A homogeneous algebraic definition of Euclidean space

Vaughan Pratt

Computer Science Department
Stanford University

BLAST 2013

Analogy: Boolean algebra

A Boolean algebra can be defined equivalently as either

- a Boolean ring $(B,+, x, 0,1)$, a ring satisfying $x^{2}=x$; or
- a complemented distributive lattice $(B, \wedge, \vee, \neg, 0)$.

The former is arithmetical in character, the latter logical.
Halmos preferred the former definition for his Lectures on Boolean algebras.

Courses in logic tend to start with the latter.

At previous BLASTs

The variety $\mathrm{Aff}_{\mathbb{Q}}$ of affine spaces over the rationals can be defined equivalently with either an arithmetic or geometric signature:

Arithmetic: rational linear combinations whose coefficients sum to unity. Sublanguage of $\mathrm{Vct}_{\mathbb{Q}}$ (all linear combinations).

Geometric: (i) Extension $C=e(A, B)$ of segment $A B$ s.t. $|A C|=2|A B|$.
(ii) Centroid $c_{n}\left(A_{1}, \ldots, A_{n}\right)$ for $2 \leq n<\omega$.

No mention of \mathbb{Q} !
This talk: From affine to Euclidean geometry.
(Title of Wanda Szmielew's posthumously published monograph.)
Both Tarski and Szmielew axiomatized Euclidean geometry in first order logic, based on relations of congruence and betweenness.

Our goal: (i) operations in place of relations;
(ii) equations in place of logical wff's.

Main obstacle

Affine spaces over \mathbb{Q} form a variety. Very nice.

Claim: Euclidean spaces don't form a variety. Not so nice.

Intuitive argument:
The Euclidean line has the p-norm for all positive p.
The Euclidean plane has only the 2-norm. How could the direct square of \mathbb{R}^{2} pick out the 2 -norm?
(In fact, as an associative algebra, \mathbb{R}^{2} is the hyperbolic plane, the other 2D Clifford algebra besides \mathbb{C}.)

Approaches

Arithmetical solution: introduce a quadratic form. Inner product spaces.

- Algebraic but based on a field, e.g. \mathbb{R}, so not homogeneous.

Logical solution: introduce congruence and linear order as 4-ary and 3-ary relations. Tarski's axioms.

- Homogeneous (points, no numbers) but not algebraic.

Geometrical solution: introduce circles [Euclid 350 BC] or spheres [Pieri 1908].

- Neither homogeneous nor algebraic. But can be made both.

Additional motivations

- Introduce (?) and demonstrate subjunction
- Pedagogical: Illustrate algebrization in a familiar setting, ruler-and-compass constructions, traditionally considered immune to algebrization.

A homogeneous algebraic approach

Logical framework: equations, but with an additional domain-independent operation $A \# B$ of subjunction (also $\left.\Sigma_{A} X(A)\right)$ serving to combine partial operations.

A Euclidean space is

- a partial algebra (\mathbf{E}, c, a, b, t)
- with signature 3-3-3-3 (four ternary partial operations),
- satisfying the equations that hold of \mathbb{R}^{n} for all finite n
- between terms built from c, a, b, t and subjunction.

Variables A, B, C, \ldots range over the points of the space \mathbf{E}.

Operation c: Line-line intersection via circumcenter

Figure 1. Circumcenter $c(A, B, C)$
Parameters: vertices of a triangle $\triangle A B C$.
Circumcenter is the intersection of the perpendicular bisectors of any two sides in the plane of the triangle.
Domain of c : nondegenerate triangles. (A, B, C may not be collinear.) Exception: $c(A, A, A)=A$ (subjunction can't express $c(A, A, A)=\perp)$. Uses: multiplication, division, flatness (Euclid's 5th Postulate).

Operations a, b, t: Line-sphere intersection

Figure 2. Line-sphere intersection $f(A, B, C, X)$
We reduce the four parameters to three by taking X to be one of A, B, or a tangent point T.
This specializes f to one of a, b, or t respectively. Benefits:

- Eliminates the case of line $C X$ completely missing sphere B_{A}.
- Parameters coplanar: $A B C$ plane cuts sphere in great circle.
- Each special case has special properties.

Operation a: Normalization

Figure 3. Normalization $D=a(A, B, C)$
D is the point on sphere B_{A} closest to C. Or, $D=$ ray $A C \cap B_{A}$. Domain: Defined everywhere except $C=A \neq B .(t(A, A, C)=A$.)
$A D$ is $A C$ normalized to the same length as $A B$.
Any motion of C induces a rigid motion of $A D$ about A.

Uses: metric, order (ray $A C$).

Operation b: Generic chord

Figure 4. Generic chord $D=b(A, B, C)$
D is the intersection point that makes $B D$ a chord.
Generic in the sense that any chord length from 0 to the diameter is possible depending on C.
Domain: Defined everywhere except $C=B \neq A$.
Important special case: $b(A, B, A)=e(B, A)=E$ (extend radius $B A$ to a diameter $B E$). E total, affine. $E D \perp B C$. Uses: projection (E onto $B C$, extension ($B A$ to $B E$).

Operation t : Tangent point

Figure 5. Tangent point $T=t(A, B, C)$
T is the tangent point from C nearest B.
Domain: Defined except when C is strictly inside B_{A} (no tangent point), or strictly outside and on line $A B$ (ambiguous). (No ambiguity when C is on B_{A}, i.e. $|C A|=|B A|$.)

$$
C T \perp A T
$$

Main use: square root.

Subjunction: a domain-independent operation

Binary case: subjunction $A \# B$ is

- idempotent
- commutative
- unit is \perp (undefined): $A \# \perp=A$
- $A \neq B \rightarrow A \# B=\perp$

Convention: Variables A, B, \ldots range over points of the space and are therefore always defined. X, Y, \ldots are metavariables denoting terms that may be undefined.
Higher arities: If a term $X(A)$ has a nonempty domain
on which it is constant, then $\Sigma_{A} X(A)$ is that constant.
Otherwise $\Sigma_{A} X(A)$ is undefined.

Applications of subjunction

- Strengthens equational logic without logical connectives
- Complete a partial operation to a total one.
- More generally, combine compatible partial operations.
- Specify and compare domains.
- Formalize notion of general position

Subjunction: Completion to a total operation

- $a(A, B, C) \#(A \# C)$ extends a with $a(A, B, A)=A$.
- $b(A, B, C) \#(B \# C)$ extends b with $a(A, B, B)=B$.

More on subjunction later.

Euclidean spaces

Recall: a Euclidean space is

- a partial algebra (E, c, a, b, t)
- with signature 3-3-3-3 (four ternary partial operations),
- satisfying the equations that hold of \mathbb{R}^{n} for all finite n
- between terms built from c, a, b, t and subjunction.

Dimension defined as for vector and affine spaces, with no restriction on cardinality of dimension.

Now what?

We've set up the machinery.
What would Euclid do?

Proposition 1': Gram-Schmidt orthogonalization

Figure 6. Gram-Schmidt: $E=e(b(C, A, B), C)$
Proposition 1'. Given a segment $A B$ and a point C not on the line $A B$, to erect a perpendicular $A E$ to $A B$ at A in the plane of $\triangle A B C$.

Let $D=b(C, A, B), E=e(D, C)(=b(C, D, C))$.
Then $A E \perp A B$.

For orthogonalization the operation b sufficed.

Proposition 1: Gram-Schmidt orthonormalization

Figure 7. Gram-Schmidt: $F=a(A, B, E)$
Proposition 1. Given a segment $A B$ and a point C not on the line $A B$, to erect a perpendicular $A F$ to $A B$ at A s.t. $|A F|=|A B|$.

Let $D=b(C, A, B), E=e(D, C)(=b(C, D, C))$, and $F=a(A, B, E)$.
Then $A F \perp A B$, and $|A F|=|A B|$.
For orthonormalization we supplemented b with operation a.

The unit circle B_{A}

Figure 8. Unit circle B, F, G, H (taking $|A B|=1$)
Complete radii $B A$ and $F A$ to respective diameters $B G$ and $F H$.

$$
\begin{aligned}
& G=e(B, A) \\
& H=e(F, A)
\end{aligned}
$$

Reciprocation $1 / x$

Figure 9. If $|A B|=1$ then $|A K|=1 /|A I|$
Let I be any point on $A B$ to the left of A.
Let $J=c(F, I, H)$ and $K=e(I, J)$ (the diameter). (Uses operation c.)
Chords intersecting at $A:|I A| *|A K|=|F A| *|A H|$.
If $|A B|=1$ then $|F A| *|A H|=1$, so $|A K|=1 /|I A|$.
If $I=G$ then $K=B$.
If $I=e(A, G)$ (as shown) then $K=m(A, B)$, the midpoint of $A B$.

Euclid's Proposition 1

Figure 10. Find C making $A B C$ equilateral.
Euclid P1. Given points A, B, to construct an equilateral triangle $\triangle A B C$.

Vague: what half-plane to draw C in?
Determine this with an additional point P lying properly within the desired half-plane. This time we use operation t.

Take $C=t(A, a(A, B, P), e(A, B))$.
D
E

Euclid's Proposition 2

Figure 11. Translate $B C$ to $A: D=p 2(A, B, C)$
Euclid P 2. To place a straight line equal to the given straight line $B C$ with one end at the point A.
Approach: translate $B C$ to $A D$.
Equivalently, add vectors $B A$ and $B C$ (B a local origin) to give $B D$.
Construction: $M=m(A, C), D=e(B, M)$.
So $p 2(A, B, C)=e(B, m(A, C))$.
Besides $1 / x$ we now have $x+y$.

Metric

Any choice of distinct points 0,1 determines a distance metric $|A B|_{01}$ on the space in terms of points on the ray 01 , as follows.

$$
|A B|_{01}=a(0, p 2(0, A, B), 1)
$$

$p 2(0, A, B)=D$ translates $A B$ to $0 D$. $a(0, D, 1)=E$ rotates $0 D$ to $0 E$ in the ray 01 .

Congruence of line segments $A B, C D$ is then definable in the obvious way as $|A B|=|C D|$.

Congruence can be shown to satisfy all the axioms for Tarski's quaternary congruence relation.

Order

Euclidean space is ordered by the relation Between (A, B, C), definable in our language as

$$
a(A, B, C)=a(C, B, A)=B
$$

The second equation is redundant except when $A=C$, where it forces B to equal A.

When B is between A and C the condition is obviously met, even when $A=C$ (since $a(A, A, A)=A)$. To see the converse, assume $A \neq C$ and let D be the common value of $a(A, B, C)$ and $a(C, B, A)$. D must lie on the rays $A C$ and $C A$ and therefore on the segment $A C$, showing that D is between A and C. Now D must also lie on the spheres B_{A} and B_{C}, whence the spheres must share a tangent plane at D. But since A and C are on opposite sides of D the spheres cannot intersect elsewhere. But B lies on both spheres and must therefore be their unique intersection, Hence $B=D$ whence B is between A and C.

Operations p,r,i

$p(A, B, C)$ denotes the foot of the perpendicular to $A B$ from C.
$r(A, B, C)$ denotes the result of sliding C parallel to $A B$ in order to rectify $\triangle A B C$ at A, that is, to make $A C \perp A B$.
$i(A, B, C)$ inverts (reflects) C in $A B$, thinking of $A B$ as a mirror.

$$
\begin{array}{ll}
p(A, B, C)=b(m(B, C), B, A) & b(A, B, C)=p(B, C, e(B, A)) \\
r(A, B, C)=p 2(A, p(A, B, C), C) & p(A, B, C)=p 2(A, r(A, B, C), C) \\
i(A, B, C)=e(C, p(A, B, C)) & p(A, B, C)=m(C, i(A, B, C))
\end{array}
$$

Operation $s(A, B, C)$

$S=s(A, B, C)$ is the point on sphere B_{A} in the plane of $\triangle A B C$, such that $C S \perp A B$.
s is derivable from t as follows.

Derivation of s from t

$$
\begin{aligned}
P & =p(A, B, C) & M & =m(P, T) \\
N & =a(A, B, C) & S^{\prime} & =i(A, M, E) \\
E & =e(N, A) & S^{\prime \prime} & =e(E, A \# P) \\
T & =t(A, P, E) & S & =S^{\prime} \# S^{\prime \prime}
\end{aligned}
$$

Figure 12. s from t

Sphere-sphere intersection: Mohr-Mascheroni ${ }^{\perp}$

$$
\begin{aligned}
E_{B} & =r(A, C, B) \\
F_{B} & =a\left(A, B, E_{B}\right) \\
E_{D} & =r(A, C, D) \\
F_{D} & =a\left(A, B, E_{D}\right) \\
F & =\left(F_{B} \# F_{D}\right) \# F_{B} \\
G & =a(C, D, A) \\
H & =t(C, G, F) \\
I & =a(F, H, A) \\
J & =e(I, F) \\
K & =p 2(F, C, A) \\
L & =e(F, K) \\
M & =c(I, J, L) \\
N & =e(L, M) \\
P & =s(C, G, N)
\end{aligned}
$$

Arithmetic operations

Arithmetic is performed on the line 01 for arbitrary choice of $0 \neq 1$.
Addition $z=x+y: z=p 2(x, 0, y)$.
Negation $z=-x: z=e(x, 0)$. (Invert x in 0 .)
Multiplication and square root:
Using s, it is straightforward to construct intersecting orthogonal chords of respective lengths u and v. In general neither are diameters.
For product $z=x * y$, intersect the chords so as to decompose $u=x+y$, $v=1+z$.

For square root $z=\sqrt{x}$, intersect the chords as $u=1+x, v=z+z$.

Reciprocal $z-1 / x$: already done.

Domains of a, b, t, c

Definition: $X \upharpoonright \operatorname{dom}(Y)=e(e(X, Y), Y)$.
a: $B \upharpoonright \operatorname{dom}(a(A, B, C))=B \#(A \# C)$
$b: A \upharpoonright \operatorname{dom}(b(A, B, C))=A \#(B \# C)$
$t: C \upharpoonright \operatorname{dom}(t(A, B, C))=X \#(Y \# Z)$
where $W=a(A, B, C) \#(B \upharpoonright \operatorname{dom}(A \# C))$
$X=a(W, C, e(A, W)) \# C$
$Y=b(A, B, C) \# e(A, B)$
$Z=a(B, C, e(B, A)) \# a(e(B, A), C, B)$
$c(A, a(A, B, C) \#(A \# C), C)=A \# C($ so $c(A, A, A)=A)$

Axioms

(Note: Substitution of terms for variables A, B, C, \ldots is permitted only for total terms.)
The foregoing domain axioms.
Circumcenter $D=c(A, B, C)$.

$$
\begin{gathered}
c(A, B, C)=c(B, A, C)=c(A, C, B) \\
|D A|=|D B|=|D C| \\
\operatorname{coplanar}(A, B, C, D)
\end{gathered}
$$

Normalize $D=a(A, B, C)$

$$
\begin{gathered}
\text { collinear }(A, C, D) \\
|A D|=|A B|
\end{gathered}
$$

Axioms (cont.)

Generic chord: $D=b(A, B, C)$

$$
\begin{gathered}
\text { collinear }(B, C, D) \\
|A D|=|A B| \\
t(e(B, A), D, C)=D \\
b(A, A, C)=A \\
b(A, B, D)=D \\
e(e(A, B), B)=A \\
e(e(A, B), e(C, D))=e(e(A, C), e(B, D))
\end{gathered}
$$

Axioms (cont.)

Tangent: $T=t(A, B, C)$

$$
\begin{gathered}
|A T|=|A B| \\
b(m(A, C), A, T)=T \\
t(A, A, C)=A \\
t(A, B, T)=T
\end{gathered}
$$

Subjunction:

$$
\begin{gathered}
X \# X=X \\
X \# Y=Y \# X \\
(A \# B) \# A=A \\
(((X \# Y) \# X) \# Y) \# X=(X \# Y) \# X
\end{gathered}
$$

(Convention: A, B, \ldots range over points, hence always defined, X over terms and may therefore be undefined.)

