of events and as an automaton comprised of states. Given P = (A, r,X),
(A, r,X)⊥ is defined as (X, r′, A) where r′(x, a) = r(a, x), that is, transpose.
Transpose also applies to process maps, with the transpose of h : P → Q being
h⊥ : Q⊥ → P⊥, where h and h⊥ have the same actions in the sense of Section
4 but with left and right simply interchanged.

Duality has no operational interpretation, but rather serves to convert an
event-oriented process, meaning one whose events and states transform respec-
tively covariantly and contravariantly, into a state-oriented process for which
events and states transform respectively contravariantly and covariantly.

Orthocurrence P ⊗Q. This is the fundamental interaction operator of linear
process algebra. Although it appeared in our work almost as early as did pomsets

11

[51, 53, 11, 31], it is at the heart of both Barr’s category-theoretic notion of a
∗-autonomous category [3], and Girard’s proof-theoretic notion of linear logic
developed independently several years after Barr. [16].

Given two processes P = (A, r,X) and Q = (B, s, Y), their orthocurrence
P⊗Q is the process (A×B, t, Z). Here Z is the set of all functions z : A×B → K
such that
(i) for each b ∈ B, λa.z(a, b) is a state of P , and
(ii) for each a ∈ A, λb.z(a, b) is a state of Q,
while t : (A × B) × Z → K is defined as t((a, b), z) = z(a, b). Each z may be
thought of as an A × B crossword whose rows are states of Q (the “across”
dictionary) and whose columns are the states of P (the “down” dictionary).

Besides interaction, othocurrence P⊗Q can also be understood as dual to the
observation P−◦Q⊥ of states of process Q (events of Q⊥) from vantage points
of process P , or by symmetry the observation Q−◦P⊥, giving a sense in which
observation is as symmetric as orthocurrence [64].

Concurrence P ||Q. This is the independent or noninteracting parallel behav-
ior of P and Q. Given two processes P = (A, r,X) and Q = (B, s, Y), their
concurrence P ||Q is the process (A+B, t, X×Y). Here A+B denotes the dis-
joint or marked union of A and B, where the marking indicates for each event of
A+B whether it came from A or B (e.g. by defining A+B = A×{1}∪B×{2})
while t(a, (x, y)) = r(a, x) and t(b, (x, y)) = s(b, y) where a and b denote events
of A + B coming from respectively A and B.

Initial states. The initial local or event state is 0 or ready. The initial global
state is the all-zero state vector: all events are in their ready state 0.

Final states. The two final local states are 1 and×. A state is final just when
all its events are in a final event state.

This definition is facilitated by the cancel state. Without it the event struc-
ture literature has struggled with the concept of final state, termination, and
sequence. One might suppose that a final state could be defined simply as one
with no successor state. This however fails to represent a process that may
choose nondeterministically to halt or continue. For example the process a + ∅
that chooses to do either a or nothing has a state in which a is ready, but that
state cannot be final because it has 1 as a successor state. While solutions have
been proposed, none are as simple as merely allowing a to enter the cancelled
state to indicate termination.

Cancelled states. A state is cancelled when all its events are cancelled. The
typical application is to the definition of choice P + Q, whose first step is to
cancel one of P or Q simultaneously with starting the other.

Sequence PQ. Given two processes P = (A, r,X) and Q = (B, s, Y), their
sequence PQ is defined as for P ||Q but with only those states (x, y) of X × Y
for which either y is initial or x is final. When y is initial we consider P to
be happening when in state (x, y), while when x is final we consider Q to be
happening.

If Q has no initial state (usually not the case in practice) then P cannot run
and is understood to be in one of its final states. If P has no final state then Q

12

cannot run. If P has n final states xi then PQ has n copies (xi, y) of each state
y of Q.

Choice P + Q. Given two processes P = (A, r,X) and Q = (B, s, Y) with
both A and B nonempty, their choice P + Q is the process (A + B, t, {∗} +
X ′ + Y ′) where X ′ and Y ′ are X and Y less their respective initial states,
t(a, ∗) = t(b, ∗) = 0 (making ∗ the initial state of P + Q), t(a, x) = r(a, x),
t(b, y) = s(b, y), and t(a, y) and t(b, x) are the cancelled state (× if available,
otherwise 0). Operationally, P + Q begins in the initial state (all events of both
P and Q ready) and then simultaneously cancels all the events of one of P or Q
and begins the other.

Constants ∅ and 1. The process ∅ is (0, !, 1), consisting of no events and one
state. It is the unit for both concurrence and sequence, that is, a||∅ = a∅ = ∅a =
a. However ∅ is not the unit for choice because P + ∅ creates a state in which
all events of P are cancelled.

The process 1 is as defined in Section 4. As a Chu space it can be taken to be
({∗}, s, K) where s(∗, k) = k. Up to isomorphism 1 is the unit for orthocurrence:
when (A, r,X) “flows through” 1, A× {∗} is isomorphic to A and the states of
A⊗ 1 are in bijection with those of A.

6 The Curry-Howard correspondence with Boolean
algebra

The core of linear process algebra is orthocurrence P ⊗ Q as interacting con-
currency, which we distinguish from concurrence P ||Q as noninteracting concur-
rency, parallel play as kindergarten teachers call it. Orthocurrence together with
the involution P⊥ share essential features with Boolean conjunction x ∧ y and
complement ¬y.

The connection is made via the Curry-Howard correspondence5 between logi-
cal values and mathematical objects. In this case the logical values may be taken
to be 0 and 1 while the objects are linear processes. Conjunction and negation
of the former correspond respectively to orthocurrence and dual of the latter.

Many of the logical laws involving terms built with these two logical op-
erations have their counterpart as natural isomorphisms between functors built
from these two process operations. In particular associativity and commutativity
of conjunction carry over, the latter as a symmetry P ⊗Q ∼= Q⊗ P , but idem-
potence has no counterpart. Double negation ¬¬x = x does carry over, with
P⊥⊥ being not only isomorphic but equal to P . And just as x∨y is definable by
De Morgan’s law as ¬(¬x ∧ ¬y), so is Girard’s par operation P

...
..............
.............................. Q definable as

(P⊥⊗Q⊥)⊥. The meaning of P⊥ in LPA is P viewed as an automaton consisting
of (covariantly transforming) states instead of as a schedule consisting of events,
while the meaning of P

...
..............
.............................. Q is just the automaton counterpart of orthocurrence.

5 This is commonly called the Curry-Howard isomorphism but since it is not techni-
cally an isomorphism we prefer to call it a correspondence.

13

7 Example terms

We now consider the behavior of the operations on atomic processes, showing
how they compose in certain cases to produce larger terms. Table 1 lists a dozen
terms and the linear processes they denote.

a a 0 1 a + ∅ a 0 1×

ab
a 0 111
b 000 1

a + b
a 0 1××
b 0×× 1

a||b a 0 10 10 1
b 000 111

ab + ba
a 0 1010 1
b 000 111

a(b + c)
a 0 11111
b 000 1××
c 000×× 1

ab + ac
a 0 111 111
b 000 1××××
c 0××××00 1

(b + c)a
a 000 100 1
b 0 111××××
c 0×××× 111

ba + ca
a 000 100 1
b 0 111××××
c 0×××× 111

ab ⊗ cd

ac 0 11111111111
ad 00000 11111
bc 000 10 10 111
bd 00000000000 1

(a + b)⊗ (c + d)

ac 0 11××××
ad 0×××× 11
bc 0×××× 1 1
bd 0 1 1××××

Table 1. Example LPA expressions

Cancellation distinguishes a + ∅ from a by adjoining a fourth state to a
allowing it to be cancelled. Hence a has only one final state while a + ∅ has two.

Sequence ab and choice a + b each have five states. These are performed
sequentially for ab, while in a+ b they form two branches each with three states,
the initial state of which is common to both branches.

Processes a||b and ab + ba are almost identical, the one difference being that
is a state of the former but not of the latter. Thus a||b has a two-dimensional

state while ab + ba does not, but otherwise has the same states of dimension 0
and 1 as a||b.

Process a(b + c) does not cancel either b or c until after a is done. At that
point the state is 100, which can be viewed as the initial state of b + c. One of
b or c is then cancelled while simultaneously the other gets under way in the
transition state, and then is done, for a total of 7 states. Process ab + ac on the
other hand cancels one of b or c as soon as a enters its transition state, after
which it behaves like an ordinary sequence. There are thus two branches with 5
states each, but with the initial state shared so that there are only 9 rather than
10 states. Hence a(b + c) and ab + ac are distinct.

Processes (b+c)a and ba+ca however are the same: both begin by cancelling
one of b or c while beginning the other. This gives them both two branches,
branching at the root with each branch having 5 states as for ab + ac.

14

The orthocurrence ab ⊗ cd involves no cancellation. However there is one
instance of concurrency, namely ad with bc, where ac is done and bd is ready.

One example of this situation is a train schedule involving two sequential
trains a then b passing through two stations c then d. The pair ac is the event
of train a arriving at station c. When ac is in transition the train is standing
at the station; passing to done corresponds to the train having left the station.
The only opportunity for concurrency here is when the first train is standing at
the second station while the second train is at the first station.

Another example of ab⊗ cd is Allen’s 13 configurations of a pair of intervals
sliding past each other [1], with a and b denoting the endpoints of one interval
and c and d those of the other. Allen’s 13 configurations correspond in the evident
way to the 13 states shown in Table 1. In particular aligning the two intervals
at both ends corresponds to the one two-dimensional state 1 0. Rodriguez
and Anger [69] have studied extensions of Allen’s configurations to handle richer
notions of time such as relativistic time, accomplished by suitably enlarging the
local event set K. With one extension they characterize as branching time the
13 states extend to 29, with their relativistic one it extends to 82 states, see [67]
for further details.

8 Laws

As indicated in Section 6, the Curry-Howard counterpart of many (but not all)
of the equations of Boolean algebra are natural isomorphisms between terms
involving orthocurrence (tensor), duality (perp), and dual orthocurrency (par).
There are in addition laws governing concurrence, sequence, and choice, but
already just those governing the first three mentioned operations raise interesting
questions.

Perhaps the most important question is, what is the Curry-Howard counter-
part of logical truth in the LPA setting? One might suppose that the same
question would arise for linear logic and therefore serve as a guide. However Gi-
rard has taken the position that truth is merely that which proof establishes, as
opposed to being definable independently. Since LPA deals with processes rather
than proofs, this view would appear to make no sense for LPA.

Yet there is one point of commonality: the classical notion of truth does ar-
guably not make sense for LPA. The usual conception of truth for a proposition,
at least for Boolean logic, entails a binary decision. Such a decision is necessarily
centralized, with data from sensors being collected at one point to arrive at a
binary determination.

The Curry-Howard counterpart of a proposition is a process. Processes need
not be local as they can be distributed over an arbitrarily large area or volume.
This is not consistent with logical decision-making as a centralized notion as
decisions must be made locally if they are to be timely. This in turn implies that
decision itself should be a concurrent notion.

We therefore propose to dispense with the traditional notion of propositions
as special entities that are true or false and simply define a proposition to be a

15

process. We take reasoning to be an extension of behavior that introduces events
of a propositional or judgmental nature above and beyond the ordinary events
of behavior. There can be many of these running concurrently in a distributed
fashion, with no requirement of global coordination at any point.

The benefit of this approach is that reasoning can be absorbed into the
framework without making special provision for it as a distinct notion. Reasoning
becomes simply a kind of parallel behavior.

We take reasoning to be the transformation of one process into another, in
its most general sense. Transformation acts on terms, and terms are realized by
functors. When all functors are covariant a transformation can be defined simply
as a natural transformation. In the presence of contravariant functors, logic of
this kind is more delicate. Dinatural transformations have been proposed for this
[36]; however Chapter 6 of [62] points out difficulties with dinaturality that are
overcome using binary logical transformations [43].

When the processes being so transformed represent behavioral rather than
propositional information, transformations can be regarded as serving simply to
establish program equivalence. Processes incorporating distributed propositional
information may convey more nuanced decision-oriented information, much in
the manner of couriers carrying information between locations and multiple local
headquarters planning for their immediate neighborhood. In short, very much
how reasoning is carried out in the real world, namely by many individuals,
organizations, and machines, in a distributed fashion.

This conception of distributed reasoning is not at all well worked out here,
and we hope to sharpen these ideas more satisfactorily in due course.

9 Beyond Petri nets

In [75, Fig.11] van Glabbeek gives an example of a higher-dimensional automaton
expressing a process that is not expressible as a Petri net. The following story
relocates van Glabbeek’s process to a more rural setting than the race across
the conference podium that enlivened Rob’s presentation of this example at
EXPRESS’04.

Alphonse and Gaston are walking abreast along a path when they come to
a gate that seems stuck half-open, obliging them to pass through it in single
file. Neither one wishing to be the first to emerge, they try to push the gate
open as they pass through in an attempt to emerge together. The three possible
outcomes, c, d, and e, are that they succeed (c), or that they fail and one of
Alphonse (d) or Gaston (e) emerges first. That is, exactly one of the events c,
d, and e must occur. Taking a and b to be the events of respectively Alphonse
and Gaston entering the opening (which could happen either before, after, or
instead of succeeding in opening the gate), represent this scenario suitably.

Van Glabbeek proposed the following 11-state automaton, which however
he interpreted as a higher-dimensional automaton with 31 states when the 15
one-dimensional and 5 two-dimensional states are counted. Our depiction here
labels the 11 states to exhibit it as a pure cancellation automaton, one with no

16

higher-dimensional cells. We give it in both forms, matrix and visual (its Hasse
diagram).

a 0 1 0 0 1 1 1 0 1 1 1
b 0 0 0 1 0 1 1 1 1 1 1
c 0 0 1 0 1 0 0 1×1×
d 0 0×××0××1××
e 0××0××0×××1

• •
�

�
�

�

@
@

@
@

•

•101××
@

@
@

@

•011××
�

�
�

�•1000×
@

@
@

@

•001×× •010×0
�

�
�

�•
00000

11×1×
abcde
111×× 11××1

• •

J
J

J
JJ

�
�

�
��

B
B
B
BB

J
J

J
JJ

1100×110×0

a

a

b

a bb a

b c

c

c

c

d e

The success of this representation depends on the observation that as soon as
either party has entered the opening at least one of d or e may be immediately
cancelled. Without cancellation, the state of both a and b being in the opening
with the gate still stuck would be 110 regardless of their single-file order. With
cancellation, exactly one of d or e is cancelled in that situation, refining 110
into the two states 110×0 and 1100×, thereby creating the natural five-state
automaton for ab+ ba which is what the stuck gate obliges, thereby splitting the
“ground floor” c = 0 of what would otherwise be the abc cube. The top floor,
c = 1, gate open, represents a||b.

The five two-dimensional cells that naturally suggest themselves, namely two
instances of a||c and b||c and one of a||b (so five out of the six faces of the abc
cube), could certainly be added, making this a full-blown higher-dimensional
cancellation automaton with 11 + 15 + 5 = 31 cells. However when a||b is un-
derstood by default to include all possible higher-dimensional cells, that is, no
mutual exclusion, it is not necessary.

Van Glabbeek’s example raises an important distinction that we have glossed
over so far. Table 2 makes the distinction between a||b and ab+ba one of mutual
exclusion: the latter forbids the state . The role of events d and e here is
to record the primacy of respectively a and b in the choice implied by ab + ba.
In the absence of c the above automaton simplifies to that on the left below.
Alternatively we can be more faithful to our disjoint-union definition of P + Q

17

than thus far and obtain an isomorphic automaton in terms of marked copies of
just a and b as on the right.

a 0 1 1 0 1
b 0 0 1 1 1
d 0 1 1××
e 0××1 1

a 0 1 1××
b 0 0 1××

a′ 0××1 1
b′ 0××0 1

References

1. J.F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23:123–154, 1984.

2. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University Press,
1990.

3. M. Barr. ∗-Autonomous categories, volume 752 of Lecture Notes in Mathematics.
Springer-Verlag, 1979.

4. M. Barr. ∗-Autonomous categories and linear logic. Math Structures in Comp.
Sci., 1(2):159–178, 1991.

5. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60:109–137, 1984.

6. J.A. Bergstra, A. Ponse, and S.A. Smolka (editors). Handbook of Process Algebra.
Elsevier (North-Holland), 2000.

7. S.D. Brookes, C.A.R. Hoare, and A.D. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560–599, 1984.

8. C. Brown and D. Gurr. A categorical linear framework for Petri nets. In J. Mitchell,
editor, Logic in Computer Science, pages 208–218. IEEE Computer Society, June
1990.

9. C. Brown, D. Gurr, and V. de Paiva. A linear specification language for Petri
nets. Technical Report DAIMI PB-363, Computer Science Department, Aarhus
University, October 1991.

10. R. Buckland and M. Johnson. Echidna: A system for manipulating explicit choice
higher dimensional automata. In AMAST’96: Fifth Int. Conf. on Algebraic Method-
ology and Software Technology, Munich, 1996.

11. R.T Casley, R.F. Crew, J. Meseguer, and V.R. Pratt. Temporal structures. Math.
Structures in Comp. Sci., 1(2):179–213, July 1991.

12. L. Fajstrup, E. Goubault, and M. Raussen. Detecting deadlocks in concurrent
systems. In Proc. of CONCUR’98, volume 1466 of Lecture Notes in Computer
Science, pages 332–347. Springer-Verlag, 1998.

13. P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien, volume 221 of Lecture
Notes in Mathematics. Springer-Verlag, 1971.

14. H. Gaifman and V.R. Pratt. Partial order models of concurrency and the com-
putation of functions. In Proc. 2nd Annual IEEE Symp. on Logic in Computer
Science, pages 72–85, Ithaca, NY, June 1987.

15. S. Ginsburg and E.H. Spanier. Mappings of languages by two-tape devices. Journal
of the ACM, 12:423–434, 1965.

16. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
17. J.L. Gischer. The equational theory of pomsets. Theoretical Computer Science,

61:199–224, 1988.

18

18. R.J. van Glabbeek and F.W. Vaandrager. Petri net models for algebraic theories
of concurrency. In Proc. PARLE, II, LNCS 259, pages 224–242. Springer-Verlag,
1987.

19. E. Goubault. Homology of higher-dimensional automata. In Proc. of CONCUR’93,
volume 630 of Lecture Notes in Computer Science, pages 254–268, Stonybrook, New
York, August 1993. Springer-Verlag.

20. E. Goubault. The Geometry of Concurrency. PhD thesis, École Normale
Supérieure, 1995.

21. E. Goubault. Schedulers as abstract interpretations of hda. In Proc. of PEPM’95,
La Jolla, June 1995. ACM Press.

22. E. Goubault. Durations for truly-concurrent actions. In Proceedings of ESOP’96,
pages 173–187. Springer-Verlag, 1996.

23. E. Goubault. A semantic view on distributed computability and complexity. In
Proceedings of the 3rd Theory and Formal Methods Section Workshop. Imperial
College Press, 1996.

24. E. Goubault. (ed.) geometry and concurrency. Mathematical Structures in Com-
puter Science, special issue, 10(4):409–573 (7 papers), August 2000.

25. E. Goubault and R. Cridlig. Semantics and analysis of Linda-based languages.
In Proc. 3rd Int. Workshop on Static Analysis, volume 724 of Lecture Notes in
Computer Science, pages 72–86, Padova, 1993. Springer-Verlag.

26. E. Goubault and T.P. Jensen. Homology of higher dimensional automata. In Proc.
of CONCUR’92, volume 630 of Lecture Notes in Computer Science, pages 254–268,
Stonybrook, New York, August 1992. Springer-Verlag.

27. J. Grabowski. On partial languages. Fundamenta Informaticae, IV.2:427–498,
1981.

28. I. Greif. Semantics of Communicating Parallel Processes. PhD thesis, Project
MAC report TR-154, MIT, 1975.

29. J. Gunawardena. Homotopy and concurrency. EATCS Bulletin 54, pages 184–193,
October 1994.

30. V. Gupta. Chu Spaces: A Model of Concurrency. PhD thesis,
Stanford University, September 1994. Tech. Report, available as
http://boole.stanford.edu/pub/gupthes.pdf.

31. V. Gupta and V.R. Pratt. Gates accept concurrent behavior. In Proc. 34th Ann.
IEEE Symp. on Foundations of Comp. Sci., pages 62–71, November 1993.

32. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Boston, 2000.
33. C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666–672, August 1978.
34. Y. Lafont. The linear abstract machine. TCS, 59:157–180, 1988.
35. Y. Lafont and T. Streicher. Games semantics for linear logic. In Proc. 6th Annual

IEEE Symp. on Logic in Computer Science, pages 43–49, Amsterdam, July 1991.
36. J. Lambek and P. Scott. Introduction to Higher-Order Categorical Logic. Cam-

bridge University Press, 1986.
37. A. Mazurkiewicz. Concurrent program schemes and their interpretations. Technical

Report DAIMI Report PB-78, Aarhus University, Aarhus, 1977.
38. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, 1980.
39. M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and domains,

part I. Theoretical Computer Science, 13:85–108, 1981.
40. C. Papadimitriou. The Theory of Database Concurrency Control. Computer Sci-

ence Press, 1986.

19

41. D. Park. Concurrency and automata on infinite sequences. In Proc. Theoretical
Computer Science, volume 104 of Lecture Notes in Computer Science, pages 167–
183. Springer-Verlag, 1981.

42. C.A. Petri. Fundamentals of a theory of asynchronous information flow. In Proc.
IFIP Congress 62, pages 386–390, Munich, 1962. North-Holland, Amsterdam.

43. G.D. Plotkin. Lambda definability in the full type hierarchy. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 363–373.
Academic Press, 1980.

44. G.D. Plotkin. A structural approach to operational semantics. Technical Report
Technical Report DAIMI FN-19, Computer Science Department, Aarhus Univer-
sity, Aarhus, Denmark, 1981. Reprinted with corrections in J. Log. Algebr. Pro-
gram. 60-61: 17-139 (2004).

45. A. Pnueli. The temporal logic of programs. In 18th IEEE Symposium on Founda-
tions of Computer Science, pages 46–57, October 1977.

46. V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th Ann.
IEEE Symp. on Foundations of Comp. Sci., pages 109–121, October 1976.

47. V.R. Pratt. Process logic. In Proc. 6th Ann. ACM Symposium on Principles of
Programming Languages, pages 93–100, San Antonio, January 1979.

48. V.R. Pratt. On the composition of processes. In Proceedings of the Ninth Annual
ACM Symposium on Principles of Programming Languages, January 1982.

49. V.R. Pratt. Position statement. Circulated at the Panel on Mathematics of Parallel
Processes, chair A.R.G. Milner, IFIP-83, September 1983.

50. V.R. Pratt. The pomset model of parallel processes: Unifying the temporal and the
spatial. In Proc. CMU/SERC Workshop on Analysis of Concurrency, volume 197
of Lecture Notes in Computer Science, pages 180–196, Pittsburgh, 1984. Springer-
Verlag.

51. V.R. Pratt. Some constructions for order-theoretic models of concurrency. In Proc.
Conf. on Logics of Programs, volume 193 of Lecture Notes in Computer Science,
pages 269–283, Brooklyn, 1985. Springer-Verlag.

52. V.R. Pratt. Two-way channel with disconnect. In The Analysis of Concurrent
Systems: Proceedings of a Tutorial and Workshop, volume 207 of Lecture Notes in
Computer Science, pages 110–111. Springer-Verlag, 1985.

53. V.R. Pratt. Modeling concurrency with partial orders. Int. J. of Parallel Program-
ming, 15(1):33–71, February 1986.

54. V.R. Pratt. Modeling concurrency with geometry. In Proc. 18th Ann. ACM Sym-
posium on Principles of Programming Languages, pages 311–322, January 1991.

55. V.R. Pratt. Arithmetic + logic + geometry=concurrency. In Proc. First Latin
American Symposium on Theoretical Informatics, volume 583 of Lecture Notes in
Computer Science, pages 430–447, São Paulo, Brazil, April 1992. Springer-Verlag.

56. V.R. Pratt. The duality of time and information. In Proc. of CONCUR’92, volume
630 of Lecture Notes in Computer Science, pages 237–253, Stonybrook, New York,
August 1992. Springer-Verlag.

57. V.R. Pratt. Event spaces and their linear logic. In AMAST’91: Algebraic Method-
ology and Software Technology, Workshops in Computing, pages 1–23, Iowa City,
1992. Springer-Verlag.

58. V.R. Pratt. Chu spaces: complementarity and uncertainty in rational mechanics.
Technical report, TEMPUS Summer School, Budapest, July 1994. Manuscript
available as http://boole.stanford.edu/pub/bud.pdf.

59. V.R. Pratt. Time and information in sequential and concurrent computation. In
Proc. Theory and Practice of Parallel Programming (TPPP’94), volume 907 of

20

Lecture Notes in Computer Science, pages 1–24, Sendai, Japan, November 1994.
Springer-Verlag.

60. V.R. Pratt. Chu spaces and their interpretation as concurrent objects. In J. van
Leeuwen, editor, Computer Science Today: Recent Trends and Developments, vol-
ume 1000 of Lecture Notes in Computer Science, pages 392–405. Springer-Verlag,
1995.

61. V.R. Pratt. Types as processes, via Chu spaces. In Electronic Notes
in Theoretical Computer Science, volume 7, Santa Margherita, 1997. URL:
http://www.elsevier.nl/locate/entcs/volume7.html, 21 pages.

62. V.R. Pratt. Chu spaces: Notes for school on category theory and applications.
Technical report, University of Coimbra, Coimbra, Portugal, July 1999. Manuscript
available as http://boole.stanford.edu/pub/coimbra.pdf.

63. V.R. Pratt. Higher dimensional automata revisited. Math. Structures in Comp.
Sci., 10:525–548, 2000.

64. V.R. Pratt. Orthocurrence as both interaction and observation. In Proc. Workshop
on Spatial and Temporal Reasoning (ed. R. Rodriguez and F. Anger), IJCAI’01,
Seattle, August 2001.

65. V.R. Pratt. Event-state duality: the enriched case. In Proc. CONCUR’02, Brno,
August 2002.

66. V.R. Pratt. Chu spaces as a semantic bridge between linear logic and mathematics.
Theoretical Computer Science, 294(3):439–471, February 2003. Selected papers
from Linear Logic’96, Tokyo.

67. V.R. Pratt. Transition and cancellation in concurrency and branching time. Math.
Structures in Comp. Sci., special issue on the difference between sequentiality and
concurrency, 13(4):485–529, August 2003.

68. W. Riddle. The Modeling and Analysis of Supervisory Systems. PhD thesis, Com-
puter Science Dept., Stanford University, March 1972. 174 pp.

69. R. V. Rodriguez and F. D. Anger. Branching time via Chu spaces. In Proc.
Workshop on Spatial and Temporal Reasoning (ed. R. Rodriguez and F. Anger),
IJCAI’01, Seattle, August 2001.

70. V. Sassone and G. L. Cattani. Higher-dimensional transition systems. In Proceed-
ings of LICS’96, 1996.

71. M. Shields. Deterministic asynchronous automata. In E.J. Neuhold and
G. Chroust, editors, Formal Models in Programming. Elsevier Science Publishers,
B.V. (North Holland), 1985.

72. Y. Takayama. Extraction of concurrent processes from higher-dimensional au-
tomata. In Proceedings of CAAP’96, pages 72–85, 1996.

73. R. van Glabbeek. Comparative Concurrency Semantics and Refinement of Actions.
PhD thesis, Vrije Universiteit te Amsterdam, May 1990.

74. R. van Glabbeek. Bisimulations for higher dimensional automata. Manuscript
available as http://theory.stanford.edu/~rvg/hda, June 1991.

75. R. van Glabbeek. On the expressiveness of higher dimensional automata. Theo-
retical Computer Science, 356(3):169–194, 2006.

76. G. Winskel. Events in Computation. PhD thesis, Dept. of Computer Science,
University of Edinburgh, 1980.

77. G. Winskel. Event structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, Advances in Petri Nets 1986, volume 255 of Lecture
Notes in Computer Science, Bad-Honnef, September 1986. Springer-Verlag.

78. G. Winskel. An introduction to event structures. In Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, REX’88, volume 354 of
Lecture Notes in Computer Science, Noordwijkerhout, June 1988. Springer-Verlag.

