
Translation of English
into Logical Expressions

V.R. Pratt

A thesis submitted for the degree of

Master of Science

The Basser Computing Department

within the University of Sydney

August 1969

Table of Contents

Abstract i

Acknowledgements ii

Introduction iii

Chapter 1 Logical Theory 1

1.1 Syllogisms 1

1.2 Lewis Carroll's Syllogisms 4

1.3 Evolution of a Decision Method

for Syllogisms 5

1.4 Rigorous Justification 12

Chapter 2 Syntactic Theory 15

2.1 Models of English 15

2.2 Phrase-structure Systems 16

2.3 Transformational Systems 21

Chapter 3 Translation Systems 30

3.1 A Demonstration -

The Structure Fallacy 30

3.2 Generalities 39

3.3 Grammars 41

3.4 Finite-state Grammars 42

3.5 Context-free Grammars 44

3.6 Problems with CF Grammars 48

3.7 Indexed Grammars 55

3.8 Generative Identity 66

3.9 Universal Translation Algorithm 72

3.10 Applications 78

3.11 Implications 96

3.12 Summary 101

Chapter 4 Recognition 105

4.1 Introduction 105

4.2 Younger's Algorithm 109

4.3 Recognition and Ambiguity 116

4.4 Details of Indexed Recognition 121

Chapter 5 The Program 124

5.1 Translation Theory 124

5.2 Relation to the Contingency

Table 134

5.3 The Closed-Class Dictionary 135

5.4 Implementation of Younger's

Algorithm 138

5.5 Ambiguity in Practice 140

5.6 Outline of Program 141

5.7 Statistics 142

5.8 Envisaged Extensions 144

5.9 Conclusion 146

Appendix

Bibliography

i

Abstract

A computer program to solve Lewis Carroll's

syllogisms is considered. A logical decision method is

evolved for dealing with syllogisms expressed as

conjunctive normal form (CNF) propositions. For the

translation of English into CNF, a theory of transla-

tion is presented. A computer program is exhibited

which explicitly embodies each feature of the theory,

and produces CNF translations of Carroll's syllogisms.

It is claimed that the translation theory is the most

significant result of the research. A translation

approach to phrase-structure grammars enables their

practical value to be studied more closely. It is

shown that the position of phrase-structure grammars is

stronger than that of transformational grammars in a

utilitarian theory, as distinct from an explanatory

theory.

ii

Acknowledgements

- Dr. J.B. Hext, for supervising this work, for

suggesting the idea of Carroll
7
s syllogisms and for

providing stimulating criticism.

- The Basser Computing Department, for making available

a PDP-8 computer for the development of a program

described in this thesis, and for providing financial

assistance in the form of payment for casual work.

- My wife Margot, for invaluable help in discussing

theories presented here, and for many hours of time

spent typing this thesis.

- Dr. Max Clowes, formerly of C.S.I.R.O Division of

Computing Research, Canberra, for arousing my interest

in transformational approaches to English.

- Associates of Max, including Robin Stanton, Richard

Zatorski, Don Langridge and Chris Barter, all of whose

ideas have influenced my thinking.

- Dr, Daniel Bobrow, for encouraging me to write the

program, and for helpful advice.

iii

Introduction

Solving syllogisms is a practical goal, and

practical means suggest themselves readily. At the

outset it seemed obvious that a context-free (CP) grammar

would be adequate to help determine the right places to

segment English premises into logical terms; so a

computer program that did exactly that was written. It

worked Just as predicted: not perfectly, but well. The

most annoying feature of the grammar was the rapid

increase in the number of rules when trying to cater for

peculiarities of negative sentences.

To demonstrate that a large computer was not

needed, a PDP-8 with 4096 12-bit words was chosen. A

teletype was the only peripheral used. These computers

currently cost as little as eight thousand dollars. The

program could segment an English sentence and find a

corresponding logical expression in 1 second, for a 10

word sentence. If it were ambiguous, each additional

formula would take an extra 0.2 seconds to calculate.

(This was not very interesting, as it took 10 seconds to

output each one.) The program used a mixture of matrix

and list-processing

iv

techniques.

This was all done despite criticism of CF

grammars as a model of English, by those who put

forward transformational grammars as a bettor model.

The attack has been, from some quarters, most vigorous,

and one cannot help feeling that, if the attack is

Justified, then either the program should not work, or

else the programmer has unsuspectingly embodied the

esence of a transformational grammar in the program.

To help analyze this question, one takes the

program, decides which features cannot possibly be done

without, and endeavours to find a theory of why it is

just those features that make it work. Such a process

usually yields two or more possible theories, so one

thinks up a much more difficult problem (as a

Gedankenexperiment), to weed out theories that are not

likely to survive long.

This was done, and the final theory, while

anything but perfect, was felt to be more satisfying

(and useful) than transformational theory.

v

The real problem with CF grammars seems to be the

low capacity of non-terminal symbols as communication

channels. A recent phrase-structure development

(indexed grammar) was invoiced to deal with this problem

(for the Gedankenexperiment, not the syllogism

solver). The theory handled these just as well as CF

grammars, despite their greater power.

The hardest single problem that could be thought

of as being a stumbling-block for CF grammars seemed to

be the “respectively" problem. There are

two versions of this problem: how do you tell that

“Jim and Jack like Mary respectively” is

ungrammatical; and what does one do with “Jim and Jack

like Mary and Jane respectively”? By itself, an

indexed grammar can answer the first question. The

second question is much harder. We maintain that the

transformational school would attempt to produce its

deep structure. For reasons that will become clear

later, it is our contention that it is sufficient to

produce “Jim likes Mary and Jack likes Jane” to

demonstrate that the problem has been solved. The

solution is given in section 3.10.

vi

In solving this problem, we made it more

difficult to criticize phrase-structure grammars on

the grounds that they simply could not produce such

sentences. (Such a criticism is called '
v
weak descrip-

tive adequacy” by Chomsky.)

Another ground for criticism is that phrase-

structure grammars assign too much structure. In

translating “big bad dog” into “x = big y = bad z =

dog: x.y.z.”, no structure whatsoever was encountered

during the translation. Thus a much more valid

criticism would appear to be that they assign no struc-

ture at all. Since not structures but logical formulae

were our objectives, it was not clear how either

criticism was related to the use of a CF grammar to do

the job. It turned out, once translation theory was

formulated, that the criticism was entirely fallacious,

and that one could translate into logical formulae,

structural descriptions or even bad French, with the

one theory. The status of a structural description is

that of a sentence in a structural description

language. THhe assignment of structure was entirely

subject to the choice of a suitable structural descrip-

tion grammar. This is argued more rigorously in

section 3.1.

vii

The claim above that no structure whatsoever was

encountered during the translation is quite accurate.

When the program was being designed, there was no thought of

descrediting any approach. The problem was simply, how

does one make use of a general-purpose CP grammar, that

may be expected to have a non-terminal vocabulary of about

100 symbols, in 4000 words of memory? There was no room

for complete structural descriptions.

1

Chapter 1. Logical Theory

1.1 Syllogisms

A syllogism is a pair of sentences called the premises,

from which a single sentence, the conclusion, is to be

drawn: A normal-form syllogism is one for which each

sentence is^ono of four normal-form premises. These, and

some of their short-hand forms, are summarized thus:

Normal-form Traditional Lower Predicate

abbreviation Calculus

F1: All X are Y XaY (x)(X(x)Y(x))

F2: No X are Y XeY -(Ǝx)(X(x) .Y(x))

F3: Some X are Y XiY (Ǝx)(X(x).Y(x))

F4: Some X are not Y XoY (Ǝx)(X(x).-Y(x))

(The reader with an eye for symmetry may

prefer for F4, -(x)(X(x)->Y(x)), the negation of F1. The

other, while logically equivalent, is closer to the

“
spirit" of the English.)

2

X and Y traditionally stand for noun phrases (thus

making the normal-form premises grammatical), (x) is an

abbreviation for “for each object in the universe, to

which, for the remainder of this proposition (logical

assertion), we give the name x...”; this means that the

following assertion is true of any object, and this

object is identified within the assertion as x. More

commonly, (x) is read as “for all x...”. Similarly

(Ǝx) is read as “there exists an x such that ...". x is

called a quantified variable, and (x) and (Ǝx) are

quantifiers. “-“ means “it is not the case that...”.

“” means implies , the period means “and”, and the

symbol v (not used above) means “and/or” (called

“or” from here on). X(x) means x is X 3 similarly

for Y(x). Thus, for example, the Lower Predicate

Calculus (LPC) form of F2 is to be read as
“
it is not the

case that there exists an x such that x is X and x is

Y".

Some examples of syllogisms (with their

conclusions) are

w > '«9 <*»

3

XaY XaY X1Y YaZ YeZ YaZ XaZ XeZ

XlZ

For the moment, we appeal to the

reader's Intuition to verify that these conclusifns

agree with experiment. The traditional set of rules,

called syllogistic Inference, for drawing non-

trivial conclusions, will shortly be seen not to

concern us.

An obvious extension to a syllogism is the

addition of extra premises. Strictly, such an

extended syllogism is called a sorites, but here we

shall relax our usage of syllogism to embrace

sorites. Examples are

XaY XaY X1Y YaZ YeZ WaZ ZaW

WaZ YeZ XaW XeW

VaW

XoW

XaY

ZeY

XeZ

4

The usual method of solving sorites is to take an

appropriate pair of premises to form a syllogism, and

then combine the conclusion with another premise,

proceeding until the premises are exhausted. It will be

noted from the third example that sorites need not be

arranged in an order that facilitates this pairing.

A universal premise is one which refers to every

instance of its subject. Thus Fj and F^ alone are

universal.

1.2 Lewis Carroll's Syllogisms

These form a set of 60 sorites, ranging in size

from three to ten premises. A total of 226 sentences

are involved. They are of interest not so much from

the logic-solving viewpoint as from the linguistic, as

their form departs radically from the simple normal-

form above. Extreme cases include *No discussions in

our debating-club are likely to rouse the British

Lion, so long as they are checked when they become too

noisy." ,and *I never have any really ridiculous idea,

that I do not at

5

once refer to my solicitor".

All of Carroll's premises are universal, This

has the advantage of simplifying the logic aspects,

allowing more attention to be paid to the language

problems, in particular to that of finding an

equivalent restatement of each premise that permits

the application of simple rules.

1.3 Evolution of a Decision Method for Syllogisms

Although it is possible in the case of Carroll* s

premises to reduce each to a form "all X are Y*or
xx
No

X are Y , it can require considerable ingenuity. In

addition, a ^universe is often specified. The third

of Carroll
/
s syllogisms, for example, mentions *

potatoes of mine" in two premises, varying it in

another premise to "my potatoes*. In Carroll
7
s

formulation of the problem, * my potatoes" is given

explicitly, at the end of the syllogism, as the

universe for the syllogism;; thus it may be neglected

during the inference process,

6

to be restored in the conclusion none of my

potatoes in this dish are new

It was decided that the
v
*helps given by

Carroll at the end of each of his syllogisms, which

specified which segments (terms) of each premise

were relevant, and which ones were universes, would

not be given to the computer. As the segmentation

problem is the hardest, it is by the same token the

most interesting. That the computer must therefore

determine the universe, if any, is even more

interesting.

The Lower Predicate Calculus forms were given

above, as these are the forms most often used by

modern logicians when considering decision methods.

This is partly due to the versatility of LPC (many

tortuous English propositions are readily trans-

lated into LPC) and partly to the established deci-

sion methods in the Propositional Calculus (PC),

which help in evaluating LPC expressions. In the

decision method to be described, it will appear

that little reference to LPC is made, and that we

could have assumed the PC in the first place.

7

However, translation directly into PC often appears

unconvincing, and in these circumstances, a trans-

lation that considers the equivalent LPC proposition

lends plausibility. Plausibility is the only

criterion for translation into logic; the "correct*

translation can often be open to interpretation and

argument, as we shall see in computer-generated

translations.

With this in mind, we quote without proof that -

fex)(F) = (x)(-F) where F is any formula. Thus Fj

becomes (x)(-(X(x).Y(x))), or (x)(X(x)-Y(x)).

Abstracting the distinct features of F,

and Ffc, we are left with a briefer notation:

F, : X-»Y F2 : X-»-Y.

This notation, though it closely resembles

that of PC, is derived from an LPC form, and we will

argue in the LPC notation when there is a danger of

confusion, namely, when two quantifying variables

are involved, e.g., in two separate sentences.

8

It often happens that the subject or the

predicate of a premise Is itself a combination of

logical terms, either their conjunction ("and'') or

their disjunction ("or"). This may arise because of

the inclusion of the universe term, or because the

combination need not be separated for the solution of

the syllogism, or because a term in the subject is

repeated (redundantly) in the predicate. Although it

does not happen in Carroll' s syllogisms, we may also

have examples such as, *A11 dogs are furry mammalsj

all mammals are animals , where we want to deduce

that all dogs are animals, ignoring the furry

question.

It is possible, but messy, to use some

theorems and/or axioms in PC. In this case, we

call the following propositions axioms.

X1. ((A-*B). (B-K3))->(A-K3) (transitivity)

X2. A.B-*A (abstraction)

X3. (A+B) = (A-»(A.B)) (multiplication by the left)

X4. A.B = B.A and AvB = BvA (commutativity)

for a general purpose conclusion drawer. For

9

example, rephrase the problem immediately above as

(D*F.M) and (M->A). In LPC, this means

w
for all x, if x is a dog, then x is furry and x is

a mammal , and for all y, if y is a mammal then y

is an animal . Now by X2, X4: F.M-*M ByX1,

(D+F.M).(F.M*M)-*(I>»M) By X2, ((D^M). (M-*A))-

>(EH>A).

Thus, by careful choice of axioms we reach

the required conclusion.

X3 would be used to cope with universes, e.g.,

the dogs in

v\ *t

All red dogs are big^ all big dogs are fierce :

(R.IHB) (P1) and (B.IHF) (P2) Now R.D-»R.D.B

(X3 and P1) R.D.B+B.D (X2) B.I>*F (P2)

R.D->F (XI twice, on last 3 results)

that is,
vX
red dogs are fierce".

A nice feature of this method is that it deals

automatically with the universe term;; that is,

10

we did not have to discard it before we started the

inference process.

These two examples demonstrate that syllogism-

solving competence of a high order can be achieved

using only fcagee axioms. However, a simple

methodological approach is not immediately apparent.

Further, to deal with X->-Y we must add X5: (X-»-

Y) = (Y-*-X).

Otherwise, we could not draw the right conclusion

from
V
A11 elephants are animalsj no plants are

animals''.

An unpromising (at first sight) represen-

tation of PC expressions is that called Conjunctive

Normal Form (CNF). A formula is the conjunction

(the logical
x
*and") of a set of disjunctions (the

logical
xX
or") of a set of (possibly negated)

variables, e.g., (-Av-BvCvF).(-BvE).(Dv-E). To

express A-*B in this form we write (-AvB). It would

appear that we have lost the transitivity theorem,

X1, by ignoring the possibility of the ■* symbol in

the new form. On the other hand, we no longer need

to know that (X-»-Y) = (Y-*-X), as both

11

become (-Xv-Y) in the new form.

Let us rewrite X1, partly in CNF, but leaving

untouched the main implication symbol. We have:

Xl' ; (-AvB). (-BvC)-»(-AvC).

Thus, if in two disjuncts ((-AvB) is an instance of

a disjunct) we can find contradictory terms, then by

cancelling them, and concatenating the remainder we

have a disjunct for a valid conclusion.

This technique, which we shall call CNF inference,

is a powerful method of dealing with Carroll* s

syllogisms. It extends beyond syllogisms, in that

it can deal with, e.g., All black dogs are

happy;) All of my pets are dogs3 All my pets are

black. Using the obvious abbreviations, we write (-

Bv-DvH).(-Mv-PvD).(~Mv-PvB), noting that -(A.B) = (-

Av-B) in rewriting (A.B-»C). Cancelling

contradictory Dogs,

(-BvHv-Mv-P).(-Mv-PvB),

and also for Black,

(Hv-Mv-Pv-Mv-P).

12

Noting that AvA = A, we have

(Hv-Mv-P), which is ((M.P)-»H), i.e.,

all my pets are happy.

That the method works with
v
* All elephants are

animals^ no plants are animals, is seen from

(-EvA).(-Pv-A)

i.e., (-Ev-P) (by cancelling opposite Animals),

i.e.,°no elephants are plants.

1.4 Rigorous Justification

We demonstrated the ease with which the method

solves problems:; its validity can to an extent be

determined from X1 above. However, as the

technique is fundamental to the success of the

syllogism solver, a more formal proof is in order.

Theorem 1: For any expressions E, F, and G, and a

variable A, (E. (Pv-A). (AvG)) -> (PvG).

Proof; (E. (Pv-A). (AvG)) = (E. (-P+-A). (-A-MJ))

since -AvB may be rewritten A-*B. Using

X1, ((-F->-A).(-A->G)) •* (-F-K1). Using X2, E. ((-F*-

A). (-A-KJ)) -» ((-Pv-A) . (-A-KJ)).

13

From these 3 results, and noting that (-F-KJ) = (FvG),

we have the result, applying X1 twice.

Lemma 1: (E.X->B) = (E.X-HE.B)

Proof: (E.X-»B) = E.X+E.X.B (X3)

= X.E-»X.E.B (commutativity)

= X.E+E.B (X3)

= E.X->E.B (commutativity).

Theorem 2: E. (Fv-A). (AvG)- Ê. (FvG)

Proof: "by writing (Fv-A).(AvG) for X and (FvG) for

B, in lemma 1, (E. (Fv-A). (AvG)-► (FvG)) = (E. (Fv-A).

(AvG))-»E. (FvG), that is, theorems 1 and 2 are either

both true or both false:; theorem 1 is already

proved.

Theorem 3: E. (Fv-A). H. (AvG) .J-»E. (FvG) .H.J

Proof: Trivially, by theorem 2 and commutativity

under »and".

Theorem 4: E. (Fv-AvK). H. (LvAvG). J-*E. (FvKvLvG). H. J

Proof: Again trivially, by theorem 3 and

commutativity under
u
or .

14

In theorems 3 and 4, H, J, K, L are any expressions.

Theorem 4 says that given two disjuncts embedded

anywhere in the conjunction of a set of disjuncts,

such that contradictory terms may be embedded anywhere

in each disjunct, it is valid to draw a conclusion in

the manner implied by the theorem. This in fact will

be precisely the decision method we shall use for

drawing conclusions. While sufficiently powerful to

solve any sorites, it is sufficiently simple to

warrant its choice for a problem-solving program.

15

Chapter 2. Syntactic Theory

2.1 Models of English

In considering the design of a logic system for

solving syllogisms, we have presupposed that English

premises can be decomposed into conceptual units, to

which we may attach labels. The current approach,

favoured by the followers of the ^generative grammar

school of thought, is to postulate a mechanism for

for the composition of sentences from conceptual

units, and to perform decomposition by running this

mechanism backwards. The extent to which this

approach is practical can be judged partly by the

extent to which the method fails to work, and partly

by the efficiency of the method when it does work. In

adopting this approach, we proceed on the assumption

that the criteria that affect us fall into one or the

other of these two categories.

16

Within schools of thought dominated by the generative

ideology, there is a fairly clear-cut division into

phrase-structure and transformational approaches. At the

risk of misinterpreting the situation, we shall attempt a

summary of the distinction between them.

2.2 Phrase-structure Systems

For the phrase-structure approach, it is

suggested, but not espoused, by Chomsky (Chomsky, 1959)

that sentences are the result of a one-dimensional

symbol-string rewriting process. Starting with a given

symbol, one erases it and replaces it by one or more

other symbols, consistent with a set of constraints (or

rewriting rules, or productions). The new symbols are

then themselves subjected to the same process, which

continues until no symbol may be rewritten under the

constraints. The resulting string of symbols is then

a sentence.

A phrase-structure grammar enumerates the symbols

(vocabulary), usually partitioning them into rewritable

(non-terminal) and terminal symbols (and

17

occasionally more, e.g., in Aho, 1968). It also

specifies the constraints, and nominates a starting

symbol chosen from the non-terminal vocabulary. Actual

examples of grammars only enumerate the constraints,

as this is sufficient information to deduce the rest.

S is traditionally the starting symbol, being

suggestive of ^sentence". We give such an example:

S •* NV

N ■* dogs

V -> eat

Here the non-terminals are S, N and V, while the

terminals are
VN
dogs" and

xX
eat". The word ^symbol is

used loosely to denote any recognizable pattern that

could plausibly be called an entity, with the

exception of -»•, which serves mainly to delimit the

symbol to be rewritten from the others, when

specifying the rules.

The most general form of constraint has a string

of non-terminals to the left of the •*, and a string of

symbols to the right, the latter possibly null, that

is, having no symbols. Chomsky

18

demonstrated that it was possible to constrain the

constraints themselves, such that there was a set of

sentences (or language, using Chomsky's definition)

generated by a given grammar, that could not be

generated by a more restricted grammar. In fact, he

produced a hierarchy of four classes of grammars in

this way. This hierarchy has since been

considerably subdivided by other workers, and even

extended to a lattice (that is, a system with a

partial ordering, as distinct from a well-ordered

hierarchy) (Ginsburg, 1967). The details of the

hierarchy are beyond the scope of this discussion.

However, the motive for considering the hierarchies

is that while less restricted grammars generate a

wider variety of sets of sentences, it is easier to

analyze sentences generated by more restricted

grammars. The equilibrium of this system seems to

be stable, to judge from the amount of work done on

grammars in the middle of the hierarchy, rather

than on the extreme grammars. Arguments within the

phrase-structure school can often be traced to the

difficulty of estimating a pay-off function that can

be used to find an optimum class of grammars for a

given situation, though little attention has been

19

paid this problem.

An objective justification for symbol-rewriting

systems is that they model the process of articulation

of objects in a one-dimensional universe. In the

sample grammar above, the rule S ■* NV may be regarded

as corresponding to an articulation possibility, that

is, given an object having the property S, it may

possibly be found to consist of an object having the

property N, followed immediately by one having

property V, Going in the opposite direction, we may

say that, given an N, and a V following, we may

regard the whole as an S. This particular

justification is at its most powerful near the centre

of the grammar hierarchy. Very powerful grammars do

not model quite such a simple process. For example,

the rule XYZ -»• ABCD would be interpreted as "Given

an A, a B, a C and a D, the whole may be regarded as

an X, a Y and a Z, in order". This is ^less natural"

than, say, interpreting XYZ ■+ XABZ as
vv
Given an A

and a B, the whole may be regarded as a Y, provided it

is preceded by an X and followed by a z". The first

example is permitted only in the most powerful (called

type 0 by Chomsky) grammars, while the

20

second is permitted in lesser grammars, called

context-sensitive (the context in the example is

A . . . Taj .

The non-terminals in the symbol model correspond

here to properties, while the terminals correspond to

the actual primitive objects of the universe. The

danger inherent in this objectification of the model

is that properties are not always sufficient to

identify the objects implied by the symbols. This is

seen by some (e.g. Bach, 1966, p.38) as a fault of

phrase-structure grammars, rather than of the

objectification. For example, a pair of symbols may

be reversed in a context-sensitive language, e.g., AB

-*■ CB CB ■+ CA CA •* BA. However, if the preceding

objective view is taken, it would appear that, not the

objects, but only their properties, have changed

place. Bach says,
NN
if we have PS (phrase-structure)

rules which bring about a rearrangement of nouns and

verbs, verbs will be analyzed as nouns and nouns as

verbs . He is here criticising PS grammars.

Presumably, this would evoke from the PS school the

reply the end justifies the means'
7
, that is, as the

only observables

21

we have are sentences, who cares how the grammar

produces them, as long as they can be produced. The

transformational school has a ready answer.

2.3 Transformational _Systems

Chomsky contends that the function of a grammar

is to ^assign a structural description"(Chomsky, 1957,

1965, 1966, etc.). Moreover, a grammar must be able to

rewrite not only symbols but parts of structural

descriptions (or map them, but to claim (Clowes, 1969)

that mapping is not rewriting is a verbal dispute).

As structural descriptions (SD's) are, we

maintain, irrelevant to the PS school, they were

omitted from the preceding discussion. There are

various ways of looking at SD's (Chomsky, 1957,

p.273 Clowes, 1969, p.3, etc.); Chomsky's will do

for the moment, though we shall see later that

Clowes' is nearer the mark.

22

In the rewriting process (for PS grammars) an SD

is a representation of this process. The most obvious

way to start is by writing out the string generated

so far at each step, e.g., in the earlier example:

S or S

NV NV

dogs V N eat

dogs eat dogs eat Chomsky calls

this a derivation. The steps to form a structural

description are given most explicitly in Postal

(1964). Lines are drawn to indicate better the

underlying mechanism of each step CElements are

connected...to identities...which have replaced them

(italics mine)):

S S

or

dogs V N eat

dogs • ea1 dogs eat

N V N V

23

Then **all but the highest identical elements.. .are

erased , thus:

S

/\

N V in both cases.

dogs eat

This may seem long-winded, but Postal continues, No

other precise method of assigning such structural

descriptions to infinite sets of sentences has,

however, ever been described . (One of the less

interesting results of the translation theory

advanced in this thesis remedies this.) Postal uses

this argument to justify the impossibility of having

vV
 correct" structural descriptions for a PS system

that permits the rewriting of more than one symbol

at a time.

To talk of elements being connected to identities,

and to demonstrate that SD*s are not feasible (or *

correct/
7
) in the most powerful PS grammars, suggests that

Postal is concerned with the identity of symbols, or of

objects havng properties represented by those symbols.

That is, Postal may be

24

assuming the objectification we described earlier,

without making it explicit, although there is room

for debate.

However, once Postal, or for that matter, any-

exponent of transformational grammars, arrives at

the section on transformations, there is no doubt

that this is what is happening. In each rule, each

symbol is tagged, using numbers, to ensure that its

identity is not mistaken during the transformation

process.

A transformation rule defines a structural

change. It consists of a structural description part,

which specifies conditions to be met by a structure

before the rule can, and sometimes must, be applied,

and a structural change part, which permits the

permutation, addition or deletion of sub-structures.

An example from Chomsky (1957, p.43), concerning the

passive transformation, is: NPj - Aux - V - NP^ •* NP& -

Aux + be + en - V - by + NP,

This means that, given some cross-section of an

SD, a grammatical passive sentence can

25

be formed by rearranging the structure as indicated.

(Chomsky is at pains to point out: not
vt
 the passive

sentence with the same meaning'
7
.) For example, if

u
John admires sincerity' is a grammatical sentence

with a structure matching the left-hand description

above, then ^Sincerity is admired by John is equally

grammatical. The tagging of the NP s ensures that

the sentence John is admired by sincerity is not

also proved to be grammatical in this way. If this

seems a peculiar reason for tagging objects, it must

be remembered that Chomsky (Chomsky, 1957, p.93) sets

himself the goal of constructing grammars without

appeal to meaning. Thus a transformation may

preserve grammaticality, but not meaning, for example

(p.100),

the passive of
x
 everyone in the room knows

at least two languages" does not mean the same

as its active form.

More recent instances of transformation rules

(e.g., Chomsky, 1964, p.227) make the distinction

between properties and identities more clearly. For

example:

26

1. Passive:

Structural Description: (NP, Aux,Vt, NP,{
/
^
V
})

Structural Change: X, - X- - Xa - X. - X -*■

\ ~ \ " lDe + en + X
- "

by

+

X
t "

X
5*

Why does a transformation operate on a whole

structure, rather than on the result of a partial

derivation? There are various reasons, but all of them

are oriented to ensuring that the sentence possessing

the transformed structure is no more or less

grammatical than that possessing the untransformed

structure. For example, most questions of the

grammaticality of
M
golf plays John'' are equally

relevant to John is played by golf". When the

derivation of golf plays John reaches the stage
xX
NP,

Vt, NP", if this string of symbols were to be rewritten

NV
NP, be, en, Vt, by, NP

7
', and the derivation of John is

played by golf carriedfcut from there, some other

means would then have to be introduced to deduce that

this is ungrammatical, (assuming that
xV
golf plays John

is ungrammatical). A mechanism that establishes the

grammaticality of a sentence in the course of its

derivation is more satisfactory, for Chomsky's ends,

than one which

27

requires additional external mechanisms to achieve

the same effect. In addition, this scheme permits

Chomsky to attack semi-grammaticality, a field not

open to the PS school.

The precise mechanism for evaluating quirks of

sentences like
vx
golf plays John" is not germane to the

syllogism translation process^ if we say ^golf plays

all idiots; John is an idiot ', then rather than object

to the premises on the gro
1
™""*-; vhat they are

ungrammatical, we should conclude, equally ungrammatically,

that golf plays J a*... In fact, to a limited extent, the

drawing of conclusions resembles a transformation in

that it may preserve grammaticality. This observation,

that we do not always want a total analysis of a

sentence, will be seen to be important when we come to

translating syllogisms.

This account of transformational grammars is

far too brief to do them Justicej rather, we have

attempted to determine what makes them superior to

PS grammars. For more complete accounts, there are

several good sources. For an efficiently

28 economical account there is

Clowes (1969)* Extensive examples of transformational

grammars maybe found in Chomsky (1964, p.224) and

Woods (1967, p.Al9). A nearly complete treatment of

the underlying mechanisms appears in Chomsky (1965,

chap. 2, 3, 4) (it is felt that chapter 1 is

considerably misleading in some places, and

irrelevant in most others). The remainder of the

literature is either concerned with ramifications of

the material covered by the above references, or with

most unprofessional attacks on other schools of

thought, the most fallacious of these being in 3ach

(1966). There are several computer models of

transformational grammars (Petrick, 1966; Zwicky,

19651 Thome, 19671 Friedman, 1969? Rosenbaum, 1966),

and to varying degrees they provide additional

insight into the nature of transformational grammars.

More importantly, though, they highlight practical

shortcomings of the theory. Woods (Woods, 1967, p.4-

4) observes,
xV
The only existing algorithm for general

transformational recognition (Petrick,1965) may take

as much as an hour to recognize a single simple

sentence with a very simple grammar . Since then,

there has been improvements Thorne's algorithm

25>

produces surface structures (the final structural

description in the course of a transformational

derivation) of sentences of 4 to 20 words, in the

order of one second. Bobrow (Bobrow, 1969) accounts

for the improvement in terms of better programming

and a departui'e from
xV
the detail of the processing

required (commanded) by Chomsky . However, the

algorithm currently in use by this author on a PDP-

8 would, if implemented on a KDF-9 (the m^hine used

by Thome's programmers), produce deep or surface

structural descriptions **> the order of 10

milliseconds.

30

Chapter 3. Translation Systems

3.1 A Demonstration

Many new theories are better, or more

■unified, formulations of old theories, and can

therefore best be introduced by demonstrating this

relationship. Although the theory to be described

falls into this class, the degree of incoherence of

the old theories precludes any such demonstration

suf r*
n
* ently brief to be spectacular. Thus we phall

first demonstrate a simple success of the theory.

We noted that Chomsky claims that a PS grammar

can assign a structural description . We noted

Postal's claims concerning the absence of precise

methods of assigning structural descriptions,

besides his own. We adapt formalizations given

implicitly in recent literature (Chartres, 19693

Clowes, 1969) and exhibit the following instance of

a translation system. Our goal is to discredit a

criticism of phrase-structure grammars, that they

31

^assign too much structural description , by showing

that the assignment process can be realized

effectively as a translation process.

S -> NP VP s -* [s np vp] s

NP -> AJ NP np ■» [Npaj np] np H UP

NP -> N np -> U
nl

 np

VP -> V vp ■* ̂ vp VP
V

N -> dof H

n ■*

[dogs] n
IV

doff

V -> eat v -> [eat] v V

AT AJ
-> gentle aj -*• [gentle] aj •* .

A3" AJ
-> neat aj -> [neat] aj -> i

32

Formally, we define a translation system to be a

set of grammars, and a correspondence between those

grammars. We define a grammar to be a set of

significant features of a language, and a correspon-

dence between grammars to be a correspondence between

their significant features.

In the above example, we have exhibited two

phrase-structure grammars, and a crude picture grammar

(Crude because such questions as exactly where the new

symbols go when erasing the rewritten nonterminals are

not immediately answered from the grammar;; nor are

those of orientation unless we assume that •* preserves

orientations. Chomsky dismisses similar questions in

linear languages, such as the need for 1/1o" of room

for each terminal letter, and a line change at regular

intervals, as questions of performance . We shall do

likewise here.) In each grammar, the significant

features are represented as rewriting rules for

symbols. We invoke an earlier definition of non-

terminal symbol, that is, one that can be rewritten

using the rules. When writing grammars for structural

description languages, one. r?3rc.ww the ""bconce of

more than upper and lower

33

case letters on cheap typewriters, as can be seen

from the difficulty involved in describing a language

with both cases of terminal symbols. Thus the need

for some other criterion for recognizing non-

terminals than their case. At any rate, in the last

two grammars, there is clearly no provision for

rev
,
"itir<3 lines, capital letters, English words or

brackets.

Now consider a sentence generated by the first

grammar,
v
*gentle neat dogs eat . If we apply the

same process that generated this to the other two

graazmars, we get:

ls W[A:reentle] [NP[A3neat] l«P^doss]])HvP [veafc]]]

using the second grammar, and:

neat N

dogs

34

U3(nS t-Ke i>hir<l yretrmxr. Beth of ikese Will. be,

recognized as structural descriptions. The one

with brackets is described (Chomsky, 1966, p.37)

t' if

as the surface structure of a sentence (italics

mine). (More accurately, the surface structure

is a bracketing). The diagram is often produced

as being, in some sense, equivalent.

So far, we have done little that is new or

exciting, save to counter Postal
1
 s claim above. Howe^e*;

there is a good reason for choosing noun phrases with

more than one adjective, as these have been held up

(Chomsky, 1965,p. 1963 Bach, 1966, p.68) as proof that

phrase-ctru^ure grammars assign too much structure and

therefore fail as models of English. The ^proper''

structure, according to these critics, is either:

[
S

[
NP

[
AT

gentle]
 W

neat]

C
M
d0Ss]

]

[
W [*/eat]]] or:

35

NP VP

AJ AJ N

gentle neat dogs eat

If we were to allow the rules NP ■* A J A J N,

UP

np -> [,„aj aj n] and np -* S\. \ in addition
NP di (LI ^

to the other rules (changing the second rule to NP -*■

AC N, mutatis mutandis, to avoid «""btguity} we tb^n

cannot account for a string of three adjectives, In

fact an Infinite number of rules are needed to

generate the
xx
proper structural descriptions.

Thus, Chomsky and Bach implicate phrase-strw-^ru.^

grammars, in particular, the first grammar in our system.

This is ridiculous:; the objects deserving critic* sm are

the grammars of the structural description languages, if

these have been made explicit. While they are not explicit,

there can be no basis for this sort of witch-hunt. If there

Is some systematic way of producing structural

36

description grammars, then this system deserves

criticism, hut not the original grammar itself.

Redirecting criticism to "better places, we suggest

the following structural description grammars, without

indicating any preference for them over the others

"beyond the fact that their sentences are easier to

read:

s ** \ f nr>l r vp]] L
S HP - Vp PJJ

np -> aj np

np -> n

vp -> v

n ■* [.dogs]

v ■* [eat]

af -*■ T gentle]

aj -*■ [neat]

s

np

MP VP

 «j

np - 1
A.

vp -1

•vr

n M

 oUoo

V ea£

aj

aj

 "hJlAjt

&

37

Applying the ^same* process to these grammars

as for the others, we produce the desired results.

Quite clearly, the orientation question becomes

important, in the first two rules of the picture

grammar, as only a few adjectives will produce an

unreadable picture. We have the choice of saying

^performance", and leaving the decisions about length

of line, and extent of rotation of
l
 np" at e&ch step

to the user of the grammar, or we can say

competence , and therefore find fault with the

notation because it neglects the fact that there are

only 3^'> in a circle (just as PS grammars can be

criticised for negle.ctfng pegs width).

One solution to this problem is to consider*

v.ho or what the grammar is intended for. If a human,

humans are smart enough to extend the grammar

appropriately. If a computer, some mechanism must be

postulated, to enable it to function appropriately.

To claim that this mechanism shoti"!'
1
 b

a
vo nothir.~ to

do with th» gr?mmar is to set up a rpurious dichotomy

(cf. Narasimhan, 19&9, p.3) between the processing

involving grammatical features and that involving so-

cal]^d performance

38

problems. Processing in a computer is homogeneous,

at least to within these sorts of distinctions, and

any reluctance to call a spade by its usual name is

going to lead critics to say
w
 weak model , with

justification, when the performance problems become

non-trivial. A weak model is one which does not

reasonably preclude the possibility of another model

which retains an equivalent, or smaller, degree of

complexity to that of the weak one, and which

models, or describes, the situation better. An

example of a vrsak model is a transformational ("""-

mar for modelling the MITRE program (ZwicVy. 1965). We

shall see later that a translation system is a

better model for this program.

To the extent that a human uses some inter-

nalized grammar in the same way as he copes with non-

grammatical problems, it is relatively uninteresting

to Invoke the dichotomy, beyond using it for

temporary purposes, like a movable lamp, to focus

attention on interesting features of behavior.

39

3.2 Generalities

Perceptive automata (and I do not exclude

animals) deal, not with reality, but with representa-

tions of reality. The question of how and why such

representations are brought about may be dealt with

by translation theory, but as this approach even-

tually leads us into an infinite regress, for the

moment we say rather that the representations are

brought about by perception mechanisms. That this

is a good attitude for a programmer is supported cy

the observation that it is the engineer's job to

produce efficient readers, cameras and microphones.

At the other end are effective output mechanisms:

printers, plotters, punches, displays and loud-

speakers. Therefore we delimit our attention to a

programmers theory of translation.

The primitives for this theory are

representations, and significant features of

representations. The syntactic problem for

representations is to find sets of criteria, or

rules, for recognizing possible significant features

40

of a representation. A grammar is any set of such

rules. The semantic problem is to find corre-

spondences between rules in different grammars, to

facilitate translation of representations into

other representations.

It will suffice for the moment that wo embed

our perceptive automaton in a one-dimensional

universe. The general notions of recognition,

combination, association, and generative identity

will all be exhibited in the context of the Turing

Machinejmodel. If we are to extend our interest to

higher dimensionality, we need not abandon the

general notions, only the Turing Machine with a one-

dimensional tape. Certainly it is possible to map

the plane onto the line, or for that matter so to

map any hyperspace. But the well-known (to

topologists) absence of a continuous such mapping

(that is, the images under no such mapping, of

points arbitrarily close on the plane, can be

guaranteed to be arbitrarily close on the line)

suggests the inelegance, if not the inefficiency of

such a mapping. And elegance and efficiency are

the best criteria of good models, for

41

practical users of models: elegance for ease of

understandings and efficiency, that the model may

survive in competition with other models, in an

environment where only results count.

3.3 Grammars
i i

With Chomsky (Chomsky, 1959), we stress that

we are concerned with different classes of

grammars. In fact, we use exactly three, and doubt

whether, for the immediate future of translation

theory, any more are needed.

The reasons for having systematic grammars

are that they afford a means of storing information

economically, and also (more importantly) they

display criteria common to different rules, remem-

bering that we called sets of criteria rules. For

example, phrase-structure rules have in common the

notion of juxtaposition, and phrase-structure

analysis algorithms make effective use of this

feature, making no distinction between the way in

which a preposition next to a noun phrase is

42

recognized as a prepositional phrase, and that in

which a noun phrase next to a verb phrase is

recognized as a sentence. Less obvious is a similar

relation between the problem of sentences that use

the word ^respectively"and the intractable nature of

agreement in number:; we shall show how the one

grammar readily describes (and gives the mechanism

for solving) these problems.

3.4 Finite-State Grammars

We count three phenomena as important to the

translation process in a one-dimensional universe.

The first is the ability of a machine to recognize

an object, for our purposes a string of symbols. The

corresponding grammar for this process is called a

finite-state (FS) one, where the rules simply

specify, given the input symbol and the state the

automaton is in, what state the machine will enter.

When the machine is in state S, it has recognized

an object.

As this machine is often described as

43

operating in reverse, we shall consider this too.

Starting in state S, the machine emits symbols as

it changes states. The same grammar used for the

recognition machine will serve for the generating

machine.

A rule for a FS grammar, or an instruction for

either of the above two machines, consists of a pair

of states and a symbol. We shall, for uniformity,

use Chomsky's notation, which corresponds to

instructions for the second machine above, e.g.,

S -» aM

M ■* bM

M •» c etc.

In the last rule, the terminal state for the

second machine (and the starting state for the first)

is written as the null symbol. This asymmetric

choice of terminology strongly reflects Chomsky's

asymmetric approach to grammars. He sees them, not

as recognition automata programs, but solely as

generative mechanisms. In translation theory, the

emphasis is on the essential symmetry of a formal

communication process since all practical computer

44

programs must be able to speak and hear. And we

do not necessarily require automata to hear by

speaking, as is suggested by the analysis-by-

synthesis school (Matthews, 196I3 Petrick,1965)

and by advocates of top-to-bottom parsing.

3.5 Context-Free Grammars

The second phenomenon is the ability to use

the results of recognition recursively,that is,

having recognized each component of a string of

strings, to recognize the whole string in those

terms3 equivalently, the ability to use several

recognition states in the same way as input or

output symbols.

The appropriate grammar is a context-free

one. The rules must, therefore, allow for the input

or output symbols to-be recognition states. In

addition to rules of the form A -> bC, we must allow

A -* DC. Again we are assuming, with Chomsky, a

generative automaton, rather than a cognitive one.

The more general form of the rule is

45

A ■* BC...EF, that is, any number of symbols may

replace one. It is easy to reduce such a rule to a

set of equivalent rules producing only two symbols

each, by mentioning explicitly each state an auto-

maton goes into when generating or recognizing

strings of non-terminals. For example, A -> BCD

becomes A ■* BX X -» CD. For the computer program

described later, we adopt the two-symbol form

explicitly. Most practical parsers achieve this

implicitly^ in looking for A, using say a rule A ■*

BCDE, it is sufficient to start the search by looking

for B, and then BC, and so on, without

simultaneously looking for, say, DE.

The necessary mechanism for an automaton whose

program is a CF grammar is, in addition to that for

the FS automaton (FSA), a place where a fact (that

the string just read has been recognized or that a

string, for which this is a starting state, must be

generated later) can be put to one side while the

machine proceeds to recognize or generate more

symbols. In the process of trying to enter a state

(a goal) for which this fact (non-terminal symbol,

or recognition-state symbol) is a meaningful input,

as determined by the grammar, other facts may

46

need to be stored and retrieved, as necessary for

various subgoals of the above goal. It is very

convenient, from both a designer's and a user*s point

of view, if all facts can be stored in the same place,

in the same way, and likewise retrieved from the same

place. The simplest mechanism for achieving this is a

push-down store, analogous to the spring-loaded

stacks of plates or trays found in cafeterias whore

only the topmost plate is accessible. The spring is

inessential to the analogy - the topmost dish of any

stack of dishes is more accessible than the rest.

Provided the facts required for subgoals can be

used or otherwise disposed of before the fact required

for the goal (above) is required, they will not be in

the way when the latter fact is needed. This is the

case for the problem stated, that is, recognition of a

string in terms of the recognition of its substrings.

A different view of the same subject is to

consider the communication channels available to the

sort of machinery we are considering. This is a

47

very good view, as it makes many hard-to-prove

theorems about automata beautifully transparent.

The only channels that are obvious are: between

the current input or output symbol (more accurately,

the medium in which it is embedded) and the machine;

and between the machine and the top element of the

push-down stack. Any correspondence between, say, two

symbols in a derivation, must be accounted for in

terms of a set of signals sent through those

channels. Equivalently, given a structure diagram as a

representation of the operation of the machine, such a

correspondence must appear as a path through the nodes

of the diagram, along the connecting lines.

In this light, symbols put on the pushdown

stack are no more than bearers of information, for one

or more potential paths through nodes bearing thac

symbol in a structure diagram. The greater the number

of independent paths that may pass through a node,

the greater the variety of non-terminal symbols

required in the vocabulary of the grammar.

48

3.6 Problems with CP Grammars

Consider the following diagram:

PRED

/ \

VP ADVP

/ X

PREP NP

N

The quick brown

fox jumps over

dogs

Among many

interesting paths is the agreement-in-number path.

This concerns fox" (plural: foxes) and "jumps"

(plural: jump), in this example. The shortest path

between the two words involves -tPeven different

non-terminal symbols. A more elaborate diagram,

corresponding to a more elaborate sentence and/or

grammar, might involve many more. To enable each

node to bear this information, we must label them

all singular. To allow for plural sentences we must

add at least another seven nodes, labelled plural,

to the vocabulary.

If, in addition, we wished to verify that

V

49

it is reasonable to expect foxos to jump, v/e invoke

independent paths. The variety here is enormous; all

sorts of features of foxes and Jumping might be

relevant. If five Independent paths are involved,

say, each representing a simple yes-no lexical feature

(Chomsky, 1965, p.82), we must allow for 32 (= 2)

varieties of each of the original 14 symbols, a total

of 448 symbols for a simple noun-verb comparison, not

to mention at least that many rules, if not two or

three times more (since many non-terminals in a

grammar appear at least twice on the left of a

rule).

Chomsky encountered problems with context-free

grammars which essentially can be viewed in this way.

Chomsky's answer was to change the structure diagram

(a reverse transformation) so that every interesting

path could be shortened. Which paths are interesting

is difficult to sayj a fairly complicated path would

be needed to deal at the grammatical level with * the

quick brown fox jumps over skyscrapers , if it is felt

that foxes cannot jump over skyscrapers.

50

The reverse application of transformation

rules would reveal something along the lines of the

following:

S

/

 SUB PRED ^P RED
 i 1 / \

/"\ NP V? VP ADVP
 1 i / \

\J NP NP NP V \ / PREP NP
1 / \ 1 | t
N AJ N N N
1 1 1 J ! . 1

quick fox brown fox fox jumps jumps over dogs

This shows clearly how our previous structure

diagram has simply been exploded, to reveal which

might be the interesting paths. This sort of demon-

stration, despite the obvious departures from rigid

structural requirements (e.g., the ^excess* structure

in the first noun phrase), is more revealing of the

spirit of transformational grammars than misleading

arguments about, e.g., passive sentences and word

permutation with context-sensitive grammars.

In each substructure, the structures are no

51

longer of interest, only the relationships between

the terminals. It would seem from Chomsky's account

that base phrase-markers more or less correspond to

these features and relationships. Since the notion of

structure does not seem relevant to base phrase-

markers, we are inclined to agree with Thome (1967)

that base phrase-markers should be accounted for

with a finite-state grammar.

The relationship of base phrase-markers to

kernel sentences and to noun phrases, say, should

not, ideally, favour either. A base phrase-marker

should not favour The fox is quick over "The quick

fox'', since both seem equally dependent on it.

Unfortunately, Chomsky's absolute dependence on

structure forces him to adopt one or the other (the

former) when generating the base phrase-marker with

a CF grammar. Had Chomsky been aware of the

structure fallacy, he might have abandoned a

context-free base component, and simply generated

compact unstructured base elements with a PS grammar,

which could be mapped into structures, if there were

a need for surface structures as well as for

52

sentences. But there is no a priori need to rely

entirely on the notion of structure.

So far we have had occasion to criticize CP

grammars, without condemning them entirely as

inadequate. Assuming that English was not a growing

language, and that we had found a context-free grammar

with an astronomical vocabulary, that generated

English sentences, it would still be possible to

recognize sentences very efficiently. With fast table-

look-up features, e.g., hash addressing (Peterson,

1957), many recognition algorithms are unaffected by

the kind of grammar extensions implied by multi-path

considerations. The only hardware extension would be

the use of random-access mass storages while this is

expensive and marginally slower than small memories, a

typical CP algorithm would still be much faster than

techniques that use analysis by synthesis (Matthews,

1961).

Unfortunately, this is not the casej the

vocabulary required is not astronomical, it is in-

finite. This very easily and beautifully demonstrated

53

with the path-oriented approach. The demonstration

is, approximately, the graph-theoretic version of the

proof suggested by Chomsky (Chomsky, 1959, p.151) that

the language { xxl x is any stringj is not context-

free. This language is of interest, as it reflects

the essence of sentences of the form: Tom, Dick and

Harry like Peter, Paul and Mary respectively.

In any string xx in this language, there must

be a path between the ith symbols in each half of the

matched pair of strings, to account for the fact that

they are matched.

We impose the reasonable restriction on

the paths, that they do not go below the line of the

sentence. It iG clear that every pair of paths must

have at least one node common to both paths.

We assert that there is a node common

54

to all paths. For if not, let pathb cross path

a at node X, and path b cross path c at Y, such

that Y ± X. Let path a cross path c at Z. Then

there is a loop, from Y via c to Z, via a to X,

via

But a property of a tree is that it has no loops. A

structure diagram is a tree, hence we have a

contradiction, since each path must be part of the

structure diagram.

Each path is clearly independent. If m

terminals are involved, each path must be of variety

m, that is, it must bear enough information to allow

for m possibilities. If there are n paths through

the common node, there must be at least m symbols

in the vocabulary. We have imposed no bound on the

length of xx, hence none on the number of paths.

Thus the vocabulary must be infinite, as must the

number of production rules for the vocabulary.

Thus, by graphic means, we may agree with

55

Chomsky's observation (Chomsky, 1959, p.151),

that * it can be shown".

3.7 Indexed Grammars

The third phenomenon concerns the associz

tion of objects which may be quite remote. We

considered in the previous section how this phenomenon

could not be accounted for adequately with a CP

grammar.

So far, we have endeavoured to deal with

grammars that readily lend themselves to possible

translation algorithms. Like Chomsky, we are

concerned at the inadequacy of CF grammars in

producing surface structures bearing much infor-

mation, or equlvalently, at the cost of automata

with unboundedly many states.

Unlike Chomsky, we wi3h to disturb the status

quo as little as possible in proposing mechanisms

for solving these problems, since in all other

respects the status quo is very satisfactory, both

from a recognition and a translation viewpoint.

56

Therefore we shall not abandon CP grammars, but

simply extend them, in a way reminiscent of extended

phrase-structure grammar (Harman, 1963). Since

Harman's suggestion, and its vigorous criticism

(Chomsky, 1966, p.4o), the theoretical situation has

improved.

It is shown (Aho, 1968) that the use of

indices, as a means of increasing node capacity in a

structure diagram, or equivalently, of increasing

the variety of non-terminals without bound, produces

a grammar that is more powerful than a context-free

grammar, in that the class of indexed languages

properly contains that of CF languages. Moreover,

the class of context-sensitive languages properly

contains that of indexed languages, suggesting that

recognition may be less painful with an indexed

grammar than with a context-sensitive one. This is

discussed in the chapter on recognition.

We shall attempt to give the reader an

intuitive feel for indexed grammars. Our notation

differs slightly from Aho's, but is nevertheless

equivalent.

57

As with any phrase-structure language, we have

a finite vocabulary V of symbols, a finite number of

rewriting rules, and a starting symbol S. We impose

a partitioning on V, into terminals and non-

terminals, according as the symbols of V cannot or

can be rewritten, again as for any PS grammar. We

denote the semi-group concatenation operator by the

non-vocabulary symbol + . (This will be seen to be

needed as a delimiter, for the sake of clarity if not

the prevention of ambiguity because of the other

semi-group operation below. It is not entirely

unrelated to the arithmetic addition operator, which

it resembles.)

The crucial difference between conventional

phrase-structure grammars and indexed grammars is

that, for each symbol appearing in a PS derivation, a

set of symbols (technically, an element of a serai-

group with a semi-group operator distinguished from

the above one - we distinguish it by omitting it,

i.e., using the null symbol, and so it resembles the

multiplication operator) is found in the equivalent

indexed-grammar derivation. In a structure diagram

for a PS analysis, each node is characterised

58

by a single symbol, which amounts to the only

description there Is of a node. In that of an

indexed-grammar structure diagram, a node is

characterised by an unbounded string of symbols, thus

allowing unbounded variety in the description of a

node.

The mechanism is best exhibited by

demonstrating an example of a simple indexed grammar,

and a structural description of a sentence in the

corresponding language. To make it easier to see

the connection with context-free languages, we

exhibit simultaneously a rather trivial CF grammar

derived in an obvious way from the indexed grammar.

Indexed Grammar A Corresponding CF Grammar

S -> AD (i) S •* A

A -> AB (ii) A -> A

A -» E + E (ill) A ■+ EE

EB ■+ a + E (iv) E -> E

ED + b (v) E -> b

59

Derivation of aabaab Derivation of bb

Indexed Grammar Context-Free Grammar

1. (i)

AD A

2. (li)

ABD

3. (il)

ABBD

4. (Hi)

EBBD EBBD E

5. (iv)

a EBD a EBD

6. (iv)

a ED a ED E

7. (v)

To achieve the correspondence, we have had to

let the CP grammar idle while the other worked.

There are four features worth noting here.

6o

(a) The ability to generate variety, for

nodes. This is achieved using the first two rules.

The mechanism should be obvious, as it is the same

mechanism, essentially, as for a pushdown memory

whose point of access is on the left. Thus, the

rewriting rule, both here and for all other rules, is

that the leftmost symbol must be included in the

rewrite process. (This point is easier to make in

Aho s characterisation.) Symbols not rewritten

remain untouched.

(b) The ability to distribute index symbols

not rewritten. An analogy for this is to say, if

pets consist of dogs and cats, then big red pets

consist obviously of big red dogs and big red cats.

At step h of the derivation, we see precisely this

situation where BBD is the description of the

rewritten node. Another analogy is the distributive

axiom in algebra, where (a + b)c = ac + be. Thus

the symbol + is not entirely unmotivated.

(c) The ability to consume (Aho's terminology)

indices, as demonstrated in rules (iv) and (v).

(d) The convention that abandons indices

attached to terminals. For those whose mathematical

upbringing causes them to shudder at this convention,

61

the alternative is to regard them as all still there,

but lined up behind the terminal vertically to the

page. (Naturally, this must then be done also with

the other nodes.)

Formally we define the set of rules to be a

finite subset of (V+ x (VTu VN
+
)'). That is, a rule

is an ordered pair (a,b), whose interpretation is a

-> b, such that a is a non-null string of non-

terminals and b is the non-null concatenation of

objects, each of which may be either a terminal or a

non-null string of non-terminals. The distinction

between string and concatenation, and between and "

, is exactly the same as that pointed out earlier

between the two concatenation operators. We adopt all

this terminology purely for convenience.

It is worth noting that Aho distinguishes

between symbols that always appear as the leftmost

element of a node (non-terminals) and those that

always appear to the right of non-terminals (indices)

by writing the latter in lower-case letters, e.g.,

Affgfh. This has the advantage that one can

distinguish the start of each node in a production.

62

On the other hand, if we now remove the + from rules,

we may confuse terminals with indices, unless we

impose a partitioning on the alphabet to distinguish

them. In practice, we shall be using somewhat

verbose grammatical terminology for non-terminals and

indices, and the particular use of + that we have

adopted seems to make the situation clearest.

Furthermore, whether the leftmost element of a node

is called a non-terminal or an index is purely a

matter of taste.

The automaton that Aho prefers for accepting

exactly the class of indexed languages is a nested

stack automaton. Since we assume some familiarity

of the reader with programming (this being a

programmer's theory of translation), we offer a

list-processor equivalent.

A LISP-type list element is a pair of, say,

computer words. The first word may contain a symbol

(atom) or a pointer to another list element (list).

The second contains a pointer to another list element.

A special end-of-list element (nil) is always

available for terminating lists, but for no other

use.

63

A push-down stack in this context is simply a

sequence of list elements, each pointing to its

successor, and the last pointing to nil, such that every

element contains a symbol in its first word. Thus, the

memory used by a computer that, say, generated random

sentences using a CP grammar, would be what is called a

single-level list.

The necessary change to this structure is to

permit two-level lists, if sentences randomly

generated by an indexed grammar are required. That

is, the first word of each element in the original

push-down stack is no longer a symbol, but a pointer

to a single-level list, or conventional push-down

stack.

With single-level lists, the notion of

shared lists is not meaningful, since, with only

one list, there is no need to share. With a two-

level list, there are arbitrarily many one-level

lists, and sharing becomes meaningful. Consider

the rule AE -> B + CD. It means, take the first

list off the stack S, call it X (compare this with

64

A -* BC for a pushdown stack automaton, which starts,

take the first symbol off the stack...); take the

first two elements off list X, checking that they

are A and E respectively;; form a list Y, which is

(C, D, X)j put list Y on stack S; form a list Z,

which is (B, X)^ put list Z on stack S. In this

case, lists Y and Z share list X.

It is of course possible in a computer to have

lists embedded in lists to any level. However, there

is a penalty. In the above example, we had to have

space in the PS automaton to keep track of S and Y

(and Z, but we could without confusion have used Y

for Z, since the stack itself, not Y and Z,

ultimately is responsible for keeping track of these

lists). If we had a 3-level list, we would need 3

variables, and so on. Thus, the size of the parti-

cular automaton in question sets an upperbound on

the number of levels we can use, without appealing

for another source of unbounded memory, such as

another push-down stack. And once a machine has two

independent push-down stacks, it becomes a Turing

Machine, since it can use them as if they were a

single tape.

65

For dealing with English, we are content to use

a conceptual automaton that has enough memory to cope

with a two-level list structure. Most of the post-

Chomsky phrase-structure discussion of languages has

dealt with single-level lists as the memory attached

to a finite-state automaton. In extending our

attention to the next level, some problems related to

structure suddenly became solvable. Possibly all the

structure-related problems for one-dimensional

languages can be shown to be readily solved with

indexed grammars, though this conjecture is based on

nothing stronger than intuition. However, not all

grammarians confine their attention to one-dimensional

languages> there are various syntactically oriented

picture-processing schools of thought, involving

media of higher dimensionality. A question worthy of

their attention is, must they make use of more

powerful languages than the linguists, or do indexed

grammars also solve their problems. Again,

intuitively, probably the former^ a three-level list

for two-dimensional pictures, and so on.

66

3.8 Generative Identity

In a transformation rule, Chomsky is careful to

identify each element participating in a structural

change, using positive integers for tags. (The^X*

is irrelevant.) e.g., Structural Change:

X| - X2 - X3 - X4 ■> X4 - %2 - be - en - X3 - by - X1 .

Note that not every object gets, or needs, a number,

even if we were to reverse the direction of the arrow

(assuming we could generate the right hand side) and

transform the other way.

In most of the correspondences set up between

grammatical rules, in a translation system, such a

notation is adequate. However, without a clear

understanding of the exact theory underlying this

practice, it is difficult to set up a translation

mechanism to handle the * respectively" problem,

despite the obvious fact that indexed grammars would

have to be the minimal generative mechanism at the

syntactic level.

There are two essential points. The first

deals with the rephrasing of a transformation rule

67

as a translation system correspondence. Not all of

Chomsky's rules can be thus rephrased (at least not

readily), but the active-passive example works well.

S •+ NP Aux VP NP S -> NP Aux be en VP by NP A

A.1 A.2 A.3 A.4 A A.4 A.2 0 0 A.3 0 A.l

The exhibited correspondence is between a rule in

a grammar of active sentences, and a rule in one

of passive.

The second point deals with the explication, and

source, of the unfamiliar notation beneath the rules

given above. The integer tags are obviously related

to Chomsky's notation. In full, however, the line

reads:

" The left hand side (S) of the first rule is

acknowledged to have its own identity, which we tag

A. In replacing S, each component assumes the

identity of S, and in addition a tag of its own to

distinguish it from its siblings/'

This process should not be confused with

the notion of family name. Given the rule

68

NP ■* T ADJ NP A

A.1 A.2 A.3

the ADJ • big* in the derivation of
M
 The big boy

can eat a horse" has the identity 1.1.2, where the

noun phrase NP (»
l
tho big boy") has the identity

1.1 and the sentence S has the identity 1. Thus,

surnames'
1
 grow* as the derivation proceeds.

The^O* indicates that this object needs no

identity. In the description of the universal

translation algorithm, this will become more apparent.

The source of this notation is Brainerd

(Bralnerd, 1969), although he notes earlier users.

Brainerd needs to identify nodes in tree structures in

order to rewrite them. Since the distinction between

trees and generative phrase-structure processes is

somewhat fine (mainly one of a choice of either time

or space coordinates), it takes little imagination to

see the obvious application of Brainerd's notation to

a grammar. The above account should make it

unnecessary to say anything about Brainerd's

notation, except to reproduce

69

approximately a diagram from his paper which

illustrates a tree with identifiers attached.

1.1.1 1.1.2 1.3.1

(We have departed slightly from Brainerd's notation,

in assigning a specific identity to the root,

rather than the null element. This simply makes it

possible to refer in print to the identity of the

root without confusion. The root may be any

positive integer.)

Not all rules simply rewrite one element.

Consider

X Y -»■ F G H A B

A.1 A.B A.2.1

This is an example of two objects with separate

identities combining to produce a mixed batch of

offspring . Two of them (F and H) acknowledge only

one source. H assumes two integer tags. The middle

element acknowledges the identity of both the

70

X and the Y, and moreover feels no need for further

tagging with integers.

Not all transferences of identity imply an

increase in the length of the identifier, e.g.,

NP -» ADJ NP A

A.1 A

Here, the adjective acknowledges its inferiority to

the rewritten noun phrase, but the residual noun phrase

maintains it is as equal as its predecessor. This is

not idle animism, but in fact a powerful tool

available to the translation process. And for those

who set store by *proper" structural descriptions, this

rule should be compared with the corresponding rule in

the final picture grammar given in the section on the

structure fallacy. The similarity should be striking.

(If not, consider

NP ■* ADJ NP

A- A.I A.2 and compare it with the

first*fallacious
//
picture grammar.)

71

Though it is possible to do without arithmetic

in this theory, we shall not hesitate to use it in

order to keep down the length of identifiers, noting

that most computers can perform addition readily.

The meaning of

X -> Y X A

A A+1

should be transparent. We are here generating a

string of Y's, with increasing numerical identifiers

all of the same length. For instance, the above

example for noun phrases would be better expressed as

NP •> ADJ NP A

A A+1

to enable each adjective to be distinguished.

Rephrasing this in structural terms, we have a

mechanism for generating immediate constituents

without bound, if we rephrase the notion of immediate

constituency in identification terms. We may say, if

x is an identifier of an object, then x.i is an

Identifier of an Immediate constituent of

72

that object if and only if i is a positive integer

(i.e., an identifier of length 1).

We have suggested that, for purposes beyond

simple generative or cognitive ones, the usual notion

of a phrase-structure rule is inadequate. We follow

Chomsky's theory in invoking identity-markers, and

we depart from it in embedding them in the phrase-

structure component of our translation system. Our

rules now deal both with syntactic markers and

identity markers. A fringe benefit is the

possibility of a relation between Chomsky's notion

of * correct'*' surface structure, and the identity

component of these extended rules.

3.9 A Universal Translation Algorithm

Much is either available in the literature, or

is intuitively obvious, about the functioning of

automata that recognize, and automata that generate,

strings. There is very little about the more formal

aspects of connecting one of each kind together so

that, given a string in the language accepted by one

automaton, the other automaton can

73

be constrained to generate a corresponding string in

its language. On the other hand, there is no end to

the amount of informal literature on the subject, in

the fields of program-compiling, so-called mechanical

translation (of natural languages) and even

transformational grammars, which in certain respects

resemble our formal translation systems. The most

formal paper to date on this problem would appear to

be Lewis and Stearns (1968). However, it deals with

the theoretical aspects of problems that practical

compiler writers had to solve informally years ago.

Our concern is not only with formalizing informal

solutions, but with finding any sort of solution to

some problems not even solvable with

transformational grammars. If our solutions approach

some degree of formality, then it becomes easier to

describe, evaluate^ compare, use and change the

solutions.

For the algorithm, we distinguish the source

grammar and the target grammar, and likewise the

source and target automata and strings respectively.

The source automaton's role is to set up a theory of

how it might have generated the source string had it

been operating in its generative mode. The

74

target automaton starts anytime, even before the

source automaton if it wishes, and proceeds to

generate a string of its language until a decision

has to be made. It then consults the source

automaton's theory to see what it would have done at

the corresponding stage. There are two independent

considerations. Th. first deals with whether the

source automaton says that any more theories are

likely about what it would have done at this stage.

The second deals with the number of theories about

that stage. We tabulate the corresponding responses

of the target automaton:

More theories to

come Waits.

Takes this theory

and notes place.

Takes best theory

and notes place.

Consider the

first column, no more theories. If there are no

theories about this stage, something has gone wrong.

What form evasive action takes is a

No. of No

theories

0 Takes

1 Takes

>1 Takes

and i

more theories

evasive action.

this theory.

best theory

LOtes place.

75

matter for a particular implementation. The simplest

action is to terminate generation of the current

string, generate information about the current stage,

and about the most recent stage which appealed to the

source automaton's theory, and then continue as if it

had finished generating the current string.

If there is exactly one theory, the course is

evident. If several theories, the best should be

selected (or the first if there is no difference).

When other theories also seem promising, this should

be noted.

The second column is included for the case

where the target automaton wishes to proceed as fast

as possible. Only the second line should need

comment: A theory about a stage need not be unique,

if more theories about this stage are possible.

For a compiler, where the source language is

presumed unambiguous (regardless of whether it

actually is), only the first two lines of the table

need be used. If, in addition to being unambiguous,

76

the language is LR(k) (Knuth, 1965), that is, the

source automaton need only stay k symbols ahead of a

point in the source string to be sure that there

are no more theories relevant to that point, for

some fixed k, then only the first column need be

used. In practice, when k is finite, k is rarely

very large, for programming languages.

For natural languages, ambiguity is a non-

trivial problem. We shall consider it further in

the chapter on recognition; here we note that it

corresponds to the contingency for which the third

line of the table is provided.

In the particular implementation of this

algorithm used for translating syllogisms on a PDP-

8, we used Younger's algorithm to construct

hypotheses. Some of these were then confirmed, thus

becoming theories, simultaneously with the operation

of the target automaton. The program caters for all

contingencies in the above table, although this

observation will receive qualification in Chapter

5.

77

The translation algorithm given so far is

very general, and assumes little about the nature of

grammar, beyond the fact that it be generative. This

is not a particularly onerous restriction, since

many mathematical theories of language to date have

been phrased generatlvely.

We now restrict our attention to translation

between languages with phrase-structure grammars,

since recognition algorithms for these are quite

efficient, in comparison to recognition of deep-

structure features of English sentences using

existing transformational theories.

So far we have not explained how to locate

stages in the operation of the source automaton, so

that we may consider theories about that stage. We

now define a stage in phrase-structure termsl it i3

simply the application of a rewriting rule. If we

restrict our attention even further, to context-

sensitive grammars, in which a rule rewrites just

one symbol, we may now identify a stage using the

identifier of the symbol rewritten. The only

decision the target automaton has to make is which

78

rule to use to rewrite the symbol it is currently

contemplating,, it chooses the rule that corresponds

to the rule chosen (^theory") by the source automaton

at the stage corresponding to the contemplated

symbol. Thus, where a grammatical rule might be

involved in a choice, it must if possible be put into

correspondence with one or more rules of any

potential source grammars in the translation system.

The system at the start of this chapter demonstrates

a complete one-to-one correspondence3 in practice we

need not expect this, except for parsing and

compiling systems.

3.10 Applications

In this section, we demonstrate a simple

translation system, to give the reader an intuitive

feel for the translation algorithm, and also to show

how elegantly it can solve problems not even catered

for by transformational theory. The Respectively

Problem

we have set up, in the previous three sections,

enough mechanisms to translate between, say, *John

and Bill like Mary and Joan respectively*

79

and'VJohn likes Mary and Bill likes Joan". We could

equally well have chosen, in place of the second

sentence, the deep structure of the first sentence, but

since translation theory makes no distinction between

structural-description grammars (e.g., in section 3.1)

and any other kind, we invent a kernel-sentence grammar

instead, noting that it would not be very hard to

change this grammar to produce deep structures.

We set up a simple system sufficient for a

demonstration:

Sentence ■> Kernel Next Ult (A"2-path" sentence)

A A.1 2 1

Kernel Hext -> Kernel Next Next (Generates more * paths*)

A B A+1 B+1 B

Kernel •* Noungen + Verb Plural + Noungen + respectively

A A.l A.2 0 A.3 0

(Shape of kernel sentences)

Noungen Next -> Nounphrase + Noungen A B

A.B A

(Generates Nounphrases)

8o

Noungen Ult ■* and + Nounphraso (Last Nounphrase)

ABO A.B

Nounphrase •* John, Bill, Mary, Joan

0 0 0 0

Verb Plural -> likes

0 Verb Sing ■*

likes 0

Let us generate, step "by step, the first

sample sentence. For brevity we shall write Ng

for Noungen, etc..

Sentence 1 Kernel Nx Ul 1.1 2 1 Ng

Mx Ul + Vb PI Nx Ul + Ng Mx Ul + resp

1.1.12 1 1.1.2 0 2 1 1.1.3 2 1 0

Np Ul + Ng Ul + like + Np Ul + Ng Ul + resp

1.1.1.2 1 1.1.1 1 0 1.1.3.2 1 1.1.3 1 0

Np Ul + and + Np + like + Np Ul + and

1,1.1.2 1 0 1.1.1.1 0 1.1.3.2 1 0

81

+ Np + resp 1.1.3.1 o John + and + Bill + like

+ Mary + and + Joan + resp

O O O O O O O O

This can now be taken as a theory of how the

first sentence might have been generated. We now

attempt to generate its translation. Only the third,

fourth and fifth rules in the previous grammar need

be changed to produce the target grammar.

Kernel ■* Kernelgen A A Kernelgen Next ->

A B Nounphrase + Verb Sing + Nounphrase +

Kernelgen A.1.B A.2 0 A.3.B A

ICernelgen Ult -» A B and + Nounphrase + Verb

Sing + Nounphrase 0 A.LB A.2 0

A.3.B

In setting up a correspondence between the

rules of the source and target grammars, it

82

should be noted that no correspondence is needed

between the fourth rule of each, nor between the

fifths nor would any correspondence have significance,

beyond the fact that they both consume indices

similarly. For the other rules, the correspondence

should be obvious. We now generate the second sample

sentence, U3ing the above theory.

Sentence 1

Kernel Nx Ul

1.1 2 1

At this point, a decision (whether to apply the

second or third rule) is necessary. For object 1.1 in

the theory, we applied the third rule, so we do

likewise here, and then we perform several steps for

which no decisions are needed, but for which there are

no steps in the theory that correspond sufficiently

for us to keep track of identities in the conventional

way.

83

Kg Nx Ul 1 . 1 2 1 Np Ul + Verb Sing

Ul + Np Ul + Kg Ul 1.1.1.2 1 1.1.2 0 1

1.1.3.2 1 1.11 Np Ul + Verb Sing Ul +

Np Ul + and + 1.1.1.2 1 1.1.2 0 1

1.1.3.2 1 0

Np + Verb Sing + Np

1.1.1.1 1.1.2 0 1.1.3.1

Now we have a choice of rules for Nounphrases,

for each Np above. Although there is no choice for

singular verbs, it is clear that the identity has been

preserved to enable the choice of the singular form of

like to be correctly made, if there were other

singular verbs. The rules might have to be extended,

to Verb Sing -* SG + Verb , say, where

A 0 A SG is a marker to be handled by

the so-called post-cyclic rules of transformational

theory. The details are not, however, relevant to this

demonstration. Using the source automaton's theory,

we have finally: John + likes + Mary + and + Bill +

likes + Joan. 0 0 0 0 0 0

0

84

If this demonstration seems complicated, it is

because we are exhibiting each step in the

translation process. It is not unreasonable to

expect a computer to have to go through this many

steps in performing translation. The important fact

is that we have defined exactly (to within a

particular implementation) what steps must be gone

through in translating, once the source automaton has

a theory. This particular example shows hov/, without

the notion of generative Identity, it would be

difficult, if not impossible, to decide which rules

to choose when rewrting the Mounphrases. We could

have produced, say,

John likes Bill and Mary likes Joan and

although no appeal to complicated theories of

identity are necessary to achieve this, the trans-

lation is far from plausible.

Let us turn again to our path-theoretic

approach, for more insight into why translation

theory handles problems not dealt \\rith well by

transformational theory. As we remarked earlier,

the interesting paths cross, and uncrossing them

is by no means trivial, as can be seen from an

file:\\rith

35

appropriate structure diagram of the first sentence;

Sentence

I
Kernel Nx Ul

NgNxUl

NgUl

\ Wp

John and Bill like Mary arid

Joan respectively

Corresponding to each path of interest is

either a * Next* or an * Ult*, as can be seen by

tracing through the diagram and following each

index. In this example, only one Next is involved,

but with longer sentences, it is clear that each of

the Nexts must in some way be distinguished.

Identification of index symbols, in which each index

in a node might have an identity, seems to provide"

exactly the mechanism needed for identifying paths,

so that they may be successfuly untangled.

In transformational theory, as we noted,

Chomsky does not attempt to identify objects

except those immediately involved during the

VbPlNxUl
NpUl

86

application of a single rule. We suggest that it is

unlikely that transformational theory will be

successful in any situation where it is clear that

there are paths that cross. It is our contention

that the minimum amount of machinery necessary to

handle the association of remote objects generatively

is some theory of identity, at least as powerful as

the one used here, and some system of indices for

nodes in structure-diagrams to bear identities.

One further remark on surface structure might

be in order. If one ivere teaching a primary-school

class about the use of the word
w
 respect!vely",

would one attempt to produce some sort of structure

tree in the surface structure spirit of transfor-

mational theory, such as

Sentence

Tom Dick and Hal like Joe Paul and Ann respectively

or would one use

87

Tom Dick and Hal like Joe Paul and Ann respectively

(where the dashed line indicates sharing).

The second structure is most definitly not

that of a tree. We saw in section 3.6 that if it

were a tree, all the interesting structures would

have a common node. Without further labelling of

the diagram, a tree-like structure would hardly be of

interest to any but the transformationalists, as it

would not make clear the interesting structural

features.

In other words, when portraying structure

graphically, why must we always insist that the

components of the structured object be adjacent? A

radio transmitter and a receiver may display

structure, in that they may form the basis of a

communications system, but we would scarcely insist

that they be immediately adjacent, if we were

88

attempting to illustrate this graphically. Identity

does not always imply encapsulation, and structural

descriptions need not always imply trees. Agreement

The problem of agreement in number (or for

that matter, any finite number of agreements) can be

handled to an extent by setting up these agreements

as indices attached to a node denoting a given

clause, e.g.,

Clause -> Clauseno Sing

Clause -> Clauseno Plural

Clauseno -> Clauseatr Concrete

Clauseno -> Clauseatr Abstract are examples

of rules attaching lexical features to a clause. If

a clause is embedded within a clause, a delimiter

and a fresh set of indices may be added. When the

indices are eventually consumed, up to the

delimiter, the remaining indices may be ignored,

since they will be discarded when nodes carrying

them are eventually rewritten as terminals. While

it may seem ungainly to carry around unused

Indices, it will be seen in chapter 4 that

recognition of sentences with such a grammar does

not imply such ungainliness.

89

The distributive properties of indices ensure that

agreement paths can be set up using indices in this way.

The Indices are consumed in rules of the form

Noun Concrete Sing -*• horse

etc.

While it is often feasible to arrange for such

agreements using indices, it is not necessarily easy,

elegant, or even useful. It is felt that indices are of

most benefit where they play a more obvious generative

role, as in the respectively problem. Experience with

the program described in Chapter 5 suggested that the

only reason for checking agreement was for dis-

ambiguation, and that ambiguities that could be resolved

by appeal to agreement were quite infrequent. More

graphics

The limited access to two-level list structures

does not readily permit permutations on the elements of

the embedded lists, and hence on indices attached to

nodes in structure diagrams. When an index is used as

a communication channel, the general rule is that

communication paths should be properly nested. In the

diagram,

90

A

/-" \

B C
/ \ / \ D
E F G

it is possible to have, simultaneously, paths from B

to C, from D to G, from D to E, etc.. It is not

possible to set up simultaneously independent paths

from B to F and from D to C, as this implies that

indices bearing identities and other information for

each of these paths must be interchanged, either near

B or near C. A rule that interchanges them, though

quite simple to find, implies that the paths are no

longer independent. There is no general rule for

permuting arbitrary Indices.

If difficulty is experienced in attempting to

set up indexed grammars, with the intention of

achieving communication between remote nodes, it may

be due to attempting some improper nesting (just as

FORTRAN DO loops may be improperly nested) of paths.

This problem does not arise in the solution to

the respectively problem, since only at the common

node is there any question of nesting.

To help in visualizing this, one can imagine a

structure diagram as being a projection of a 3-

dimensional diagram. Each lino in the diagram is

really the bottom edge of a plane at right angles to

the paper, and each node is a line perpendicular to

the paper, along which are arrayed the indices.

Communication paths are straight lines drawn along

the planes through the appropriate indices at each

node. That indices may not be permuted corresponds

to saying that these paths may not cross.

91

The diagram is the 3-D representation of

92

AGH

/\

Bi-'GH CGH

corresponding to the rule

A -* BF + C

with indices GH attached to A.

This conception can be helpful when

deciding whether the use of indexed grammars is

necessary or feasible in a given application.

Clowes, Langridge and Zatorsky (1969) point

ou/, that transformational grammars do not handle

conjunctions very well. The counter-examples they

give are reasonably difficult, but far more difficult

are sentences such as

Mary supports John, not John, Mary. (Klima,1964,p.301)

The Chinese have short names and the Japanese long.

Jim plays guitar, Peter the drums and myself the tube.

The deletion approach, that verbs and such-like

have been deleted because they are repeated, is not

convincing. The sentence

Peter sang
w
Old Man River" and John sang. cannot be

subjected to such an operation. A host of

93

counter-examples can be found for most explanations

other than that a string (in these examples, a sentence)

is given, and then each subsequent string of the same

syntactic class as the first is specified by supplying

at least those substrings that noed alteration. The

specification of what syntactic classes of strings and

substrings may participate in this activity appears to

be manageably small.

Without demonstrating an actual solution to any

of the

conjunction problems, we

shall show how to tell whether indexed grammars are

necessary.

Consider a plausible 2-dimensional structure

diagram for the second example above.

\ I f
The Chinese have short names and the Japanese long

To enable a translation process to substitute

A'
"\

94

tf
the Japanese* for *the Chinese* and simultaneously

*long
v
 for * short*, a path is needed between B and

A, and another between C and D. Between X and Y,

these paths must lie in the same planes. However,

it is clear that they need not cross within these

planes. Hence it is feasible to use indices.

Since the paths cross on the 2-dimensional

diagram (though not on the 3-dimensional one), it

would also seem desirable, if not necessary, to use

indices. The two paths are independent to a sufficient

extent to make the CF treatment of their crossing very

long-winded.

Not all conjunction problems need appeal to

indexed grammarsl notably, those accounted for by

Chomsky, which is the special case of the general rule

given above, where the substring that needs alteration

is the whole string. In Chomsky's formulation (1957,

p.35)Z+X+W are two sentences. X corresponds to some

string, and Y to a string of the * same type* ,

Chomsky insists that all of Y be copied, when forming Z

- X + and + Y - W. Thus only a single path connecting X

to Y is involved.

95

With no crossing paths, no appeal to indexed

grammars is necessary.

This extended treatment of conjunctions still

does not deal with all the problems raised V.y Clowes,

et. al. (1969). The general problem of conjunction

is quite difficult. However, problems not germane

to translation theory are, for example,

John and John sold the house. (Clowes^ p.10) John is

more sucessful as an artist than Bill is as an

artist. (Postal, 1964, p.151)

While transformation theory appears to deal

with the problem of measuring grammaticality, trans-

lation theory deals only with the problem of finding

plausible translations, such as

John sold the house and John sold the house. In

transformational terms, translation theory is content

to discovor possible deep structures, without

necessarily verifying that they satisfy lexical and

other requirements. A deep structure discovered by a

translation automaton does not need to be checked to

see if it can be generated by the base component

(again assuming transformational terminology:; cf. the

96

discussion of the MITRE program in the next section),

3ince it had to be generated in this way to be dis-

covered. In this case, the base component corresponds

to the target grammar, in a translation system for

discovering deep structures (or, equivalently, kernel

sentences).

3.11 Implications

The MITRE Program

The MITRE syntactic analysis procedure for

transformational grammars (Zwicky, 1965) is a program

for finding deep structures of English sentences. It

w //

uses a CF surface grammar which generates English

sentences without regard for the finer details of

their grammaticality. A sentence is analyzed, and

structures produced. Inverse transformations are

applied to these structures to produce tentative deep

structures. Then those deep structures that could not

generate the original string are rejected. Petrick

(1966) says that It is not known whether this

technique will discover every possible deep structure

for a sentence. On the other hand, Zwicky claims that

no structure discovered by the MITRE Junior Grammar

97

has failed to be discovered by this technique.

The MITRE program would appear to be an order of

magnitude faster than Petrick s program. Thiti can in

part be accounted for by different machines and

programming systems, but the fact that it appeals to

what appears very much like a CP ■* CP translation

theory to find deep structures seems significant.

Petrick admits this, and says that his program, which

includes the analysis-by-synthesis technique, is for tho

use of grammarians testing grammars, and hence must be

guaranteed to work, whereas the MITRE grammar is

relatively permanent, making it easier to ensure that

it continues to work the way it does.

If it is true that some problems can be handled

well by indexed grammars, and most inelegantly, if at

all, by transformational theory, then the fact that some

transformations have no usable inverse may be due as

much to an inelegant solution to a problem better

handled by indexed gramma.rs as to any other factor.

One cannot argue that transformations without inverses

are a necessary evil of transformation theory, or at

least of English.

98

This, and the fact that the MITRE program uses a

translation-like approach to finding deep structures;

suggests that no harm, and possibly much good, would

come of recognizing and formalizing CP (and indexed)

surface structure grammars as respectable components of

a transformational theory, and that as much or more

attention be paid them, than finding structural

descriptions whose justification is in terms of

descriptive or explanatory adequacy. Psychology

Another area where transformational grammars have

been considered is psycholinguisties. The Savin and

Perchonock (1965) experiment is sometimes cited as

evidence for a transformational explication of human

processes. The experiment considers so-called

immediate memory used up in memorizing simultaneously

a sentence, and eight carefully chosen but unrelated

words. Provided the sentence can be correctly

recalled, or nearly so, the number of random words

recalled is taken as a measure of the space left after

memorizing the sentence. It is shown that the

transformational complexity of the sentence (whether it

is active or passive, affirmative or negative,

declarative or Interrogative,etc.) is strongly

99

correlated with the measure of space used.

If one were to assume that, to memorize a

sentence, it "be recognized as a CP sentence, and then

translated into an active declarative affirmative

sentence for the purposes of efficient retrieval from a

hypothetical data-base (which is plausible, since this

is precisely how question-answering systems usually

function to achieve economy and efficiency in using

their data-bases for storage and retrieval), then it is

possible that more immediate memory is used up if a

translation is required than otherwise. Thus one is

led to ask, does CP -KJP (say) translation require any

more memory than CP recognition.

Lewis and Stearns (1968) show that transduction

(which corresponds, for LR(k) languages, to our

translation) from simple infix to postfix (reverse

Polish) arithmetic expressions cannot be performed

using only the memory of a pushdown automaton. The

process implies the ability to recognize fxnx| x some

string on a finite alphabet^ . As we saw earlier when

considering {xxlx any string] this could

100

not be done with a pushdown automaton. If it is

reasonable to deduce from this that the translation

may proceed by using more immediate memory, then in

fact the experiment is quite good support for a

translation-oriented theory.

While this speculation on its own is not very

valuable, it does mean that the results of the

experiment cannot be regarded as favouring a trans-

formational account of sentence memorizing, since a

phrase-structure account by no means implies merely

recognition. In fact, if only the sentence, and

the fact that it had been recognized as a sentence,

were memorized, it is hard to imagine how this fact

could be used. One may as well memorize the string

without attempting its recognition.

Clearly, some experiment that can distinguish

between transformational and translational processing

in humans is required. This might be no more than

attempting to determine if analysis-by-synthesis is

used, which seems to be the vital difference between

Petrick's program and the MITRE one. If no such

experiment is forthcoming, this could indicate that

101

the results of the experiment are not particularly-

relevant to applied psychology, since a need for a

particular fact is often sufficient in itself to

suggest an experiment.

3.12 Nummary

Firstly, we exhibited three classes of grammars,

in increasing order of power, v/ithout reaching the

power of context-sensitive grammars. The first,

finite-state grammars, we saw could be used for

recognition of a string in terms of its terminal

symbols alone. The second, context-free grammars,

could be used for recognition of a string in terms of

more than one previously recognized substring. The

third, indexed grammars, could be used for

recognition of similarities between objects not

closely related by context-free standards.

We considered the sort of memory required by

the automata associated with each grammar, to show

how they resembled each other. The first had a 0-

levol list, that is, no list at all (or at best, one

symbol, corresponding to the finite-state

102

automaton itself). The second had a 1-level list, or

pushdown stack, to store, temporarily, symbols

denoting recognized substrings. The third had a 2-

level list, to store, temporarily, arbitrarily many

features of each recognized substring, in a way that

made them readily available at remote stages in the

recognition (or generation) process.

Each of these automata provides exactly the

sort of properties one would want a perceptive auto-

maton to have, if it lived in a one-dimensional

w)rld. The first recognized a finite number of primi-

tive objects, \\rlthout appealing to any significant

internal structure. The second can, in addition per-

ceive structure, in the sense that it can take

previously recognized objects and their relationships

(in one dimension, that of adjacency) and see that

together they form a familiar object, that is, one

for which there is a corresponding recognition state,

or symbol, or description. We referred to this as

combination - we could equally well associate the

notion of articulation with this automaton.

file:\\rlthout

103

The third can, in addition, perceive

associations "between remote objects:; we considered

the association of noun phrases in respectively

sentences, and of various components in sentences

with conjunctions.

Secondly, we formalized hitherto informal notions

of identity, and showed how to combine these with

indexed grammars to provide a sufficiently firm

foundation to set up a translation algorithm which could

be demonstrated to work with grammars at least as

complex as indexed ones.

Thirdly, we claimed that the primitives of any

theory of communication were representations, and that

the fundamental use of grammars, in practice, was to

enable corresponding representations in different

languages to be derived from given representations. We

demonstrated at the outset (3.1) that this was true of

structural descriptions, which were simply translations,

in a structural description language, of representations

in some source language. In doing so, we assigned a

weaker role to the notion of structural description

than that currently popular with some

104

linguistsj we used it as no more than an aid to

visualizing generative processes. In addition, we

suggested how appropriate structural description

grammars that might generate the sort of surface

structures sought by transformationalists could be

readily derived from phrase-structure rules that

included the generative identity component appropriate

to their use in some practical translation system

(3.8, on immediate constituents).

Fourthly, we showed how translation theory

dealt with problems inadequately catered for by

transformational theory, although we acknowledged the

extent to which transformational theory was, for

generating the sentences of a language, a good

improvement over a simple context-free approach, in

that it invoked an asymmetric translation-like theory

to isolate and reduce paths in surface structures to

manageable lengths. An inherent fault was its lack

of a mechanism to disentangle crossed paths, and a

practical fault was its asymmetry, or failure to

provide explicitly the surface-structure grammar which

was used successfully in the MITRE program (Zwicky,

1965).

105

Chapter 4. Practical Recognition

4.1 Introduction

In the previous chapter, we assumed that, given

an automaton programmed with a grammar, and a string

in the language of that grammar, we could either make

that automaton generate that string or reverse the

direction of time, i.e., run the machine backwards,

and recognize that string. This was a convenient

assumption to make, since it enabled us to examine the

problem of translation independently of that of

practical recognition. In doing so, we were able to

make translation a more exact science than before,

although perhaps not so exact that its mathematical

properties, and time and memory considerations, could

be immediately determined.

We now consider practical recognition, that is,

the art of making a deterministic automaton construct

theories about the operations of a conceptual non-

deterministic automaton. That it is still an art

106

is suggested by the uncertainty (Aho, Hopcroft, Ullman,

1968, p.206) about the least upper bound on time for

C? recognition. Currently, the best upper bound is

n3, that is, there is no effective procedure known for

performing recognition with an arbitrary CP grammar,

in time T(n) for strings of length n, such that lim

T(n)/n3 = 0. The procedure for which lira T(n)/n3 is

bounded above is Younger
/
s algorithm.

Recognition is, strictly, the process of

determining membership, that is, deciding whether a

given sentence belongs to a given language. A yes-no

answer to the membership question for a sentence tells

us nothing about why the sentence is a member of a

certain set. By practical recognition, we mean more

than simple recognition3 we mean the determination of

sufficient theories about the possible top-down

generation of a given string by a given grammar (used

by the source automaton) to enable the target

automaton to function in the manner described for the

translation process.

The form of such a theory is difficult to

restrict. The conventional approach is to construct

107

a hypothetical record of a non-deterministic generation

of a string by a pushdown automaton and call this a

structural description. For example, using the gramix.:

S •* AB (a) A -> x (b) B -»• C (c) C ■*

y (d) to generate ab, we might theorize Gall S

object 1.

Using rule (a) replace object 1 by objects 2 and 3.

Using rule (b) replace object 2 by x. Using rule

(c) replace object 3 by object 4, Using rule (d)

replace object 4 by y.

If we now refer to each step by referring to the

identity of the rewritten object (in a computer, one

usually refers to something by supplying its address

in memory), then this description can be abbreviated

to

1: a, 2, 3

2: b, x

3: c, 4

4: d, y

108

Provided no two rules of the grammar are

identical (and this is, trivially, always the case in

practice) it is sufficient to supply only the symbol

rewritten rather than the identity of the rule, since

the latter can always "be reconstructed. Thus:

1: S, 2, 3

2: A, x

3: B, 4

4: c, y

which

is

as close to a computer-memory representation

of the s tructure
S A

B

y

as we need go here. To rediscover that step 1 is a,

2, 3, we note that 2 is A and 3 is B, whence the rule

must "be S -* AB, which we can determine {by searching

the grammar) to be rule (a).

That such a record can function as a program

for a machine performing top-down generation is clear

from its first formulation, above. As such, it is a

very good theory of such a process, since, given the

109

identification of an object, one simply looks at the

appropriate location(s) in memory to determine which

rule was chosen to rewrite that object. The target

automaton, in using this theory, then chooses the

corresponding rule in the target grammar.

Uowever, this is not the only possible form for

a theory. It is possible to do away altogether with

this form of structural description, as we shall see in

discussing the following algorithm.

4.2 Younger
7
s Algorithm

This algorithm is described in detail by Younger

(1967). V/e give here a very brief description.

The only rules dealt with are of the form

A ■> BC A -* B

or A -> a

As noted earlier, it is easy to restrict any CP

grammar to such a form. Younger also omits the second

rule, but as the resulting grammar can be quite

unwieldy, this was not done here.

no

It should be clear from section 3.1 that such

a restriction in no way prevents us from producing the

same structural descriptions with this restricted form

of grammar as those expected of a more elaborate

grammar. Translation systems with rules of the form

A •* BCD a -> [bed]
ft

can be changed to

A •*■ BX a -> [bx]

X ■* CD x ■»■ cd

Given a string of terminals, it i3 possible to

ask, Is the substring, of length j, starting with the

ith terminal, an X , where X is some non-terminal

category? Such a question is a boolean function of 3

variables (i, j, X)j as such, a convenient data-base

for answering such questions is a three-dhiensional

boolean matrix. This in fact is the data-base used

in Younger's algorithm.

The answer to g(i, j, X) is yes if and only if

one or more of the following is satisfied:

(i) (J = 1) and (X->a)£P and the ith terminal is a.

(lij^g(i, k, Y) and g(i+k, j-k, Z) and (X-*YZ)«P and 1

< k < J (ill) g(i, J, Y) and (X+Y)«P

111

where P is the set of production rules for the grammar.

Each of these conditions is related to one of

the three classes of rules permitted. The relationship

should be transparent.

Younger's algorithm may be expressed in an

ALGOL-like notation:

for each level j _< length (of input string)

for each step k < j

for each rule X •> YZ

for each position i < length-j+1 6(1, h X) =

g(i, j, X) or (g(i, k, Y) and g(i+k, j-k, Z))

for each rule X -> Y

for each position i < length-j+1

g(i, j, X) = g(i, j, X) or g(i, j, Y)

(Indentation of any text implies begin end brackets

around it. All for loops start from 1.)

This algorithm assumes that a rule A •*■ B will

always precede, say, C -*• A. For if not, and a B was

discovered at position i, level j, then g(i, j, C)

would be set to the value of g(i, j, A) before the

latter had been set to the value of g(i, J, B),

112

assuming the first two had previously been 0. This

ordering of rules can always be arranged except when

there are rules implying a cycle, e.g., A -> B, B -> C,

C •* A. This does not seem to be a serious restriction

for an English grammar, although it could arise in a

programming-language translation system, e.g., INT EXP

-> REAL EXP i -> FIX (r) REAL EXP ■* INT EXP

r ■■> FLOAT (i) where we might be compiling from

FORTRAN into LISP, and want to allow mixed-mode

expressions. The ambiguity implied would presumably

be ignored by the compiler.

In deciding the structure of the matrix with

respect to the word-oriented structure of memory, it

is convenient to choose i (that is, position) as the

coordinate that varies within a word. In fact, if the

ith bit of the v/ord w(j, X) is g(i, j, X), then we

may rewrite the algorithm

for each level j < length (of input)

for each step k < j

for each rule X -» YZ

w(j, X) - w(j,X) or (w(k,Y) and

w(j-k, Z)tk) for each rule X -» Y

w(j, X) = w(j, X) or w(j, Y)

113

where Tk means "shifted left k hits".

The word-length of the PDP-8 is 12 hits, and since

the longest of Lewis Carroll's syllogisms is 23 words,

the vector w will clearly he more than 1 word in some

cases. Thus multiple-length shifting, and logical,

operations are involved in both senses of the word. As

the level j increases, each vector w (j, X) decreases,

and an obvious economy can be, and is, effected by

allowing variable-multiple-length operations.

The grammar S -> NP VP

NP -»• N VP -* V NP N -> dogs V -* like will

generate * dogs like dogs* . The corresponding matrix

will be

level 1 2 3 j

position 12 3 12 1 i
■

.
I

4 5

 6

1 3

 2

7

— 8

 -

114

7:S / 8:VP

4: HP "~"""6:VP/ 5:NP

< V \

1:N 2:V 3:N

I • I
dogs like dogs

The structure diagram should help make the

matrix clearer. An integer entry in tho sketch of the

matrix denotes a 1, and a blank denotes 0. The integer

itself only indicates the order the bits appeared

(except that 4 and 5 appeared simultaneously from 1 and

3), and is not part of the actual matrix.

We will discuss the details of the implemen-

tation further in the next chapter. Here we are

mainly concerned with the principles.

It is not clear from the matrix alone in what

sense we have produced theories about the operation of a

non-deterministic automaton that generates strings top-

down, that is, starting with the symbol S and rewriting

symbols. There is certainly no structure, in the sense

that there are no pointers from each bit in the matrix

to those bits that were responsible

115

for its presence. However, there is sufficient

information to permit an automaton to operate deter-

ministically to generate a copy of the input string.

Given a position i, a level J and a category X, as the

coordinates of a bit in the matrix, it is not difficult

to construct theories of which rules might have

produced this bit. The following will suffice: for

each rule r: X -*• YZ for each k < j

if g(i, k, Y) and g(i+k, j-k, Z) then return r

for each rule r: X -*■ Y

if s(i, 3, Y) then return r

It does not take long to construct a theory

about a bit, since usually only one or two rules

starting with X are involved, and since the majority

of nodes in a structural description of a string refer

to short strings, j can be expected to be reasonably

small.

The translation algorithm demands a rule in

116

exchange for an identifier. Thus, the only thing

needed now is a means of converting an identifier into

(i» 3, x) coordinates in the matrix. This is discussed

in the next chapter, as are details of the actual

implementation.

4.3 Recognition and Ambiguity

We mentioned earlier that appeals to the finer

details of lexical and other agreements in the

translation of sentences were not particularly interest-

ing. If ignored, one can happily translate He do

it

not like eating hydrogen. However, sentences such

as Flying planes is dangerous (Chomsky, 1965, P«21)

are unambiguous only if an appeal to agreement in

number is maduj otherwise we could translate it as if

it were Flying planes are dangerous , which has

translations in some other languages quite different

from the correct translation of the first sentence.

Here we have conflicting plans of attack,

whether to ignore or include such checks, and if

include, how many.

117

• Th _• goal we should u^t Is not somo criterion To-?

selecting the right number of checks, since it is clear

that sometimes they are a hindr'-:'"
,
e, sometimes a help.

Rather, we should aim at producing an unambig uous

translation. A minimum of grammatical apparatus

should be used to produce possible translations, while

ensuring that the correct translation will be among

them. (The grammar used in the program described in

the next chapter would approximate to such a minimum.)

Then the resulting translations should be compared,

and the essentially different ones selected. Finally,

further criteria invoking as much grammatical detail

as necessary are used to eliminate candidates, v.tii

one remains, or the grammar is exhausted.

In theoretical applications of language pro-

jessing, it is very convenient to be able to produce

large numbers of translations where they arise, label

them as ambiguities, and forget about the problem. In

practice, most machines and humans function ineffi-

ciently when they attempt to process a set of messages

of which one is known to be correct. For example, at

one stage in the development of mechanical translation

from Russian into English, if a word had

118

several meanings, all were given in the translation.

The unreadability of the result was seized on by

critics as an indictment of mechanical translation.

An alternative approach to the problem is

suggested by indexed grammars. Their use facilitates

numerical estimates, for a given theory for the source

automaton, of the plausibility of that theory.

In recognizing sentences with indexed grammars,

it is quite easy to take over existing CF recognition

algorithms, provided a few minor restrictions (analo-

gous to the restriction on cycles A -» B, B -*■ C, C -> A

described for Younger's matrix) are imposed on the

grammar. Let us assume some algorithm which theorizes

about the CP rule A -*• BO by noting that, somewhere, it

has a B next to a C, and hence it has an A. The

extension is as follows.

Consider A, B, and C as denoting, not symbols,

but lists of indices. The rule becomes, for indexed

grammars, A ■* B + C.

113

Given two adjacent nodes (which are therefore

lists), such that the first is of the form (B, X) and

the second (C, Y), where all symbols denote lists of

indices, and furthermore X and Y match (although one

may be longer), then we have a node which is the list

(A, Z) where Z is the longer of X and Y.

Rules of the form A - » B are dealt with even more

simply. If we have a (B, X) then we have an (A, X).

Rules of the form A -* B + C + D can bo dealt

with by reducing them to two rules, just as with CP

grammars.

As it stands, such an algorithm, when taking into

account all sorts of lexical agreements, may repeatedly

fail to find translations of mildly ungrammatical, but

otherwise useful, sentences. The modification is to

relax the condition given above, that the lists X and Y

match, and instead to use the extent to which they do

not match as a measure of implausibllity of the

corresponding theory. This can be made even more

effective by taking into account the individual

plausibilities of the existence of

120

B and C. If both are, independently, implausible,

then their combination should be very implausible.

The most plausible way of deriving a sentence is

then taken to be the best theory of how the sentence

was generated. The advantage of this method over the

previous one suggested is that a single analysis

suffices. The disadvantage is that such an analysis

may take much longer than the average analysis by the

other method, in which only occasional appeals to

lexicographic and similar details may be required.

121

4.4 Details of Indexed Recognition

Earlier we noted that, in generating sentences

with indexed grammars, many nodes might carry large

numbers of indices that are never used, but are simply

dropped when the nodes are rewritten as terminals. This

seemed ungainly. However, when recognizing strings in

the way described above, we noted that X and Y did not

need to be of the same length when matching them. Thus

the surplus indices need never be considered during

recognition.

Consider the grammar S ■* ABC A -» D + E D -► a

EBC -> b. In generating ab we have the diagram on

the left,

S

I
ABC

/ \

DBC EBC

I I

and in recognizing, the one on the right. In comparing

D and EBC, we found that the D and the E could be used

with the second rule to make an A, The two remaining

f
ABC

/ \

D EBC

122

lists that need to be compared are the null list and

the list BC. Since the latter may be considered as th

null list followed by the list BC, the two lists match

as far as the shorter one goes. The list BC, being

the longer, is then attached to A.

The efficiency of such a recognition algorithm

is difficult to estimate. There is as yet no evidence

to suggest that this or any other algorithm would be

usefully efficient. However, if one attempts to

visualize the steps taken by such an algorithm, one

can make a rough estimate.

A reasonable assumption is that the number of

nodes in a typical structure diagram for an English

sentence is bounded above by a linear function of the

length of the sentence, say kft. The same assumption,

made of the length of nodes, would also be reasonable.

Since every pair of nodes need only be compared once,

an upper bound on the number of comparisons is Kn
x
(K

= k*). Each comparison takes a time proportional to

the length of the nodes, which is therefore bounded

above by, say, en. Hence, the total time for

recognition must be bounded above by Cn . (C = cK).

123

But this is the upper "bound on recognition

with Younger*s algorithm for CP recognition. So

our result seems unreasonable, by comparison, since

CP recognition does not involve checking a list of

indices at each comparison.

In practice, as is described in the next chapter,

Younger's algorithm takes a time proportional to n*", in

fact, .007 n*seconds in the program described. The

assumption about the number of nodes seems not at all

unreasonable. (It should be noted that a modification

to Younger's algorithm, in which zero vectors are

ignored, allows the number of nodes in the diagram to

affect the timing.)

Thus the outlook for indexed grammars is

reasonably bright. Whether the extra factor of n

(assuming that this is the case) Justifies their use is

difficult to say without further experience. By

comparison with CS grammars, however, they seem much

easier to handle , although there seem to be no

figures available on the efficiency of CS recognizers.

124

Chapter 5. The Program

The program itself is of interest mainly because

it is well described by the translation theory. despite

the fact that it came before the theory. However, it

may also be of interest because it uses what is nearly

the smallest cheapest general-purpose computer on the

market, or because it uses a closed-class dictionary,

or because it shows that Younger s algorithm is of more

than theoretical interest, or because it demonstrates

what to do about ambiguity, or simply because it is fun

to see a computer doing usefu"
1
. things with English

sentences. On the other hand, descriptions of list-

processors and buffered I/O routines abound and

presumably are of no interest. Thus wo shall describe

the essential features of the interesting parts of the

program, as briefly as is reasonable.

5.1 Translation Theory

As one might expect from the description in

125

chapter 1, conjunctive normal form formulae (CNF

sentences) are 2-level lists, such that the list ((A,

B), (C, D, E)) means (AvB).(CvDvE), and so on. It is

difficult to invent a grammar for this to enable them

to be produced by a single translation, so we decomposed

the translation, from English to reverse Polish (CF ■*

CF) and then to CNF, by treating the reverse Polish

sentences as programs for computers with pushdown

stores. While the second half of this process is a

translation, it is not strictly a phrase-structure

translation as described in the bulk of the theory.

Since the running of such programs is easy to grasp, we

give only an example of such a translation.

Big dogs are bad becomes

(Big)(dogs). - (bad)v

To run the second sentence as a program, we

read it as

Pushdown big

Pushdown dogs

and [result is ((big), (dogs))]

not [result is ((-big, -dogs))]

Pushdown bad

or [result is ((-big, -dogs, bad))]

126

If we started with an empty pushdown store,

we should now have a CNF formula in it.

Clearly the only programming needed for each

logical operation is enough to take one or two CNF

formulae and produce a single CNF formula. This is

quite trivial and requires no elaboration here. It is

worth noting that each step of the program can be, and

is, executed and discarded as soon as it is generated by

the target automaton in the first stage of translation.

This saves a little space, although no time.

The interesting stage is the first, English to

reverse Polish, since this is CF-> CF, and should be

describable by the theory. The simplest grammar for the

particular version of reverse Polish used here is

F -» FFv

F -> FF.

F •» P-

F -* T

F -> string where F is a formula and T is true,

which is for
vl
 thine" and

v
one ", etc., where it is

obvious that they are not as interesting as
vl
dog" and

v
 baby''.

127

The system of grammars simply associates CP

rules of English with one of the above rules, or an

extended rule, such as

F -» PP-v which, if added to the

grammar, does no harm to the language, since

ambiguity in target grammars is irrelevant.

The English grammar currently has 80 rules of the

form A -> BC, 76 of the form A -» B, a closed-class

dictionary of 146 words (there are 720 different words

in Carroll s syllogisms) and a suffix dictionary with

19 entries. A complete description of the grammar is

too much to undertake. However, certain rules are of

interest, to demonstrate how it works.

A simple sentence is, Babies are illogical.

Rather than describe all the rules that would in

practice be applied to this sentence, we shall use

a smaller translation system.

S -> NP VP P ■+ F - F v

A A.1 A.2 A A.l 0 A.2 0

NP -» SS F -» string

A A.l A 0

VP ■* BE AJ P -> P

A A.l A.2 A A.2

128

The grammar is written this way to show its

similarity to the translation theoretic notation wo used

before. However, it is easy to abbreviate it. The

Identity component of the left side can always be

assumed to be A A.l (A.2), whence only the rules as

they are conventionally given need appear in storing

them in tables. The right-hand rules can be abbreviated

to 1-2v, 0, and 2 repectlvely, without losing any

information, since P is the only non-terminal symbol

Involved. For no special reason, L and R (left and

right) were chosen instead of 1 and 2. Where true

appeared, it was abbreviated to i! (null). O was

omitted.

The sample grammar becomes a

S -> NP VP: L-Rv b NP -> SS: c

VP -> BE AJ:R

The structure

1 S

1.1 NP

1.1.1 SS 1.2.1 BE

AJ 1.2,2

J,

VP 1.2

babies are illogical

129

should make identities and rules clearer. This can

be readily used by a human for answering the translation

automaton s questions.

Since every rule in the target grammar rewrites F,

the translation automaton will always have to consult

the source automaton s theory at each step.

Starting with F, with identity 1, we apply

rules to derive a sentence:

Identity of Rule Result

rewritten symbol

1 a F - F v

1.1 0 1.2 0

1.1 b babies - F v

0 0 1.20

1.2 c babies - P v

0 0 1.2.2 0

At this point, the theory about 1.2.2 must be

that some rule of the form A -> a is involved. For

simplicity, all such rules were made to correspond to P

-"string. Thus:

1.2.2 d babies - illogical v

0 0 0 0

130

The second stage of translation yields ((-

babies, illogical)}, that is, a thing is either not

a baby or it is illogical, which is equivalent to

baby -> illogical.

Identity is referred to explicitly in this

discussion, but the program can keep track of identity

implicitly. For example, 1.2 can be replaced by the

(i, j, X) coordinates of the bit in the Younger

matrix of which 1.2 is the identity. Since the target

automaton never runs without consulting the source, it

need not be concerned about losing track of identity in

the manner described for the respectively problem.

A pushdown store is used for holding all but the

leftmost symbol of the derivation. At the start, the

store is empty. The coordinates (1, 3, S),

corresponding to identity 1, are put on the store. Then

each symbol at the top of the store is either

rewritten if it is an F (that is, a coordinate), or

output, until the store is empty. After the first

step, the store holds

F(1, 1, MP) (1.1)

(0)

F(2, 2, VP) (1 .2)

v (0)

131

The remainder of the steps should "bo cloar.

A more complex example is
u
 No one can remember

the battle of Waterloo unless he is very old . As

the solution to this uses over 40 rules, and its

structure diagram, in the Chomskian sense, has nearly

50 nodes, we refrain from sketching it or enumerating

the rules.

Two of the rules are of interest. S -> PC AC:

LR-v AC -> CN PX: R-PC is the principal clause,

up to
u
 Waterloo ', while AC is the adverbial clause.

~N is a
vv
 conditional negative", in this case

u
unless

//
. PX is a general symbol for the class of

things that follov; words like "unless",
vV
lf",

vV
when",

etc., which include past and present participial

phrases, etc..

If written as one rule, this becomes S -> PC CN PX:

13v where we have reverted momentarily to the

numerical notation, since L and R only account for 1

and 2. Thus it can be seen that the sentence is

interpreted

132

as Either no one can remember the battle of Waterloo

or he is very old .

In so rendering it, we have assumed that each

noun phrase functioning as a subject is quantified by

the same variable. Thus *he" and
v
no one" refer to

the same person, when the persons are enumerated, as

implied by universal quantification. That is, for all

x, either x can not remember the battle of Waterloo

or x is very old.

To achieve this, once the assumption has been

accepted, rules are set up to block the copying of

strings such as "one" and *he". This is done with

rules such a3

NP ■+ PN: N meaning that if a nounphrase is

a pronoun, then its translation is true (or null).

To see that this works in practice, consider

S -> NP VP: L-Rv To make one rule

out of the last two, we have

S ■> PN VP: H-Rv The right side can be

seen to be equivalent to R.

133

Another example is

NP -> AJ NP: LR. The

combination rule would be

NP -> A J PN: LN. The right

side is simply L, The final result for

the above sentence is

((-remember the battle of Waterloo, very old)).

The grammar has been arranged to ignore

auxiliaries, as it makes the treatment of negatives

simpler when ^hot occurs between an auxiliary and a

verb. For Carroll's syllogisms, it makes no difference

to ignore the auxiliary, but a more sophisticated system

for making distinctions between can and do would

insist on keeping the auxiliary. It is trivial to

alter the grammar to include the auxiliary.

134

5.2 Relation to the Contingency Table

In the table of actions to be taken by the target

~
7
 torn ton, given in s^cti^n 3.9, v/e listed six coi-

tin^-ncies. V/e shall dlrcuss their relationship to th^

pre; vam.

If g(1, length, S) is 0, after executing

Yo'inger's algorithm, then no theory about why the whole

s'."'".np:
J
-. a -^nte^o is posp^ble. Thv?, ewuive p.ct? ~

is takrn. In the program this amounted to proceeding to

the next sentence. This is the onl]- point in te

processing where there is a possibility cf no theories,

wlr" ch :'•' a characteristic of bottom-up recognizers.

In using the matrix to discover theories, it is

clear that further theories about the same bit can be

left for later discovery. The procedure adopted was to

r*nd a theory, and then to see if any more theories

were possible. If so, the bit s coordinates were put on

a list of such sources of ambiguity, but no immediate

attempt was made to see how many theories there were.

At the completion of a translation, the list of other

theories was examined and another

135

translation was commenced if there were any more

combinations of theories that might give a different

translation.

With this program, it is not clear whether one

can say one is using the right hand column of the

contingency table. Certainly, the first line is

irrelevant, except in some abstract sense. Since the

possibility of further theories is considered at the

time of finding the first theory, the second line is

also irrelevant. On the other hand, since a complete

search is not carried out for all theories about a bit,

at the one time, the third row of the left hand column

seems to be irrelevant. Thus in practice we may say

that this particular program uses the first two rows of

the left-hand column and the third of the right.

5.3 The Closed-Class Dictionary

Bobrow (1963) reports two such dictionaries used

very successfuly (Klein, Simmons, 19633 Resnikoff,

Dolby, 1963). A more recent example is given by Thome

(1967), also quoted as being successful.

136 The essence of a closed-class

dictionary is that a very large proportion of

different words belong to a very small number of

syntactic classes, namely, nouns, verbs and

adjectives. Also, as the vocabulary of a language is

increased, by technological developments, for example,

new words almost invariably fall into one of these

classes. For the latter reason, the remaining classes

are called closed, since they seem virtually immune

to being increased. For the former reason, closed-

class dictionaries are more economical than complete

ones. As noted earlier, only 146 words were required

for the successful recognition of practically all of

Carroll's syllogisms, which had 720 different words.

With a complete dictionary, nearly 3000 2-character

words of memory would have been required, which made

the other a necessity.

At first sight, it would appear to be a serious

matter if one cannot tell of an unrecognized word

whether it is a noun, verb or adjective. However,

most nouns can be used as adjectives, and many as

verbs, too. Thus, not as much is lost as one might

expect. This in part could account for the glowing

reports of success with such dictionaries.

137

Our own dictionary has been successful far beyond our

expectations. There is the occasional instance of a

report by the computer of something trying to cupboard

something else, but ambiguities of this nature were far

more rare than the structural ambiguities for which

natural languages are notorious. When they did happen,

the corresponding analysis was usually completely

different from the correct one.

Augmenting the closed-class dictionary is a

suffix dictionary of 19 entries, such as ible, ught,

ing, s, ed, ould, etc. Each of these is associated

with a non-terminal symbol, ible is an AJ (adjective),

s is an SS (reserved especially for s), and so on. In

the example earlier, babies are illogical , the rule

NP -*■ SS was used, indicating that babies had only a

terminal s as a distinguishing feature, and hence was

recognized as an SS in the first instance.

If a word submitted to the dictionary routine

cannot be found in the closed-class dictionary, its

ending is compared with possible suffices. If no

suffix matches, the word is assigned the category U for

unknown.

138

The grammar includes rules

N -» U AJ -> U

VT -»■ U (Transitive verb) VI -* U

(Intransitive verb) and it is this delightfully

simple mechanism that allows the program to select

the correct category with almost supernatural

consistency.

5.4 Implementation of Younger's Algorithm

Sentences up to 64 words in length have been

recognized with this program, during some

preliminary timing tests. With 100 non-terminals,

the corresponding size of the matrix is 200,000 bits.

Clearly, something has been done to the matrix to

reduce its size.

In the example of a matrix analysis in the last

chapter, 8 out of 15 vectors were zero. Thus it is

reasonable to arrange that storage 3pace be allocated

only for non-zero vectors.

This is done by maintaining a dope vector

139

for each level. An element of a dope vector comprises

a pointer to the block of Younger-matrix vectors for

the corresponding level j, and 100 "bits corresponding

to the 100 non-terminals, each to indicate the

presence or absence of the vector w(j, X) for category

X corresponding to that "bit. The dope vector has as

many elements as there are levels, and hence wrds in

the sentences. A 23-word sentence would consume

nearly 200 words for the dope vector alone. But the

size of the matrix is reduced drastically, to almost

exactly the size of the dope vector, over a large

range of sentence lengths.

A benefit from the size reduction is an increase

in speed. If most vectors are zero, then the time

spent in shifting and and—ing two vectors both non-

zero will be negligible compared to the time

manipulating pairs of vectors one or both of which

are zero.

The timing of the algorithm was found to be

virtually independent of any factor except the length.

Sentences with no analyses were processed just as fast

as ones with over 100 possible analyses. The timing

140

was estimated to be .00? n*' seconds; on a log-log

graph, points plotted were all almost exactly on a line

of gradient 2. n is the number of words in the

sentence.

An improvement in timing by a factor of up to 5

can bo had simply by using the fact that for over four-

fifths of the rules of the form A -» BC, either B or C

could not be of length more than 1 or 2, and hence the

main loop of the algorithm can be cut short for those

rules. This was not taken advantage of in this

implementation, since the idea ocurred after it had

become apparent that the program was already too fast

for the teletype to keep up.

5.5 Ambiguity in Practice

In a system that does more than simply parse

sentences, it is possible to rely, to an extent, on

successful operation as a criterion for selecting

correct translations. In this case, the generation of

a conclusion from several premises, such that the

conclusion contained only two or three terms, would

indicate that the appropriate translations might have

been used.

141

A sentence may produce, typically, from one to

three CNF translations. A suggested plan is to use

each combination of translations to produce

conclusions, and to select the best. In practice,

this would be expected to work whenever there was a

correct translation among those of each premise,

since it appears unlikely that short conclusions

could be drawn from bad translations.

5.6 Outline of Program

We sketch, without fine detail, the order

in which translation proceeds.

1. New sentence: Perform dictionary analysis of

each word in a sentence premise. Store results

in an

array.

2. Start the matrix routines. Set up bits to

correspond to the results of step 1. Execute

Younger's algorithm.

3. If g(1, length, S) = 0, go to 1 (no analysis).

4. Perform translation as described.

5. Print result.

6. If all theories (ambiguities) have been

processed, go to 1, else go to 4.

142

5.7 Statistics

.Storage

Statistics that might be of interest are:

Size of Program: 1700 words

This is "broken down approximately into:

String Processor: 100

Interrupt Handler for buffered I/O 90

Dictionary routines 80

Younger s algorithm 400

List Processor 128

Theory Constructor 300

CNF logic 160

Translator 150

and miscellaneous routines and data,

Major working areas are:

I/O and other character buffers 256

Translation system grammars 550

(156 rule pairs)

Dictionary 500

Younger Matrix - maximum 400

List-processing area 200

143

Timing

This is directly proportional to the number of

rules of the form A ■+ BC. With 80 such rules, a

sentence of n words talces .00? ji* seconds to be

recognized. A single translation^takes from 0.2 to 0.3

seconds for sentences of from 10 to 15 words. The

syllogisms are read at 10 characters per second from

paper tape, or may bo entered manually via the

keyboard. The results are printed at 10 characters

•per second. Genera]ity

There is no need to use the English grammar. One

for any other language, either natural or formal,

provided it is context-free, will produce the same

results. A small grammar for arbitrary logical

expressions could readily be constructed, so that such

expressions could be translated into CNF. A status

table for punctuation symbols enables any character to

have the status of a letter so that logical operators

(brackets, etc.) maybe treated as words, and hence may

be included in the dictionary.

144

5.8 Envisaged Extensions

In order to extend this program to a complete

syllogisr.i solver, there are four major sections:

semantics, syllogistic inference, evaluation of the

best solution, and translation back into English.

The semantics section is responsible for

resolving questions of synonymy. A more powerful

syntactic analyser would result in requiring less

semantic analysis. In this instance, semantic analysis

consists of comparing strings from different premises

to see if they are synonymous, contradictory or

independent. The simplest such analyser would simply

compare the two strings, character by character, to see

whether they are identical. The next step is to

compare them word by word, removing affices from each

word beforehand. If an odd number of negative affices

(e.g., un-, in-, etc.) are removed, and all the

remaining stems match, they are contradictory. If not

is removed entirely, and counted as a negative affix,

this enables auxiliaries to be included in the string

matching, thus enabling a distinction to be made

between * can" and do.

145

Syntactic problems that cannot be resolved by the

semantic analyzer are those related to passive-active

transformations, and to segments, or terms, that are the

object of a verb, such as I dislike coloured flowers''.

Most of the difficult premises are affected by the

latter consideration.

The syllogistic inference section is quite

trivial. The discussion in sections 1.3 and 1.4

should make this clear.

Evaluation of the best solution can be done as a

function of either the number of different terms, or the

number of disjuncts, in the conclusions derived from the

inference section. In the latter case, a normal

conclusion has one disjunct, for a well-formed sorites,

and in the former it has two terms, and possibly one or

two universe terms as well. The difficulty in

distinguishing universe terms from any others suggests

that the number of disjuncts be used as a criterion.

Translation back into English is best done by

appealing to style. CuV is not a CP language, and

does not lend itself to the same translation process

146

used for going from English to CNF. In appealing to

style, it is essential to know the original syntactic

roles of each term. The construction of an English

sentence must be on an appeal to style, since there

are so many ways of expressing a CNF formula in

English.

£9 Conclusion

The program was quite successful, considering

that its grammatical capabilities were relatively

unsophisticated. The theory evolved was also

successful, possibly as a result of a happy combi-

nation of insights arising out of the program and

ideas from the literature.

Computational linguistics would appear to be

at a stage where it will benefit equally from doing

and thinking. Without the doing, there will be no

examples or counter-examples of what can or can t be

done. Without the thinking, the doers may not know

when they are attempting the impossible or the

inefficient. It does not cost much money to think,

but a prevailing attitude amongst the doers

147

is that it can't be done for less than a hundred

thousand dollars, and will probably cost a million.

In demonstrating that equipment that can be bought

for ei^ht thousand dollars can be used in a non-

trivial natural language application, it is hoped

that this attitude has been, at least, challenged.

Appendix

Listed below are the results of translation of

the first twelve syllogisms. The notation should be

transparent; all formulae are in CNi?\

All but the second and the seventh syllogisms can

be seen to be solvable, in the sense that for each

premise, there is at least one correct translation.

The third premise of the seventh syllogism

suffers at the hands of the grammar^
N
* consists was

incorrectly given as behaving like
v
 be".

The second syllogism is atypically pathological.

Although it is quite easy to arrange the grammar to

process sentences starting
u
x find(s) , it was not done

for this demonstration. The * only'' problem was not

attempted; sentences of the form
vv
x are the only y "

mean
x
 all y are x " An extension to the grammar of

the order of ten rules would be required to effect

repairs.*

1

BABIES ARE ILLOGICAL

A BABIES

B ILLOGICAL

C-A, B)

NOBODY IS DESPISED WHO CAN MANAGE A
CROCODILE

A DESPISED
B MANAGE A CROCODILE
C-A,-B)

ILLOGICAL PERSONS ARE DESPISED

A ILLOGICAL
B PERSONS C
DESPISED

C-A*-B» C>

91

MY SAUCEPANS ARE THE ONLY THINGS I
HAVE THAT ARE MADE OF TIN

A MY
B SAUCEPANS
C ONLY
D I HAVE
E MADE OF TIN

C-A,-B> C*-E)SC-A,-B, D,-E)

A MY
B SAUCEPANS
C ONLY
D I HAVE

E MADE OF TIN

<-A,-B, C)fi(-A,-B, D)*(-A,-B, E)

I FIND ALL YOUR PRESENTS VERY USEFUL

NONE OF MY SAUCEPANS ARE OF THE SLIGHTEST
USE

A MY
B SAUCEPANS
C OF THE SLIGHTEST USE

<-A,-B,-C>

A MY
B SAUCEPANS
C OF THE SLIGHTEST USE

C - A , - B > - C >

3

NO POTATOES OF MINE, THAT ARE NEW,
HAVE BEEN BOILED

A POTATOES
B MINE, C
NEW, D
BOILED

C-A,-B,-C,-D)

A POTATOES
B MINE, C
NEW, D
BOILED

C-A,-B,-C,-D>

ALL MY POTATOES IN THIS DISH ARE F
TO EAT

A MY
B POTATOES
C IN THIS DISH

D ARE FIT TO EAT

C-A>-R*-C* D)

A MY .

B POTATOES

C IN THIS DISH

D FIT TO EAT

C-A^-B^-C* D)

NO UNBOILED POTATOES OF MINE ARE F

TO EAT

A UNBOILED
B POTATOES

C MINE

D ARE FIT TO EAT

C-A>-B,-C*-D>

A UNBOILED B
POTATOES C
MINE D FIT TO
EAT

C-A>-B»-C»-D)

THERE ARE NO JEWS IN THE KITCHEN A

JEWS

B IN THE KITCHEN

C-AJ-B>

NO GENTILES SAY "SHPOONJ"

A GENTILES

B SAY "SHPOONJ"

C-A,-B)

MY SERVANTS ARE ALL IN THE KITCHEN

A MY
B SERVANTS

C ARE ALL IN THE KITCHEN

C-AJ-B* C)

A MY

B SERVANTS

C IN THE KITCHEN

C-A,-B* C)

A MY

B SERVANTS

C IN THE KITCHEN

C-A,-B* C)

5

NO DUCKS WALTZ

A DUCKS
B WALTZ
C-A,-B>

NO OFFICERS EVER DECLINE TO WALTZ

A OFFICERS
B WALTZ C-
A, B)

ALL MY POULTRY ARE DUCKS

A MY

B POULTRY

C DUCKS

C-A,-B> C)

EVERY ONE WHO IS SANE CAN DO LOGIC

A SANE
B DO LOGIC

C-A, B)

A SANE

B DO LOGIC
C-A, B)

NO LUNATICS ARE FIT TO SERVE ON A JURY

A LUNATICS

B ARE FIT TO SERVE ON A JURY

C-A,-B>

A LUNATICS
B ARE FIT TO SERVE ON A JURY

C-A,-B)

A LUNATICS
B FIT TO SERVE ON A JURY
<-A,-B>

NONE OF YOUR SONS CAN DO LOGIC

A YOUR B
SONS C DO
LOGIC <-A,-
B»-C>

A YOUR B
SONS C DO
LOGIC C-A,-
BJ-C>

7

THERE ARE NO PENCILS OF MINE IN THIS
BOX

A PENCILS
B MINE
C IN THIS BOX

<-A,-B,-C)

NO SUGAR-PLUMS OF MINE ARE CIGARS

A SUGAR-PLUMS
B MINE C
CIGARS

<-A*-B,-C)

THE WHOLE OF MY PROPERTY, THAT IS NOT
IN THIS BOX* CONSISTS OF CIGARS

A MY
B PROPERTY*
C IN THIS BOX,
D OF CIGARS

<-A*-B* C* D)

A MY

B PROPERTY*
C IN THIS BOX*
D OF CIGARS

<-A*-B* C» D)

8

NO EXPERIENCED PERSON IS INCOMPETENT

A EXPERIENCED

B PERSON
C INCOMPETENT
C-A,-B*-C)

A EXPERIENCED
B PERSON
C INCOMPETENT
<-A*-B*-C)

JENKINS IS ALWAYS BLUNDERING

A JENKINS

B BLUNDERING

C-A* B)

A
B

JENKINS
BLUNDERING

C-A* B)

NO COMPETENT PERSON IS ALWAYS BLUNDERING

A COMPETENT

B PERSON

C BLUNDERING

C-A*-B*-C>

A COMPETENT

B PERSON

C BLUNDERING

C-A*-B*-C>

NO TERRIERS WANDER AMONG THE SIGNS
OF THE ZODIAC

A TERRIERS
B WANDER AMONG THE SIGNS OF THE ZODIAC
<-A*-B>

NOTHING, THAT DOES NOT WANDER AMONG
THE SIGNS OF THE ZODIAC* IS A COMET

A WANDER AMONG THE SIGNS OF THE ZODIAC*

B COMET (
A*-B>

A WANDER
B AMONG THE SIGNS OF THE ZODIAC*
C COMET
C A*-B*-C)

A ZODIAC,
B COMET
C-A,-B)

NOTHING BUT A TERRIER HAS A CURLY

A TERRIER
B HAS A CURLY TAIL
C A,-B)

10

NO ONE TAKES I.N THE TIMES, UNLESS
IS WELL-EDUCATED

A TAKES IN THE TIMES,
B WELL-EDUCATED

C-A, B>

A TAKES IN THE TIMES, UNLESS HE IS
WELL-EDUCATED

C-A)

A TAKES IN THE TIMES, UNLESS HE IS
WELL-EDUCATED

(.-A)

NO HEDGE-HOGS CAN READ

A HEDGE-HOGS
B READ <-A,-
B>

12.

MY GARDENER IS WELL WORTH LISTENING

TO ON MILITARY SUBJECTS

A MY

B GARDENER

C IS WELL WORTH LISTENING TO ON MILITARY
SUBJECTS

C-A,-B, C)

A MY

B GARDENER

C WORTH LISTENING TO ON MILITARY SUBJECTS

C-A,-B, C)

NO ONE CAN REMEMBER THE BATTLE OF WATERLOO,

UNLESS HE IS VERY OLD

A REMEMBER THE BATTLE OF WATERLOO,

B VERY OLD

C-A, B)

A REMEMBER THE BATTLE OF WATERLOO,

UNLESS HE IS VERY OLD

C-A)

A CAN REMEMBER THE BATTLE OF WATERLOO,

UNLESS HE IS VERY OLD

C-A)

NOBODY IS REALLY WORTH LISTENING TO
ON MILITARY SUBJECTS, UNLESS HE CAN

GRAMMAR CURRENTLY
IN USE:

s TA NG
:

R-

s PC AC
:

LR-V

s PC RC
:

LR-V

PC NQ PD

:

L-RV
PC NG PD

:

LR-
NR NR PJ

:

LR

NR NP OP

:

NR NP PO

:

LR

NR TG JP

;

R

NR NP PS

:

LR
NR WL OP

:

R
NF NF PJ

:

LR
NF NF OP

:

R

WT SU AS

:

NQ WT PS

:

R

NQ WT PD

:

R

NQ JM QN

'

NQ AT NR

!

.LR

PS NR VT

:

N6 AG NR

:

R

NG NH OP

:

•R

AT AL AA

!

!R
NP JP NP

-

(LR
NP ED NP :LR

NP GR NP

«

:LR

RC EX NQ !R-

RC WH PS :R

RC WH PD :R
AC CV PX :R
AC CN PX :R-
CV SO LA

LA LG AS

AP PR NQ

OP OF NQ :R
PO OF PP :R

PD AN VP :R
PD AI VP :R-
PD PD AC

PE AF PE :R
PE AK PE :R-
VP LY VP

VP MV VX

VP MG VX :R-
VF VF AP

VF VI OP
VF VF AB

VF VF LY

VF VT NQ

VF HN PU

VF DV OB
VX TO VP

VB BN OB

VB BG OB

VT GV NQ

PT LY PT

PT ED OP

PT DD NO

PU PU FF

PU WO IM

IM GR NQ

IM IM FF

FF AS PU

GR GG NQ

OB TO VB

OB JP OP

HN HV AF

AI AX NT

AN AX AF

BN BE AF

BN HN BD

BN BN BI

BG BE NT

MV MW NO

DV TN AB

LY JM LY

LY AD OC

JP JM AJ

JP MJ VX

MJ AF MJ

TA TH BN

BN BE •

MV HV
►

MV RE »

M
W

RE
►

AF AL

AF RY
• •

AP HR >

AP TH
• •

AB PV •

W
H

TT
t

JM RY
t

AJ MJ »

AJ U :

0$\

JP AJ

OA AL '

N SP TE ;

N SP PA

AA SP !

L AA DM

AT AA ■
L

AT IA t

N AT QA

:

•

L PR TO

'

PR AD

:

PR AS

'

PR PV

s

DV CM

'

VT HV

'

VT RE

:

VT U-

VT DO

:

VT SS

<

VI SS

:

VI CM

"

VI U

N SS

:

N U:

AX DO

:

AN

HN

AX

HV"

FF AB

FF PR

FF AP

PT ED

'

PU PT

'

IM GR

PZ IM

PZ AP

PZ PU

PX PZ !

L PX PC :

L VF VI

VF VB :

L VP VF :

L PE VP !

L PD PE :

L PJ AC :

L PJ PZ

PJ RC :

L NP NI :

N NP IM

NP DM r

N

NP N: NP

ON: NR
NP:L NR
PN:N NR
QA:N NR
TG:N NQ
NR:L NP
NH:N NG
NF:L OB
PZ: OB
OP: OB
NQ:L OB
JP:

S PC:LJ!
PN I IA

A BE AM
TA AN AS
AS AD AT
BE BE PV
BY PN HE
CV IF BE
IS PN IT
PN ME PA
MY PV ON
OF OF AG
NO PV IN
SO SO TO
TO DO DO
CJ AND

QA ANY
BE ARE
EX BUT
PR FOR
ED GOT
ED HAD
HV HAS
PA HIS
AX MAY
ED MET
WH WHO AX
CAN PV
OFF

PA OUR
AB OUT
TE THE
AL ALL
MJ FIT
NI ONE
NT NOT
JM TOO
PN YOU
AB AWAY
AB BACK
KN CALL
AX CANT
MV CARE
CM COME
AX DARE
DO DOES
PV DOWN
MJ EASY
MG FAIL
KN FIND
PR FROM
DV GETS
HR HERE
PR INTO
ED KEPT
GV LEND
LG LONG
RE LOVE
PR LIKE
AJ ONLY
ED MADE
PA YOUR
JM VERY
NH NONE
PP MINE
ON MUCH
PR NEAR
OC ONCE
PR OVER
TT THAT
HV HAVE
BD BEEN
ED PAID
ED SOLD
MJ SURE
SU SUCH
PN THEY
PN THEM

SP THIS ED
TOLD TN
TURN AF
WELL AX
WILL PR
WITH WT
WHAT CV
WHEN AF
EVER PV
ABOUT PR
AMONG BI
BEING AJ
CURLY MG
FAILS ED
GROWN DV
LOOKS RE
LOVES AK
NEVER JM
QUITE AB
STILL
N TABLE
SP THESE
DM THOSE
TH THERE
TN TURNS
PR UNDER
WH WHICH
CV WHILE
WL WHOLE
WO WORTH
IA EVERY
GV ALLOWS
AI CANNOT
U CIRCUS

VT DETEST
EX EXCEPT
GG GIVING
MV HAPPEN
MJ LIKELY
DD MARKED
RY REALLY
NI THINGS
CN UNLESS
NH NOBODY
AF ALWAYS
DD BRANDED
DD LABELED
NH NOTHING
MV OFFERED

MG DECLINE AB
UPWARDS MJ
WILLING PR
WITHOUT ED
WRITTEN TG
ANYTHING BE
CONSISTS NI
ARTICLES WT
WHATEVER NR
EVERYBODY RE
RECOMMEND JM
ABSOLUTELY TG
EVERYTHING JM
HOPELESSLY! AJ
ABLE AJ IBLE
AJ ICAL AJ
LESS
N NESS
AX OULD
AJ SOME
N TION
ED UGHT
AJ FUL
AJ EST
GR ING
N OUR
AJ OUS
ED ED LY
LY PA *S
SS S

Bibliography

Abbreviations:

CACM - Communications of the ACM

JACM - Journal of the ACM

IC - Information and Control

FJCC - Fall Joint Computing Conference

Aho, Alfred V., 1968, Indexed grammars, JACM J_§, 4,

647, Oct. Aho, Hopcroft, Ullman, 1968, Time and

tape complexity

of pushdown automaton languages, IC 13, 3, 186.

Bach, Emmon, 1966, An Introduction to Transformational

Grammars, Holt, Rinehart and Winston, Inc., N.Y.

Bobrow: D.G., 1969, Quoted from personal communicatiors

Brainerd,Walter, 1969, Tree generating regular systems,

IC 1_4, 2, 217. Chartres, B.A., and J.J.

Florentin, 1968, Awniversal

syntax-directed top-dovm analyzer, JACM 15., 3,

447, July. Chomsky, Noam, 1957, Syntactic

Structures, Mouton and

Co., The Hague (6th pr. 1966).

 _____ , 1959, On certain formal properties of grammar,

IC 2, 2.

_, 1964, A Transformational Approach to Syntax,

in Fodor and Katz, p.211. _j 1965, Aspects of the

Theory of Syntax, M.I.T.

Press, Cambridge, Mass. __, 1966, Topics

in the Theory of Generative

Grammar, Mouton and Co., The Hague.

Clowes, M., D. Langridge, and R. Zatorski, 1969,

^Linguistic Descriptions'', Presented paper,

Conference on Picture Language Machines, Canberra...

Australia, Feb. 1969 (Draft copy).

Fodor and Katz, 1964, The Structure of Language,

Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Friedman, Joyce, 1969, A computer system for trans-

formational grammar, CACM V2_} 6, 341, June.

Harman, G.H., 1963, Generative grammars without

transformation rules - a defence of phrase-

structure, Language ^9, 597-616.

Ginsburg, S., S. Greibach, and M.A. Harrison, 1967,

Stack automata and compiling, JACM 1_4, 1, 172-

201, Jan.

Klima, Edward S., 1964, Negation in English, p.246

in Fodor and Katz.

Knuth, Donald E., 1965, On the translation of languages

from left to right, IC 8, 6, 607, Dec.

Lewis, P.M., and R.E. Stearns, 1968, Syntax-directed

transduction, JACM Jj5, 3, 465-488, July.

Matthews, G.H., I96I, Analysis by synthesis of

sentences of natural languages , Proc. 1961

Internat. Cong, on Machine Translation of

Languages and Applied Language Analysis, Nat.

Phys. Lab., Teddington, England. Naraslmhan,

R., 1969, * Computer Simulation of Natural

Language Behavior^ Invited paper, Conference

on Picture Language Machines, Canberra, Aust.,

Feb. 1969 (Draft copy). Peterson, W.W.,

1957, Addressing for random-access

storage, IBM Journ. R. and D., J_, 130.

Petrick, Stanley R., 1965, A Recognition Procedure

for Transformational Grammars, Ph.D. Thesis,

M.I.T., quoted in Woods, 1967.

 _____ , 1966, A program for transformational syntactic

analysis, Air Force Cambridge Res. Lab., U.S.A.F,

PSRP 278, AFCRL 66-698. Postal, Paul M., 1964,

Limitations of Phrase Structure

Grammars, p.137 in Fodor and Katz. Rosenbaum, P.,

1966, The Core Grammar, Contract No.

AF 19(628)-5127, AFCRL-66-270, quoted in

Petrick, 1966. Savin, H.B., and E.

Perchonock, 1965, Grammatical

structure and immediate recall of English

sentences, Journ. Verbal Learning and Verbal

Behaviour 4, 3^8-353.

Thome, 1967 (should read, Bratley, P., H. Dewar,

and J.P. Thorne), Recognition of syntactic

structure "by computer, Nature 216, 5119, 969-

973, Dec. 9.

Woods, William, 1967, Semantics for a Question-

Answer System, Ph.D. Thesis, Harvard.

Younger, Daniel, 1967, Recognition and parsing of

context-free languages in time n3 , IC J_0, 2,

189.

Zwicky, A., J. Friedman, B. Hall, and D. Walker, 1965,

The MITRE Syntactic Analysis Procedure for

Transformational Grammars, Proc. FJCC, Spartan

Books, Wash., D.O., quoted in Petrick, 1965.

*Bobrow, D.G., 1963, Syntactic analysis of English

by computer - a survey , AFIPS Conference Pro-

ceedings 24 (1963 FJCC), 365-387.

**Klein, S., and R.F. Simmons, 19^3, A computational

approach to grammatical coding of English words,

quoted in Bobrow, 1963.

***Reanikoff, H., and J.L. Dolby, 1963, Automatic

determination of parts of speech of English

words, quoted in Bobrow, 1963.

THOSE WHO CANNOT READ ARE NOT WELL-EDUCATED

A READ

B WELL-EDUCATED

C A*-B)

tl

ALL PUDDINGS ARE NICE

A PUDDINGS 8
NICE C-A, B)

A PUDDINGS B

NICE C-A* B>

THIS DISH IS A PUDDING

A THIS B

DISH C

PUDDING

<-A,-B> C>

NO NICE THINGS ARE WHOLESOME

A NICE

B WHOLESOME

<-A,-B)

