
Anatomy of the Pentium Bug

Vaughan Pratt∗

Dept. of Computer Science, Stanford University, Stanford, CA 94305-2140
pratt@cs.stanford.edu

May 25, 1995

Abstract

The Pentium computer chip’s division algorithm relies on a table from which five
entries were inadvertently omitted, with the result that 1738 single precision dividend-
divisor pairs yield relative errors whose most significant bit is uniformly distributed from
the 14th to the 23rd (least significant) bit. This corresponds to a rate of one error every
40 billion random single precision divisions. The same general pattern appears at double
precision, with an error rate of one in every 9 billion divisions or 75 minutes of division
time.

These rates assume randomly distributed data. The distribution of the faulty pairs
themselves however is far from random, with the effect that if the data is so nonrandom
as to be just the constant 1, then random calculations started from that constant produce
a division error once every few minutes, and these errors will sometimes propagate many
more steps. A much higher rate yet is obtained when dividing small (< 100) integers
“bruised” by subtracting one millionth, where every 400 divisions will see a relative error
of at least one in a million.

The software engineering implications of the bug include the observations that the
method of exercising reachable components cannot detect reachable components mistak-
enly believed unreachable, and that handchecked proofs build false confidence.

1 Background

The Intel Pentium1 microprocessor makes occasional errors in floating point divisions due to
five missing entries from a lookup table of quotient digits. Relative errors as large as 2−14 are
possible. The errors depend only on the mantissas of the operands and not their exponents.
In the space of all operand pairs, one in nine billion pairs generate an error in the quotient
exceeding the usual double precision errors; of these, one in 40 billion generates an error
exceeding single precision errors.

The error was first noticed within Intel and independently by Prof. Thomas Nicely at
Lynchburg College, Virginia, in the course of an ongoing project to estimate the sum of the
reciprocals of the twin primes, known to exist but not known to much accuracy. Nicely
publicized his discovery at the end of October, and it quickly became a cause célèbre on the
Internet.

In early December 1994 Intel put on their World-Wide Web home page their White Paper
[SB94]. The paper described in broad outline the nature of the bug, and estimated that the
average user would encounter the error once every 27,000 years.

Intel was initially reluctant to replace processors, and attempted to distinguish those with
a genuine need. This proved unreliable and eventually Intel agreed to exchange processors
with no requirement that any test be passed.

∗This work was supported by ONR under grant number N00014-92-J-1974
1Pentium is a trademark of Intel Corporation

1

This paper gives a considerably more detailed account of the bug than can be inferred from
the White Paper. We are indebted to Tim Coe, a floating point hardware designer at Vitesse
Semiconductor for unearthing some of these details. Coe constructed a model of the bug that
predicted most of the errors, and also found much larger errors than Nicely did, most notably
4195835/3145727 which the Pentium computes with a relative error of 2−14. The bug renders
visible many details of the Pentium’s floating point division process that are invisible in the
absence of the bug. In this respect the bug is like a linear accelerator with the errors being
the analogue of scattered particles. We have duplicated Coe’s model and modified it slightly
to account for additional errors, exposing more architectural details.

A workaround for the bug has been developed by Terje Mathisen and Cleve Moler. The
workaround is to detect those divisors at risk of an error and to scale both operands by a
suitable constant to move the operands out of danger before performing the division. With
this precaution the Pentium never performs an erroneous division, not even as an intermediate
step in getting the correct result. These and other aspects of the bug have very recently been
written up [CMMP95].

The natural software engineering question is, what did this bug teach us? For example,
what could have been done differently that would have avoided this bug? The following points
seem to us to be of general interest, not so much for their novelty as for their relevance to the
Pentium bug.

1. An Achilles’ heel for testing. One thinks of testing as being as good as verification if
one could test all possible cases. As a weakened version of this, a comprehensive test should
exercise every device and/or line of code in the system.

The Pentium bug reveals a serious limitation of this approach. There is of course no
data that can exercise unreachable code or table entries. Thus if one believes that the five
“missing” entries are unreachable, then no attempt will be made to produce a test for this
case. Hence missing entries are likely to be overlooked by any fabricated set of test cases.
Randomly generated test cases have a better chance of reaching a supposedly unreachable
part of the system.

2. Manual verification has negative value. In contrast to computer proof checking, manual
proof checking is a notoriously unreliable process. Nevertheless one may feel reassured after
having proved manually that an algorithm works in every detail, and hence attach little
incremental value to a machine-checked proof. This opens the way to $475,000,000 errors,
Intel’s estimate of the cost of the bug.

2 The SRT division algorithm

The SRT2 division algorithm adapts the familiar process of long division to computer hard-
ware, for an arbitrary radix r ≥ 2. On binary computers (as opposed to say decimal), SRT
happens to work particularly well at radix 4, which we now assume.

Division problems involving negative operands may be reduced to divisions involving only
nonnegative operands, via the identities (−y)/x = y/(−x) = −(y/x) and (−y)/(−x) = y/x.
This lets us concentrate on nonnegative operands.

The basis for the radix 4 SRT algorithm is the following navigational strategy permitting a
microbot, Robby, to determine his position to any desired accuracy when placed on the main
diagonal of Figure 1.

2The SRT algorithm is named for its independent inventors Sweeney at IBM, Robertson at the University
of Illinois [Rob58], and Tocher at Imperial College [Toc58].

2

Pi

D

-2 -1 1
3

2
3 1 2

Pi+1
4D

2
3

1
3

−1
3

−2
3

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��������������������������������

��������������������������������

-2
-1

0
1

2
Figure 1. An easily navigated rectangle.

Robby walks around while writing down two nonnegative numbers R and L in radix 4 from
left to right, such that at all times R− L is his current estimate of the horizontal coordinate
of his original position. Before writing the first digit, each number is understood to be zero,
and the first digit is written in the units position, just before the point.

Robby begins by walking north or south so as to reach one of the five steep line segments
(without leaving the rectangle), then writes one digit of each of R and L. One digit is zero,
the other is the absolute value |m| of the segment’s label m, which if nonzero is appended to
R or L according to whether the segment is on the right or left (positive or negative label)
respectively (if m = 0 the choice is of course immaterial). Robby completes this cycle of his
walk by returning to the main diagonal along a horizontal trajectory.

After c such cycles, Robby asserts that his original position was R − L + e/4c where e is
the horizontal coordinate of his current position. The role of the e/4c term is as the error of
his estimate of R− L as his position.

Robby’s assertion is proved by induction as follows. Initially c = 0, R = L = 0, and the
current error is his initial position, verifying his assertion for the basis case of the induction.
Now assume that the assertion holds at cycle c, and suppose that label m is encountered on
the next cycle. It suffices to show that the estimate increases by m/4c and the error decreases
by that amount.

For the former, appending one of m or −m at the c-th position of one of R or L respectively
increases R− L by m/4c in either case, whence R− L increases by m/4c.

For the latter, imagine Robby detours (still traveling vertically) to segment 0 (extended if
necessary) on the way to m. Leaving from (e, e/4), he must arrive at (e, e) on segment 0 due
to its 45 degree slope. Segment 0 being at height m above segment m, he reaches the latter at
the point (e, e−m). The trip back to the main diagonal simply sets the horizontal coordinate
to four time the vertical, so his position at the end of the cycle is (4(e − m), e − m). This
completes cycle c + 1, making his error his new position 4(e − m) divided by 4c+1, namely
(e−m)/4c. This is m/4c less than before, and with this we have completed the proof of the
assertion.

Given a dividend P0 and a divisor D, aligned so that P0 lies in (D/2, 2D), the Pentium
solves the problem of estimating P0/D by the above method. The division process begins by
loading P0 into a register P and initializing register R and L to zero. Before each cycle of the
division P/D corresponds to the horizontal coordinate of the position on the diagonal. The
vertical motion to segment m is accomplished by forming mD (with at most a shift and a
negation) and subtracting it from P , which changes P/D to P/D−m. The horizontal motion
is accomplished by shifting P left two bits to make the new position 4(P/D−m). The writing
of R and L is accomplished with two registers; to append a digit, shift the register left two
bits (the point may be understood as shifting too) and store the digit in the two low order
bits. The Pentium carries out this process in exactly 34 cycles, enough for the 64 bits of an
extended precision mantissa plus the guard, round, and sticky bits needed to perform correct
IEEE rounding. Hence when done, R−L as an estimate of P0/D to within 8

3/434 = 1/(3∗265)
is the desired quotient.

The hard part is to determine m. This is accomplished by computing an approximation
to P/D by sampling a few of the leading bits of P and D to yield P ′ and D′, the chopped
partial remainder and divisor respectively. We then use these to index a table of integer
approximations to P ′/D′ called the PD-plot [Atk68]. According to the White Paper [SB94]
the Pentium chops P down to P ′ = b8P c/8, and chops D down to D′ = b16Dc/16. These

3

0

1

2

3

4

5

-1

-2

-3

-4

-5

16
16

18
16

21
16

24
16

27
16

30
16

32
16

D′

P ′

.

.

.

.

.
0

2

1

0

-1

-2

0

��
��
��
��
��
��
��
��

8D/3

�
�
�
�
�
�
��

5D/3

�
�
�
�
�
�
��

”−1/8

�
�

�
�

�
�

4D/3

�
�

�
��

2D/3

�
�

�
��

”−1/8

�����D/3

PPPPP−D/3
PPPPP”−1/8Q

Q
Q

QQ−2D/3
S

S
S

S
S
S−4D/3

S
S

S
S

S
S

”−1/8

T
T
T
T
T
T
TT−5D/3

LL
LL
LL
LL
LL
LL
LL
LL−8D/3

LL
LL
LL
LL
LL
LL
LL
LL

”−1/8

Figure 2.
The PD-plot

approximations correspond to sampling the first 7 significant bits of P , the first bit being the
sign bit and the binary point following the first four bits, and to sampling the first 5 significant
bits of D, this being the number of bits in an integer in [16, 32).

Since D is in [1, 2), it follows that P is in [−16/3, 16/3] (consider D near 2), whence b8P c
ranges from b−128/3c = −43 to b128/3c = 42, a total of 86 distinct values. And for D in
[1, 2), b16Dc ranges from 16 to 31, a total of 16 distinct values.

Coe has conjectured to us that the Pentium approximates D more coarsely than this by
taking D′ = 3b16D/3c/16, on the ground that it works and makes the table nearly one-third
the size. This has the effect of coalescing the 16 samples in twos and threes to form six
groups, corresponding to the six possible values of b16D/3c when D ∈ [1, 2). We assume
Coe’s conjecture for the sequel.

The Pentium’s PD-plot is depicted in Figure 2 as an 89× 6 array of cells (this may be one
or two more rows than are physically present in the Pentium).

The P and D dimensions are both drawn at a scale of one unit per 15mm. Cells hold
integers in [−2, 2], and are grouped into homogeneous regions in each of which all cells contain
the same value. (The cells would reasonably be coded with two bits, with the sign of the entries
implicit and inferrable from that of P ′.) The regions are delimited in the diagram by the bold
jagged lines, called thresholds, and the common value in the cells of a region is given by the
large boldface number in the center of that region.

The PD-plot can be viewed simultaneously as a discrete physical table indexed by P ′ and
D′ and as a continuum (to within extended precision) indexed by P and D. This permits the
chopping process to be visualized as taking place in the diagram: chopping P moves it to the
lower edge of the containing cell while chopping D moves it to the left edge.

The crucial property is that the m obtained with P ′ and D′ from the table is such that P lies
in the interval [(m−2/3)D, (m+2/3)D]. These five intervals determine 10 boundaries, which
are depicted in the figure as the lines 8D/3 and so on (ignore for now the lower line of any
pair of parallel lines 1/8 apart). The crucial fact proving this property is that the thresholds
lie in the intersection of their corresponding intervals. The Pentium’s PD-plot illustrates this
nicely with five correct examples and one incorrect one, the top one, which is the bug.

For those locations corresponding to no possible P and D one arbitrarily sets m to whatever
minimizes power consumption, apparently m = 0.

Complicating all this greatly is that the number P is represented in the Pentium in carry-
save form, namely as a pair S, C of numbers satisfying S + C = P . This representation has
the property that a quantity such as the divisor can be added or subtracted in constant time
independent of the word length, significant for 68-bit words.

Initially S is set to P0 and C to 0. To add D to P , form S = S ⊕ C ⊕ D (exclusive or),
C = (S∧C)∨ (C ∧D)∨ (D∧S) in parallel, that is, both right hand sides are evaluated before
performing either assignment to the left hand side. Then shift C left one place. To subtract
D, add the logical complement of D, that is, −D− 1, as above. Then compensate for the −1
by setting to 1 the low order bit of C, which had been cleared to 0 by the shift.

The underlying principle is that these bit-vector operations implement a full adder at every
bit position. A full adder has three inputs, and its two outputs, called sum and carry, record
as a two-bit binary numeral the number of 1’s on its inputs. The sum bits form S and the
carry bits C.

This complicates the computation of m. We now compute P ′ as (b8Sc + b8Cc)/8. Pre-
viously P ′ ≤ P < P ′ + 1/8. The redundant carry-save representation weakens this to
P ′ ≤ P < P ′ + 1/4. A simple yet rigorously justifiable way of accommodating the addi-
tional 1/8 is to lower by 1/8 every boundary serving to bound a threshold from above but not
from below. All but the uppermost threshold have such boundaries, leading to the five pairs
of parallel lines in Figure 2. Observe that even after so narrowing the regions of uncertainty
the thresholds still lie completely within those regions, the crucial correctness property for the
PD-plot.

4

It should be pointed out that the technique of accumulating the positive and negative
contributions to the quotient in separate registers R and L constitutes a redundant represen-
tation of the quotient serving the same purpose, namely to avoid having to wait for carries to
propagate.

The thresholds of Figure 2 cannot be inferred directly from the Intel White Paper’s expla-
nation. However using the bug described below as a “linear accelerator” it becomes possible
to test whether any other settings of these thresholds predicts the errors experienced by the
Pentium. With the exception of the uppermost threshold, which is low by 1 in the Pentium,
all other settings of these thresholds turn out to generate errors in the model that are incom-
patible with the Pentium’s observed behavior. In making these measurements one can also
measure the length of the P register as having at least 68 bits counting the sign bit. It is not
possible however to use it to test Coe’s hypothesis that there are only six “chopped” divisors
D′; the bug cannot distinguish between Coe’s hypothesis and the 16 chopped divisors shown
in the White Paper.

3 Nature of the bug

The bug is that the top threshold in Figure 2 is set one position too low. This sets to 0 five
accessible entries in the table that should have been 2 (the sixth can remain zero because
D < 2), dotted in Figure 2. The White Paper attributes the error to a script that incorrectly
copied values; one is nevertheless tempted to wonder whether the rule for lowering thresholds
was applied to the 8D/3 boundary, which would be an incorrect application because that
boundary is serving to bound a threshold from below.

The effect of taking the quotient digit to be 0 when it should be 2 can be understood by
first considering P to be the boundary case 8D/3 and D to be one of the boundary cases
18/16, 21/16, 24/16, 27/16, and 30/16. While these cases just miss the erroneous entries,
there are cases that hit these entries that approach these boundary cases arbitrarily closely.
The statistical properties of carry-save arithmetic are such that to reach a missing entry D
must lie in [T − 2−10, T) where 16T is an integer multiple of 3. Since D ∈ [1, 2) there are only
five possible such T ’s, namely 16T = 18, 21, 24, 27, or 30.

For D = 18/16, P = 8/3 · 18/16 = 3. This quantity should have been reduced to 3/4 by
subtraction of 2D = 9/4. Instead nothing is subtracted and then P is scaled by 4 to become
12. Because the sign bit has weight 8 here, 12 is read as −4. But this is below the table’s
lower limit, at D = 18/16, of P = −8/3 · 18/16 = −3. Hence a second subtraction is skipped
and P is further scaled to −16, which is mistaken for 0. We have now lost the whole of P ,
which was 3. Simply subtracting 3 from P before these two cycles would have yielded the
exact same sequence of choices of quotient digit. This therefore gives a clean characterization
of the error in this boundary case: it is equivalent to subtracting 3, scaled by a suitable power
of 2, from the original dividend. It follows that y − (y/x)x will be 3 so scaled, to within the
precision normally achieved by division.

For D = 21/16, P = 8/3 · 21/16 = 7/2. This quantity should have been reduced to 7/8
then scaled to 7/2. Instead it is scaled to 14 and then mistaken for −2. This puts it within
P ’s safe operating range. Hence the effect is the same as if we had started with P = −1/2.
But this represents a loss of 4 from P . Hence y − (y/x)x will be a power of two. Continuing
these calculations for the remaining three boundary cases of D, we find a similar loss of 4 in
every case.

A perturbation of D and P sufficiently small that the missing table entry is still hit will
not be sufficient to change the gross loss of bits from the high end of the partial remainder.
Hence y− (y/x)x will continue to be 3 times a power of 2 when D is near 18/16 and a power
of 2 for other D.

5

Table 1: Number of Pentium Errors, by precision of operands and quotient

Operand Quotient Precision
Precision Single Double Extended TOTAL

Single 1738 7863 9915 7.037× 1013

Double 5.009× 1020 2.266× 1021 2.858× 1021 2.028× 1031

Extended 2.101× 1027 9.502× 1027 1.199× 1028 8.507× 1037

ERROR RATE 2.470× 10−11 1.117× 10−10 1.409× 10−10

4 Rate of Errors

The highly nonuniform distribution of erroneous operands makes it exceedingly difficult to
predict the error rate of any given application. One approach is to describe the general
characteristics of the bug and to let the user determine if possible how those characteristics
interact with those of the application at hand.

We list here a table of the number of errors caused by the bug, as a function of the
precision of the operands and the quotient. The operand precision affects mainly the number
of operands defining the total population from which the errors are sampled.

The quotient precision affects the number of errors of a given magnitude. The 1738 single
precision quotient errors are a subset of the 7863 double precision errors, and the latter are
in turn a subset of the 9915 extended precision errors.

The errors turn out to be uniformly distributed with regard to the cycle on which they
happen (and hence with regard to the logarithm (exponent) of the corresponding relative
error), starting with the first cycle at which an error is possible, namely cycle 9, and continuing
on to cycle 34, the last cycle of the Pentium division algorithm. The relative number of errors
in each column of the above table can be roughly predicted given the number of bits of
mantissa for each, namely 23, 52, and 63 (not counting the most significant bit in any of these
cases). The following table classifies all 9915 errors tabulated above; we have clearly missed
some 600 errors at cycles 33 and 34, whose small size makes them hard to distinguish from
normal truncation error.

5 Random Computation

We may think of the uniform-distribution model as amounting to a program consisting of just
the instruction FDIV, with random data. A natural counterpoint to this is a single datum,
for simplicity the number 1, operated on with random instructions.

To explore this dual point of view we initialized a database to contain just the number
1. We then randomly added, subtracted, multiplied, and divided numbers, some from this
database, some being more copies of the number 1, and put the results into the database.
When the database reached its capacity of 750,000 numbers, further incoming numbers dis-
placed existing numbers removed from randomly selected locations in the database.

To prevent “database meltdown” through cumulative error, we kept track of how many
times a number had been “put through the mill” and discarded numbers that had been
operated on more than 100 times. More precisely, the depth of incoming 1’s was taken to be
0, and the depth of constructed numbers was taken to be 1 plus the maximum depth of its
operands. At depths of 200, cumulative errors on the order of 10−6 were produced and depth
300 resulted in “total meltdown.” Limiting the depth to 100 largely avoided cumulative errors
greater than 10−12.

To simulate the typed discipline of a real database we assumed that the 1’s were counts
of kumquats, and distinguished kumquats, square kumquats, etc. Types were limited to
kumquati for i ranging from −3 to 3, and operations that added kumquats to square kumquats

6

Table 2: Classification of errors

18 21 24 27 30 Total
9 96 35 16 12 16 175

10 128 43 95 28 26 320
11 108 52 96 56 102 414
12 121 46 88 45 94 394
13 139 51 99 51 95 435
14 140 54 91 45 95 425
15 128 54 109 52 97 440
16 139 52 99 50 86 426
17 136 54 104 47 98 439
18 138 54 102 47 91 432
19 134 57 104 37 85 417
20 140 46 103 44 83 416
21 127 50 101 38 89 405
22 132 54 100 45 68 399
23 140 49 95 43 92 419
24 138 53 101 49 89 430
25 134 50 99 46 91 420
26 131 53 95 42 82 403
27 132 48 94 41 94 409
28 134 51 95 40 86 406
29 137 50 92 46 93 418
30 134 55 100 39 85 413
31 128 54 102 41 80 405
32 135 53 96 40 83 407
33 0 48 81 46 73 248
34 0 0 0 0 0 0

Total 3149 1266 2357 1070 2073 9915

7

or produced illegal types were discarded.
Two databases were maintained, clean and dirty. The difference was that divisions des-

tined for the clean database were computed using the Mathisen-Moler bug workaround. Any
discrepancies larger than 10−16 between the two databases were logged, giving the time (in
cycles and ticks), clean and dirty values, relative error, depth, type, and cause of the discrep-
ancy as a number. The first appearance of cause number n indicates the n-th FDIV error
to occur during the computation. Subsequent appearances of n indicate relative errors larger
than 10−16 resulting from operating on a number influenced by the n-th FDIV error.

The output from a typical run is given in Table 3.
The time is given in cycles consisting of 750,000 ticks, a tick being the production of one

number passing all tests for membership in the database. The above table records all errors
logged in the first 400 cycles. It is particularly noteworthy that no errors at all were logged
during the second half of those 400 cycles. But then at cycle 402 the 13th FDIV error occurred,
and half a cycle later combined with one of the offspring of the 5th error. A flurry of errors
attributed to the 5th and 7th division errors then started up, and for the next thirty cycles
a storm ensued reaching rates of up to ten errors per second. Gradually the storm calmed
down, and at cycle 430, 1700 errors later, died out altogether. In all that time not a single
fresh FDIV error had been logged, and the 14th FDIV error did not occur until cycle 512.

However a total of 12 FDIV errors had occurred during the 300 million ticks comprising the
first 400 cycles, 50 million of which were divisions. This corresponds to an error rate of one in
4 million. This is a thousand times greater than the rate predicted by the uniform-distribution
model.

Of greater concern is the tendency of errors to propagate through a database. This example
graphically illustrates the chaotic nature of this propagation: errors may have one or two
descendants over a very long period, but then errors that one assumes must have been flushed
completely out of the system by now can suddenly reappear like the creature from Aliens and
wreak havoc. When the 1700 indirectly caused errors are added to the 12 direct errors, the
total error rate rises to one in 30,000 divisions!

On the domain of small bruised integers the error rate rises several more orders of magni-
tude. Choose two integers from 1 to 100 with equal probability, subtract 10−6 from each, and
divide one by the other. The probability of encountering a cycle 10 error (the second largest
possible) is 0.08%, for a cycle 11 error it is 0.15%, and for cycle 12, 0.17%.

A good example of this is given by 4.999999/14.999999. This should be 0.33333329, but
on the Pentium it turns out to be 0.333329, a cycle 10 error.

References

[Atk68] D.E. Atkins. Higher-radix division using estimates of the divisor and partial
remainders. IEEE Transactions on Computers, C-17(10), October 1968.

[CMMP95] T. Coe, T. Mathisen, C. Moler, and V. Pratt. Computational aspects of the
Pentium affair. IEEE J. Computational Sci. and Eng., March 1995.

[Rob58] J.E. Robertson. A new class of digital division methods. IRE Transactions on
Electronic Computers, EC-7:218–222, September 1958.

[SB94] H.P. Sharangpani and M.L. Barton. Statistical analysis of floating point
flaw in the PentiumTM processor (1994). Available on World-Wide Web as
http://www.intel.com/product/pentium/white11/index.html, November 1994.

[Toc58] T.D. Tocher. Techniques of multiplication and division for binary computers.
Quarterly J. of Applied Math, 2:364–384, 1958.

8

Table 3: Output from a typical run

__TIME__ ________DATA_______
Cycle:Tick Clean Dirty Error Depth Type Cause

17:497981 0.16666668154 0.16666667905 1.5e-08 58 -1 1
17:616863 5.9999994647 5.9999995541 -1.5e-08 59 2 1
17:665562 -8561.0008917 -8561.0008917 -2.9e-13 59 -1 1
37:257439 -0.6666667262 -0.66666671626 1.5e-08 99 0 2
37:527542 -0.6666667262 -0.66666671626 1.5e-08 100 1 2
40:656817 0.83333330718 0.83333203561 1.5e-06 95 -2 3
41:702595 0.16666666668 0.16666666668 1.5e-11 98 -2 4
42:22138 0.16666666668 0.16666666668 1.5e-11 99 -3 4
42:116157 0.33333333336 0.33333333336 1.5e-11 100 0 4
44:669106 -0.33333333345 -0.33333333343 5.8e-11 90 0 5
45:135182 1.3082215759 1.3082215758 5.8e-11 99 3 5
45:181839 -1.3333332431 -1.3333332431 -1.5e-11 100 0 5
45:388059 1.3082215759 1.3082215758 5.8e-11 100 2 5
46:344255 -0.58333332942 -0.58333301153 5.4e-07 98 2 6
46:519308 -61017.845279 -61017.845279 -1.3e-15 100 3 5
46:740247 -0.58333332942 -0.58333301153 5.4e-07 99 0 6
47:138389 1.2215684139 1.2215684138 6.2e-11 100 3 5
47:275623 -0.497968866 -0.49796854811 6.4e-07 100 0 6
48:372879 -1.833333333 -1.8333332535 4.3e-08 99 0 7
51:277507 -0.66666690447 -0.66666686473 6e-08 92 1 8
94:659253 0.1666666669 0.16666666686 2.3e-10 98 -1 9
95:17753 0.1666666669 0.16666666686 2.3e-10 99 0 5
95:57593 -5.1666666669 -5.1666666669 7.5e-12 100 0 7
116:611163 -0.45833333333 -0.45833333333 6.6e-13 39 2 10
138:230655 -228378.66667 -228378.66667 7e-13 59 1 11
138:268063 -4.3786926e-06 -4.3786926e-06 -7e-13 60 0 7
138:502339 -228377.66667 -228377.66667 7e-13 60 1 7
138:521008 -4.3787118e-06 -4.3787118e-06 -7e-13 61 0 7
195:80147 3.6666666667 3.6666666667 6.6e-13 17 -1 12
195:103551 3.6666666667 3.6666666667 6.6e-13 18 0 12
195:114214 0.60604609328 0.60604609328 -6.6e-13 100 0 5
195:358813 -21.853931025 -21.853931025 6.6e-13 76 -2 7
196:231884 -22.853931025 -22.853931025 6.3e-13 77 -2 7

9

