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The generic control paradigm
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Adaptation to fishery management (clockwise):

Plant The fishery

Format Reduce all fishery data to the form expected by Control

Control The abstract management strategy (PID, MPC, HPC, etc.)

Implement Convert abstract recommendation to concrete quotas,
tasks, etc.
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Harmonic Predictive Control

Fishery
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STOCK PARAMETERS
stock s (position)
rate v (slope)
acc. a (curvature)
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HPC OUTPUT
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Target yield y
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MANAGER’S PARAMETERS (cf PID’s KP ,KI ,KD)

Aspects of HPC, I:

Parabolize Reduce all fishery data to a parabolic trajectory

Implement Convert third derivative (jerk j) to concrete quotas, tasks,
etc.
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The HPC algorithm

HPC “continually” computes two auxiliary variables, Proximity p and
Headroom h, and outputs their product ph as Jerk j .

In the following [x, y] denotes a selection conditioned on whether the
stock is collapsing (v < 0) or recovering (v > 0).

p = v/([e, y ]− s); (Proximity)

h = [m − a,−(3a + 2vp)]; (Headroom)

j = ph; (Jerk)

This algorithm ”bends” a parabola into a [sinusoid, gaussian].

When collapsing, as the stock s approaches extinction e, proximity p
increases. But as acceleration approaches its allowed maximum m,
headroom h decreases. If m is sufficiently large stock s will turn around
before it reaches extinction e.

Recovery is more mysterious.
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Example behavior
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Features of HPC

Predictive At every iteration HPC forgets its history and recalculates
jerk j from scratch based only on the Stock Parameters
s, v , a which vary at every iteration and the Manager’s
Parameters e,m, y which change more slowly if at all.

Bang-bang It follows a sinusoidal trajectory during collapse and
switches abruptly to a gaussian trajectory during recovery.

C2-continuous (Gentle) No curvature discontinuities. (Typical bang-bang
controllers are not even C1-continuous.)

As simple as PID Both have three stock parameters and three manager’s
parameters, and the arithmetic is of comparable complexity.

Nonlinear control Whereas PID is a linear combination of P, I ,D, HPC is
a nonlinear (but rational) function of its parameters.

Optimal Stock s reaches extinction e if and only if acceleration a
reaches its maximum m. But even when s drops below e
HPC wishfully predicts s will eventually recover! (But may
be wrong about that.)
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Handling noise and delay

Formatting should aim to produce stock parameters that vary smoothly.

One way to smooth out noise is with a Kalman filter. Given the coarse
sampling typical of fisheries, Kasper Kristensen’s TMB as presented
yesterday by Anders Nielsen should be a significant improvement. (Is it
non-Bayesian as claimed? Let the statisticians argue that one.)

Delays in getting the stock parameters to the controller may lead to
controller output that would have been useful if applied earlier but that
may need to be quite different now.

One way to deal with this is to run the controller in ”prediction mode”
up to the present time assuming no further disturbances and use that j
as the output. As more current data arrives gradually modify the
predicted trajectory to bring it continuously into agreement with what
the more current data indicates it should be.
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Why ”Harmonic”?

In both modes the trajectory has the general harmonic form
s = <(eβ(t)) + s0 where β(t) is a polynomial and s0 is an offset.

While collapsing the trajectory is sinusoidal:
β(t) = β0 + β1t is a complex linear function of time where

β0 = ln(r) + ıϕ is complex and gives log amplitude and phase
β1 = ıω is imaginary and gives the frequency
s0 is a real satisfying s0 > e. It contributes the fourth DOF.

Hence four parameters: frequency ω, amplitude r , phase ϕ, offset s0.

While recovering, the trajectory is Gaussian:
β(t) = β0 − 1

2((t − β1)/β2)2 is a real quadratic function of time, where

β0 = ln(r) is log amplitude as in avoid mode
β1 = t0 is central time (”mean”), corresponding to ϕ
β2 = 1/ω is angular period (”std dev”), ω as in avoid mode
s0 = y , a manager’s parameter. The three parameters β0, β1, β2
constitute the three DOFs of the gaussian.
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Derivation of the algorithm’s formulas

Sinusoids and gaussians are solutions of differential equations,
respectively second order and first order.

Taking the derivative of the sinusoid’s equation yields the formula
j = (v/(e − s))(m − a) = ph.

Taking the derivative of the gaussian’s equation twice yields the formula
j = (v/(y − s))(−3a− vp) = ph.

Problem: Unstable when s near [e, y ] (p diverges).

Solution: Do nothing in that case. Define “near” as |[e, y ]− s| < |v ∗ dt|
(no division needed).

Paper (for a very different audience) at
http://boole.stanford.edu/pub/hpc.pdf.
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