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Abstract 

A computer program to solve Lewis Carroll's 

syllogisms is considered. A logical decision method is 

evolved for dealing with syllogisms expressed as 

conjunctive normal form (CNF) propositions. For the 

translation of English into CNF, a theory of transla-

tion is presented. A computer program is exhibited 

which explicitly embodies each feature of the theory, 

and produces CNF translations of Carroll's syllogisms. 

It is claimed that the translation theory is the most 

significant result of the research. A translation 

approach to phrase-structure grammars enables their 

practical value to be studied more closely. It is 

shown that the position of phrase-structure grammars is 

stronger than that of transformational grammars in a 

utilitarian theory, as distinct from an explanatory 

theory. 
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Introduction 

Solving syllogisms is a practical goal, and 

practical means suggest themselves readily.  At the 

outset it seemed obvious that a context-free (CP) grammar 

would be adequate to help determine the right places to 

segment English premises into logical terms; so a 

computer program that did exactly that was written.  It 

worked Just as predicted: not perfectly, but well. The 

most annoying feature of the grammar was the rapid 

increase in the number of rules when trying to cater for 

peculiarities of negative sentences. 

To demonstrate that a large computer was not 

needed, a PDP-8 with 4096 12-bit words was chosen. A 

teletype was the only peripheral used. These computers 

currently cost as little as eight thousand dollars. The 

program could segment an English sentence and find a 

corresponding logical expression in 1 second, for a 10 

word sentence.  If it were ambiguous, each additional 

formula would take an extra 0.2 seconds to calculate.  

(This was not very interesting, as it took 10 seconds to 

output each one.) The program used a mixture of matrix 

and list-processing 
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techniques. 

This was all done despite criticism of CF 

grammars as a model of English, by those who put 

forward transformational grammars as a bettor model. 

The attack has been, from some quarters, most vigorous, 

and one cannot help feeling that, if the attack is 

Justified, then either the program should not work, or 

else the programmer has unsuspectingly embodied the 

esence of a transformational grammar in the program. 

To help analyze this question, one takes the 

program, decides which features cannot possibly be done 

without, and endeavours to find a theory of why it is 

just those features that make it work.  Such a process 

usually yields two or more possible theories, so one 

thinks up a much more difficult problem (as a 

Gedankenexperiment), to weed out theories that are not 

likely to survive long. 

This was done, and the final theory, while 

anything but perfect, was felt to be more satisfying 

(and useful) than transformational theory. 
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The real problem with CF grammars seems to be the 

low capacity of non-terminal symbols as communication 

channels. A recent phrase-structure development 

(indexed grammar) was invoiced to deal with this problem 

(for the Gedankenexperiment, not the syllogism 

solver). The theory handled these just as well as CF 

grammars, despite their greater power. 

The hardest single problem that could be thought 

of as being a stumbling-block for CF grammars seemed to 

be the “respectively" problem. There are 

two versions of this problem:  how do you tell that 

“Jim and Jack like Mary respectively” is 

ungrammatical;  and what does one do with “Jim and Jack 

like Mary and Jane respectively”? By itself, an 

indexed grammar can answer the first question.  The 

second question is much harder. We maintain that the 

transformational school would attempt to produce its 

deep structure. For reasons that will become clear 

later, it is our contention that it is sufficient to 

produce “Jim likes Mary and Jack likes Jane” to 

demonstrate that the problem has been solved.  The 

solution is given in section 3.10. 
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In solving this problem, we made it more 

difficult to criticize phrase-structure grammars on 

the grounds that they simply could not produce such 

sentences.  (Such a criticism is called '
v
weak descrip-

tive adequacy” by Chomsky.) 

Another ground for criticism is that phrase-

structure grammars assign too much structure. In 

translating “big bad dog” into “x = big y = bad z = 

dog: x.y.z.”, no structure whatsoever was encountered 

during the translation. Thus a much more valid 

criticism would appear to be that they assign no struc-

ture at all.  Since not structures but logical formulae 

were our objectives, it was not clear how either 

criticism was related to the use of a CF grammar to do 

the job. It turned out, once translation theory was 

formulated, that the criticism was entirely fallacious, 

and that one could translate into logical formulae, 

structural descriptions or even bad French, with the 

one theory. The status of a structural description is 

that of a sentence in a structural description 

language. THhe assignment of structure was entirely 

subject to the choice of a suitable structural descrip-

tion grammar. This is argued more rigorously in 

section 3.1. 
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The claim above that no structure whatsoever was 

encountered during the translation is quite accurate. 

When the program was being designed, there was no thought of 

descrediting any approach. The problem was simply, how 

does one make use of a general-purpose CP grammar, that 

may be expected to have a non-terminal vocabulary of about 

100 symbols, in 4000 words of memory? There was no room 

for complete structural descriptions. 
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Chapter 1. Logical Theory 

1.1 Syllogisms 

A syllogism is a pair of sentences called the premises, 

from which a single sentence, the conclusion, is to be 

drawn: A normal-form syllogism is one for which each 

sentence is^ono of four normal-form premises. These, and 

some of their short-hand forms, are summarized thus: 

Normal-form       Traditional   Lower Predicate 

abbreviation     Calculus 

F1: All X are Y XaY          (x)(X(x)Y(x)) 

F2: No X are Y XeY  -(Ǝx)(X(x) .Y(x)) 

F3: Some X are Y XiY        (Ǝx)(X(x).Y(x)) 

F4: Some X are not Y XoY       (Ǝx)(X(x).-Y(x)) 

(The reader with an eye for symmetry may 

prefer for F4, -(x)(X(x)->Y(x)), the negation of F1. The 

other, while logically equivalent, is closer to the 

“
spirit" of the English.) 
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X and Y traditionally stand for noun phrases (thus 

making the normal-form premises grammatical),  (x) is an 

abbreviation for “for each object in the universe, to 

which, for the remainder of this proposition (logical 

assertion), we give the name x...”; this means that the 

following assertion is true of any object, and this 

object is identified within the assertion as x. More 

commonly, (x) is read as “for all x...”.  Similarly 

(Ǝx) is read as “there exists an x such that ...". x is 

called a quantified variable, and (x) and (Ǝx) are 

quantifiers.  “-“ means “it is not the case that...”. 

“” means implies , the period means “and”, and the 

symbol v (not used above) means “and/or” (called 

“or” from here on). X(x) means x is X 3  similarly 

for Y(x). Thus, for example, the Lower Predicate 

Calculus (LPC) form of F2 is to be read as 
“
it is not the 

case that there exists an x such that x is X and x is 

Y". 

Some examples of syllogisms (with their 

conclusions) are 
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XaY XaY X1Y YaZ YeZ YaZ XaZ       XeZ       

XlZ 

For the moment, we appeal to the 

reader's Intuition to verify that these conclusifns 

agree with experiment. The traditional set of rules, 

called syllogistic Inference, for drawing non-

trivial conclusions, will shortly be seen not to 

concern us. 

An obvious extension to a syllogism is the 

addition of extra premises. Strictly, such an 

extended syllogism is called a sorites, but here we 

shall relax our usage of syllogism to embrace 

sorites. Examples are 

XaY XaY X1Y YaZ YeZ WaZ ZaW 

WaZ YeZ XaW       XeW       

VaW 

XoW 

XaY 

ZeY 

XeZ 
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The usual method of solving sorites is to take an 

appropriate pair of premises to form a syllogism, and 

then combine the conclusion with another premise, 

proceeding until the premises are exhausted. It will be 

noted from the third example that sorites need not be 

arranged in an order that facilitates this pairing. 

A universal premise is one which refers to every 

instance of its subject. Thus Fj and F^ alone are 

universal. 

1.2 Lewis Carroll's Syllogisms 

These form a set of 60 sorites, ranging in size 

from three to ten premises. A total of 226 sentences 

are involved. They are of interest not so much from 

the logic-solving viewpoint as from the linguistic, as 

their form departs radically from the simple normal-

form above. Extreme cases include *No discussions in 

our debating-club are likely to rouse the British 

Lion, so long as they are checked when they become too 

noisy." ,and *I never have any really ridiculous idea, 

that I do not at 
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once refer to my solicitor". 

All of Carroll's premises are universal, This 

has the advantage of simplifying the logic aspects, 

allowing more attention to be paid to the language 

problems, in particular to that of finding an 

equivalent restatement of each premise that permits 

the application of simple rules. 

1.3 Evolution of a Decision Method for Syllogisms 

Although it is possible in the case of Carroll* s 

premises to reduce each to a form "all X are Y*or 
xx
No 

X are Y , it can require considerable ingenuity. In 

addition, a ^universe is often specified. The third 

of Carroll
/
s  syllogisms, for example, mentions * 

potatoes of mine" in two premises, varying it in 

another premise to "my potatoes*. In Carroll
7
s 

formulation of the problem, * my potatoes" is given 

explicitly, at the end of the syllogism, as the 

universe for the syllogism;; thus it may be neglected 

during the inference process, 
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to be restored in the conclusion none of my 

potatoes in this dish are new 

It was decided that the 
v
*helps given by 

Carroll at the end of each of his syllogisms, which 

specified which segments (terms) of each premise 

were relevant, and which ones were universes, would 

not be given to the computer. As the segmentation 

problem is the hardest, it is by the same token the 

most interesting. That the computer must therefore 

determine the universe, if any, is even more 

interesting. 

The Lower Predicate Calculus forms were given 

above, as these are the forms most often used by 

modern logicians when considering decision methods. 

This is partly due to the versatility of LPC (many 

tortuous English propositions are readily trans-

lated into LPC) and partly to the established deci-

sion methods in the Propositional Calculus (PC), 

which help in evaluating LPC expressions. In the 

decision method to be described, it will appear 

that little reference to LPC is made, and that we 

could have assumed the PC in the first place. 
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However, translation directly into PC often appears 

unconvincing, and in these circumstances, a trans-

lation that considers the equivalent LPC proposition 

lends plausibility. Plausibility is the only 

criterion for translation into logic; the "correct* 

translation can often be open to interpretation and 

argument, as we shall see in computer-generated 

translations. 

With this in mind, we quote without proof that -

fex)(F) = (x)(-F) where F is any formula. Thus Fj 

becomes (x)(-(X(x).Y(x))), or (x)(X(x)-Y(x)). 

Abstracting the distinct features of F, 

and Ffc, we are left with a briefer notation: 

F, :   X-»Y       F2 :  X-»-Y. 

This notation, though it closely resembles 

that of PC, is derived from an LPC form, and we will 

argue in the LPC notation when there is a danger of 

confusion, namely, when two quantifying variables 

are involved, e.g., in two separate sentences. 
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It often happens that the subject or the 

predicate of a premise Is itself a combination of 

logical terms, either their conjunction ("and'') or 

their disjunction ("or"). This may arise because of 

the inclusion of the universe term, or because the 

combination need not be separated for the solution of 

the syllogism, or because a term in the subject is 

repeated (redundantly) in the predicate. Although it 

does not happen in Carroll' s syllogisms, we may also 

have examples such as, *A11 dogs are furry mammalsj 

all mammals are animals , where we want to deduce 

that all dogs are animals, ignoring the furry 

question. 

It is possible, but messy, to use some 

theorems and/or axioms in PC. In this case, we 

call the following propositions axioms. 

X1.   ((A-*B). (B-K3) )->(A-K3)    (transitivity) 

X2.  A.B-*A (abstraction) 

X3.  (A+B) = (A-»(A.B))  (multiplication by the left) 

X4.  A.B = B.A and AvB = BvA    (commutativity) 

for a general purpose conclusion drawer. For 
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example, rephrase the problem immediately above as 

(D*F.M) and (M->A). In LPC, this means 

w
for all x, if x is a dog, then x is furry and x is 

a mammal , and for all y, if y is a mammal then y 

is an animal . Now by X2, X4: F.M-*M ByX1,  

(D+F.M).(F.M*M)-*(I>»M) By X2,  ((D^M). (M-*A))-

>(EH>A). 

Thus, by careful choice of axioms we reach 

the required conclusion. 

X3 would be used to cope with universes, e.g., 

the dogs in 

v\ *t 

All red dogs are big^ all big dogs are fierce : 

(R.IHB) (P1)  and  (B.IHF) (P2) Now R.D-»R.D.B 

(X3 and P1) R.D.B+B.D  (X2) B.I>*F     (P2) 

R.D->F     (XI twice, on last 3 results) 

that is, 
vX
red dogs are fierce". 

A nice feature of this method is that it deals 

automatically with the universe term;; that is, 
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we did not have to discard it before we started the 

inference process. 

These two examples demonstrate that syllogism-

solving competence of a high order can be achieved 

using only fcagee axioms. However, a simple 

methodological approach is not immediately apparent. 

Further, to deal with X->-Y we must add X5:   (X-»-

Y) = (Y-*-X). 

Otherwise, we could not draw the right conclusion 

from 
V
A11 elephants are animalsj no plants are 

animals''. 

An unpromising ( at first sight) represen-

tation of PC expressions is that called Conjunctive 

Normal Form (CNF). A formula is the conjunction 

(the logical 
x
*and") of a set of disjunctions (the 

logical 
xX
or") of a set of (possibly negated) 

variables, e.g., (-Av-BvCvF).(-BvE).(Dv-E). To 

express A-*B in this form we write (-AvB). It would 

appear that we have lost the transitivity theorem, 

X1, by ignoring the possibility of the ■* symbol in 

the new form. On the other hand, we no longer need 

to know that (X-»-Y) = (Y-*-X), as both 
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become (-Xv-Y) in the new form. 

Let us rewrite X1, partly in CNF, but leaving 

untouched the main implication symbol. We have: 

Xl' ;   (-AvB). (-BvC)-»(-AvC). 

Thus, if in two disjuncts ((-AvB) is an instance of 

a disjunct) we can find contradictory terms, then by 

cancelling them, and concatenating the remainder we 

have a disjunct for a valid conclusion. 

This technique, which we shall call CNF inference, 

is a powerful method of dealing with Carroll* s 

syllogisms. It extends beyond syllogisms, in that 

it can deal with, e.g., All black dogs are 

happy;) All of my pets are dogs3 All my pets are 

black. Using the obvious abbreviations, we write (-

Bv-DvH).(-Mv-PvD).(~Mv-PvB), noting that -(A.B) = (-

Av-B) in rewriting (A.B-»C). Cancelling 

contradictory Dogs, 

(-BvHv-Mv-P).(-Mv-PvB), 

and also for Black, 

(Hv-Mv-Pv-Mv-P). 
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Noting that AvA = A, we have 

(Hv-Mv-P), which is ((M.P)-»H), i.e., 

all my pets are happy. 

That the method works with 
v
* All elephants are 

animals^ no plants are animals, is seen from 

(-EvA).(-Pv-A) 

i.e., (-Ev-P) (by cancelling opposite Animals), 

i.e.,°no elephants are plants. 

1.4 Rigorous Justification 

We demonstrated the ease with which the method 

solves problems:; its validity can to an extent be 

determined from X1 above. However, as the 

technique is fundamental to the success of the 

syllogism solver, a more formal proof is in order. 

Theorem 1: For any expressions E, F, and G, and a 

variable A,  (E. (Pv-A). (AvG)) -> (PvG). 

Proof;  (E. (Pv-A). (AvG)) = (E. (-P+-A). (-A-MJ)) 

since -AvB may be rewritten A-*B. Using 

X1, ((-F->-A).(-A->G)) •* (-F-K1). Using X2, E. ( (-F*-

A). (-A-KJ)) -» ( (-Pv-A) . (-A-KJ)). 
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From these 3 results, and noting that (-F-KJ) = (FvG), 

we have the result, applying X1 twice. 

Lemma 1:  (E.X->B) = (E.X-HE.B) 

Proof:   (E.X-»B) = E.X+E.X.B (X3) 

= X.E-»X.E.B  (commutativity) 

= X.E+E.B    (X3) 

= E.X->E.B    (commutativity). 

Theorem 2: E. (Fv-A). (AvG)- Ê. (FvG) 

Proof: "by writing (Fv-A).(AvG) for X and (FvG) for 

B, in lemma 1, (E. (Fv-A). (AvG)-► (FvG)) = (E. (Fv-A). 

(AvG) )-»E. (FvG), that is, theorems 1 and 2 are either 

both true or both false:; theorem 1 is already 

proved. 

Theorem 3: E. (Fv-A). H. (AvG) .J-»E. (FvG) .H.J 

Proof: Trivially, by theorem 2 and commutativity 

under »and". 

Theorem 4: E. (Fv-AvK). H. (LvAvG). J-*E. (FvKvLvG). H. J 

Proof: Again trivially, by theorem 3 and 

commutativity under 
u
or . 
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In theorems 3 and 4, H, J, K, L are any expressions. 

Theorem 4 says that given two disjuncts embedded 

anywhere in the conjunction of a set of disjuncts, 

such that contradictory terms may be embedded anywhere 

in each disjunct, it is valid to draw a conclusion in 

the manner implied by the theorem. This in fact will 

be precisely the decision method we shall use for 

drawing conclusions. While sufficiently powerful to 

solve any sorites, it is sufficiently simple to 

warrant its choice for a problem-solving program. 
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Chapter 2. Syntactic Theory 

2.1 Models of English 

In considering the design of a logic system for 

solving syllogisms, we have presupposed that English 

premises can be decomposed into conceptual units, to 

which we may attach labels. The current approach, 

favoured by the followers of the ^generative grammar 

school of thought, is to postulate a mechanism for 

for the composition of sentences from conceptual 

units, and to perform decomposition by running this 

mechanism backwards. The extent to which this 

approach is practical can be judged partly by the 

extent to which the method fails to work, and partly 

by the efficiency of the method when it does work. In 

adopting this approach, we proceed on the assumption 

that the criteria that affect us fall into one or the 

other of these two categories. 
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Within schools of thought dominated by the generative 

ideology, there is a fairly clear-cut division into 

phrase-structure and transformational approaches. At the 

risk of misinterpreting the situation, we shall attempt a 

summary of the distinction between them. 

2.2 Phrase-structure Systems 

For the phrase-structure approach, it is 

suggested, but not espoused, by Chomsky (Chomsky, 1959) 

that sentences are the result of a one-dimensional 

symbol-string rewriting process. Starting with a given 

symbol, one erases it and replaces it by one or more 

other symbols, consistent with a set of constraints (or 

rewriting rules, or productions). The new symbols are 

then themselves subjected to the same process, which 

continues until no symbol may be rewritten under the 

constraints. The resulting string of symbols is then 

a sentence. 

A phrase-structure grammar enumerates the symbols 

(vocabulary), usually partitioning them into rewritable 

(non-terminal) and terminal symbols (and 
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occasionally more, e.g., in Aho, 1968). It also 

specifies the constraints, and nominates a starting 

symbol chosen from the non-terminal vocabulary. Actual 

examples of grammars only enumerate the constraints, 

as this is sufficient information to deduce the rest. 

S is traditionally the starting symbol, being 

suggestive of ^sentence". We give such an example: 

S •* NV 

N ■*  dogs 

V -> eat 

Here the non-terminals are S, N and V, while the 

terminals are 
VN
dogs" and 

xX
eat". The word ^symbol is 

used loosely to denote any recognizable pattern that 

could plausibly be called an entity, with the 

exception of -»•, which serves mainly to delimit the 

symbol to be rewritten from the others, when 

specifying the rules. 

The most general form of constraint has a string 

of non-terminals to the left of the •*,  and a string of 

symbols to the right, the latter possibly null, that 

is, having no symbols. Chomsky 
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demonstrated that it was possible to constrain the 

constraints themselves, such that there was a set of 

sentences (or language, using Chomsky's definition) 

generated by a given grammar, that could not be 

generated by a more restricted grammar. In fact, he 

produced a hierarchy of four classes of grammars in 

this way. This hierarchy has since been 

considerably subdivided by other workers, and even 

extended to a lattice (that is, a system with a 

partial ordering, as distinct from a well-ordered 

hierarchy) (Ginsburg, 1967). The details of the 

hierarchy are beyond the scope of this discussion. 

However, the motive for considering the hierarchies 

is that while less restricted grammars generate a 

wider variety of sets of sentences, it is easier to 

analyze sentences generated by more restricted 

grammars. The equilibrium of this system seems to 

be stable, to judge from the amount of work done on 

grammars in the middle of the hierarchy, rather 

than on the extreme grammars. Arguments within the 

phrase-structure school can often be traced to the 

difficulty of estimating a pay-off function that can 

be used to find an optimum class of grammars for a 

given situation, though little attention has been 
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paid this problem. 

An objective justification for symbol-rewriting 

systems is that they model the process of articulation 

of objects in a one-dimensional universe. In the 

sample grammar above, the rule S ■* NV may be regarded 

as corresponding to an articulation possibility, that 

is, given an object having the property S, it may 

possibly be found to consist of an object having the 

property N, followed immediately by one having 

property V, Going in the opposite direction, we may 

say that, given an N, and a V following, we may 

regard the whole as an S. This particular 

justification is at its most powerful near the centre 

of the grammar hierarchy. Very powerful grammars do 

not model quite such a simple process. For example, 

the rule XYZ -»• ABCD would be interpreted as "Given 

an A, a B, a C and a D, the whole may be regarded as 

an X, a Y and a Z, in order". This is ^less natural" 

than, say, interpreting XYZ ■+ XABZ as 
vv
Given an A 

and a B, the whole may be regarded as a Y, provided it 

is preceded by an X and followed by a z". The first 

example is permitted only in the most powerful (called 

type 0 by Chomsky) grammars, while the 
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second is permitted in lesser grammars, called 

context-sensitive (the context in the example is 

A . . . Taj  . 

The non-terminals in the symbol model correspond 

here to properties, while the terminals correspond to 

the actual primitive objects of the universe. The 

danger inherent in this objectification of the model 

is that properties are not always sufficient to 

identify the objects implied by the symbols. This is 

seen by some (e.g. Bach, 1966, p.38) as a fault of 

phrase-structure grammars, rather than of the 

objectification. For example, a pair of symbols may 

be reversed in a context-sensitive language, e.g.,  AB 

-*■ CB  CB ■+ CA  CA •* BA. However, if the preceding 

objective view is taken, it would appear that, not the 

objects, but only their properties, have changed 

place. Bach says, 
NN
if we have PS (phrase-structure) 

rules which bring about a rearrangement of nouns and 

verbs, verbs will be analyzed as nouns and nouns as 

verbs .  He is here criticising PS grammars. 

Presumably, this would evoke from the PS school the 

reply the end justifies the means'
7
, that is, as the 

only observables 
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we have are sentences, who cares how the grammar 

produces them, as long as they can be produced. The 

transformational school has a ready answer. 

2.3 Transformational _Systems 

Chomsky contends that the function of a grammar 

is to ^assign a structural description"(Chomsky, 1957, 

1965, 1966, etc.). Moreover, a grammar must be able to 

rewrite not only symbols but parts of structural 

descriptions (or map them, but to claim (Clowes, 1969) 

that mapping is not rewriting is a verbal dispute). 

As structural descriptions (SD's) are, we 

maintain, irrelevant to the PS school, they were 

omitted from the preceding discussion. There are 

various ways of looking at SD's (Chomsky, 1957, 

p.273 Clowes, 1969, p.3, etc.); Chomsky's will do 

for the moment, though we shall see later that 

Clowes' is nearer the mark. 
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In the rewriting process (for PS grammars) an SD 

is a representation of this process. The most obvious 

way to start is by writing out the string generated 

so far at each step, e.g., in the earlier example: 

S    or    S 

NV NV 

dogs V       N eat 

dogs eat     dogs eat Chomsky calls 

this a derivation. The steps to form a structural 

description are given most explicitly in Postal 

(1964). Lines are drawn to indicate better the 

underlying mechanism of each step CElements are 

connected...to identities...which have replaced them 

(italics mine)): 

S S 

or 

dogs   V N  eat 

 

dogs • ea1 dogs eat 

  
N   V N   V 
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Then **all but the highest identical elements.. .are 

erased , thus: 

S 

/\ 

N    V    in both cases. 

dogs  eat 

This may seem long-winded, but Postal continues, No 

other precise method of assigning such structural 

descriptions to infinite sets of sentences has, 

however, ever been described . (One of the less 

interesting results of the translation theory 

advanced in this thesis remedies this.) Postal uses 

this argument to justify the impossibility of having 

vV
 correct" structural descriptions for a PS system 

that permits the rewriting of more than one symbol 

at a time. 

To talk of elements being connected to identities, 

and to demonstrate that SD*s are not feasible (or * 

correct/
7
) in the most powerful PS grammars, suggests that 

Postal is concerned with the identity of symbols, or of 

objects havng properties represented by those symbols. 

That is, Postal may be 
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assuming the objectification we described earlier, 

without making it explicit, although there is room 

for debate. 

However, once Postal, or for that matter, any-

exponent of transformational grammars, arrives at 

the section on transformations, there is no doubt 

that this is what is happening. In each rule, each 

symbol is tagged, using numbers, to ensure that its 

identity is not mistaken during the transformation 

process. 

A transformation rule defines a structural 

change. It consists of a structural description part, 

which specifies conditions to be met by a structure 

before the rule can, and sometimes must, be applied, 

and a structural change part, which permits the 

permutation, addition or deletion of sub-structures. 

An example from Chomsky (1957, p.43), concerning the 

passive transformation, is: NPj - Aux - V - NP^ •* NP& - 

Aux + be + en - V - by + NP, 

This means that, given some cross-section of an 

SD, a grammatical passive sentence can 
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be formed by rearranging the structure as indicated. 

(Chomsky is at pains to point out: not 
vt
 the passive 

sentence with the same meaning'
7
.) For example, if 

u
John admires sincerity' is a grammatical sentence 

with a structure matching the left-hand description 

above, then ^Sincerity is admired by John is equally 

grammatical. The tagging of the NP s ensures that 

the sentence John is admired by sincerity is not 

also proved to be grammatical in this way. If this 

seems a peculiar reason for tagging objects, it must 

be remembered that Chomsky (Chomsky, 1957, p.93) sets 

himself the goal of constructing grammars without 

appeal to meaning. Thus a transformation may 

preserve grammaticality, but not meaning, for example 

(p.100), 

the passive of 
x
 everyone in the room knows 

at least two languages" does not mean the same 

as its active form. 

More recent instances of transformation rules 

(e.g., Chomsky, 1964, p.227) make the distinction 

between properties and identities more clearly. For 

example: 
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1. Passive: 

Structural Description:  (NP, Aux,Vt, NP,{
/
^
V
}) 

Structural Change: X, - X- - Xa - X. - X -*■ 

\ ~ \ "  lDe + en + X
- " 

by
 
+
 
X
t " 

X
5* 

Why does a transformation operate on a whole 

structure, rather than on the result of a partial 

derivation? There are various reasons, but all of them 

are oriented to ensuring that the sentence possessing 

the transformed structure is no more or less 

grammatical than that possessing the untransformed 

structure. For example, most questions of the 

grammaticality of 
M
golf plays John'' are equally 

relevant to John is played by golf". When the 

derivation of golf plays John reaches the stage 
xX
NP, 

Vt, NP", if this string of symbols were to be rewritten 

NV
NP, be, en, Vt, by, NP

7
', and the derivation of John is 

played by golf carriedfcut from there, some other 

means would then have to be introduced to deduce that 

this is ungrammatical, (assuming that 
xV
golf plays John 

is ungrammatical). A mechanism that establishes the 

grammaticality of a sentence in the course of its 

derivation is more satisfactory, for Chomsky's ends, 

than one which 
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requires additional external mechanisms to achieve 

the same effect. In addition, this scheme permits 

Chomsky to attack semi-grammaticality, a field not 

open to the PS school. 

The precise mechanism for evaluating quirks of 

sentences like 
vx
golf plays John" is not germane to the 

syllogism translation process^ if we say ^golf plays 

all idiots; John is an idiot ', then rather than object 

to the premises on the gro
1
™""*-; vhat they are 

ungrammatical, we should conclude, equally ungrammatically, 

that golf plays J a*... In fact, to a limited extent, the 

drawing of conclusions resembles a transformation in 

that it may preserve grammaticality. This observation, 

that we do not always want a total analysis of a 

sentence, will be seen to be important when we come to 

translating syllogisms. 

This account of transformational grammars is 

far too brief to do them Justicej rather, we have 

attempted to determine what makes them superior to 

PS grammars. For more complete accounts, there are 

several good sources. For an efficiently 
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Clowes (1969)* Extensive examples of transformational 

grammars maybe found in Chomsky (1964, p.224) and 

Woods (1967, p.Al9). A nearly complete treatment of 

the underlying mechanisms appears in Chomsky (1965, 

chap. 2, 3, 4) (it is felt that chapter 1 is 

considerably misleading in some places, and 

irrelevant in most others). The remainder of the 

literature is either concerned with ramifications of 

the material covered by the above references, or with 

most unprofessional attacks on other schools of 

thought, the most fallacious of these being in 3ach 

(1966). There are several computer models of 

transformational grammars (Petrick, 1966; Zwicky, 

19651 Thome, 19671 Friedman, 1969? Rosenbaum, 1966), 

and to varying degrees they provide additional 

insight into the nature of transformational grammars. 

More importantly, though, they highlight practical 

shortcomings of the theory. Woods (Woods, 1967, p.4-

4) observes,
xV
The only existing algorithm for general 

transformational recognition (Petrick,1965) may take 

as much as an hour to recognize a single simple 

sentence with a very simple grammar . Since then, 

there has been improvements Thorne's algorithm 
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produces surface structures (the final structural 

description in the course of a transformational 

derivation) of sentences of 4 to 20 words, in the 

order of one second. Bobrow (Bobrow, 1969) accounts 

for the improvement in terms of better programming 

and a departui'e from 
xV
the detail of the processing 

required (commanded) by Chomsky . However, the 

algorithm currently in use by this author on a PDP-

8 would, if implemented on a KDF-9 (the m^hine used 

by Thome's programmers), produce deep or surface 

structural descriptions **>  the order of 10 

milliseconds. 
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Chapter 3. Translation Systems 

3.1 A Demonstration 

Many new theories are better, or more 

■unified, formulations of old theories, and can 

therefore best be introduced by demonstrating this 

relationship. Although the theory to be described 

falls into this class, the degree of incoherence of 

the old theories precludes any such demonstration 

suf r* 
n
* ently brief to be spectacular. Thus we phall 

first demonstrate a simple success of the theory. 

We noted that Chomsky claims that a PS grammar 

can assign a structural description . We noted 

Postal's claims concerning the absence of precise 

methods of assigning structural descriptions, 

besides his own. We adapt formalizations given 

implicitly in recent literature (Chartres, 19693 

Clowes, 1969) and exhibit the following instance of 

a translation system. Our goal is to discredit a 

criticism of phrase-structure grammars, that they 
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^assign too much structural description , by showing 

that the assignment process can be realized 

effectively as a translation process. 
 

S -> NP VP s -* [s  np vp] s  

NP -> AJ NP np ■» [Npaj np] np H UP 

NP -> N np -> U
nl

 np  

VP -> V vp ■* ̂  vp VP 
V 

N -> dof H 

n ■* 

[ dogs] n 
IV 

doff 

V -> eat v -> [  eat] v V 

AT AJ 
-> gentle    aj -*• [ gentle]    aj •* . 

A3" AJ 
-> neat     aj -> [ neat]      aj ->  i 
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Formally, we define a translation system to be a 

set of grammars, and a correspondence between those 

grammars. We define a grammar to be a set of 

significant features of a language, and a correspon-

dence between grammars to be a correspondence between 

their significant features. 

In the above example, we have exhibited two 

phrase-structure grammars, and a crude picture grammar 

(Crude because such questions as exactly where the new 

symbols go when erasing the rewritten nonterminals are 

not immediately answered from the grammar;; nor are 

those of orientation unless we assume that •* preserves 

orientations. Chomsky dismisses similar questions in 

linear languages, such as the need for 1/1o" of room 

for each terminal letter, and a line change at regular 

intervals, as questions of performance . We shall do 

likewise here.) In each grammar, the significant 

features are represented as rewriting rules for 

symbols. We invoke an earlier definition of non-

terminal symbol, that is, one that can be rewritten 

using the rules. When writing grammars for structural 

description languages, one. r?3rc.ww the ""bconce of 

more than upper and lower 
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case letters on cheap typewriters, as can be seen 

from the difficulty involved in describing a language 

with both cases of terminal symbols. Thus the need 

for some other criterion for recognizing non-

terminals than their case.  At any rate, in the last 

two grammars, there is clearly no provision for 

rev
,
"itir<3 lines, capital letters, English words or 

brackets. 

Now consider a sentence generated by the first 

grammar, 
v
*gentle neat dogs eat . If we apply the 

same process that generated this to the other two 

graazmars, we get: 

ls W[A:reentle] [NP[A3neat] l«P^doss] ])HvP [veafc] ] ] 

using the second grammar, and: 

 

neat     N 

dogs 
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U3(nS t-Ke   i>hir<l yretrmxr.     Beth of ikese Will. be, 

recognized as structural descriptions.    The one 

with brackets is described  (Chomsky,   1966,  p.37) 

t' if 

as the surface structure of a sentence  (italics 

mine).  (More accurately, the surface structure 

is a bracketing). The diagram is often produced 

as being, in some sense, equivalent. 

So far, we have done little that is new or 

exciting, save to counter Postal
1
 s claim above. Howe^e*; 

there is a good reason for choosing noun phrases with 

more than one adjective, as these have been held up 

(Chomsky, 1965,p. 1963 Bach, 1966, p.68) as proof that 

phrase-ctru^ure grammars assign too much structure and 

therefore fail as models of English. The ^proper'' 

structure, according to these critics, is either: 

[
S 

[
NP 

[
AT 

gentle]
 W

neat]
 
C
M
d0Ss]

 
]
 

[
W [*/eat] ] ] or: 
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NP VP 

 

AJ AJ N 

 

gentle  neat  dogs eat 

If we were to allow the rules NP ■* A J A J N, 

UP 

np -> [ ,„aj aj n] and np -* S\. \ in addition 
NP di   (LI    ^ 

to the other rules (changing the second rule to NP -*■ 

AC  N, mutatis mutandis, to avoid «""btguity} we tb^n 

cannot account for a string of three adjectives, In 

fact an Infinite number of rules are needed to 

generate the 
xx
proper structural descriptions. 

Thus, Chomsky and Bach implicate phrase-strw-^ru.^ 

grammars, in particular, the first grammar in our system. 

This is ridiculous:; the objects deserving critic* sm are 

the grammars of the structural description languages, if 

these have been made explicit. While they are not explicit, 

there can be no basis for this sort of witch-hunt. If there 

Is  some systematic way of producing structural 
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description grammars, then this system deserves 

criticism, hut not the original grammar itself. 

Redirecting criticism to "better places, we suggest 

the following structural description grammars, without 

indicating any preference for them over the others 

"beyond the fact that their sentences are easier to 

read: 

s ** \   f nr>l r vp] ] L
S HP  -  Vp PJJ 

np -> aj np 

np -> n 

vp -> v 

n ■* [.dogs] 

v ■* [ eat] 

af -*■ T gentle] 

aj -*■  [ neat] 

 

s 

np 

MP    VP 

 «j 

np -   1 
A. 

vp -1 

•vr 

n M 

 oUoo 

V ea£ 

aj  

aj  

 "hJlAjt 

& 
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Applying the ^same* process to these grammars 

as for the others, we produce the desired results. 

Quite clearly, the orientation question becomes 

important, in the first two rules of the picture 

grammar, as only a few adjectives will produce an 

unreadable picture. We have the choice of saying 

^performance", and leaving the decisions about length 

of line, and extent of rotation of 
l
 np" at e&ch step    

to the user of the grammar, or we can say 

competence , and therefore find fault with the 

notation because it neglects the fact that there are 

only 3^'> in a circle (just as PS grammars can be 

criticised for negle.ctfng  pegs width). 

One solution to this problem is to consider* 

v.ho or what the grammar is intended for. If a human, 

humans are smart enough to extend the grammar 

appropriately.  If a computer, some mechanism must be 

postulated, to enable it to function appropriately. 

To claim that this mechanism shoti"!'
1
 b

a
vo nothir.~ to 

do with th» gr?mmar is to set up a rpurious dichotomy 

(cf. Narasimhan, 19&9, p.3) between the processing 

involving grammatical features and that involving so-

cal]^d performance 
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problems. Processing in a computer is homogeneous, 

at least to within these sorts of distinctions, and 

any reluctance to call a spade by its usual name is 

going to lead critics to say 
w
 weak model , with 

justification, when the performance problems become 

non-trivial. A weak model is one which does not 

reasonably preclude the possibility of another model 

which retains an equivalent, or smaller, degree of 

complexity to that of the weak one, and which 

models, or describes, the situation better. An 

example of a vrsak model is a transformational ("""-

mar for modelling the MITRE program (ZwicVy. 1965). We 

shall see later that a translation system is a 

better model for this program. 

To the extent that a human uses some inter-

nalized grammar in the same way as he copes with non-

grammatical problems, it is relatively uninteresting 

to Invoke the dichotomy, beyond using it for 

temporary purposes, like a movable lamp, to focus 

attention on interesting features of behavior. 
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3.2 Generalities 

Perceptive automata (and I do not exclude 

animals) deal, not with reality, but with representa-

tions of reality. The question of how and why such 

representations are brought about may be dealt with 

by translation theory, but as this approach even-

tually leads us into an infinite regress, for the 

moment we say rather that the representations are 

brought about by perception mechanisms. That this 

is a good attitude for a programmer is supported cy 

the observation that it is the engineer's job to 

produce efficient readers, cameras and microphones. 

At the other end are effective output mechanisms: 

printers, plotters, punches, displays and loud-

speakers. Therefore we delimit our attention to a 

programmers theory of translation. 

The primitives for this theory are 

representations, and significant features of 

representations. The syntactic problem for 

representations is to find sets of criteria, or 

rules, for recognizing possible significant features 
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of a representation. A grammar is any set of such 

rules. The semantic problem is to find corre-

spondences between rules in different grammars, to 

facilitate translation of representations into 

other representations. 

It will suffice for the moment that wo embed 

our perceptive automaton in a one-dimensional 

universe. The general notions of recognition, 

combination, association, and generative identity 

will all be exhibited in the context of the Turing 

Machinejmodel. If we are to extend our interest to 

higher dimensionality, we need not abandon the 

general notions, only the Turing Machine with a one-

dimensional tape. Certainly it is possible to map 

the plane onto the line, or for that matter so to 

map any hyperspace. But the well-known (to 

topologists) absence of a continuous such mapping 

(that is, the images under no such mapping, of 

points arbitrarily close on the plane, can be 

guaranteed to be arbitrarily close on the line) 

suggests the inelegance, if not the inefficiency of 

such a mapping. And elegance and efficiency are 

the best criteria of good models, for 
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practical users of models: elegance for ease of 

understandings and efficiency, that the model may 

survive in competition with other models, in an 

environment where only results count. 

3.3 Grammars 
i i 

With Chomsky (Chomsky, 1959), we stress that 

we are concerned with different classes of 

grammars. In fact, we use exactly three, and doubt 

whether, for the immediate future of translation 

theory, any more are needed. 

The reasons for having systematic grammars 

are that they afford a means of storing information 

economically, and also (more importantly) they 

display criteria common to different rules, remem-

bering that we called sets of criteria rules. For 

example, phrase-structure rules have in common the 

notion of juxtaposition, and phrase-structure 

analysis algorithms make effective use of this 

feature, making no distinction between the way in 

which a preposition next to a noun phrase is 
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recognized as a prepositional phrase, and that in 

which a noun phrase next to a verb phrase is 

recognized as a sentence. Less obvious is a similar 

relation between the problem of sentences that use 

the word ^respectively"and the intractable nature of 

agreement in number:; we shall show how the one 

grammar readily describes (and gives the mechanism 

for solving) these problems. 

3.4 Finite-State Grammars 

We count three phenomena as important to the 

translation process in a one-dimensional universe. 

The first is the ability of a machine to recognize 

an object, for our purposes a string of symbols. The 

corresponding grammar for this process is called a 

finite-state (FS) one, where the rules simply 

specify, given the input symbol and the state the 

automaton is in, what state the machine will enter. 

When the machine is in state S, it has recognized 

an object. 

As this machine is often described as 
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operating in reverse, we shall consider this too. 

Starting in state S, the machine emits symbols as 

it changes states. The same grammar used for the 

recognition machine will serve for the generating 

machine. 

A rule for a FS grammar, or an instruction for 

either of the above two machines, consists of a pair 

of states and a symbol. We shall, for uniformity, 

use Chomsky's notation, which corresponds to 

instructions for the second machine above, e.g., 

S -» aM 

M ■* bM 

M •» c  etc. 

In the last rule, the terminal state for the 

second machine (and the starting state for the first) 

is written as the null symbol. This asymmetric 

choice of terminology strongly reflects Chomsky's 

asymmetric approach to grammars. He sees them, not 

as recognition automata programs, but solely as 

generative mechanisms. In translation theory, the 

emphasis is on the essential symmetry of a formal 

communication process since all practical computer 
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programs must be able to speak and hear. And we 

do not necessarily require automata to hear by 

speaking, as is suggested by the analysis-by-

synthesis school (Matthews, 196I3 Petrick,1965) 

and by advocates of top-to-bottom parsing. 

3.5 Context-Free Grammars 

The second phenomenon is the ability to use 

the results of recognition recursively,that is, 

having recognized each component of a string of 

strings, to recognize the whole string in those 

terms3 equivalently, the ability to use several 

recognition states in the same way as input or 

output symbols. 

The appropriate grammar is a context-free 

one. The rules must, therefore, allow for the input 

or output symbols to-be recognition states. In 

addition to rules of the form A -> bC, we must allow 

A -*  DC. Again we are assuming, with Chomsky, a 

generative automaton, rather than a cognitive one. 

The more general form of the rule is 
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A ■* BC...EF, that is, any number of symbols may 

replace one. It is easy to reduce such a rule to a 

set of equivalent rules producing only two symbols 

each, by mentioning explicitly each state an auto-

maton goes into when generating or recognizing 

strings of non-terminals.  For example, A -> BCD 

becomes A ■* BX X -» CD. For the computer program 

described later, we adopt the two-symbol form 

explicitly. Most practical parsers achieve this 

implicitly^  in looking for A, using say a rule A ■* 

BCDE, it is sufficient to start the search by looking 

for B, and then BC, and so on, without 

simultaneously looking for, say, DE. 

The necessary mechanism for an automaton whose 

program is a CF grammar is, in addition to that for 

the FS automaton (FSA), a place where a fact (that 

the string just read has been recognized or that a 

string, for which this is a starting state, must be 

generated later) can be put to one side while the 

machine proceeds to recognize or generate more 

symbols. In the process of trying to enter a state 

(a goal) for which this fact (non-terminal symbol, 

or recognition-state symbol) is a meaningful input, 

as determined by the grammar, other facts may 



46 

need to be stored and retrieved, as necessary for 

various subgoals of the above goal. It is very 

convenient, from both a designer's and a user*s point 

of view, if all facts can be stored in the same place, 

in the same way, and likewise retrieved from the same 

place. The simplest mechanism for achieving this is a 

push-down store, analogous to the spring-loaded 

stacks of plates or trays found in cafeterias whore 

only the topmost plate is accessible. The spring is 

inessential to the analogy - the topmost dish of any 

stack of dishes is more accessible than the rest. 

Provided the facts required for subgoals can be 

used or otherwise disposed of before the fact required 

for the goal (above) is required, they will not be in 

the way when the latter fact is needed. This is the 

case for the problem stated, that is, recognition of a 

string in terms of the recognition of its substrings. 

A different view of the same subject is to 

consider the communication channels available to the 

sort of machinery we are considering. This is a 
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very good view, as it makes many hard-to-prove 

theorems about automata beautifully transparent. 

The only channels that are obvious are: between 

the current input or output symbol (more accurately, 

the medium in which it is embedded) and the machine; 

and between the machine and the top element of the 

push-down stack. Any correspondence between, say, two 

symbols in a derivation, must be accounted for in 

terms of a set of signals sent through those 

channels. Equivalently, given a structure diagram as a 

representation of the operation of the machine, such a 

correspondence must appear as a path through the nodes 

of the diagram, along the connecting lines. 

In this light, symbols put on the pushdown 

stack are no more than bearers of information, for one 

or more potential paths through nodes bearing thac 

symbol in a structure diagram. The greater the number 

of independent paths that may pass through a node, 

the greater the variety of non-terminal symbols 

required in the vocabulary of the grammar. 
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3.6 Problems with CP Grammars 

Consider the following diagram: 

PRED 

/       \ 

VP     ADVP 

/ X 

PREP   NP 

N 

The quick brown 

fox jumps over 

dogs 

Among many 

interesting paths is the agreement-in-number path. 

This concerns fox" (plural: foxes) and "jumps" 

(plural: jump), in this example. The shortest path 

between the two words involves -tPeven different 

non-terminal symbols. A more elaborate diagram, 

corresponding to a more elaborate sentence and/or 

grammar, might involve many more. To enable each 

node to bear this information, we must label them 

all singular. To allow for plural sentences we must 

add at least another seven nodes, labelled plural, 

to the vocabulary. 

If, in addition, we wished to verify that 

V 
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it is reasonable to expect foxos to jump, v/e invoke 

independent paths. The variety here is enormous; all 

sorts of features of foxes and Jumping might be 

relevant. If five Independent paths are involved, 

say, each representing a simple yes-no lexical feature 

(Chomsky, 1965, p.82), we must allow for 32 (= 2 ) 

varieties of each of the original 14 symbols, a total 

of 448 symbols for a simple noun-verb comparison, not 

to mention at least that many rules, if not two or 

three times more (since many non-terminals in a 

grammar appear at least twice on the left of a 

rule). 

Chomsky encountered problems with context-free 

grammars which essentially can be viewed in this way. 

Chomsky's answer was to change the structure diagram 

(a reverse transformation) so that every interesting 

path could be shortened. Which paths are interesting 

is difficult to sayj a fairly complicated path would 

be needed to deal at the grammatical level with * the 

quick brown fox jumps over skyscrapers , if it is felt 

that foxes cannot jump over skyscrapers. 
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The reverse application of transformation 

rules would reveal something along the lines of the 

following: 

S 

/ 

  SUB PRED  ^P RED 
  i 1  /   \ 

/"\  NP V? VP    ADVP 
 1 i  / \ 

\J       NP NP NP V \ /  PREP NP 
1 / \ 1 |   t 
N AJ   N N    N 
1 1     1 J !   .  1 

quick fox brown fox fox jumps jumps over dogs 

This shows clearly how our previous structure 

diagram has simply been exploded, to reveal which 

might be the interesting paths. This sort of demon-

stration, despite the obvious departures from rigid 

structural requirements (e.g., the ^excess* structure 

in the first noun phrase), is more revealing of the 

spirit of transformational grammars than misleading 

arguments about, e.g., passive sentences and word 

permutation with context-sensitive grammars. 

In each substructure, the structures are no 
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longer of interest, only the relationships between 

the terminals. It would seem from Chomsky's account 

that base phrase-markers more or less correspond to 

these features and relationships. Since the notion of 

structure does not seem relevant to base phrase-

markers, we are inclined to agree with Thome (1967) 

that base phrase-markers should be accounted for 

with a finite-state grammar. 

The relationship of base phrase-markers to 

kernel sentences and to noun phrases, say, should 

not, ideally, favour either. A base phrase-marker 

should not favour The fox is quick over "The quick 

fox'', since both seem equally dependent on it. 

Unfortunately, Chomsky's absolute dependence on 

structure forces him to adopt one or the other (the 

former) when generating the base phrase-marker with 

a CF grammar.  Had Chomsky been aware of the 

structure fallacy, he might have abandoned a 

context-free base component, and simply generated 

compact unstructured base elements with a PS grammar, 

which could be mapped into structures, if there were 

a need for surface structures as well as for 
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sentences. But there is no a priori need to rely 

entirely on the notion of structure. 

So far we have had occasion to criticize CP 

grammars, without condemning them entirely as 

inadequate. Assuming that English was not a growing 

language, and that we had found a context-free grammar 

with an astronomical vocabulary, that generated 

English sentences, it would still be possible to 

recognize sentences very efficiently. With fast table-

look-up features, e.g., hash addressing (Peterson, 

1957), many recognition algorithms are unaffected by 

the kind of grammar extensions implied by multi-path 

considerations. The only hardware extension would be 

the use of random-access mass storages while this is 

expensive and marginally slower than small memories, a 

typical CP algorithm would still be much faster than 

techniques that use analysis by synthesis (Matthews, 

1961). 

Unfortunately, this is not the casej  the 

vocabulary required is not astronomical, it is in-

finite. This very easily and beautifully demonstrated 
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with the path-oriented approach. The demonstration 

is, approximately, the graph-theoretic version of the 

proof suggested by Chomsky (Chomsky, 1959, p.151) that 

the language { xxl x is any stringj is not context-

free. This language is of interest, as it reflects 

the essence of sentences of the form: Tom, Dick and 

Harry like Peter, Paul and Mary respectively. 

In any string xx in this language, there must 

be a path between the ith symbols in each half of the 

matched pair of strings, to account for the fact that 

they are matched. 

 

We impose the reasonable restriction on 

the paths, that they do not go below the line of the 

sentence.  It iG clear that every pair of paths must 

have at least one node common to both paths. 

We assert that there is a node common 
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to all paths. For if not, let pathb cross path 

a at node X, and path b cross path c at Y, such 

that Y ±  X. Let path a cross path c at Z. Then 

there is a loop, from Y via c to Z, via a to X, 

via 

 

But a property of a tree is that it has no loops. A 

structure diagram is a tree, hence we have a 

contradiction, since each path must be part of the 

structure diagram. 

Each path is clearly independent.  If m 

terminals are involved, each path must be of variety 

m, that is, it must bear enough information to allow 

for m possibilities. If there are n paths through 

the common node, there must be at least m symbols 

in the vocabulary. We have imposed no bound on the 

length of xx, hence none on the number of paths. 

Thus the vocabulary must be infinite, as must the 

number of production rules for the vocabulary. 

Thus, by graphic means, we may agree with 
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Chomsky's observation (Chomsky, 1959, p.151), 

that * it can be shown". 

3.7 Indexed Grammars 

The third phenomenon concerns the associz 

tion of objects which may be quite remote. We 

considered in the previous section how this phenomenon 

could not be accounted for adequately with a CP 

grammar. 

So far, we have endeavoured to deal with 

grammars that readily lend themselves to possible 

translation algorithms. Like Chomsky, we are 

concerned at the inadequacy of CF grammars in 

producing surface structures bearing much infor-

mation, or equlvalently, at the cost of automata 

with unboundedly many states. 

Unlike Chomsky, we wi3h to disturb the status 

quo as little as possible in proposing mechanisms 

for solving these problems, since in all other 

respects the status quo is very satisfactory, both 

from a recognition and a translation viewpoint. 
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Therefore we shall not abandon CP grammars, but 

simply extend them, in a way reminiscent of extended 

phrase-structure grammar (Harman, 1963). Since 

Harman's suggestion, and its vigorous criticism 

(Chomsky, 1966, p.4o), the theoretical situation has 

improved. 

It is shown (Aho, 1968) that the use of 

indices, as a means of increasing node capacity in a 

structure diagram, or equivalently, of increasing 

the variety of non-terminals without bound, produces 

a grammar that is more powerful than a context-free 

grammar, in that the class of indexed languages 

properly contains that of CF languages. Moreover, 

the class of context-sensitive languages properly 

contains that of indexed languages, suggesting that 

recognition may be less painful with an indexed 

grammar than with a context-sensitive one. This is 

discussed in the chapter on recognition. 

We shall attempt to give the reader an 

intuitive feel for indexed grammars. Our notation 

differs slightly from Aho's, but is nevertheless 

equivalent. 
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As with any phrase-structure language, we have 

a finite vocabulary V of symbols, a finite number of 

rewriting rules, and a starting symbol S. We impose 

a partitioning on V, into terminals and non-

terminals, according as the symbols of V cannot or 

can be rewritten, again as for any PS grammar. We 

denote the semi-group concatenation operator by the 

non-vocabulary symbol + .  (This will be seen to be 

needed as a delimiter, for the sake of clarity if not 

the prevention of ambiguity because of the other 

semi-group operation below. It is not entirely 

unrelated to the arithmetic addition operator, which 

it resembles.) 

The crucial difference between conventional 

phrase-structure grammars and indexed grammars is 

that, for each symbol appearing in a PS derivation, a 

set of symbols (technically, an element of a serai-

group with a semi-group operator distinguished from 

the above one - we distinguish it by omitting it, 

i.e., using the null symbol, and so it resembles the 

multiplication operator) is found in the equivalent 

indexed-grammar derivation.  In a structure diagram 

for a PS analysis, each node is characterised 
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by a single symbol, which amounts to the only 

description there Is of a node. In that of an 

indexed-grammar structure diagram, a node is 

characterised by an unbounded string of symbols, thus 

allowing unbounded variety in the description of a 

node. 

The mechanism is best exhibited by 

demonstrating an example of a simple indexed grammar, 

and a structural description of a sentence in the 

corresponding language. To make it easier to see 

the connection with context-free languages, we 

exhibit simultaneously a rather trivial CF grammar 

derived in an obvious way from the indexed grammar. 

Indexed Grammar     A Corresponding CF Grammar 

S -> AD (i) S •* A 

A -> AB (ii) A -> A 

A -» E + E (ill) A ■+ EE 

EB ■+ a + E (iv) E -> E 

ED + b (v) E -> b 
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Derivation of aabaab      Derivation of bb 

Indexed Grammar Context-Free Grammar 

 

1. (i) 
 

AD A 
 

2. (li) 

ABD 

3. (il) 

ABBD 

4. (Hi) 
 

EBBD     EBBD E 
 

5. (iv) 

a   EBD a   EBD 

6. (iv) 
 

a  ED   a  ED E 
 

7. (v) 

To achieve the correspondence, we have had to 

let the CP grammar idle while the other worked. 

There are four features worth noting here. 
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(a) The ability to generate variety, for 

nodes. This is achieved using the first two rules. 

The mechanism should be obvious, as it is the same 

mechanism, essentially, as for a pushdown memory 

whose point of access is on the left. Thus, the 

rewriting rule, both here and for all other rules, is 

that the leftmost symbol must be included in the 

rewrite process.  (This point is easier to make in 

Aho s characterisation.) Symbols not rewritten 

remain untouched. 

(b) The ability to distribute index symbols 

not rewritten. An analogy for this is to say, if 

pets consist of dogs and cats, then big red pets 

consist obviously of big red dogs and big red cats. 

At step h  of the derivation, we see precisely this 

situation where BBD is the description of the 

rewritten node. Another analogy is the distributive 

axiom in algebra, where (a + b)c = ac + be. Thus 

the symbol + is not entirely unmotivated. 

(c) The ability to consume (Aho's terminology) 

indices, as demonstrated in rules (iv) and (v). 

(d) The convention that abandons indices 

attached to terminals. For those whose mathematical 

upbringing causes them to shudder at this convention, 
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the alternative is to regard them as all still there, 

but lined up behind the terminal vertically to the 

page.  (Naturally, this must then be done also with 

the other nodes.) 

Formally we define the set of rules to be a 

finite subset of (V+ x (VTu VN
+
)' ).  That is, a rule 

is an ordered pair (a,b), whose interpretation is a 

-> b, such that a is a non-null string of non-

terminals and b is the non-null concatenation of 

objects, each of which may be either a terminal or a 

non-null string of non-terminals. The distinction 

between string and concatenation, and between and " 

, is exactly the same as that pointed out earlier 

between the two concatenation operators. We adopt all 

this terminology purely for convenience. 

It is worth noting that Aho distinguishes 

between symbols that always appear as the leftmost 

element of a node (non-terminals) and those that 

always appear to the right of non-terminals (indices) 

by writing the latter in lower-case letters, e.g., 

Affgfh. This has the advantage that one can 

distinguish the start of each node in a production. 
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On the other hand, if we now remove the + from rules, 

we may confuse terminals with indices, unless we 

impose a partitioning on the alphabet to distinguish 

them. In practice, we shall be using somewhat 

verbose grammatical terminology for non-terminals and 

indices, and the particular use of + that we have 

adopted seems to make the situation clearest. 

Furthermore, whether the leftmost element of a node 

is called a non-terminal or an index is purely a 

matter of taste. 

The automaton that Aho prefers for accepting 

exactly the class of indexed languages is a nested 

stack automaton. Since we assume some familiarity 

of the reader with programming (this being a 

programmer's theory of translation), we offer a 

list-processor equivalent. 

A LISP-type list element is a pair of, say, 

computer words. The first word may contain a symbol 

(atom) or a pointer to another list element (list). 

The second contains a pointer to another list element. 

A special end-of-list element (nil) is always 

available for terminating lists, but for no other 

use. 
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A push-down stack in this context is simply a 

sequence of list elements, each pointing to its 

successor, and the last pointing to nil, such that every 

element contains a symbol in its first word. Thus, the 

memory used by a computer that, say, generated random 

sentences using a CP grammar, would be what is called a 

single-level list. 

The necessary change to this structure is to 

permit two-level lists, if sentences randomly 

generated by an indexed grammar are required. That 

is, the first word of each element in the original 

push-down stack is no longer a symbol, but a pointer 

to a single-level list, or conventional push-down 

stack. 

With single-level lists, the notion of 

shared lists is not meaningful, since, with only 

one list, there is no need to share. With a two-

level list, there are arbitrarily many one-level 

lists, and sharing becomes meaningful. Consider 

the rule AE -> B + CD. It means, take the first 

list off the stack S, call it X (compare this with 
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A -* BC for a pushdown stack automaton, which starts, 

take the first symbol off the stack...);  take the 

first two elements off list X, checking that they 

are A and E respectively;; form a list Y, which is 

(C, D, X)j put list Y on stack S; form a list Z, 

which is (B, X)^ put list Z on stack S. In this 

case, lists Y and Z share list X. 

It is of course possible in a computer to have 

lists embedded in lists to any level. However, there 

is a penalty.  In the above example, we had to have 

space in the PS automaton to keep track of S and Y 

(and Z, but we could without confusion have used Y 

for Z, since the stack itself, not Y and Z, 

ultimately is responsible for keeping track of these 

lists).  If we had a 3-level list, we would need 3 

variables, and so on. Thus, the size of the parti-

cular automaton in question sets an upperbound on 

the number of levels we can use, without appealing 

for another source of unbounded memory, such as 

another push-down stack. And once a machine has two 

independent push-down stacks, it becomes a Turing 

Machine, since it can use them as if they were a 

single tape. 
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For dealing with English, we are content to use 

a conceptual automaton that has enough memory to cope 

with a two-level list structure. Most of the post-

Chomsky phrase-structure discussion of languages has 

dealt with single-level lists as the memory attached 

to a finite-state automaton. In extending our 

attention to the next level, some problems related to 

structure suddenly became solvable. Possibly all the 

structure-related problems for one-dimensional 

languages can be shown to be readily solved with 

indexed grammars, though this conjecture is based on 

nothing stronger than intuition. However, not all 

grammarians confine their attention to one-dimensional 

languages>    there are various syntactically oriented 

picture-processing schools of thought, involving 

media of higher dimensionality. A question worthy of 

their attention is, must they make use of more 

powerful languages than the linguists, or do indexed 

grammars also solve their problems. Again, 

intuitively, probably the former^ a three-level list 

for two-dimensional pictures, and so on. 
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3.8 Generative Identity 

In a transformation rule, Chomsky is careful to 

identify each element participating in a structural 

change, using positive integers for tags.  (The^X* 

is irrelevant.) e.g., Structural Change: 

X| - X2 - X3 - X4 ■>  X4 - %2  - be - en - X3 - by - X1 . 

Note that not every object gets, or needs, a number, 

even if we were to reverse the direction of the arrow 

(assuming we could generate the right hand side) and 

transform the other way. 

In most of the correspondences set up between 

grammatical rules, in a translation system, such a 

notation is adequate. However, without a clear 

understanding of the exact theory underlying this 

practice, it is difficult to set up a translation 

mechanism to handle the * respectively" problem, 

despite the obvious fact that indexed grammars would 

have to be the minimal generative mechanism at the 

syntactic level. 

There are two essential points. The first 

deals with the rephrasing of a transformation rule 
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as a translation system correspondence. Not all of 

Chomsky's rules can be thus rephrased (at least not 

readily), but the active-passive example works well. 

S •+ NP Aux VP NP  S -> NP Aux be en VP by NP A  

A.1 A.2 A.3 A.4  A  A.4 A.2  0  0 A.3 0 A.l 

The exhibited correspondence is between a rule in 

a grammar of active sentences, and a rule in one 

of passive. 

The second point deals with the explication, and 

source, of the unfamiliar notation beneath the rules 

given above. The integer tags are obviously related 

to Chomsky's notation. In full, however, the line 

reads: 

" The left hand side (S) of the first rule is 

acknowledged to have its own identity, which we tag 

A. In replacing S, each component assumes the 

identity of S, and in addition a tag of its own to 

distinguish it from its siblings/' 

This process should not be confused with 

the notion of family name. Given the rule 
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NP ■* T ADJ NP A   

A.1 A.2 A.3 

the ADJ • big* in the derivation of 
M
 The big boy 

can eat a horse" has the identity 1.1.2, where the 

noun phrase NP (»
l
tho big boy") has the identity 

1.1 and the sentence S has the identity 1. Thus, 

surnames'
1
 grow* as the derivation proceeds. 

The^O* indicates that this object needs no 

identity. In the description of the universal 

translation algorithm, this will become more apparent. 

The source of this notation is Brainerd 

(Bralnerd, 1969), although he notes earlier users. 

Brainerd needs to identify nodes in tree structures in 

order to rewrite them. Since the distinction between 

trees and generative phrase-structure processes is 

somewhat fine (mainly one of a choice of either time 

or space coordinates), it takes little imagination to 

see the obvious application of Brainerd's notation to 

a grammar.  The above account should make it 

unnecessary to say anything about Brainerd's 

notation, except to reproduce 
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approximately a diagram from his paper which 

illustrates a tree with identifiers attached. 

 

1.1.1  1.1.2     1.3.1 

(We have departed slightly from Brainerd's notation, 

in assigning a specific identity to the root, 

rather than the null element. This simply makes it 

possible to refer in print to the identity of the 

root without confusion. The root may be any 

positive integer.) 

Not all rules simply rewrite one element. 

Consider 

X Y -»■ F  G  H A B   

A.1 A.B A.2.1 

This is an example of two objects with separate 

identities combining to produce a mixed batch of 

offspring . Two of them (F and H) acknowledge only 

one source. H assumes two integer tags. The middle 

element acknowledges the identity of both the 
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X and the Y, and moreover feels no need for further 

tagging with integers. 

Not all transferences of identity imply an 

increase in the length of the identifier, e.g., 

NP -» ADJ NP A    

A.1  A 

Here, the adjective acknowledges its inferiority to 

the rewritten noun phrase, but the residual noun phrase 

maintains it is as equal as its predecessor. This is 

not idle animism, but in fact a powerful tool 

available to the translation process. And for those 

who set store by *proper" structural descriptions, this 

rule should be compared with the corresponding rule in 

the final picture grammar given in the section on the 

structure fallacy. The similarity should be striking.  

(If not, consider 

NP ■*  ADJ  NP 

A-     A.I  A.2 and compare it with the 

first*fallacious
//
picture grammar.) 
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Though it is possible to do without arithmetic 

in this theory, we shall not hesitate to use it in 

order to keep down the length of identifiers, noting 

that most computers can perform addition readily. 

The meaning of 

X ->    Y  X A     

A A+1 

should be transparent. We are here generating a 

string of Y's, with increasing numerical identifiers 

all of the same length. For instance, the above 

example for noun phrases would be better expressed as 

NP  •>  ADJ  NP A       

A   A+1 

to enable each adjective to be distinguished. 

Rephrasing this in structural terms, we have a 

mechanism for generating immediate constituents 

without bound, if we rephrase the notion of immediate 

constituency in identification terms. We may say, if 

x is an identifier of an object, then x.i is an 

Identifier of an Immediate constituent of 
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that object if and only if i is a positive integer 

(i.e., an identifier of length 1). 

We have suggested that, for purposes beyond 

simple generative or cognitive ones, the usual notion 

of a phrase-structure rule is inadequate. We follow 

Chomsky's theory in invoking identity-markers, and 

we depart from it in embedding them in the phrase-

structure component of our translation system. Our 

rules now deal both with syntactic markers and 

identity markers. A fringe benefit is the 

possibility of a relation between Chomsky's notion 

of * correct'*' surface structure, and the identity 

component of these extended rules. 

3.9 A Universal Translation Algorithm 

Much is either available in the literature, or 

is intuitively obvious, about the functioning of 

automata that recognize, and automata that generate, 

strings. There is very little about the more formal 

aspects of connecting one of each kind together so 

that, given a string in the language accepted by one 

automaton, the other automaton can 
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be constrained to generate a corresponding string in 

its language. On the other hand, there is no end to 

the amount of informal literature on the subject, in 

the fields of program-compiling, so-called mechanical 

translation (of natural languages) and even 

transformational grammars, which in certain respects 

resemble our formal translation systems. The most 

formal paper to date on this problem would appear to 

be Lewis and Stearns (1968). However, it deals with 

the theoretical aspects of problems that practical 

compiler writers had to solve informally years ago. 

Our concern is not only with formalizing informal 

solutions, but with finding any sort of solution to 

some problems not even solvable with 

transformational grammars. If our solutions approach 

some degree of formality, then it becomes easier to 

describe, evaluate^ compare, use and change the 

solutions. 

For the algorithm, we distinguish the source 

grammar and the target grammar, and likewise the 

source and target automata and strings respectively. 

The source automaton's role is to set up a theory of 

how it might have generated the source string had it 

been operating in its generative mode. The 



74 

target automaton starts anytime, even before the 

source automaton if it wishes, and proceeds to 

generate a string of its language until a decision 

has to be made.  It then consults the source 

automaton's theory to see what it would have done at 

the corresponding stage. There are two independent 

considerations. Th.  first deals with whether the 

source automaton says that any more theories are 

likely about what it would have done at this stage. 

The second deals with the number of theories about 

that stage. We tabulate the corresponding responses 

of the target automaton: 

More theories to 

come Waits. 

Takes this theory 

and notes place. 

Takes best theory 

and notes place. 

Consider the 

first column, no more theories. If there are no 

theories about this stage, something has gone wrong.  

What form evasive action takes is a 

No. of No 

theories 

0 Takes 

1 Takes 

>1      Takes 

and i 

more theories 

evasive action. 

this theory. 

best theory 

LOtes place. 
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matter for a particular implementation. The simplest 

action is to terminate generation of the current 

string, generate information about the current stage, 

and about the most recent stage which appealed to the 

source automaton's theory, and then continue as if it 

had finished generating the current string. 

If there is exactly one theory, the course is 

evident.  If several theories, the best should be 

selected (or the first if there is no difference). 

When other theories also seem promising, this should 

be noted. 

The second column is included for the case 

where the target automaton wishes to proceed as fast 

as possible. Only the second line should need 

comment: A theory about a stage need not be unique, 

if more theories about this stage are possible. 

For a compiler, where the source language is 

presumed unambiguous (regardless of whether it 

actually is), only the first two lines of the table 

need be used.  If, in addition to being unambiguous, 
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the language is LR(k) (Knuth, 1965), that is, the 

source automaton need only stay k symbols ahead of a 

point in the source string to be sure that there 

are no more theories relevant to that point, for 

some fixed k, then only the first column need be 

used. In practice, when k is finite, k is rarely 

very large, for programming languages. 

For natural languages, ambiguity is a non-

trivial problem. We shall consider it further in 

the chapter on recognition; here we note that it 

corresponds to the contingency for which the third 

line of the table is provided. 

In the particular implementation of this 

algorithm used for translating syllogisms on a PDP-

8, we used Younger's algorithm to construct 

hypotheses.  Some of these were then confirmed, thus 

becoming theories, simultaneously with the operation 

of the target automaton. The program caters for all 

contingencies in the above table, although this 

observation will receive qualification in Chapter 

5. 
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The translation algorithm given so far is 

very general, and assumes little about the nature of 

grammar, beyond the fact that it be generative. This 

is not a particularly onerous restriction, since 

many mathematical theories of language to date have 

been phrased generatlvely. 

We now restrict our attention to translation 

between languages with phrase-structure grammars, 

since recognition algorithms for these are quite 

efficient, in comparison to recognition of deep-

structure features of English sentences using 

existing transformational theories. 

So far we have not explained how to locate 

stages in the operation of the source automaton, so 

that we may consider theories about that stage. We 

now define a stage in phrase-structure termsl it i3 

simply the application of a rewriting rule. If we 

restrict our attention even further, to context-

sensitive grammars, in which a rule rewrites just 

one symbol, we may now identify a stage using the 

identifier of the symbol rewritten. The only 

decision the target automaton has to make is which 
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rule to use to rewrite the symbol it is currently 

contemplating,, it chooses the rule that corresponds 

to the rule chosen (^theory") by the source automaton 

at the stage corresponding to the contemplated 

symbol. Thus, where a grammatical rule might be 

involved in a choice, it must if possible be put into 

correspondence with one or more rules of any 

potential source grammars in the translation system. 

The system at the start of this chapter demonstrates 

a complete one-to-one correspondence3  in practice we 

need not expect this, except for parsing and 

compiling systems. 

3.10 Applications 

In this section, we demonstrate a simple 

translation system, to give the reader an intuitive 

feel for the translation algorithm, and also to show 

how elegantly it can solve problems not even catered 

for by transformational theory. The Respectively 

Problem 

we have set up, in the previous three sections, 

enough mechanisms to translate between, say, *John 

and Bill like Mary and Joan respectively* 
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and'VJohn likes Mary and Bill likes Joan".  We could 

equally well have chosen, in place of the second 

sentence, the deep structure of the first sentence, but 

since translation theory makes no distinction between 

structural-description grammars (e.g., in section 3.1) 

and any other kind, we invent a kernel-sentence grammar 

instead, noting that it would not be very hard to 

change this grammar to produce deep structures. 

We set up a simple system sufficient for a 

demonstration: 

Sentence ■> Kernel Next Ult  (A"2-path" sentence) 

A       A.1   2  1 

Kernel Hext -> Kernel Next Next (Generates more * paths*) 

A    B    A+1   B+1  B 

Kernel •* Noungen + Verb Plural + Noungen + respectively 

A      A.l     A.2  0       A.3        0 

(Shape of kernel sentences) 

Noungen Next -> Nounphrase + Noungen A     B      

A.B       A 

(Generates Nounphrases) 
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Noungen Ult ■* and + Nounphraso (Last Nounphrase) 

ABO       A.B 

Nounphrase •* John, Bill, Mary, Joan 

0    0    0    0 

Verb Plural -> likes 

0 Verb Sing ■* 

likes 0 

Let us generate, step "by step, the first 

sample sentence. For brevity we shall write Ng 

for Noungen, etc.. 

Sentence 1 Kernel Nx Ul 1.1   2  1 Ng 

Mx Ul + Vb PI Nx Ul + Ng Mx Ul + resp 

1.1.12 1   1.1.2 0 2  1  1.1.3 2  1     0 

Np Ul + Ng Ul + like +  Np Ul + Ng Ul + resp 

1.1.1.2 1  1.1.1 1    0  1.1.3.2 1  1.1.3 1    0 

Np Ul + and + Np  + like +   Np Ul + and 

1,1.1.2  1   0  1.1.1.1   0  1.1.3.2  1   0 
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+   Np  + resp 1.1.3.1   o John + and + Bill + like 

+ Mary + and + Joan + resp 

O O O O O O O O  

This can now be taken as a theory of how the 

first sentence might have been generated. We now 

attempt to generate its translation. Only the third, 

fourth and fifth rules in the previous grammar need 

be changed to produce the target grammar. 

Kernel ■* Kernelgen A        A Kernelgen Next -> 

A     B Nounphrase + Verb Sing + Nounphrase + 

Kernelgen A.1.B     A.2  0      A.3.B        A 

ICernelgen Ult -» A     B and + Nounphrase + Verb 

Sing + Nounphrase 0      A.LB     A.2  0      

A.3.B 

In setting up a correspondence between the 

rules of the source and target grammars, it 
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should be noted that no correspondence is needed 

between the fourth rule of each, nor between the 

fifths nor would any correspondence have significance, 

beyond the fact that they both consume indices 

similarly. For the other rules, the correspondence 

should be obvious. We now generate the second sample 

sentence, U3ing the above theory. 

Sentence 1 

Kernel Nx Ul 

1.1  2 1 

At this point, a decision (whether to apply the 

second or third rule) is necessary. For object 1.1 in 

the theory, we applied the third rule, so we do 

likewise here, and then we perform several steps for 

which no decisions are needed, but for which there are 

no steps in the theory that correspond sufficiently 

for us to keep track of identities in the conventional 

way. 
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Kg Nx Ul 1 . 1 2   1 Np Ul + Verb Sing 

Ul +  Np Ul + Kg Ul 1.1.1.2 1  1.1.2  0  1  

1.1.3.2 1   1.11 Np Ul + Verb Sing Ul +  

Np Ul + and + 1.1.1.2 1  1.1.2  0  1  

1.1.3.2 1   0 

Np + Verb Sing +  Np 

1.1.1.1 1.1.2  0  1.1.3.1 

Now we have a choice of rules for Nounphrases, 

for each Np above. Although there is no choice for 

singular verbs, it is clear that the identity has been 

preserved to enable the choice of the singular form of 

like to be correctly made, if there were other 

singular verbs. The rules might have to be extended, 

to Verb Sing -* SG + Verb , say, where 

A        0    A SG is a marker to be handled by 

the so-called post-cyclic rules of transformational 

theory. The details are not, however, relevant to this 

demonstration. Using the source automaton's theory, 

we have finally: John + likes + Mary + and + Bill + 

likes + Joan. 0     0      0    0     0     0      

0 
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If this demonstration seems complicated, it is 

because we are exhibiting each step in the 

translation process. It is not unreasonable to 

expect a computer to have to go through this many 

steps in performing translation. The important fact 

is that we have defined exactly (to within a 

particular implementation) what steps must be gone 

through in translating, once the source automaton has 

a theory.  This particular example shows hov/, without 

the notion of generative Identity, it would be 

difficult, if not impossible, to decide which rules 

to choose when rewrting the Mounphrases. We could 

have produced, say, 

John likes Bill and Mary likes Joan and 

although no appeal to complicated theories of 

identity are necessary to achieve this, the trans-

lation is far from plausible. 

Let us turn again to our path-theoretic 

approach, for more insight into why translation 

theory handles problems not dealt \\rith well by 

transformational theory. As we remarked earlier, 

the interesting paths cross, and uncrossing them 

is by no means trivial, as can be seen from an 

file:\\rith
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appropriate structure diagram of the first sentence; 

Sentence 

I 
Kernel Nx Ul 

NgNxUl 

NgUl 

\ Wp 

John and Bill like Mary arid 

Joan respectively 

Corresponding to each path of interest is 

either a * Next* or an * Ult*, as can be seen by 

tracing through the diagram and following each 

index. In this example, only one Next is involved, 

but with longer sentences, it is clear that each of 

the Nexts must in some way be distinguished. 

Identification of index symbols, in which each index 

in a node might have an identity, seems to provide" 

exactly the mechanism needed for identifying paths, 

so that they may be successfuly untangled. 

In transformational theory, as we noted, 

Chomsky does not attempt to identify objects 

except those immediately involved during the 

VbPlNxUl 
NpUl 
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application of a single rule.  We suggest that it is 

unlikely that transformational theory will be 

successful in any situation where it is clear that 

there are paths that cross. It is our contention 

that the minimum amount of machinery necessary to 

handle the association of remote objects generatively 

is some theory of identity, at least as powerful as 

the one used here, and some system of indices for 

nodes in structure-diagrams to bear identities. 

One further remark on surface structure might 

be in order. If one ivere teaching a primary-school 

class about the use of the word 
w
 respect!vely", 

would one attempt to produce some sort of structure 

tree in the surface structure spirit of transfor-

mational theory, such as 

Sentence 

 

Tom Dick and Hal like Joe Paul and Ann respectively 

or would one use 
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Tom Dick and Hal like Joe Paul and Ann respectively 

(where the dashed line indicates sharing). 

The second structure is most definitly not 

that of a tree. We saw in section 3.6 that if it 

were a tree, all the interesting structures would 

have a common node. Without further labelling of 

the diagram, a tree-like structure would hardly be of 

interest to any but the transformationalists, as it 

would not make clear the interesting structural 

features. 

In other words, when portraying structure 

graphically, why must we always insist that the 

components of the structured object be adjacent? A 

radio transmitter and a receiver may display 

structure, in that they may form the basis of a 

communications system, but we would scarcely insist 

that they be immediately adjacent, if we were 
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attempting to illustrate this graphically. Identity 

does not always imply encapsulation, and structural 

descriptions need not always imply trees. Agreement 

The problem of agreement in number (or for 

that matter, any finite number of agreements) can be 

handled to an extent by setting up these agreements 

as indices attached to a node denoting a given 

clause, e.g., 

Clause -> Clauseno Sing 

Clause -> Clauseno Plural 

Clauseno ->  Clauseatr Concrete 

Clauseno -> Clauseatr Abstract are examples 

of rules attaching lexical features to a clause.  If 

a clause is embedded within a clause, a delimiter 

and a fresh set of indices may be added. When the 

indices are eventually consumed, up to the 

delimiter, the remaining indices may be ignored, 

since they will be discarded when nodes carrying 

them are eventually rewritten as terminals. While 

it may seem ungainly to carry around unused 

Indices, it will be seen in chapter 4 that 

recognition of sentences with such a grammar does 

not imply such ungainliness. 
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The distributive properties of indices ensure that 

agreement paths can be set up using indices in this way.  

The Indices are consumed in rules of the form 

Noun Concrete Sing -*• horse 

etc. 

While it is often feasible to arrange for such 

agreements using indices, it is not necessarily easy, 

elegant, or even useful.  It is felt that indices are of 

most benefit where they play a more obvious generative 

role, as in the respectively problem. Experience with 

the program described in Chapter 5 suggested that the 

only reason for checking agreement was for dis-

ambiguation, and that ambiguities that could be resolved 

by appeal to agreement were quite infrequent. More 

graphics 

The limited access to two-level list structures 

does not readily permit permutations on the elements of 

the embedded lists, and hence on indices attached to 

nodes in structure diagrams. When an index is used as 

a communication channel, the general rule is that 

communication paths should be properly nested.  In the 

diagram, 
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A 

/-"  \ 

B        C 
/ \      / \ D  
E    F  G 

it is possible to have, simultaneously, paths from B 

to C, from D to G, from D to E, etc..  It is not 

possible to set up simultaneously independent paths 

from B to F and from D to C, as this implies that 

indices bearing identities and other information for 

each of these paths must be interchanged, either near 

B or near C. A rule that interchanges them, though 

quite simple to find, implies that the paths are no 

longer independent. There is no general rule for 

permuting arbitrary Indices. 

If difficulty is experienced in attempting to 

set up indexed grammars, with the intention of 

achieving communication between remote nodes, it may 

be due to attempting some improper nesting (just as 

FORTRAN DO loops may be improperly nested) of paths. 

This problem does not arise in the solution to 

the respectively problem, since only at the common 

node is there any question of nesting. 



 

To help in visualizing this, one can imagine a 

structure diagram as being a projection of a 3-

dimensional diagram. Each lino in the diagram is 

really the bottom edge of a plane at right angles to 

the paper, and each node is a line perpendicular to 

the paper, along which are arrayed the indices. 

Communication paths are straight lines drawn along 

the planes through the appropriate indices at each 

node.  That indices may not be permuted corresponds 

to saying that these paths may not cross. 
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The diagram is the 3-D representation of 
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AGH 

/\ 

Bi-'GH     CGH 

corresponding to the rule 

A -* BF + C 

with indices GH attached to A. 

This conception can be helpful when 

deciding whether the use of indexed grammars is 

necessary or feasible in a given application. 

Clowes, Langridge and Zatorsky (1969) point 

ou/, that transformational grammars do not handle 

conjunctions very well. The counter-examples they 

give are reasonably difficult, but far more difficult 

are sentences such as 

Mary supports John, not John, Mary.  (Klima,1964,p.301) 

The Chinese have short names and the Japanese long. 

Jim plays guitar, Peter the drums and myself the tube. 

The deletion approach, that verbs and such-like 

have been deleted because they are repeated, is not 

convincing. The sentence 

Peter sang 
w
Old Man River" and John sang. cannot be 

subjected to such an operation.  A host of 
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counter-examples can be found for most explanations 

other than that a string (in these examples, a sentence) 

is given, and then each subsequent string of the same 

syntactic class as the first is specified by supplying 

at least those substrings that noed alteration. The 

specification of what syntactic classes of strings and 

substrings may participate in this activity appears to 

be manageably small. 

Without demonstrating an actual solution to any 

of the 

conjunction problems, we 

shall show how to tell whether indexed grammars are 

necessary. 

Consider a plausible 2-dimensional structure 

diagram for the second example above. 

\     I     f 
The Chinese have short names and the Japanese long 

To enable a translation process to substitute 

A' 
"\ 
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tf
the Japanese* for *the Chinese* and simultaneously 

*long
v
 for * short*, a path is needed between B and 

A, and another between C and D. Between X and Y, 

these paths must lie in the same planes.  However, 

it is clear that they need not cross within these 

planes. Hence it is feasible to use indices. 

Since the paths cross on the 2-dimensional 

diagram (though not on the 3-dimensional one), it 

would also seem desirable, if not necessary, to use 

indices. The two paths are independent to a sufficient 

extent to make the CF  treatment of their crossing very 

long-winded. 

Not all conjunction problems need appeal to 

indexed grammarsl    notably, those accounted for by 

Chomsky, which is the special case of the general rule 

given above, where the substring that needs alteration 

is the whole string. In Chomsky's formulation (1957, 

p.35)Z+X+W are two sentences. X corresponds to some 

string, and Y to a string of the * same type* ,     

Chomsky insists that all of Y be copied, when forming Z 

- X + and + Y - W. Thus only a single path connecting X 

to Y is involved. 



95 

With no crossing paths, no appeal to indexed 

grammars is necessary. 

This extended treatment of conjunctions still 

does not deal with all the problems raised V.y Clowes, 

et. al. (1969). The general problem of conjunction 

is quite difficult. However, problems not germane 

to translation theory are, for example, 

John and John sold the house.  (Clowes^ p.10) John is 

more sucessful as an artist than Bill is as an 

artist.  (Postal, 1964, p.151) 

While transformation theory appears to deal 

with the problem of measuring grammaticality, trans-

lation theory deals only with the problem of finding 

plausible translations, such as 

John sold the house and John sold the house. In 

transformational terms, translation theory is content 

to discovor possible deep structures, without 

necessarily verifying that they satisfy lexical and 

other requirements. A deep structure discovered by a 

translation automaton does not need to be checked to 

see if it can be generated by the base component 

(again assuming transformational terminology:; cf. the 
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discussion of the MITRE program in the next section), 

3ince it had to be generated in this way to be dis-

covered.  In this case, the base component corresponds 

to the target grammar, in a translation system for 

discovering deep structures (or, equivalently, kernel 

sentences). 

3.11 Implications 

The MITRE Program 

The MITRE syntactic analysis procedure for 

transformational grammars (Zwicky, 1965) is a program 

for finding deep structures of English sentences.  It 

w // 

uses a CF surface grammar which generates English 

sentences without regard for the finer details of 

their grammaticality. A sentence is analyzed, and 

structures produced.  Inverse transformations are 

applied to these structures to produce tentative deep 

structures. Then those deep structures that could not 

generate the original string are rejected. Petrick 

(1966) says that It is not known whether this 

technique will discover every possible deep structure 

for a sentence. On the other hand, Zwicky claims that 

no structure discovered by the MITRE Junior Grammar 



97 

has failed to be discovered by this technique. 

The MITRE program would appear to be an order of 

magnitude faster than Petrick s program. Thiti can in 

part be accounted for by different machines and 

programming systems, but the fact that it appeals to 

what appears very much like a CP ■* CP translation 

theory to find deep structures seems significant. 

Petrick admits this, and says that his program, which 

includes the analysis-by-synthesis technique, is for tho 

use of grammarians testing grammars, and hence must be 

guaranteed to work, whereas the MITRE grammar is 

relatively permanent, making it easier to ensure that 

it continues to work the way it does. 

If it is true that some problems can be handled 

well by indexed grammars, and most inelegantly, if at 

all, by transformational theory, then the fact that some 

transformations have no usable inverse may be due as 

much to an inelegant solution to a problem better 

handled by indexed gramma.rs as to any other factor.  

One cannot argue that transformations without inverses 

are a necessary evil of transformation theory, or at 

least of English. 
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This, and the fact that the MITRE program uses a 

translation-like approach to finding deep structures; 

suggests that no harm, and possibly much good, would 

come of recognizing and formalizing CP (and indexed) 

surface structure grammars as respectable components of 

a transformational theory, and that as much or more 

attention be paid them, than finding structural 

descriptions whose justification is in terms of 

descriptive or explanatory adequacy. Psychology 

Another area where transformational grammars have 

been considered is psycholinguisties.  The Savin and 

Perchonock (1965) experiment is sometimes cited as 

evidence for a transformational explication of human 

processes. The experiment considers so-called 

immediate memory used up in memorizing simultaneously 

a sentence, and eight carefully chosen but unrelated 

words.  Provided the sentence can be correctly 

recalled, or nearly so, the number of random words 

recalled is taken as a measure of the space left after 

memorizing the sentence.  It is shown that the 

transformational complexity of the sentence (whether it 

is active or passive, affirmative or negative, 

declarative or Interrogative,etc.) is strongly 
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correlated with the measure of space used. 

If one were to assume that, to memorize a 

sentence, it "be recognized as a CP sentence, and then 

translated into an active declarative affirmative 

sentence for the purposes of efficient retrieval from a 

hypothetical data-base (which is plausible, since this 

is precisely how question-answering systems usually 

function to achieve economy and efficiency in using 

their data-bases for storage and retrieval), then it is 

possible that more immediate memory is used up if a 

translation is required than otherwise. Thus one is 

led to ask, does CP -KJP (say) translation require any 

more memory than CP recognition. 

Lewis and Stearns (1968) show that transduction 

(which corresponds, for LR(k) languages, to our 

translation) from simple infix to postfix (reverse 

Polish) arithmetic expressions cannot be performed 

using only the memory of a pushdown automaton. The 

process implies the ability to recognize fxnx| x some 

string on a finite alphabet^ . As we saw earlier when 

considering {xxlx any string] this could 
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not be done with a pushdown automaton. If it is 

reasonable to deduce from this that the translation 

may proceed by using more immediate memory, then in 

fact the experiment is quite good support for a 

translation-oriented theory. 

While this speculation on its own is not very 

valuable, it does mean that the results of the 

experiment cannot be regarded as favouring a trans-

formational account of sentence memorizing, since a 

phrase-structure account by no means implies merely 

recognition. In fact, if only the sentence, and 

the fact that it had been recognized as a sentence, 

were memorized, it is hard to imagine how this fact 

could be used. One may as well memorize the string 

without attempting its recognition. 

Clearly, some experiment that can distinguish 

between transformational and translational processing 

in humans is required. This might be no more than 

attempting to determine if analysis-by-synthesis is 

used, which seems to be the vital difference between 

Petrick's program and the MITRE one. If no such 

experiment is forthcoming, this could indicate that 
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the results of the experiment are not particularly-

relevant to applied psychology, since a need for a 

particular fact is often sufficient in itself to 

suggest an experiment. 

3.12 Nummary 

Firstly, we exhibited three classes of grammars, 

in increasing order of power, v/ithout reaching the 

power of context-sensitive grammars.  The first, 

finite-state grammars, we saw could be used for 

recognition of a string in terms of its terminal 

symbols alone. The second, context-free grammars, 

could be used for recognition of a string in terms of 

more than one previously recognized substring. The 

third, indexed grammars, could be used for 

recognition of similarities between objects not 

closely related by context-free standards. 

We considered the sort of memory required by 

the automata associated with each grammar, to show 

how they resembled each other. The first had a 0-

levol list, that is, no list at all (or at best, one 

symbol, corresponding to the finite-state 
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automaton itself). The second had a 1-level list, or 

pushdown stack, to store, temporarily, symbols 

denoting recognized substrings. The third had a 2-

level list, to store, temporarily, arbitrarily many 

features of each recognized substring, in a way that 

made them readily available at remote stages in the 

recognition (or generation) process. 

Each of these automata provides exactly the 

sort of properties one would want a perceptive auto-

maton to have, if it lived in a one-dimensional 

w)rld. The first recognized a finite number of primi-

tive objects, \\rlthout appealing to any significant 

internal structure. The second can, in addition per-

ceive structure, in the sense that it can take 

previously recognized objects and their relationships 

(in one dimension, that of adjacency) and see that 

together they form a familiar object, that is, one 

for which there is a corresponding recognition state, 

or symbol, or description. We referred to this as 

combination - we could equally well associate the 

notion of articulation with this automaton. 

file:\\rlthout
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The third can, in addition, perceive 

associations "between remote objects:; we considered 

the association of noun phrases in respectively 

sentences, and of various components in sentences 

with conjunctions. 

Secondly, we formalized hitherto informal notions 

of identity, and showed how to combine these with 

indexed grammars to provide a sufficiently firm 

foundation to set up a translation algorithm which could 

be demonstrated to work with grammars at least as 

complex as indexed ones. 

Thirdly, we claimed that the primitives of any 

theory of communication were representations, and that 

the fundamental use of grammars, in practice, was to 

enable corresponding representations in different 

languages to be derived from given representations. We 

demonstrated at the outset (3.1) that this was true of 

structural descriptions, which were simply translations, 

in a structural description language, of representations 

in some source language.  In doing so, we assigned a 

weaker role to the notion of structural description 

than that currently popular with some 
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linguistsj we used it as no more than an aid to 

visualizing generative processes. In addition, we 

suggested how appropriate structural description 

grammars that might generate the sort of surface 

structures sought by transformationalists could be 

readily derived from phrase-structure rules that 

included the generative identity component appropriate 

to their use in some practical translation system 

(3.8, on immediate constituents). 

Fourthly, we showed how translation theory 

dealt with problems inadequately catered for by 

transformational theory, although we acknowledged the 

extent to which transformational theory was, for 

generating the sentences of a language, a good 

improvement over a simple context-free approach, in 

that it invoked an asymmetric translation-like theory 

to isolate and reduce paths in surface structures to 

manageable lengths. An inherent fault was its lack 

of a mechanism to disentangle crossed paths, and a 

practical fault was its asymmetry, or failure to 

provide explicitly the surface-structure grammar which 

was used successfully in the MITRE program (Zwicky, 

1965). 
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Chapter 4. Practical Recognition 

4.1 Introduction 

In the previous chapter, we assumed that, given 

an automaton programmed with a grammar, and a string 

in the language of that grammar, we could either make 

that automaton generate that string or reverse the 

direction of time, i.e., run the machine backwards, 

and recognize that string. This was a convenient 

assumption to make, since it enabled us to examine the 

problem of translation independently of that of 

practical recognition. In doing so, we were able to 

make translation a more exact science than before, 

although perhaps not so exact that its mathematical 

properties, and time and memory considerations, could 

be immediately determined. 

We now consider practical recognition, that is, 

the art of making a deterministic automaton construct 

theories about the operations of a conceptual non-

deterministic automaton. That it is still an art 
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is suggested by the uncertainty (Aho, Hopcroft, Ullman, 

1968, p.206) about the least upper bound on time for 

C? recognition. Currently, the best upper bound is 

n3, that is, there is no effective procedure known for 

performing recognition with an arbitrary CP grammar, 

in time T(n) for strings of length n, such that lim 

T(n)/n3 = 0. The procedure for which lira T(n)/n3 is 

bounded above is Younger
/
s algorithm. 

Recognition is, strictly, the process of 

determining membership, that is, deciding whether a 

given sentence belongs to a given language.  A yes-no 

answer to the membership question for a sentence tells 

us nothing about why the sentence is a member of a 

certain set. By practical recognition, we mean more 

than simple recognition3 we mean the determination of 

sufficient theories about the possible top-down 

generation of a given string by a given grammar (used 

by the source automaton) to enable the target 

automaton to function in the manner described for the 

translation process. 

The form of such a theory is difficult to 

restrict. The conventional approach is to construct 
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a hypothetical record of a non-deterministic generation 

of a string by a pushdown automaton and call this a 

structural description. For example, using the gramix.: 

S •* AB    (a) A -> x     (b) B -»• C     (c) C ■* 

y     (d) to generate ab, we might theorize Gall S 

object 1. 

Using rule (a) replace object 1 by objects 2 and 3. 

Using rule (b) replace object 2 by x. Using rule 

(c) replace object 3 by object 4, Using rule (d) 

replace object 4 by y. 

If we now refer to each step by referring to the 

identity of the rewritten object (in a computer, one 

usually refers to something by supplying its address 

in memory), then this description can be abbreviated 

to 

1: a, 2, 3 

2: b, x 

3:  c, 4 

4: d, y 
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Provided no two rules of the grammar are 

identical (and this is, trivially, always the case in 

practice) it is sufficient to supply only the symbol 

rewritten rather than the identity of the rule, since 

the latter can always "be reconstructed. Thus: 
 

1: S, 2, 3  

2: A, x  

3: B, 4  

4: c, y  

which 

is 

as close to a computer-memory representation 

of the s tructure 
S A       

B 

y 

as we need go here.  To rediscover that step 1 is a, 

2, 3, we note that 2 is A and 3 is B, whence the rule 

must "be S -* AB, which we can determine {by searching 

the grammar) to be rule (a). 

That such a record can function as a program 

for a machine performing top-down generation is clear 

from its first formulation, above. As such, it is a 

very good theory of such a process, since, given the 
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identification of an object, one simply looks at the 

appropriate location(s) in memory to determine which 

rule was chosen to rewrite that object. The target 

automaton, in using this theory, then chooses the 

corresponding rule in the target grammar. 

Uowever, this is not the only possible form for 

a theory.  It is possible to do away altogether with 

this form of structural description, as we shall see in 

discussing the following algorithm. 

4.2 Younger
7
s Algorithm 

This algorithm is described in detail by Younger 

(1967). V/e give here a very brief description. 

The only rules dealt with are of the form 

A ■> BC A -* B 

or  A ->  a 

As noted earlier, it is easy to restrict any CP 

grammar to such a form.  Younger also omits the second 

rule, but as the resulting grammar can be quite 

unwieldy, this was not done here. 
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It should be clear from section 3.1 that such 

a restriction in no way prevents us from producing the 

same structural descriptions with this restricted form 

of grammar as those expected of a more elaborate 

grammar. Translation systems with rules of the form 

A •* BCD a -> [ bed] 
ft 

can be changed to 

A •*■ BX a -> [ bx] 

X ■* CD x ■»■ cd 

Given a string of terminals, it i3 possible to 

ask,  Is the substring, of length j, starting with the 

ith terminal, an X , where X is some non-terminal 

category? Such a question is a boolean function of 3 

variables (i, j, X)j  as such, a convenient data-base 

for answering such questions is a three-dhiensional 

boolean matrix. This in fact is the data-base used 

in Younger's algorithm. 

The answer to g(i, j, X) is yes if and only if 

one or more of the following is satisfied: 

(i) (J = 1) and (X->a)£P and the ith terminal is a. 

(lij^g(i, k, Y) and g(i+k, j-k, Z) and (X-*YZ)«P and 1 

< k < J (ill) g(i, J, Y) and (X+Y)«P 
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where P is the set of production rules for the grammar. 

Each of these conditions is related to one of 

the three classes of rules permitted. The relationship 

should be transparent. 

Younger's algorithm may be expressed in an 

ALGOL-like notation: 

for each level j _< length (of input string) 

for each step k < j 

for each rule X •>  YZ 

for each position i < length-j+1 6(1, h  X) = 

g(i, j, X) or (g(i, k, Y) and g(i+k, j-k, Z)) 

for each rule X -> Y 

for each position i < length-j+1 

g(i, j, X) = g(i, j, X) or g(i, j, Y) 

(Indentation of any text implies begin end brackets 

around it. All for loops start from 1.) 

This algorithm assumes that a rule A •*■ B will 

always precede, say, C -*• A. For if not, and a B was 

discovered at position i, level j, then g(i, j, C) 

would be set to the value of g(i, j, A) before the 

latter had been set to the value of g(i, J, B), 
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assuming the first two had previously been 0. This 

ordering of rules can always be arranged except when 

there are rules implying a cycle, e.g., A -> B, B -> C, 

C •* A. This does not seem to be a serious restriction 

for an English grammar, although it could arise in a 

programming-language translation system, e.g., INT EXP 

-> REAL EXP     i -> FIX (r) REAL EXP ■* INT EXP     

r ■■> FLOAT (i) where we might be compiling from 

FORTRAN into LISP, and want to allow mixed-mode 

expressions. The ambiguity implied would presumably 

be ignored by the compiler. 

In deciding the structure of the matrix with 

respect to the word-oriented structure of memory, it 

is convenient to choose i (that is, position) as the 

coordinate that varies within a word.  In fact, if the 

ith bit of the v/ord w(j, X) is g(i, j, X), then we 

may rewrite the algorithm 

for each level j < length (of input) 

for each step k < j 

for each rule X -» YZ 

w(j, X) - w(j,X) or (w(k,Y) and 

w(j-k, Z)tk) for each rule X -» Y 

w(j, X) = w(j, X) or w(j, Y) 
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where Tk means "shifted left k hits". 

The word-length of the PDP-8 is 12 hits, and since 

the longest of Lewis Carroll's syllogisms is 23 words, 

the vector w will clearly he more than 1 word in some 

cases. Thus multiple-length shifting, and logical, 

operations are involved in both senses of the word. As 

the level j increases, each vector w (j, X) decreases, 

and an obvious economy can be, and is, effected by 

allowing variable-multiple-length operations. 

The grammar      S -> NP VP 

NP -»• N VP -* V NP N -> dogs V -* like will 

generate * dogs like dogs* . The corresponding matrix 

will be 

level        1        2    3    j 

position   12 3   12   1    i 
■ 

. 
I 

4  5 

 6  

1  3 

 2  

 

7  

  

— 8 

 - 
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7:S / 8:VP 

4: HP "~"""6:VP/    5:NP 

<       V \ 

1:N     2:V      3:N 

I        • I 
dogs    like    dogs 

The structure diagram should help make the 

matrix clearer. An integer entry in tho sketch of the 

matrix denotes a 1, and a blank denotes 0. The integer 

itself only indicates the order the bits appeared 

(except that 4 and 5 appeared simultaneously from 1 and 

3), and is not part of the actual matrix. 

We will discuss the details of the implemen-

tation further in the next chapter. Here we are 

mainly concerned with the principles. 

It is not clear from the matrix alone in what 

sense we have produced theories about the operation of a 

non-deterministic automaton that generates strings top-

down, that is, starting with the symbol S and rewriting 

symbols. There is certainly no structure, in the sense 

that there are no pointers from each bit in the matrix 

to those bits that were responsible 
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for its presence.  However, there is sufficient 

information to permit an automaton to operate deter-

ministically to generate a copy of the input string. 

Given a position i, a level J and a category X, as the 

coordinates of a bit in the matrix, it is not difficult 

to construct theories of which rules might have 

produced this bit. The following will suffice: for 

each rule r: X -*• YZ for each k < j 

if g(i, k, Y) and g(i+k, j-k, Z) then return r 

for each rule r: X -*■  Y 

if s(i, 3,  Y) then return r 

It does not take long to construct a theory 

about a bit, since usually only one or two rules 

starting with X are involved, and since the majority 

of nodes in a structural description of a string refer 

to short strings, j can be expected to be reasonably 

small. 

The translation algorithm demands a rule in 
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exchange for an identifier. Thus, the only thing 

needed now is a means of converting an identifier into 

(i» 3,  x) coordinates in the matrix. This is discussed 

in the next chapter, as are details of the actual 

implementation. 

4.3 Recognition and Ambiguity 

We mentioned earlier that appeals to the finer 

details of lexical and other agreements in the 

translation of sentences were not particularly interest-

ing.  If ignored, one can happily translate He do 

it 

not like eating hydrogen.  However, sentences such 

as Flying planes is dangerous  (Chomsky, 1965, P«21) 

are unambiguous only if an appeal to agreement in 

number is maduj  otherwise we could translate it as if 

it were Flying planes are dangerous , which has 

translations in some other languages quite different 

from the correct translation of the first sentence. 

Here we have conflicting plans of attack, 

whether to ignore or include such checks, and if 

include, how many. 
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• Th _• goal we should u^t Is not somo criterion To-?  

selecting the right number of checks, since it is clear 

that sometimes they are a hindr'-:'"
,
e, sometimes a help. 

Rather, we should aim at producing an unambig uous 

translation. A minimum of grammatical apparatus 

should be used to produce possible translations, while 

ensuring that the correct translation will be among 

them.  (The grammar used in the program described in 

the next chapter would approximate to such a minimum.) 

Then the resulting translations should be compared, 

and the essentially different ones selected.  Finally, 

further criteria invoking as much grammatical detail 

as necessary are used to eliminate candidates, v.tii 

one remains, or the grammar is exhausted. 

In theoretical applications of language pro-

jessing, it is very convenient to be able to produce 

large numbers of translations where they arise, label 

them as ambiguities, and forget about the problem.  In 

practice, most machines and humans function ineffi-

ciently when they attempt to process a set of messages 

of which one is known to be correct. For example, at 

one stage in the development of mechanical translation 

from Russian into English, if a word had 
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several meanings, all were given in the translation. 

The unreadability of the result was seized on by 

critics as an indictment of mechanical translation. 

An alternative approach to the problem is 

suggested by indexed grammars.  Their use facilitates 

numerical estimates, for a given theory for the source 

automaton, of the plausibility of that theory. 

In recognizing sentences with indexed grammars, 

it is quite easy to take over existing CF recognition 

algorithms, provided a few minor restrictions (analo-

gous to the restriction on cycles A -» B, B -*■ C, C -> A 

described for Younger's matrix) are imposed on the 

grammar. Let us assume some algorithm which theorizes 

about the CP rule A -*• BO by noting that, somewhere, it 

has a B next to a C, and hence it has an A.  The 

extension is as follows. 

Consider A, B, and C as denoting, not symbols, 

but lists of indices. The rule becomes, for indexed 

grammars,  A ■* B + C. 
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Given two adjacent nodes (which are therefore 

lists), such that the first is of the form (B, X) and 

the second (C, Y), where all symbols denote lists of 

indices, and furthermore X and Y match (although one 

may be longer), then we have a node which is the list 

(A, Z) where Z is the longer of X and Y. 

Rules of the form A - » B  are dealt with even more 

simply.  If we have a (B, X) then we have an (A, X). 

Rules of the form A -* B + C + D can bo dealt 

with by reducing them to two rules, just as with CP 

grammars. 

As it stands, such an algorithm, when taking into 

account all sorts of lexical agreements, may repeatedly 

fail to find translations of mildly ungrammatical, but 

otherwise useful, sentences. The modification is to 

relax the condition given above, that the lists X and Y 

match, and instead to use the extent to which they do 

not match as a measure of implausibllity of the 

corresponding theory. This can be made even more 

effective by taking into account the individual 

plausibilities of the existence of 
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B and C.  If both are, independently, implausible, 

then their combination should be very implausible. 

The most plausible way of deriving a sentence is 

then taken to be the best theory of how the sentence 

was generated. The advantage of this method over the 

previous one suggested is that a single analysis 

suffices. The disadvantage is that such an analysis 

may take much longer than the average analysis by the 

other method, in which only occasional appeals to 

lexicographic and similar details may be required. 
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4.4 Details of Indexed Recognition 

Earlier we noted that, in generating sentences 

with indexed grammars, many nodes might carry large 

numbers of indices that are never used, but are simply 

dropped when the nodes are rewritten as terminals. This 

seemed ungainly. However, when recognizing strings in 

the way described above, we noted that X and Y did not 

need to be of the same length when matching them. Thus 

the surplus indices need never be considered during 

recognition. 

Consider the grammar S ■* ABC A -» D + E  D -► a 

EBC -> b. In generating ab we have the diagram on 

the left, 

S 

I 
ABC 

/    \ 

DBC    EBC 

I        I 

and in recognizing, the one on the right.  In comparing 

D and EBC, we found that the D and the E could be used 

with the second rule to make an A,  The two remaining 

f 
ABC 

/ \ 

D     EBC 
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lists that need to be compared are the null list and 

the list BC.  Since the latter may be considered as th 

null list followed by the list BC, the two lists match 

as far as the shorter one goes. The list BC, being 

the longer, is then attached to A. 

The efficiency of such a recognition algorithm 

is difficult to estimate. There is as yet no evidence 

to suggest that this or any other algorithm would be 

usefully efficient. However, if one attempts to 

visualize the steps taken by such an algorithm, one 

can make a rough estimate. 

A reasonable assumption is that the number of 

nodes in a typical structure diagram for an English 

sentence is bounded above by a linear function of the 

length of the sentence, say kft. The same assumption, 

made of the length of nodes, would also be reasonable. 

Since every pair of nodes need only be compared once, 

an upper bound on the number of comparisons is Kn
x 
(K 

= k*). Each comparison takes a time proportional to 

the length of the nodes, which is therefore bounded 

above by, say, en.  Hence, the total time for 

recognition must be bounded above by Cn .  (C = cK). 
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But this is the upper "bound on recognition 

with Younger*s algorithm for CP recognition.  So 

our result seems unreasonable, by comparison, since 

CP recognition does not involve checking a list of 

indices at each comparison. 

In practice, as is described in the next chapter, 

Younger's algorithm takes a time proportional to n*", in 

fact, .007 n*seconds in the program described. The 

assumption about the number of nodes seems not at all 

unreasonable.  (It should be noted that a modification 

to Younger's algorithm, in which zero vectors are 

ignored, allows the number of nodes in the diagram to 

affect the timing.) 

Thus the outlook for indexed grammars is 

reasonably bright. Whether the extra factor of n 

(assuming that this is the case) Justifies their use is 

difficult to say without further experience. By 

comparison with CS grammars, however, they seem much 

easier to handle , although there seem to be no 

figures available on the efficiency of CS recognizers. 



124 

Chapter 5. The Program 

The program itself is of interest mainly because 

it is well described by the translation theory. despite 

the fact that it came before the theory. However, it 

may also be of interest because it uses what is nearly 

the smallest cheapest general-purpose computer on the 

market, or because it uses a closed-class dictionary, 

or because it shows that Younger s algorithm is of more 

than theoretical interest, or because it demonstrates 

what to do about ambiguity, or simply because it is fun 

to see a computer doing usefu"
1
. things with English 

sentences.  On the other hand, descriptions of list-

processors and buffered I/O routines abound and 

presumably are of no interest. Thus wo shall describe 

the essential features of the interesting parts of the 

program, as briefly as is reasonable. 

5.1 Translation Theory 

As one might expect from the description in 
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chapter 1, conjunctive normal form formulae (CNF 

sentences) are 2-level lists, such that the list ((A, 

B), (C, D, E)) means (AvB).(CvDvE), and so on. It is 

difficult to invent a grammar for this to enable them 

to be produced by a single translation, so we decomposed 

the translation, from English to reverse Polish (CF ■* 

CF) and then to CNF, by treating the reverse Polish 

sentences as programs for computers with pushdown 

stores. While the second half of this process is a 

translation, it is not strictly a phrase-structure 

translation as described in the bulk of the theory.  

Since the running of such programs is easy to grasp, we 

give only an example of such a translation. 

Big dogs are bad becomes 

(Big)(dogs). - (bad)v 

To run the second sentence as a program, we 

read it as 

Pushdown big 

Pushdown dogs 

and [result is ((big), (dogs))] 

not [result is ((-big, -dogs))] 

Pushdown bad 

or  [result is ((-big, -dogs, bad))] 
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If we started with an empty pushdown store, 

we should now have a CNF formula in it. 

Clearly the only programming needed for each 

logical operation is enough to take one or two CNF 

formulae and produce a single CNF formula.  This is 

quite trivial and requires no elaboration here.  It is 

worth noting that each step of the program can be, and 

is, executed and discarded as soon as it is generated by 

the target automaton in the first stage of translation. 

This saves a little space, although no time. 

The interesting stage is the first, English to 

reverse Polish, since this is CF-> CF, and should be 

describable by the theory. The simplest grammar for the 

particular version of reverse Polish used here is 

F -» FFv 

F -> FF. 

F •» P- 

F -* T 

F -> string where F is a formula and T is true, 

which is for 
vl
 thine" and 

v
one ", etc., where it is 

obvious that they are not as interesting as 
vl
dog" and 

v
 baby''. 
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The system of grammars simply associates CP 

rules of English with one of the above rules, or an 

extended rule, such as 

F -» PP-v which, if added to the 

grammar, does no harm to the language, since 

ambiguity in target grammars is irrelevant. 

The English grammar currently has 80 rules of the 

form A -> BC, 76 of the form A -» B, a closed-class 

dictionary of 146 words (there are 720 different words 

in Carroll s syllogisms) and a suffix dictionary with 

19 entries. A complete description of the grammar is 

too much to undertake. However, certain rules are of 

interest, to demonstrate how it works. 

A simple sentence is, Babies are illogical. 

Rather than describe all the rules that would in 

practice be applied to this sentence, we shall use 

a smaller translation system. 

S -> NP VP P ■+ F - F v 

A A.1  A.2 A A.l  0 A.2 0 

NP -» SS F -» string 

A   A.l A    0 

VP ■* BE AJ        P -> P 

A  A.l  A.2        A  A.2 
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The grammar is written this way to show its 

similarity to the translation theoretic notation wo used 

before.  However, it is easy to abbreviate it. The 

Identity component of the left side can always be 

assumed to be A A.l  (A.2), whence only the rules as 

they are conventionally given need appear in storing 

them in tables. The right-hand rules can be abbreviated 

to 1-2v, 0, and 2 repectlvely, without losing any 

information, since P is the only non-terminal symbol 

Involved. For no special reason, L and R (left and 

right) were chosen instead of 1 and 2. Where true 

appeared, it was abbreviated to i! (null). O was 

omitted. 

The sample grammar becomes a   

S -> NP VP: L-Rv b   NP -> SS: c   

VP -> BE AJ:R 

The structure 

1 S 

1.1 NP 

1.1.1 SS   1.2.1 BE    

AJ 1.2,2 

J, 

VP 1.2 

babies are  illogical 
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should make identities and rules clearer. This can 

be readily used by a human for answering the translation 

automaton s questions. 

Since every rule in the target grammar rewrites F, 

the translation automaton will always have to consult 

the source automaton s theory at each step. 

Starting with F, with identity 1, we apply 

rules to derive a sentence: 

Identity of     Rule      Result 

rewritten symbol 

1 a     F - F v 

1.1 0 1.2 0 

1.1 b     babies - F v 

0   0 1.20 

1.2 c     babies -  P  v 

0   0 1.2.2 0 

At this point, the theory about 1.2.2 must be 

that some rule of the form A -> a is involved. For 

simplicity, all such rules were made to correspond to P 

-"string. Thus: 

1.2.2 d     babies - illogical v 

0   0    0    0 
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The second stage of translation yields ((-

babies, illogical)}, that is, a thing is either not 

a baby or it is illogical, which is equivalent to 

baby -> illogical. 

Identity is referred to explicitly in this 

discussion, but the program can keep track of identity 

implicitly.  For example, 1.2 can be replaced by the 

(i, j, X) coordinates of the    bit in the Younger 

matrix of which 1.2 is the identity.  Since the target 

automaton never runs without consulting the source, it 

need not be concerned about losing track of identity in 

the manner described for the respectively problem. 

A pushdown store is used for holding all but the 

leftmost symbol of the derivation. At the start, the 

store is empty. The coordinates (1, 3, S), 

corresponding to identity 1, are put on the store. Then 

each symbol at the top of the store is either 

rewritten if it is an F (that is, a coordinate), or 

output, until the store is empty. After the first 

step, the store holds 

F(1, 1, MP)        (1.1) 

(0) 

F(2, 2, VP)        (1 .2) 

v (0) 
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The remainder of the steps should "bo cloar. 

A more complex example is 
u
 No one can remember 

the battle of Waterloo unless he is very old . As 

the solution to this uses over 40 rules, and its 

structure diagram, in the Chomskian sense, has nearly 

50 nodes, we refrain from sketching it or enumerating 

the rules. 

Two of the rules are of interest. S -> PC  AC:  

LR-v AC -> CN  PX:  R-PC is the principal clause, 

up to 
u
 Waterloo ', while AC is the adverbial clause. 

~N is a 
vv
 conditional negative", in this case 

u
unless

//
. PX is a general symbol for the class of 

things that follov; words like "unless", 
vV
lf", 

vV
when", 

etc., which include past and present participial 

phrases, etc.. 

If written as one rule, this becomes S -> PC CN PX:  

13v where we have reverted momentarily to the 

numerical notation, since L and R only account for 1 

and 2. Thus it can be seen that the sentence is 

interpreted 
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as Either no one can remember the battle of Waterloo 

or he is very old . 

In so rendering it, we have assumed that each 

noun phrase functioning as a subject is quantified by 

the same variable. Thus *he" and 
v
no one" refer to 

the same person, when the persons are enumerated, as 

implied by universal quantification. That is, for all 

x, either x can not remember the battle of Waterloo 

or x is very old. 

To achieve this, once the assumption has been 

accepted, rules are set up to block the copying of 

strings such as "one" and *he". This is done with 

rules such a3 

NP ■+ PN:  N meaning that if a nounphrase is 

a pronoun, then its translation is true (or null). 

To see that this works in practice, consider 

S -> NP  VP:  L-Rv To make one rule 

out of the last two, we have 

S ■>  PN VP:  H-Rv The right side can be 

seen to be equivalent to R. 
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Another example is 

NP -> AJ NP:  LR. The 

combination rule would be 

NP -> A J PN:  LN. The right 

side is simply L, The final result for 

the above sentence is 

((-remember the battle of Waterloo, very old)). 

The grammar has been arranged to ignore 

auxiliaries, as it makes the treatment of negatives 

simpler when ^hot occurs between an auxiliary and a 

verb. For Carroll's syllogisms, it makes no difference 

to ignore the auxiliary, but a more sophisticated system 

for making distinctions between can and do would 

insist on keeping the auxiliary. It is trivial to 

alter the grammar to include the auxiliary. 
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5.2 Relation to the Contingency Table 

In the table of actions to be taken by the target 

~ 
7
 torn ton, given in s^cti^n 3.9, v/e listed six coi-

tin^-ncies. V/e shall dlrcuss their relationship to th^ 

pre; vam. 

If g(1, length, S) is 0, after executing 

Yo'inger's algorithm, then no theory about why the whole 

s'."'".np: 
J
-. a -^nte^o is posp^ble. Thv?, ewuive p.ct? ~ 

is takrn. In the program this amounted to proceeding to 

the next sentence. This is the onl]- point in te 

processing where there is a possibility cf no theories, 

wlr" ch :'•' a characteristic of bottom-up recognizers. 

In using the matrix to discover theories, it is 

clear that further theories about the same bit can be 

left for later discovery. The procedure adopted was to 

r*nd a theory, and then to see if any more theories 

were possible. If so, the bit s coordinates were put on 

a list of such sources of ambiguity, but no immediate 

attempt was made to see how many theories there were. 

At the completion of a translation, the list of other 

theories was examined and another 
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translation was commenced if there were any more 

combinations of theories that might give a different 

translation. 

With this program, it is not clear whether one 

can say one is using the right hand column of the 

contingency table. Certainly, the first line is 

irrelevant, except in some abstract sense.  Since the 

possibility of further theories is considered at the 

time of finding the first theory, the second line is 

also irrelevant. On the other hand, since a complete 

search is not carried out for all theories about a bit, 

at the one time, the third row of the left hand column 

seems to be irrelevant. Thus in practice we may say 

that this particular program uses the first two rows of 

the left-hand column and the third of the right. 

5.3 The Closed-Class Dictionary 

Bobrow (1963) reports two such dictionaries used 

very successfuly (Klein, Simmons, 19633 Resnikoff, 

Dolby, 1963). A more recent example is given by Thome 

(1967), also quoted as being successful. 
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dictionary is that a very large proportion of 

different words belong to a very small number of 

syntactic classes, namely, nouns, verbs and 

adjectives. Also, as the vocabulary of a language is 

increased, by technological developments, for example, 

new words almost invariably fall into one of these 

classes. For the latter reason, the remaining classes 

are called closed, since they seem virtually immune 

to being increased. For the former reason, closed-

class dictionaries are more economical than complete 

ones. As noted earlier, only 146 words were required 

for the successful recognition of practically all of 

Carroll's syllogisms, which had 720 different words. 

With a complete dictionary, nearly 3000 2-character 

words of memory would have been required, which made 

the other a necessity. 

At first sight, it would appear to be a serious 

matter if one cannot tell of an unrecognized word 

whether it is a noun, verb or adjective.  However, 

most nouns can be used as adjectives, and many as 

verbs, too. Thus, not as much is lost as one might 

expect. This in part could account for the glowing 

reports of success with such dictionaries. 
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Our own dictionary has been successful far beyond our 

expectations. There is the occasional instance of a 

report by the computer of something trying to cupboard 

something else, but ambiguities of this nature were far 

more rare than the structural ambiguities for which 

natural languages are notorious. When they did happen, 

the corresponding analysis was usually completely 

different from the correct one. 

Augmenting the closed-class dictionary is a 

suffix dictionary of 19 entries, such as ible, ught, 

ing, s, ed, ould, etc. Each of these is associated 

with a non-terminal symbol,  ible is an AJ (adjective), 

s is an SS (reserved especially for s), and so on. In 

the example earlier, babies are illogical , the rule 

NP -*■ SS was used, indicating that babies had only a 

terminal s as a distinguishing feature, and hence was 

recognized as an SS in the first instance. 

If a word submitted to the dictionary routine 

cannot be found in the closed-class dictionary, its 

ending is compared with possible suffices.  If no 

suffix matches, the word is assigned the category U for 

unknown. 
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The grammar includes rules 

N -» U AJ -> U 

VT -»■ U    (Transitive verb) VI -* U    

(Intransitive verb) and it is this delightfully 

simple mechanism that allows the program to select 

the correct category with almost supernatural 

consistency. 

5.4 Implementation of Younger's Algorithm 

Sentences up to 64 words in length have been 

recognized with this program, during some 

preliminary timing tests. With 100 non-terminals, 

the corresponding size of the matrix is 200,000 bits. 

Clearly, something has been done to the matrix to 

reduce its size. 

In the example of a matrix analysis in the last 

chapter, 8 out of 15 vectors were zero. Thus it is 

reasonable to arrange that storage 3pace be allocated 

only for non-zero vectors. 

This is done by maintaining a dope vector 
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for each level. An element of a dope vector comprises 

a pointer to the block of Younger-matrix vectors for 

the corresponding level j, and 100 "bits corresponding 

to the 100 non-terminals, each to indicate the 

presence or absence of the vector w(j, X) for category 

X corresponding to that "bit.  The dope vector has as 

many elements as there are levels, and hence wrds in 

the sentences. A 23-word sentence would consume 

nearly 200 words for the dope vector alone. But the 

size of the matrix is reduced drastically, to almost 

exactly the size of the dope vector, over a large 

range of sentence lengths. 

A benefit from the size reduction is an increase 

in speed.  If most vectors are zero, then the time 

spent in shifting and and—ing two vectors both non-

zero will be negligible compared to the time 

manipulating pairs of vectors one or both of which 

are zero. 

The timing of the algorithm was found to be 

virtually independent of any factor except the length. 

Sentences with no analyses were processed just as fast 

as ones with over 100 possible analyses. The timing 
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was estimated to be .00? n*' seconds;  on a log-log 

graph, points plotted were all almost exactly on a line 

of gradient 2. n is the number of words in the 

sentence. 

An improvement in timing by a factor of up to 5 

can bo had simply by using the fact that for over four-

fifths of the rules of the form A -» BC, either B or C 

could not be of length more than 1 or 2, and hence the 

main loop of the algorithm can be cut short for those 

rules. This was not taken advantage of in this 

implementation, since the idea ocurred  after it had 

become apparent that the program was already too fast 

for the teletype to keep up. 

5.5 Ambiguity in Practice 

In a system that does more than simply parse 

sentences, it is possible to rely, to an extent, on 

successful operation as a criterion for selecting 

correct translations. In this case, the generation of 

a conclusion from several premises, such that the 

conclusion contained only two or three terms, would 

indicate that the appropriate translations might have 

been used. 
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A sentence may produce, typically, from one to 

three CNF translations. A suggested plan is to use 

each combination of translations to produce 

conclusions, and to select the best.  In practice, 

this would be expected to work whenever there was a 

correct translation among those of each premise, 

since it appears unlikely that short conclusions 

could be drawn from bad translations. 

5.6 Outline of Program 

We sketch, without fine detail, the order 

in which translation proceeds. 

1. New sentence: Perform dictionary analysis of 

each word in a sentence premise.  Store results 

in an 

array. 

2. Start the matrix routines. Set up bits to 

correspond to the results of step 1. Execute 

Younger's algorithm. 

3. If g(1, length, S) = 0, go to 1 ( no analysis). 

4. Perform translation as described. 

5. Print result. 

6. If all theories (ambiguities) have been 

processed, go to 1, else go to 4. 
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5.7 Statistics 

.Storage 

Statistics that might be of interest are: 

Size of Program: 1700 words 

This is "broken down approximately into: 

String Processor: 100 

Interrupt Handler for buffered I/O 90 

Dictionary routines 80 

Younger s algorithm 400 

List Processor 128 

Theory Constructor 300 

CNF logic 160 

Translator 150 

and miscellaneous routines and data, 

Major working areas are: 

I/O and other character buffers    256 

Translation system grammars       550 

(156 rule pairs) 

Dictionary 500 

Younger Matrix - maximum 400 

List-processing area 200 
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Timing 

This is directly proportional to the number of 

rules of the form A ■+ BC. With 80 such rules, a 

sentence of n words talces .00? ji* seconds to be 

recognized. A single translation^takes from 0.2 to 0.3 

seconds for sentences of from 10 to 15 words. The 

syllogisms are read at 10 characters per second from 

paper tape, or may bo entered manually via the 

keyboard.  The results are printed at 10 characters 

•per second. Genera]ity 

There is no need to use the English grammar. One 

for any other language, either natural or formal, 

provided it is context-free, will produce the same 

results. A small grammar for arbitrary logical 

expressions could readily be constructed, so that such 

expressions could be translated into CNF. A status 

table for punctuation symbols enables any character to 

have the status of a letter so that logical operators 

(brackets, etc.) maybe treated as words, and hence may 

be included in the dictionary. 
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5.8 Envisaged Extensions 

In order to extend this program to a complete 

syllogisr.i solver, there are four major sections: 

semantics, syllogistic inference, evaluation of the 

best solution, and translation back into English. 

The semantics section is responsible for 

resolving questions of synonymy. A more powerful 

syntactic analyser would result in requiring less 

semantic analysis.  In this instance, semantic analysis 

consists of comparing strings from different premises 

to see if they are synonymous, contradictory or 

independent. The simplest such analyser would simply 

compare the two strings, character by character, to see 

whether they are identical.  The next step is to 

compare them word by word, removing affices from each 

word beforehand.  If an odd number of negative affices 

(e.g., un-, in-, etc.) are removed, and all the 

remaining stems match, they are contradictory. If not 

is removed entirely, and counted as a negative affix, 

this enables auxiliaries to be included in the string 

matching, thus enabling a distinction to be made 

between * can" and do. 
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Syntactic problems that cannot be resolved by the 

semantic analyzer are those related to passive-active 

transformations, and to segments, or terms, that are the 

object of a verb, such as I dislike coloured flowers''.  

Most of the difficult premises are affected by the 

latter consideration. 

The syllogistic inference section is quite 

trivial. The discussion in sections 1.3 and 1.4 

should make this clear. 

Evaluation of the best solution can be done as a 

function of either the number of different terms, or the 

number of disjuncts, in the conclusions derived from the 

inference section. In the latter case, a normal 

conclusion has one disjunct, for a well-formed sorites, 

and in the former it has two terms, and possibly one or 

two universe terms as well.  The difficulty in 

distinguishing universe terms from any others suggests 

that the number of disjuncts be used as a criterion. 

Translation back into English is best done by 

appealing to style. CuV  is not a CP language, and 

does not lend itself to the same translation process 
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used for going from English to CNF.  In appealing to 

style, it is essential to know the original syntactic 

roles of each term. The construction of an English 

sentence must be on an appeal to style, since there 

are so many ways of expressing a CNF formula in 

English. 

£9 Conclusion 

The program was quite successful, considering 

that its grammatical capabilities were relatively 

unsophisticated. The theory evolved was also 

successful, possibly as a result of a happy combi-

nation of insights arising out of the program and 

ideas from the literature. 

Computational linguistics would appear to be 

at a stage where it will benefit equally from doing 

and thinking. Without the doing, there will be no 

examples or counter-examples of what can or can t be 

done. Without the thinking, the doers may not know 

when they are attempting the impossible or the 

inefficient. It does not cost much money to think, 

but a prevailing attitude amongst the doers 
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is that it can't be done for less than a hundred 

thousand dollars, and will probably cost a million. 

In demonstrating that equipment that can be bought 

for ei^ht thousand dollars can be used in a non-

trivial natural language application, it is hoped 

that this attitude has been, at least, challenged. 



Appendix 

Listed below are the results of translation of 

the first twelve syllogisms.  The notation should be 

transparent;  all formulae are in CNi?\ 

All but the second and the seventh syllogisms can 

be seen to be solvable, in the sense that for each 

premise, there is at least one correct translation. 

The third premise of the seventh syllogism 

suffers at the hands of the grammar^ 
N
* consists was 

incorrectly given as behaving like 
v
 be". 

The second syllogism is atypically pathological. 

Although it is quite easy to arrange the grammar to 

process sentences starting
u
x find(s) , it was not done 

for this demonstration. The * only'' problem was not 

attempted;  sentences of the form
vv
x are the only y " 

mean 
x
 all y are x "  An extension to the grammar of 

the order of ten rules would be required to effect 

repairs.* 



1 

BABIES ARE ILLOGICAL 

A BABIES 

B ILLOGICAL 

C-A, B) 

NOBODY IS DESPISED WHO CAN MANAGE A 
CROCODILE 

A DESPISED 
B MANAGE A CROCODILE 
C-A,-B) 

ILLOGICAL PERSONS ARE DESPISED 

A ILLOGICAL 
B PERSONS C 
DESPISED 

C-A*-B» C> 

91 

MY SAUCEPANS ARE THE ONLY THINGS I 
HAVE THAT ARE MADE OF TIN 

A MY 
B SAUCEPANS 
C ONLY 
D I HAVE 
E MADE OF TIN 

C-A,-B> C*-E)SC-A,-B, D,-E) 

A MY 
B SAUCEPANS 
C ONLY 
D I HAVE 



E MADE OF TIN 

<-A,-B, C)fi(-A,-B, D)*(-A,-B, E) 

I FIND ALL YOUR PRESENTS VERY USEFUL 

NONE OF MY SAUCEPANS ARE OF THE SLIGHTEST 
USE 

A MY 
B SAUCEPANS 
C OF THE SLIGHTEST USE 

<-A,-B,-C> 

A MY 
B SAUCEPANS 
C   OF   THE   SLIGHTEST   USE 

C - A , - B > - C > 

3 

NO POTATOES OF MINE, THAT ARE NEW, 
HAVE BEEN BOILED 

A POTATOES 
B MINE, C 
NEW, D 
BOILED 

C-A,-B,-C,-D) 

A POTATOES 
B MINE, C 
NEW, D 
BOILED 

C-A,-B,-C,-D> 



ALL MY POTATOES IN THIS DISH ARE F 
TO EAT 

A MY 
B POTATOES 
C IN THIS DISH 

D ARE FIT TO EAT 

C-A>-R*-C* D) 

A MY . 

B POTATOES 

C IN THIS DISH 

D FIT TO EAT 

C-A^-B^-C* D) 

NO UNBOILED POTATOES OF MINE ARE F 

TO EAT 

A UNBOILED 
B POTATOES 

C MINE 

D ARE FIT TO EAT 

C-A>-B,-C*-D> 

A UNBOILED B 
POTATOES C 
MINE D FIT TO 
EAT 

C-A>-B»-C»-D) 

THERE ARE NO JEWS IN THE KITCHEN A 

JEWS 



B IN THE KITCHEN 

C-AJ-B> 

NO GENTILES SAY "SHPOONJ" 

A GENTILES 

B SAY "SHPOONJ" 

C-A,-B) 

MY SERVANTS ARE ALL IN THE KITCHEN 

A MY 
B SERVANTS 

C ARE ALL IN THE KITCHEN 

C-AJ-B* C) 

A MY 

B SERVANTS 

C IN THE KITCHEN 

C-A,-B* C) 

A MY 

B SERVANTS 

C IN THE KITCHEN 

C-A,-B* C) 

5 

NO DUCKS WALTZ 

A DUCKS 
B WALTZ 
C-A,-B> 



NO OFFICERS EVER DECLINE TO WALTZ 

A OFFICERS 
B WALTZ C-
A, B) 

ALL MY POULTRY ARE DUCKS 

A MY 

B POULTRY 

C DUCKS 

C-A,-B> C) 

EVERY ONE WHO IS SANE CAN DO LOGIC 

A SANE 
B DO LOGIC 

C-A, B) 

A SANE 

B DO LOGIC 
C-A, B) 

NO LUNATICS ARE FIT TO SERVE ON A JURY 

A LUNATICS 

B ARE FIT TO SERVE ON A JURY 

C-A,-B> 

A LUNATICS 
B ARE FIT TO SERVE ON A JURY 

C-A,-B) 



A LUNATICS 
B FIT TO SERVE ON A JURY 
<-A,-B> 

NONE OF YOUR SONS CAN DO LOGIC 

A YOUR B 
SONS C DO 
LOGIC <-A,-
B»-C> 

A YOUR B 
SONS C DO 
LOGIC C-A,-
BJ-C> 

7 

THERE ARE NO PENCILS OF MINE IN THIS 
BOX 

A PENCILS 
B MINE 
C IN THIS BOX 

<-A,-B,-C) 

NO SUGAR-PLUMS OF MINE ARE CIGARS 

A SUGAR-PLUMS 
B MINE C 
CIGARS 

<-A*-B,-C) 

THE WHOLE OF MY PROPERTY, THAT IS NOT 
IN THIS BOX* CONSISTS OF CIGARS 



A MY 
B PROPERTY* 
C IN THIS BOX, 
D OF CIGARS 

<-A*-B* C* D) 

A MY 

B PROPERTY* 
C IN THIS BOX* 
D OF CIGARS 

<-A*-B* C» D) 

8 

NO EXPERIENCED PERSON IS INCOMPETENT 

A EXPERIENCED 

B PERSON 
C INCOMPETENT 
C-A,-B*-C) 

A EXPERIENCED 
B PERSON 
C INCOMPETENT 
<-A*-B*-C) 

JENKINS IS ALWAYS BLUNDERING 

A JENKINS 

B BLUNDERING 

C-A* B) 

A 
B 

JENKINS 
BLUNDERING 



C-A* B) 

NO COMPETENT PERSON IS ALWAYS BLUNDERING 

A COMPETENT 

B PERSON 

C BLUNDERING 

C-A*-B*-C> 

A COMPETENT 

B PERSON 

C BLUNDERING 

C-A*-B*-C> 

NO TERRIERS WANDER AMONG THE SIGNS 
OF THE ZODIAC 

A TERRIERS 
B WANDER AMONG THE SIGNS OF THE ZODIAC 
<-A*-B> 

NOTHING, THAT DOES NOT WANDER AMONG 
THE SIGNS OF THE ZODIAC* IS A COMET 

A WANDER AMONG THE SIGNS OF THE ZODIAC* 

B COMET ( 
A*-B> 

A WANDER 
B AMONG THE SIGNS OF THE ZODIAC* 
C COMET 
C A*-B*-C) 



A ZODIAC, 
B COMET 
C-A,-B) 

NOTHING BUT A TERRIER HAS A CURLY 

A TERRIER 
B HAS A CURLY TAIL 
C A,-B) 

10 

NO ONE TAKES I.N THE TIMES, UNLESS 
IS WELL-EDUCATED 

A TAKES IN THE TIMES, 
B WELL-EDUCATED 

C-A, B> 

A TAKES IN THE TIMES, UNLESS HE IS 
WELL-EDUCATED 

C-A) 

A TAKES IN THE TIMES, UNLESS HE IS 
WELL-EDUCATED 

(.-A) 

NO HEDGE-HOGS CAN READ 

A HEDGE-HOGS 
B READ <-A,-
B> 



12. 

MY GARDENER IS WELL WORTH LISTENING 

TO ON MILITARY SUBJECTS 

A MY 

B GARDENER 

C IS WELL WORTH LISTENING TO ON MILITARY 
SUBJECTS 

C-A,-B, C) 

A MY 

B GARDENER 

C WORTH LISTENING TO ON MILITARY SUBJECTS 

C-A,-B, C) 

NO ONE CAN REMEMBER THE BATTLE OF WATERLOO, 

UNLESS HE IS VERY OLD 

A REMEMBER THE BATTLE OF WATERLOO, 

B VERY OLD 

C-A, B) 

A REMEMBER THE BATTLE OF WATERLOO, 

UNLESS HE IS VERY OLD 

C-A) 

A CAN REMEMBER THE BATTLE OF WATERLOO, 

UNLESS HE IS VERY OLD 

C-A) 

NOBODY IS REALLY WORTH LISTENING TO 
ON MILITARY SUBJECTS, UNLESS HE CAN 



GRAMMAR   CURRENTLY 
IN   USE: 

 

s TA NG
: 

R- 

s PC AC
: 

LR-V 

s PC RC
: 

LR-V 

PC NQ PD

: 

L-RV 
PC NG PD

: 

LR- 
NR NR PJ

: 

LR 

NR NP OP

: 

 

NR NP PO

: 

LR 

NR TG JP

; 

R 

NR NP PS

: 

LR 
NR WL OP

: 

R 
NF NF PJ

: 

LR 
NF NF OP

: 

R 

WT SU AS

: 

 

NQ WT PS

: 

R 

NQ WT PD

: 

R 

NQ JM QN

' 

 

NQ AT NR

! 

.LR 

PS NR VT

: 

 

N6 AG NR

: 

R 

NG NH OP

: 

•R 

AT AL AA

! 

!R 
NP JP NP

- 

(LR 
NP ED NP :LR 

NP GR NP

« 

:LR 

RC EX NQ !R- 

RC WH PS :R 

RC WH PD :R 
AC CV PX :R 
AC CN PX :R- 
CV SO LA  

LA LG AS  

AP PR NQ  

OP OF NQ :R 
PO OF PP :R 

PD AN VP :R 
PD AI VP :R- 
PD PD AC  

PE AF PE :R 
PE AK PE :R- 
VP LY VP  

VP MV VX  

VP MG VX :R- 
VF VF AP  



VF VI OP 
VF VF AB 

VF VF LY 

VF VT NQ 

VF HN PU 

VF DV OB 
VX TO VP 

VB BN OB 

VB BG OB 

VT GV NQ 

PT LY PT 

PT ED OP 

PT DD NO 

PU PU FF 

PU WO IM 

IM GR NQ 

IM IM FF 

FF AS PU 

GR GG NQ 

OB TO VB 

OB JP OP 

HN HV AF 

AI AX NT 

AN AX AF 

BN BE AF 

BN HN BD 

BN BN BI 

BG BE NT 

MV MW NO 

DV TN AB 

LY JM LY 

LY AD OC 

JP JM AJ 

JP MJ VX 

MJ AF MJ 

TA TH BN 

BN BE • 

MV HV 
► 

MV RE » 

M
W 

RE 
► 

AF AL  

AF RY 
• • 

AP HR > 

AP TH 
• • 

AB PV • 

W
H 

TT 
t 

JM RY 
t 

AJ MJ » 

AJ U : 



0$\ 

 

JP AJ  

OA AL '

N SP TE ;

N SP PA  

AA SP !

L AA DM  

AT AA ■
L 

AT IA t

N AT QA

: 

•

L PR TO

' 

 

PR AD

: 

 

PR AS

' 

 

PR PV

s 

 

DV CM

' 

 

VT HV

' 

 

VT RE

: 

 

VT U-  

VT DO

: 

 

VT SS

< 

 

VI SS

: 

 

VI CM

" 

 

VI U  

N SS

: 

 

N U:  

AX DO

: 

 

AN 

HN 

AX 

HV" 

 

FF AB  

FF PR  

FF AP  

PT ED

' 

 

PU PT

' 

 

IM GR  

PZ IM  

PZ AP  

PZ PU  

PX PZ !

L PX PC :

L VF VI  

VF VB :

L VP VF :

L PE VP !

L PD PE :

L PJ AC :

L PJ PZ  

PJ RC :

L NP NI :

N NP IM  

NP DM r

N 



NP  N: NP 

ON: NR 
NP:L NR 
PN:N NR 
QA:N NR 
TG:N NQ 
NR:L NP 
NH:N NG 
NF:L OB 
PZ: OB 
OP: OB 
NQ:L OB 
JP: 

S PC:LJ! 
PN I IA 

A BE AM 
TA AN AS 
AS AD AT 
BE BE PV 
BY PN HE 
CV IF BE 
IS PN IT 
PN ME PA 
MY PV ON 
OF OF AG 
NO PV IN 
SO SO TO 
TO DO DO 
CJ AND 

QA ANY 
BE ARE 
EX BUT 
PR FOR 
ED GOT 
ED HAD 
HV HAS 
PA HIS 
AX MAY 
ED MET 
WH WHO AX 
CAN PV 
OFF 



PA OUR 
AB OUT 
TE THE 
AL ALL 
MJ FIT 
NI ONE 
NT NOT 
JM TOO 
PN YOU 
AB AWAY 
AB BACK 
KN CALL 
AX CANT 
MV CARE 
CM COME 
AX DARE 
DO DOES 
PV DOWN 
MJ EASY 
MG FAIL 
KN FIND 
PR FROM 
DV GETS 
HR HERE 
PR INTO 
ED KEPT 
GV LEND 
LG LONG 
RE LOVE 
PR LIKE 
AJ ONLY 
ED MADE 
PA YOUR 
JM VERY 
NH NONE 
PP MINE 
ON MUCH 
PR NEAR 
OC ONCE 
PR OVER 
TT THAT 
HV HAVE 
BD BEEN 
ED PAID 
ED SOLD 
MJ SURE 
SU SUCH 
PN THEY 
PN THEM 



SP THIS ED 
TOLD TN 
TURN AF 
WELL AX 
WILL PR 
WITH WT 
WHAT CV 
WHEN AF 
EVER PV 
ABOUT PR 
AMONG BI 
BEING AJ 
CURLY MG 
FAILS ED 
GROWN DV 
LOOKS RE 
LOVES AK 
NEVER JM 
QUITE AB 
STILL 
N TABLE 
SP THESE 
DM THOSE 
TH THERE 
TN TURNS 
PR UNDER 
WH WHICH 
CV WHILE 
WL WHOLE 
WO WORTH 
IA EVERY 
GV ALLOWS 
AI CANNOT 
U CIRCUS 

VT DETEST 
EX EXCEPT 
GG GIVING 
MV HAPPEN 
MJ LIKELY 
DD MARKED 
RY REALLY 
NI THINGS 
CN UNLESS 
NH NOBODY 
AF ALWAYS 
DD BRANDED 
DD LABELED 
NH NOTHING 
MV OFFERED 



MG DECLINE AB 
UPWARDS MJ 
WILLING PR 
WITHOUT ED 
WRITTEN TG 
ANYTHING BE 
CONSISTS NI 
ARTICLES WT 
WHATEVER NR 
EVERYBODY RE 
RECOMMEND JM 
ABSOLUTELY TG 
EVERYTHING JM 
HOPELESSLY! AJ 
ABLE AJ IBLE 
AJ ICAL AJ 
LESS 
N NESS 
AX OULD 
AJ SOME 
N TION 
ED UGHT 
AJ FUL 
AJ EST 
GR ING 
N OUR 
AJ OUS 
ED ED LY 
LY PA *S 
SS S 
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THOSE WHO CANNOT READ ARE NOT WELL-EDUCATED 

A READ 

B   WELL-EDUCATED 

C   A*-B) 

tl 

ALL PUDDINGS ARE NICE 

A PUDDINGS 8 
NICE C-A, B) 

A PUDDINGS B 

NICE C-A* B> 

THIS DISH IS A PUDDING 

A THIS B 

DISH C 

PUDDING 

<-A,-B> C> 

NO NICE THINGS ARE WHOLESOME 

A NICE 

B WHOLESOME 

<-A,-B) 


