
Chapter 4

Category Theory

4.1 Categories and Functors

4.1.1 Motivation

The set M of all functions f, g, . . . : X → X on a set X forms a monoid (M, ◦, 1X). The operation is that of
function composition, g◦f or gf , with domain M2. The identity is the identity function 1X on X.

The obvious generalization of this to multiple sets X,Y, Z, . . . takes M to consist of all functions between
these sets. However M then does not form a monoid under composition for two reasons. First, not all pairs
of functions compose; for example we cannot compose two functions both going from X to Y . Instead we
restrict the domain of composition to that subset of M2 consisting of pairs g, f of functions configured as

X
f→ Y

g→ Z, that is, those pairs for which the codomain or target of f is equal to the domain or source
of g. Second, we no longer have a single identity function. Instead there is a separate identity function
1X : X → X for each set X.

The notion of category that we will define shortly amounts to just such a “partial” monoid with multiple
identities. The elements of the partial monoid are called morphisms, and the entities between which the
morphisms run are called objects.

The objects and morphisms of a category may be viewed as respectively the vertices and edges of a graph.
Just as a monoid M has an underlying set U(M), so does a category C have an underlying graph U(C).
Like monoids and Boolean algebras, graphs form a class of (two-sorted) algebras of interest in their own
right, which we now treat preparatory to our study of categories.

4.1.2 Graphs

A graph G = (V,E, s, t) consists of a set V of vertices, a set E of edges, and a pair of functions s, t : E → V
assigning to each edge e ∈ E its source vertex s(e) and target vertex t(e).

Here is a representative graph with nine vertices and nine edges.

47

48 CHAPTER 4. CATEGORY THEORY

• -- • - • •

•
?� - •

?
• - • � •

Category theory differs from graph theory in that it permits more than one edge from one vertex to another,
e.g. the two horizontal edges at the upper left in the above example. Except for this difference the situation
is as for graph theory. Thus we permit loops, that is, an edge whose source is also its target (none in the
example). Graphs need not be connected (the example has three connected components), and not every
vertex need be adjacent to an edge (e.g. the vertex at top right), although every edge must have a vertex at
each end, namely its source and its target. Graphs can be finite, as in the example, infinite, or even empty
(no vertices or edges at all).

The following examples of graphs arise frequently.

• The n-discrete graph n = ({1, 2, . . . , n}, ∅, ∅, ∅) consists of n vertices and no edges. A synonym for 0 is
the empty graph, having no vertices and hence no edges.

• The n-path Pn = ({0, 1, . . . , n}, {1, 2, . . . , n}, s, t), with s(i) = i−1 and t(i) = i, is 0 → 1 → 2 → . . . → n.
We call P0 the empty path and P1 the unit path .

• The n-cone is as for the n-path but with s(i) = 0, e.g. the 2-cone is 1 ← 0 → 2. The n-cone coincides
with the n-path for n ≤ 1. The n-cocone is the n-cone with s and t interchanged, e.g. the 2-cocone is
1→ 0← 2.

• The square is
0 - 2

1
?

- 3.
?

This generalizes to the n-cube in the obvious way, with the 0-cube being the empty path, followed by the
unit path, the square, the cube, etc. The vertices are numbered 0 to 2n − 1, with an edge from i to j when
i < j and i and j differ in exactly one bit in their binary representation, the so-called Hamming-distance-one
criterion.

• The loop ({1}, {1}, s, t) has s(1) = t(1) = 1.

• The parallel pair ({0, 1}, {1, 2}, s, t), with s(i) = 0, t(i) = 1, consists of two edges with a common source
0 and a common target 1.

The numbers constituting the vertices of these graphs are significant, and the graphs must therefore not be
considered as defined merely up to isomorphism. Many constructs of category theory are defined in terms of
these graphs, and we need to keep track of the identities of the vertices, for example in order to distinguish
the first and second projections of a product, of a pullback, etc.

As an occasional notation we shall let n denote the n-discrete graph, → the 1-path, →→ the 2-path, < the
2-cone, > the 2-cocone, and = the parallel pair. This notation will come in handy later on with functor
categories, as in Cn, C→, C→→, C<, C>, and C=.

We shall call a graph having at most one edge from one vertex to another a binary relation on V . All of the
preceding examples are binary relations except for the parallel pair.

The set of edges in G from u to v is called the homset Hom(u, v), also HomG(u, v) or G(u, v). Edges from
the same homset are called parallel .

4.1. CATEGORIES AND FUNCTORS 49

4.1.3 Universal Algebra for Graphs

Like other classes of algebraic structures, graphs have subgraphs, direct products, and homomorphisms.
These notions all obey the usual rules of universal algebra, and nothing about the following definitions of
those notions is peculiar to graphs per se, besides the signature of course.

A graph (V ′, E′, s′, t′) is a subgraph of (V,E, s, t) when V ′ ⊆ V , E′ ⊆ E, and s′, t′ are the respective
restrictions of s, t to E′. Hence for any e ∈ E′, s(e) and t(e) must belong to V ′. Such a subgraph is called
full when if u and v are in V ′ and e : u→ v is in E, then e is in E′.

The direct product G1 × G2 of graphs (V1, E1, s1, t1) and (V2, E2, s2, t2) is the graph (V1×V2, E1×E2, s, t)
where s(e1, e2) = (s1(e1), s2(e2)) and t(e1, e2) = (t1(e1), t2(e2)). This generalizes as usual to the direct
product

∏
iGi of a family of graphs.

Homomorphisms are defined for graphs just as for any other class of algebras. Given two graphs G =
(V,E, s, t) and G′ = (V ′, E′, s′, t′), a graph homomorphism or diagram D : G → G′ is a pair of functions
DV : V → V ′ and DE : E → E′ satisfying DV (s(e)) = s′(DE(e)) and DV (t(e)) = t′(DE(e)) for each edge
e ∈ E. The composition D′D : G→ G′′ of homomorphisms D′ : G′ → G′′ and D : G→ G′, and the identity
homomorphism 1G for each graph G, are defined as usual for homomorphisms.

For the following examples fix G to be

w
j - x

f -
g - y

h -
k -
i�

z

Taking J to be the 9-vertex graph we saw earlier on, a typical diagram D : J → G is

x
f -

g
- y

k - z x

y

g

?� i

h
- z

h

?
x

f - y �
i

z

We see that some elements of G may appear more than once in a diagram in G, and others not at all. Note
that any two edges with the same label must have the same label on their respective sources, and likewise on
their targets. However just because two edges have the same labels on their respective sources and targets
does not imply that they themselves have the same label.

Certain diagrams are named after their shapes; for example a diagram in G with shape J = Pn is called an
n-path in G, or path in G of length n. Similarly we have n-cones in G, parallel pairs in G, etc. Taking G as
before, there are four empty paths in G, six unit paths, ten 2-paths, etc.

Graphs G and G′ are isomorphic when there exist diagrams D : G → G′ and D′ : G′ → G such that
D′D = 1G and DD′ = 1G′ .

The inclusion of a subgraph into its parent, and the projections of a direct product onto its constituent
graphs, are examples of diagrams, just as with monotone maps and monoid homomorphisms, etc.

The image D(J) of a graph homomorphism is the graph (DV (V), DE(E), s′′, t′′) where s′′, t′′ are the re-
strictions of s′, t′ in the target of D to DE(E).

50 CHAPTER 4. CATEGORY THEORY

4.1.4 Constructs Specific to Graphs

Besides the above standard constructs of algebra, applicable to any class of algebras, there are also some
constructs specific to graphs.

The opposite of a graph G = (V,E, s, t), denoted Gop, is the graph (V,E, t, s). It has the same vertices and
edges as G, but the direction of the edges has been reversed, as indicated by the interchange of s and t.

The direct sum G1 + G2 of graphs (V1, E1, s1, t1) and (V2, E2, s2, t2) is the graph (V1 + V2, E1 + E2, s, t)
where the sums denote disjoint union of sets and s(e) is s1(e) or s2(e) depending on whether e came from
E1 or E2, and similarly for t. Like product this generalizes to the sum

∑
iGi of a family (Gi)i∈I of graphs.

The concatenation G1;G2 of graphs (V1, E1, s1, t1) and (V2, E2, s2, t2) is the graph (V1 + V2, E1 + E2 +
V1 × V2, s, t) where s and t are as for G1 +G2 but extended so that on V1 × V2 they satisfy s(u, v) = u and
t(u, v) = v. The n-cone is thus isomorphic to 1;n and the n-cocone to n; 1. (They are not equal however.)
On the other hand the graph Pm;Pn is not isomorphic to Pm+n in general since Pm;Pn has (m+ 1)(n+ 1)
edges from Pm to Pn. Pm+n is constructed from Pm + Pn by adding just one edge from the last element of
Pm to the first of Pn, or vice versa.

An essential step in the general construction of a categorical limit is that of the coning Ĝ of a graph G.
This is 1;G, but with the edge set E1 + E2 + V1 × V2 simplified to E2 + V2 since E1 is empty and |V1| = 1.
Hence the vertices of Ĝ are a new vertex (1, 0) and the old vertices (2, u), the edges of Ĝ are the old edges
(1, e) and the new edges (2, u), and s′, t′ satisfy s′(1, e) = (2, s(e)), t′(1, e) = (2, t(e)) on the old edges and
s′(2, u) = (1, 0), t′(2, u) = (2, u) on the new.

A vertex u is initial in a graph when for every vertex u′ in the graph there is exactly one edge e : u → u′

in E, i.e. for which s(e) = u and t(e) = u′ (so |Hom(u, u′)| ≤ 1). Dually we call u final when there exists
exactly one edge from each vertex u′ to u.

We have said that the vertices and edges of a graph form a set. Now we would like the entity Set consisting
of all sets, viewed as vertices, and all functions between them, viewed as edges, to be a graph. Russell’s
paradox prevents this. For every set X there exists a set Y 6∈ X, namely Y = {x ∈ X | x 6∈ x}.1 Hence
the vertices of Set cannot form a set X, since some set Y would then fail to be an object of Set. There is
however no harm in saying that the objects of Set form a “large set” or class, an entity not itself a member
of the class of (small) sets. We therefore extend our definition of graph to allow V and E to be classes. We
call a graph small when V and E are both sets. An intermediate notion is locally small , namely when
Hom(u, v) is a set for all u, v ∈ V .

4.1.5 Definition of Category

We pass from graphs to categories by adjoining operations of composition and identity. We call the vertices
of categories objects and their edges morphisms. Domain and codomain are commonly used synonyms
for source and target respectively, though we shall not use them here.

A category C = (O,M, s, t, c, i) consists of a graph (O,M, s, t) called the underlying graph U(C), a
partial binary operation c : M2 → M called composition , and a function i : O → M associating to each
object x ∈ O the identity morphism i(x) ∈M on x. Composition and the identities behave as follows.

The composition c(g, f) is notated variously gf , g◦f , or f ; g. It is defined just when s(g) = t(f), that is,
its domain corresponds to the set of 2-paths in U(C). When defined, composition satisfies s(gf) = s(f) and
t(gf) = t(g). Furthermore it is associative, that is, it satisfies (hg)f = h(gf) where defined.

1This simplifies to Y = X if we assume the Foundation Axiom FA of set theory stating that set membership is well-founded,
which prevents x ∈ x from ever holding. There is some sentiment nowadays in favor of dropping FA for a weaker “Anti-
Foundation” Axiom AFA, which permits x ∈ x. There we do need the above more complicated construction of a nonmember
Y of X.

4.1. CATEGORIES AND FUNCTORS 51

The identity morphism i(x) at object x is notated 1x. It satisfies s(1x) = x = t(1x), that is, it is a loop at x.
And for each f : x→ y, f1x = f = 1yf , that is, each identity is both a left and a right identity with respect
to composition when defined.

This completes the definition of category.

A category is small, that is, O and M are sets, just when its underlying graph is small.

This passage from graphs to categories generalizes that from binary relations to ordered sets. Just as an
ordered set is a reflexive transitive binary relation, so is a category a graph with identities and composites.
Moreover the generalization is constructive in the following sense. Existence of identities is not just a matter
of Hom(x, x) being nonempty for every x, but a particular member of Hom(x, x) must be specified as the
identity. Likewise having composites is not just a matter of Hom(x, z) being nonempty whenever there exist

morphisms x
f→ y

g→ z, but a particular member must be specified as gf .

This constructive aspect is vacuous for ordered sets. It is redundant to give c and i explicitly in an ordered
set since c(g, f) and i(x) must each be the unique morphism in their respective homsets.

4.1.6 Examples of Categories

Here is a representative sample of the many categories that arise naturally.

• Any class of algebraic structures and the homomorphisms between them (whence the term “morphism”)
form a category. Besides the trivial case Set of all sets and functions, there is Ord, all ordered sets and
monotone maps, Mon, all monoids and monoid homomorphisms, AbMon, Mon restricted to Abelian
monoids, and Grph, all graphs and diagrams. We will shortly encounter category homomorphisms or
functors, turning the class of all small categories into the category Cat of all small categories. None of these
examples is a small category.

• Omitting “all” in the preceding examples leads to more categories, called subcategories. Thus any class O
of sets and class M of functions between those sets containing an identity function 1X for each X in O, and
with M closed under function composition, is a category of sets. The subcategories of Set are precisely those
categories formed in this way. Similarly we may form subcategories of Ord, Mon, etc. Such categories,
whose morphisms are functions between the underlying sets of their objects, are called concrete. They may
or may not be small, depending on whether or not O and M are sets.

• Every ordered set (X,≤) corresponds to a category (X, {(x, y) | x ≤ y}, s, t, c, i) where s(x, y) = x,
t(x, y) = y, c((y, z), (x, y)) = (x, z), and i(x) = (x, x). Transitivity and reflexivity respectively ensure that
such a c and i exist. The discrete category on X is (the category corresponding to) the ordered set (X,=).
The clique on X is the category (X,X2), having no empty homsets. The discrete category and the clique
are the two extremal elements among ordered sets on a given set X.

Conversely every category with all homsets of cardinality at most one determines an ordered set. We therefore
identify such categories with ordered sets.

• Every monoid (M, ◦, 1) corresponds to a one-object category ({•},M,K•,K•, ◦,K1) where Kx denotes the
constant function with value x. Conversely every one-object category must be of the form ({x},M,Kx,Kx, ◦,K1)
with · total on M2, hence determining the monoid (M, ◦, 1). We therefore identify one-object categories with
monoids.

• Tuples of terms in a given language L form a category TrmL whose objects are the natural numbers and
whose morphisms from m to n are n-tuples of terms in m variables, with composition defined as substitution.
Thus if L is the language of Boolean algebra then x1 ∨ x2 is a morphism from 2 to 1, (x1 ∧ x2, x1 ∧ x3)
is a morphism from 3 to 2, their composition is the morphism (x1 ∧ x2) ∨ (x1 ∧ x3) from 3 to 1, and
(x1, x2, . . . , xn) is is the identity morphism 1n at n. In such a category certain parallel terms may be

52 CHAPTER 4. CATEGORY THEORY

identified, e.g. (x1 ∧ x2) ∨ (x1 ∧ x3) and x1 ∧ (x2 ∨ x3), which both go from 3 to 1. A category of this kind
is called an algebraic theory . In such a theory equations take the form of commuting diagrams.

• The m×n matrices over the reals constitute the morphisms, from m to n, of a category whose objects are
the natural numbers, with composition provided by matrix multiplication, and with identities provided by
the identity matrices. (To make this a category we must postulate For each n a unique 0 × n matrix and
a unique n × 0 matrix.) Matrices of complex numbers yields another such category. In general any ring R
determines a category MatrR whose morphisms are matrices over R under the usual matrix multiplication.

• Every graph G = (V,E, s, t) corresponds to a category (V,E′, s′, t′, c, i) where E′ is the set of paths in G;
s′ and t′ are such that for each n-path D : Pn → G in E′, s′(D) = DV (0) and t′(D) = DV (n); c(D′, D) is
path concatenation, defined where s′(D′) = t′(D); and i(x) is the empty path in G at x. This category is
called the free category on , or generated by , G, written F (G).

4.1.7 Homogeneity: Objects as Morphisms

Objects are to morphisms as integers are to reals. We may regard the integers as disjoint from the reals but
being embeddable in the reals via float: Z → R. Or we can simply treat an integer as a kind of real. By
the same token we may regard the objects of a category as disjoint from the morphisms but embedded via
i : O → M . Or we can treat objects as a special kind of morphism. The former is a heterogeneous view of
categories, the latter homogeneous.

In the case of categories of sets, structures, or algebras, the homogeneous view identifies the set X with
the identity function 1X . More generally the homogeneous view identifies the object x with the identity
morphism 1x.

The homogeneous view has the advantage of simplicity: there is only one type to deal with. A category then
simplifies to the structure (M, s, t, c), with O and i omitted, and with s, t : M → M and c : M2 → M a
partial binary operation satisfying

(i) ss = s = ts and tt = t = st;

(ii) gf is defined if and only if s(g) = t(f);

(iii) s(g) = t(f) implies s(gf) = s(f) and t(gf) = t(g);

(iv) s(g) = t(f) = f implies gf = g;

(v) s(g) = t(f) = g implies gf = f ;

(vi) s(g) = t(f) and s(h) = t(g) implies h(gf) = (hg)f .

This homogeneous view entails no loss of generality in the definition of the notion of category. For if f ∈ s(M)
then f = s(g) so t(f) = t(s(g)) = s(g) ∈ s(M). Hence t(M) ⊆ s(M). Similarly s(M) ⊆ t(M)), whence
s(M) = t(M). Thus we can recover the set O of objects as either s(M) or t(M). Since O ⊆ M we can
recover i : O → M as the inclusion of O into M . And by cutting back the targets of s, t : M → M to their
common range O we recover s, t : M → O.

Whether one takes the heterogeneous or homogeneous view depends on the circumstances. When working
with abstract categories it is easier to use the homogeneous formulation in some though not all situations.
On the other hand particular categories from our everyday experience such as Set, Ord and Grp tend
to be easier to think about when the distinction is drawn between objects and morphisms. Although the
correspondence between such structures and the identity functions on them makes the structures themselves
redundant, we are not used to thinking about structures in this way and it takes some practice to work with
the homogeneous view. The homogeneous view is easier to get used to for abstract categories.

Note that the underlying graph U(C) of a category C assumes the heterogeneous viewpoint: the objects of
C become vertices of U(C) whereas the identity morphisms of C become loops.

4.1. CATEGORIES AND FUNCTORS 53

4.1.8 Universal Algebra for Categories

As for other classes of algebraic structures, categories have direct products, subalgebras, and homomorphisms.

Direct product is conveniently defined from the homogeneous viewpoint. The direct product of cate-
gories (M1, s1, t1, c1) and (M2, s2, t2, c2) is (M1×M2, s, t, c) where s(f1, f2) = (s1(f1), s2(f2)), t(f1, f2) =
(t1(f1), t2(f2)), and c((g1, g2), (f1, f2)) = (c1(g1, f1), c2(g2, f2)).

More generally the direct product of a family of categories (Mi, si, ti, ci)i∈I is (
∏
iMi, s, t, c) where s(f)(i) =

si(f(i)), t(f)(i) = ti(f(i)), and c(g, f)(i) = ci(g(i), f(i)).

A subcategory of (M, s, t, c) is a set (M ′, s′, t′, c′) such that M ′ ⊆M , s′, t′ are the respective restrictions of

s, t to M ′, and c′ is the restriction of c to M ′
2

(though still only a partial operation).

C is always a subcategory of itself, called the improper subcategory; all other subcategories of C are
proper . The empty category, containing neither objects nor morphisms, is the least subcategory of every
category. C ′ is a full subcategory of C when U(C ′) is a full subgraph of U(C), i.e. for any two objects x, y
of C ′, any morphism f : x→ y of C is a morphism of C ′.

A homomorphism of categories is called a functor. A functor F : (M, s, t, c) → (M ′, s′, t′, c′) is a function
F : M →M ′ satisfying F (s(f)) = s′(F (f)), F (t(f)) = t′(F (f)), and F (gf) = F (g)F (f) when gf is defined.

The identity functor C
1C→ C takes each object and morphism of C to itself. The composition C

F→ D
G→ E,

namely C
GF→ E, is just function composition, which is associative. It follows that the class of all small

categories and their functors forms a category, called Cat, not itself small.

An isomorphism of categories C and D is a pair of functors C
F→ D

G→ C such that GF = 1C and
FG = 1D. F and G are then each called isomorphisms, and C and D are called isomorphic. Isomorphism
is an equivalence relation between categories.

The behavior of a functor F : C → D on any one homset HomC(x, y) in C can be described as a function
Fxy : HomC(x, y) → HomD(F (x), F (y)). If for all x, y Fxy is injective then F is said to be faithful , and if
surjective then F is said to be full . That is, a functor is faithful when distinct morphisms with the same
source and target are mapped to distinct morphisms, and full when for any composite hgf in the target,
if h and f are in the image of F so is g, a sort of convexity property. Thus to say that C ′ ⊂ C is a full
subcategory of C is to say that the inclusion functor from C ′ to C, necessarily faithful, is also full.

4.1.9 Category-specific Constructs

In addition to the general constructs of universal algebra there are certain constructs peculiar to categories.

The opposite of a category C = (M, s, t, c) is the category C◦ = (M, t, s, c̆). Here c̆ denotes the converse of
c, satisfying c̆(g, f) = c(f, g). This corresponds to reversing the directions of the morphisms, and hence of
composition. Evidently (C◦)◦ = C and U(C◦) = U(C)◦.

But what is a reversed morphism? When C is an abstract category, namely a graph with a composition law,
no conceptual problem arises in reversing an edge: the resulting reversed edge is just another morphism.
But when C is a concrete category whose morphisms are functions between sets, it is natural to ask what
function is obtained by reversing a function.

For the special case where the function is a bijection from X to Y , its reverse can be taken to be its inverse,
a function from Y to X. But not all functions are bijections. Consider the morphisms in Set◦ from set X
to the singleton {0}. These are the functions from {0} to X, one per element of X. But there can only be
one function to a singleton, so these morphisms cannot be distinct functions from X to {0}. It would seem
that we have to settle for treating the reverse of a concrete morphism as just an abstract morphism.

54 CHAPTER 4. CATEGORY THEORY

One method of making reversed functions more concrete is to recall that a function f : X → Y is a special
case of a binary relation from X to Y , whose converse is a binary relation from Y to X. Then if C is any
category of sets and binary relations, C◦ has the same objects as C while its morphisms are the converses
of the morphisms of C. Set◦ can then be understand as an instance of this construction, having morphisms
that are binary relations but not in general functions.

Another “concretization” of a reversed function is its inverse image function f−1 : 2Y → 2X , defined as
f(Y ′) = {x ∈ X|f(x) ∈ Y }. Here the reverse of a function is a function. To interpret f−1 as a function
between sets we must also replace each set X in C by its power set 2X .

Unlike the former method, the latter generalizes to any locally small category C (one with small homsets).
Choose an object z of C. To each object x of C associate the set C(x, z). To each morphism f : x → y of
C associate the function C(f, z) : C(y, z)→ C(x, z) defined as C(f, z)(g) = gf where g : y → z (and hence
gf : x→ z). It is now readily verified that these associations define a functor C(−, z) from C◦ to Set. Such
a functor constitutes a representation of the objects of C as sets and the morphisms of C as functions. The
representation is faithful when distinct morphisms are represented in this way as distinct functions. This is
the same thing as saying that the functor C(−, z) is faithful. For example if C = Set then C(−, z) is faithful
if and only if the set z has at least two elements. Taking z to be {0, 1} then gives the representation of the
preceding paragraph.

A monic is a morphism f such that if fg = fh then g = h (cancellation on the left). An epi is a morphism
f such that if gf = hf then g = h (cancellation on the right). A bimorphism is a morphism which is both
a monic and an epi.

An isomorphism f : x→ y is a morphism for which there exists a morphism g : y → x such that gf = 1x
and fg = 1y. Two objects with an isomorphism between them are called isomorphic. Isomorphism is an
equivalence relation. An isomorphism class of C is the class of all objects of C isomorphic to a given
object X of C, and may be denoted [X]. (It follows that isomorphism classes are nonempty.)

An endomorphism is a loop morphism, one whose source is its target. An automorphism is a loop
isomorphism. Identities are a special case of automorphisms.

A groupoid is a category all of whose morphisms are isomorphisms. A skeletal category C is one all of
whose isomorphisms are automorphisms. A group is a skeletal groupoid, or equivalently a groupoid that is
a monoid. A partial order is a skeletal preorder. But Set is not skeletal because any two sets of the same
finite cardinality n have n! isomorphisms from one to the other.

A skeleton of a category C is the skeletal category C ′ obtained by taking for the objects of C ′ one repre-
sentative of each isomorphism class of objects of C, and for the homsets of C ′ the corresponding homsets of
C. Two categories are called equivalent when they have isomorphic skeletons.

4.1.10 Exercises

1. Give a closed form formula in n for the number of n-cones in the graph G in the examples.

2. Give a closed form formula in m and n for the number of m-paths in the n-cube.

3. Show that G is the underlying graph of some category if and only if (i) HomG(x, x) is nonempty and (ii)
if HomG(x, y) and HomG(y, z) are nonempty then HomG(x, z) is nonempty,

4. Discuss the prospects for viewing graphs homogeneously. What if we defined an intermediate notion of a
reflexive graph , where we introduced identities but not a composition law? (Without composition identities
have no special properties until we come to graph homomorphisms, which should preserve identities.)

5. Define “subcategory” from the heterogeneous viewpoint.

4.2. LIMITS 55

6. Enumerate the subcategories of Set having as objects {0} and {0, 1}. Show the subcategory relationships
between them.

7. Show that the category Grp of all groups and group homomorphisms is a full subcategory of Mon.

8. Show that Set◦ is not isomorphic to Set, but is isomorphic to a subcategory of Set.

9. Show that every isomorphism is a bimorphism.

10. Show that in Set every bimorphism is an isomorphism.

11. (i) Show that in a finite monoid, viewed as a category, every monic is an isomorphism. (ii) Exhibit a
monoid containing a bimorphism that is not an isomorphism. (Hint: consider functions on the set of integers
that operate by adding a constant.)

12. Define “functor” from the heterogeneous viewpoint. Show that your definition is consistent with the
homogeneous one.

4.2 Limits

4.2.1 Free Categories and Diagrams

To each category C corresponds its underlying graph U(C). This defines the object part of a functor
U : Cat → Grph, the forgetful functor from Cat to Grph. The morphism part of U takes each functor
G : C → C ′ to the diagram U(G) : U(C)→ U(C ′) defined just as for G but with no mention of composition
and identities.

The section on examples of categories included the free category F (G) on a graph G. This defines the object
part of a functor F : Grph → Cat taking graphs to categories. For the morphism part, given a diagram
(morphism of graphs) D : G → G′, define F (D) : F (G) → F (G′) as F (D)(D′) = DD′ where D′ : Pn → G
is a path in G and hence a morphism of F (G). That is, F (D) is the functor (morphism of categories) from
F (G) to F (G′) taking each n-path D′ : Pn → G in G (i.e. each morphism of F (G)) to the n-path in G′

(morphism of F (G′)) consisting of the images under F of the morphisms along the path D′, in order. This
defines a functor F : Grph→ Cat.

An equivalent way of thinking about the specification of composition and identities is to regard them collec-
tively as the specification of a map from paths in C to morphisms. Composition specifies the map from paths
of length 2. The map is extended to longer paths by applying composition repeatedly, with associativity
ensuring that the result will be unambiguous. The identities determine the map at paths of length 0. And
paths of length 1 are automatically mapped to their one morphism.

Recall that a diagram D : J → G is said to be a diagram in G. Of special importance is the case G = U(C)
of a diagram in the underlying graph of a category C. In this case, by “diagram in C” we shall understand
“diagram in U(C).”

There is a bijection between diagrams D : G → U(C) and functors D′ : F (G) → C. Any assignment of
vertices and edges of G to the vertices and edges of U(C) extends in the obvious way to a functor mapping
paths of F (G) to morphisms of C. Conversely any such functor restricts to a diagram on G in U(C).
The situation is essentially as for free monoids on sets, where we have a bijective correspondence between
functions f : X → U(M) and monoid homomorphisms h : F (X)→M .

For example let G be a square graph, one with four vertices and four edges, and let C include among its
objects w, x, y, z, and among its morphisms f : w → x, g : w → y, h : x → z, and i : y → z. Then the

56 CHAPTER 4. CATEGORY THEORY

diagram

w
f - x

y

g

? i - z

h

?

is a square in C depicting D : G → U(C) explicitly. Implicitly it also depicts D′ : F (G) → C, by mapping
the four empty paths of F (G) to the corresponding identities of C, and the two paths from top left to bottom
right to the respective composites ig and hf .

Such a diagram is said to commute when, viewed as a functor D′ : F (G) → C, it maps parallel paths in
F (G) (paths with a common source and a common target) to the same morphism of C. The example has
only one case of parallel paths, namely the two sides of the square from top left to bottom right, and hence
commutes just when hf = ig.

We remark that any diagram in an ordered set automatically commutes.

4.2.2 Products and Coproducts

(For this topic the heterogeneous viewpoint proves more convenient.)

Ordinarily we specify a Boolean algebra by giving say the operations ∨, ∧, and ¬. But we could actually
specify it just as an ordered set, since ∨ and ∧ can be recovered from the order as supremum and infimum,
which are uniquely determined in any partial order when they exist, while ¬ is complement, uniquely
determined in any distributive lattice when it exists.

A similar situation arises with categories. Once we have the basic category, corresponding to an ordered set,
we can recover final and initial elements, corresponding respectively to top and bottom of an ordered set,
and products and coproducts of a set of objects, corresponding respectively to infimum or greatest lower
bound and supremum or least upper bound of a set of elements.

One difference is that categories in general are like preorders rather than partial orders. In a preorder a set
may have more than one infimum, though the infima of a set are related in that they form a (maximal) clique.
Another difference is that there are also other relationships we can recover from the category structure, such
as that of being an equalizer, a pullback, and more generally a limit, and their respective duals. With ordered
sets the only limits and colimits are infima and suprema respectively.

The notions of greatest and least element of an ordered set generalize to categories as the notions of final and
initial object respectively. A final object z of a category C is a final vertex of the underlying graph. That
is, it is an object such that for every object y of C (including z), there is exactly one morphism h : y → z.
Dually an initial object z is one such that for every object y there is exactly one morphism h : z → y.

For example Set has just one initial object, namely the empty set ∅, since there is exactly one function from
the empty set to any set. However it has many final objects, namely all singletons.

The free category on the n-path, containing
(
n+2
2

)
morphisms, has initial object 0 and final object n. The

free category on the n-cone has initial object 0, but no final object unless n ≤ 1. Dually 0 is the final object
of the free category on the n-cocone.

An initial object can have no nontrivial automorphisms, otherwise it would have more than one morphism
from itself back to itself.

Now for any category C consider the full subcategory C ′ whose objects are the initial objects of C. It is
easily seen that C ′ is a clique. It follows that any two initial objects of C are isomorphic in C. We sometimes

4.2. LIMITS 57

say that a category has at most one initial object up to isomorphism. The same holds for final objects. In
Set the final objects are singletons, all isomorphic (which in Set just means having the same cardinality).

We turn now to products. First let us give a familiar example. In the category Set, the cartesian product
X1×X2 of sets X1 and X2, itself a set, has two associated projection functions p1, p2 that we can diagram

as the 2-cone (pi : X1 ×X2 → Xi)i=1,2 (that is, X1
p1← X1×X2

p2→ X2) in Set. We call this diagram a cone
to the pair (X1, X2).

As we saw when studying sets, this cone is universal among cones to (X1, X2). This means that for any
cone (gi : Y → Xi)i=1,2 there exists exactly one function g : Y → X1×X2 such that p1g = g1 and p2g = g2,
namely the function g(y) = (g1(y), g2(y)). Conversely any g : Y → X1×X2 uniquely determines a cone to
(X1, X2), namely (pig)i=1,2. We call g the representative of the cone (gi : Y → Xi)i=1,2, and say that the
cone gi factors through the cone pi as pig.

Universality is abstract in the sense that it is phrased purely in terms of sets, functions, composition, and
identities. No mention is made of elements of sets or of application of functions. This abstractness permits
the notion of product to be formulated for an arbitrary category.

A cone pi : z → xi)i=1,2 in a category C is called a product of x1 and x2, with projections p1, p2, when
every cone (gi : y → xi)i=1,2 factors through pi in exactly one way, i.e. when there exists exactly one
morphism g : y → z for which p1g = g1 and p2g = g2.

When every pair x1, x2 of objects in a category C has a product in C we say that C has binary products.

Note the similarity with final objects, whose definition has this same universal character. Later we shall
show that the natural organization into a category of 2-cones to a pair has for its final objects the products
of that pair.

For any given x1 and x2, the property of being a product of x1 and x2 is relational rather than functional:
there may be multiple products. An example of this in Set is provided by X1×X2 and X2×X1, which are
products of X1 and X2, the latter having respective projections p2 : X2×X1 → X1 and p1 : X2×X1 → X2.
X2×X1 is in general a different set from X1×X2.

This nonfunctional aspect of product notwithstanding, we shall often refer to a particular product of x1
and x2 as x1 × x2. In some situations context will provide a specific functor × : C2 → C, such as cartesian
product in Set, picking out a particular product of each pair. Other times there will be no particular product
functor, but rather x1 × x2 will merely be serving as a more mnemonic identifier than z for some arbitrarily
chosen product of x1 and x2.

The following provides some additional justification for this convention.

Proposition 1 Any two products of two objects x1 and x2 are isomorphic.

Proof: The proof runs along similar lines to the proof that any two final objects are isomorphic. Let

x1
p1← z

p2→ x2 and x1
p′1← z′

p′2→ x2 be two such products. These factor through each other and through
themselves in four combinations. Through each other we obtain p′ : z′ → z representing (p′1, p

′
2) with respect

to (p1, p2), and p : z → z′ representing (p1, p2) with respect to (p′1, p
′
2). Through themselves we must obtain

1z and 1z′ . We then have the following diagram.

x1 z′

z x2

p1 p′2

p2

p′1

-

?
�

6@
@
@
@R@

@
@
@I

p′
p

58 CHAPTER 4. CATEGORY THEORY

Now p1p
′p = p′1p = p1 and p2p

′p = p′2p
′ = p2. But we also have p11z = p1 and p21z = p2. Since there is

only one such morphism, p′p = 1z. Similarly pp′ = 1z′ . Hence z and z′ are isomorphic. (This argument also
shows that the above diagram commutes.)

As an application we infer that the two cartesian products X1×X2 and X2×X1 are isomorphic, both being
abstract products of the same pair. This is an argument by general nonsense. An elementary proof of the
same fact follows from the 1-1 correspondence between pairs (x1, x2) and (x2, x1). The latter proof depends
on sets having elements and does not generalize to arbitrary categories, where arguments by general nonsense
come into their own.

In a skeletal category products are unique.

The notion of a ternary product generalizes that of binary product in the obvious way. A ternary product of
objects x1, x2, x3 is a diagram consisting of an object z and morphisms pi : z → xi for i = 1, 2, 3, universal
among such diagrams.

Proposition 2 A category with binary products has ternary products.

Proof: Let x1 × x2 be a product with projections q1, q2 and let z = (x1 × x2) × x3 be a product with
projections p1, p2, yielding the 3-cone (q1p1, q2p1, p2) from z to (x1, x2, x3). We claim this 3-cone is the
desired ternary product, for which it suffices to show its universality.

Let (gi : y → xi)i=1,2,3 be any 3-cone to (x1, x2, x3). Let g12 : y → x1 × x2 represent (g1, g2), namely as
(q1g12, q2g12), and let g : y → z represent (g12, g3), as (p1g, p2g). Hence g represents (gi : y → xi)i=1,2,3,
as (q1p1g, q2p1g, p2g). Now for any other such representative g′ : y → z, p1g

′ represents (g1, g2) and hence
equals g12. But g′ then represents (g12, g3) and hence equals g. Hence (g1, g2, g3) has a unique representative,
whence (q1p1, q2p1, p2) is universal.

Corollary 1 In any category, binary product is associative up to isomorphism.

Proof: The previous proof showed that (x1×x2)×x3 is a ternary product of (x1, x2, x3). A similar proof
shows this for x1 × (x2 × x3). Hence the two are isomorphic.

A familiar example of this is cartesian product in Set, which is not associative because X×(Y×Z) is not
equal to (X×Y)×Z in general. These two sets are however isomorphic, e.g. via the bijection αXY Z :
X×(Y×Z)→ (X×Y)×Z defined as αXY Z(x, (y, z)) = ((x, y), z).

The dual of product is coproduct. In any category C, a diagram x1
p1→ z

p2← x2 is called a coproduct of x1 and

x2 when for every diagram x1
p′1→ z′

p′2← x2 there exists exactly one morphism h : z → z′ for which hp1 = p′1 and
hp2 = p′2. This is exactly as for the definition of product with all the morphisms and compositions reversed.
Everything we have said about binary and ternary products applies to coproducts mutatis mutandis.

4.2.3 Equalizers and Pullbacks

Products are a special case of limits, and coproducts of colimits. Before treating the general case we shall
investigate further commonly encountered instances of these notions.

In Set the concrete equalizer of two parallel functions f1, f2 : X1 → X2 is the subset Z of X1 defined
as Z = {x ∈ X1 | f1(x) = f2(x)}. The subset aspect can be expressed more functionally as an inclusion
p1 : Z → X1 such that f1p1 = f2p1, that is, f1 and f2 are “equalized” by composition on the right with the
inclusion. We let p2 : Z → X2 denote the function they are equalized to.

This set Z and function p1 can be seen to have the property that for any set Y and function g1 : Z ′ → X1

satisfying f1p
′
1 = f2p

′
1, there exists exactly one function g : Y → Z such that p1g = g1, namely g(y) =

p−11 (g1(y)), well-defined since the range of g1 must be a subset of the range of p1.

4.2. LIMITS 59

We call any set Z and function p1 : Z → X1 with this property an equalizer of f1 and f2. Thus the concrete
equalizer is one of (possibly many) equalizers.

An equalizer of a parallel pair f1, f2 : x1 → x2 in C is an object z of C and a universal morphism p1 : z → x1
such that f1p1 = f2p1 (= p2 say), that is, f1 and f2 are “equalized.” As with product, “universal” means
that for any g1 : y → x1 satisfying f1g1 = f2g1 (= g2 say), there exists exactly one morphism g : y → z such
that p1g = g1 (and hence p2g = g2).

Equalizers closely resemble products. Whereas a product is a 2-cone to a pair of objects, an equalizer is
a 1-cone p1 : z → x1 to a parallel pair of morphisms f1, f2 : x − 1 → x2, or a 2-cone, strengthening the
resemblance, if we include the redundant p2 : z → x2 defined as f1p1. Products and equalizers are both
universal among their respective classes of cones. The essential difference is that both equalizers and the
cones they compete with for universality must satisfy an additional condition f1p1 = f2p1.

The dual of equalizer is coequalizer.

We generalize the notion of equalizer to that of pullback by dropping the requirement that the given mor-
phisms f1 and f2 of an equalizer have a common source. A pullback of morphisms f1 : x1 → x3 and
f2 : x2 → x3 is a commuting square

z
p2 - x2

x1

p1

? f1 - x3

f2

?

such that for any commuting square (the competition)

y
g2 - x2

x1

g1

? f1 - x3

f2

?

there exists exactly one morphism g : y → z such that p1g = g1 and p2g = g2.

Whereas with equalizers we made a 1-cone into a 2-cone by adding a redundant projection, in this case we
turn a 2-cone into a 3-cone with the redundant projection p3 = f1p1 = f2p2.

The dual of pullback is not “copullback” but pushout .

A pullback for which f1 = f2 is called a kernel pair , and its dual a cokernel pair .

4.2.4 Limits

All of these notions—final object, product, equalizer, pullback, and their respective duals—are subsumed
under one notion of limit, and its dual notion, colimit, defined as follows. Recall from the section on
constructs specific to graphs the coning Ĝ = 1;G augmenting a graph G with a cone to G.

Let D : G→ U(C) be a diagram in C, and write its vertex labels DV (v) as xv and its edge labels DE(e) as
fe. A cone to D is a diagram D′ : Ĝ → U(C) augmenting D with a vertex labeled y and for each vertex
v of G an edge labeled gv : y → xv, such that fegse = gte for each edge e of G. Equivalently, D′ maps all
paths from the apex to v in F (G) to gv : y → xv in C.

60 CHAPTER 4. CATEGORY THEORY

A limit of D is a universal cone to D. That is, it is a cone (pv : z → xv)v∈V to D such that every cone
(gv : y → xv)v∈V to D has exactly one morphism g : y → z for which pvg = gv (the v-th projection of g is
gv) for all v ∈ V .

Thus a limit combines the notions of product and equalizer in the one construct. We use the notation limD
for z, by analogy with the notation x× y and with corresponding caveats about nonuniqueness.

The kind of a limit to a diagram D, whether product, pullback, etc., is determined by the shape of D.
Discrete graphs give rise to products, parallel pairs to equalizers, cocones to pullbacks. From exercise 18 we
infer that certain other kinds of limits are trivial inasmuch as such limits can already be found within the
diagram.

A finite (countable, small, etc.) limit means a limit of a finite (countable, small, etc.) diagram.

Proposition 3 A category with all equalizers, and all products of up to α objects, α any ordinal, has all
limits of diagrams with up to α edges.

Proof:

Let D be a diagram in category C on graph G = (V,E, s, t) (s, t : E → V) consisting of functions a : V →
O(C), f : E →M(C). The first function labels each vertex u of G with object au of C and the second labels
each edge e of G with morphism fe of C.

Obtain from D the following two discrete diagrams. Take D′ to be (a : V → O(C), ∅), the diagram
resulting from deleting the edges of D. (So D′ is a diagram in C on the discrete graph (V, ∅, ∅, ∅).) Take
D′′ = (a ◦ t : E → O(C), ∅), a diagram in C on graph discrete graph (E, ∅, ∅, ∅) consisting of the codomains
appearing in D, with each edge e of G giving rise to codomain at(e).

Let p, q be products of D′, D′′ respectively, with associated projections pu : p → au, u ∈ V , qe : q → at(e),
e ∈ E, as morphisms of C.

Now construct two cones both from p to D′′. For the first cone, take its e-th projection to be the t(e)-th
projection of the product of D′, namely pt(e) : p → at(e). Since q is the universal cone to D′′, this cone to
D′′ determines a unique map k : p → q commuting with the projections to D′′, which we can view as one
function representing the family 〈pt(e)〉u<U .

For the second cone, take its e-th projection to be feps(e) : p→ at(e). This cone to D′′ similarly determines a
unique map h : p→ q commuting with the projections to D′′, which we can view as one function representing
the family 〈feps(e)〉e∈E .

We now claim that the equalizer e : d→ p of h and k, with projections pie, is a limit of D.

Let r be any cone to D. We show that there is a unique map from r to e commuting with the projections to
D. Now r is also a cone to D′, whence there exists a unique map s : r → p commuting with the projections
to D′, i.e.

pis = ri. (1)

Now consider the cone from r to D′′ whose projections are rt(e) : r → at(e). Setting i to t(e) in (1)
gives pt(e)s = rt(e) for all u < U . But quk = pt(e) since k commutes with those projections to D′′, so
quks = pt(e)s = rt(e), that is, ks commutes with those projections to D′′, and hence is the unique such map
from r to q Setting i to s(e) in (1) gives ps(e)s = rs(e), whence fups(e)s = furs(e) = rt(e), for all u < U . But
fups(e) = quh, so quhs = rt(e), that is hs commutes with those projections to D′′ and hence is the unique
such map from r to q. But ks also enjoys that distinction so hs = ks. This makes s : r → p a cone to the
diagram h, k : p → q, whence there exists a unique map from r to e commuting with the projections to D′

and hence D.

4.2. LIMITS 61

4.2.5 Limits and Colimits in Various Categories

Thus far we have been content to draw all our examples of limits and colimits from Set. In this section we
explore further afield.

With the concluding two propositions of the previous section in mind, we will only treat products, equalizers,
coproducts, and coequalizers. Pullbacks, pushouts, and other limits and colimits can then be easily inferred.
Since such limits arise frequently in practice the reader will find it worthwhile to carry out these inferences
as exercises.

Limits in C◦ are just colimits in C and vice versa, doubling at one stroke the number of categories both
whose limits and colimits we understand.

Proposition 4 The limits and colimits of a diagram D in an ordered set are the infs and sups respectively
of the objects of D.

Proof: The only influence exerted by the morphisms of a diagram D on its limits and colimits is via
commutativity requirements. But diagrams commute automatically in an ordered set, so their morphisms
make no difference. Hence limits are products, i.e. infs, while colimits are coproducts, i.e. sups.

The subcategory of Set whose morphisms are the inclusions of Set is a partial order, ordered by inclusion.
Hence limits and colimits are products and coproducts, namely intersection and union. All such products
and coproducts exist in this category, with one exception: the empty product or final object does not exist,
there being no set of all sets. Equalizers and coequalizers are trivial: parallel pairs are equal to begin with.

Now broaden the class of morphisms of Set to include all partial functions f : X → Y , those subsets of
X × Y for which (x, y) and (x, y′) both in the subset implies y = y′. The first thing to notice is that no new
isomorphisms are created (and of course none are lost).

There are 2n partial function from a set of n elements to a singleton, so singletons are not final. There is
just one partial function from X to the empty set ∅, namely the nowhere-undefined function. And there is
just one function from ∅ to X, which is both the everywhere-defined and the nowhere-defined function on
∅. Thus the category of partial functions has the empty set as both its initial and final object. When the
initial objects coincide with the final objects they are called null or zero objects.

If we further broaden the morphisms of Set to all binary relations from X to Y , i.e. subsets of X × Y , ∅
remains the one null object.

Regarding Set as the trivial category of algebras, the simplest nontrivial category of algebras is Set∗,
pointed sets, i.e. algebras whose signature consists of just one zeroary operation or constant, and their
homomorphisms. Such an algebra has the form (X, ∗) where ∗ ∈ X is the constant or “pointed element.” A
homomorphism f : (X, ∗X)→ (Y, ∗Y) is a function f : X → Y satisfying f(∗X) = ∗Y .

The category Ord of ordered sets and their monotone maps behaves as for Set. Products, equalizers,
coproducts, and coequalizers are obtained in terms of those operations on the underlying sets. The coproduct
of (X,≤X) and (Y,≤Y) is (X +Y,≤) where ≤ is the least relation whose respective restrictions to X and Y
are ≤X and ≤Y .

4.2.6 Exercises

1. For each of the basic examples of graphs given at the beginning, give the number of morphisms in the
free category it generates.

2. Show that zeroary product is the same notion as final object. Exhibit a category having all finite nonempty
products but no final object.

62 CHAPTER 4. CATEGORY THEORY

3. (i) Show that a category with binary products has n-ary products for all finite n ≥ 1. (ii) Show that
n-ary products are unique up to isomorphism.

4. For small categories C and D, show that C×D is a product of C and D in Cat.

5. In Set the disjoint union X + Y of sets X,Y is defined as {1} ×X ∪ {2} × Y , consisting of elements of
the forms (1, x) for x ∈ X and (2, y) for y ∈ Y . Show that X + Y is a coproduct of X and Y in Set.

6. What are binary product and coproduct in the subcategory of Set whose morphisms are just the inclu-
sions? (An inclusion is a function f : X → Y satisfying f(x) = x for all x ∈ X.)

7. Show that equalizers are unique up to isomorphism.

8. Define the concrete coequalizer of two functions f, g : X → Y to be the set Y/ ≡ of equivalence classes
in Y where ≡ is the least equivalence relation such that f(x) ≡ g(x) for all x ∈ X. Show that concrete
coequalizers are (abstract) coequalizers in Set.

9. Show that pullbacks and pushouts are unique up to isomorphism.

10. Show that a category with all finite nonempty products and equalizers also has all pullbacks.

11. Apply your solution to the previous exercise to define concrete pullbacks in Set in terms of cartesian
(concrete) products and concrete equalizers. Express this concept in elementary terms.

12. Dualize the previous exercise in terms of disjoint unions and concrete coequalizers.

13. Derive an elementary description of concrete kernel pairs in Set. Using the graph representation for
relations, define equivalence relations in terms of 2-cones in Set. Show that a kernel pair in Set is isomorphic
to an equivalence relation, and that every equivalence relation arises in this way.

14. Derive an elementary description of concrete cokernel pairs in Set.

15. Define colimit.

16. Show that limits and colimits are unique up to isomorphism.

17. Explain why equalizers and pullbacks are limits.

18. When pu = 1xu in some limit of D we say that u itself is a limit of D. When G is (i) an n-discrete
graph; (ii) an n-path; (iii) an n-cone; (iv) an n-cocone; (v) an n-cube, which vertices of G are limits in every
diagram on G? Give a general condition for a vertex of G to be a limit in every diagram on G.

19. Any category with a final object and all pullbacks of a given cardinality has all products of that
cardinality, and all equalizers.

20. Show that products, equalizers, coproducts, and coequalizers in Set∗ all exist, and have concrete
definitions identical to those in Set, with the exception of a detail in coproduct. What is that detail?

21. Show that products, coproducts, and equalizers in the category Pos of partially ordered sets and their
monotone maps have as their underlying sets those fo the corresponding constructs in Set. Give an example
showing where this fails for coequalizers.

22. Show that any variety has all limits.

23. In the category AbMon of abelian monoids, show that the product of a pair of abelian monoids is
isomorphic to their coproduct.

4.3. NATURAL TRANSFORMATIONS 63

4.3 Natural Transformations

4.3.1 Basics of Natural Transformations

The need for natural transformations is felt both in categorical algebra and categorical logic.

Categorical algebra equips categories with functors just as ordinary algebra equips sets with operations. One
such operation is the exponentiation functor Y X from Set2 to Set. This functor maps the pair X,Y of sets
to the set of all functions from X to Y . A characteristic property of exponentiation is that to each function
f : X×Y → Z there corresponds an equivalent function f ′ : X → ZY . We may think of this correspondence
as the “currying” law for Set.

The analogous notion for Cat would be the exponentiation functor BA which from two categories A and
B forms the category of all functors from A to B. As for Set we want the corresponding characteristic
correspondence between functors F : A × B → C and F ′ : A → CB . Now the objects of the category CB

are functors from B to C, but what are its morphisms? In order for this correspondence to work we need a
specific notion of morphism of functors. This notion is supplied by natural transformations, as we shall see
after we have defined them.

Categorical logic extends logic based on ordered sets to logic based on categories. The essential change is
that whereas an ordered set has at most one morphism from any object to another, a category permits many.
This change is reflected in the form that laws take.

Typical laws are x ∧ y ≤ x and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). For any given values of x, y, z the truth of
these laws in an ordered set is a simple binary matter: they either hold or not.

If we regard an ordered set as a category then to say that x ∧ y ≤ x holds is to say that for each x and y
there is a morphism from the object x ∧ y to the object x. The question of which morphism does not come
up because there is at most one morphism from one object, here x∧ y, to another, here x, in an ordered set.

The appropriate generalization of such laws to other categories besides ordered sets requires that the law
not only hold for all values of its variables but that in doing so it specify a particular morphism for each
choice of values. This morphism can be thought of as an abstract proof of that law. This is the essential
difference between ordinary logic and categorical logic. The result is a logic with a more constructive flavor:
laws include their proofs.

For example in Set, the associativity law that held for x∧y in partial orders does not hold in the usual sense
for the cartesian product X ×Y . The sets X × (Y ×Z) and (X ×Y)×Z are equal only when at least one of
X, Y , or Z is empty. Nevertheless there is a weaker sense in which cartesian product is associative, namely
that X × (Y × Z) and (X × Y) × Z are isomorphic. We formalize this by having the law take the form of
a specific family of functions α×XY Z : X ∧ (Y ∧ Z) → (X ∧ Y) ∧ Z, indexed by objects X,Y, Z of Set3,
each defined as α ×XY Z (x, (y, z)) = ((x, y), z). Similarly the closest we come to having an associativity
law for disjoint union is the family of functions α+XY Z : X + (Y + Z) = (X + Y) + Z each satisfying
α+XY Z (1, x) = (1, (1, x)), α+XY Z (2, (1, y)) = (1, (2, y)), and α+XY Z (2, (2, z)) = (2, z).

Likewise the poset law x∧y ≤ x when transferred to Set must be turned into a specific function from X×Y
to X. A suitable such function is the projection function π1XY : X × Y → X, defined as πi(x, y) = x.
Likewise x ≤ x ∨ y may be turned into the inclusion i1XY : X → X + Y .

Categorical logic permits new laws to be inferred from old, for example by composition. From premises
π1XY and i1XY we may infer the law i1XY π1XY : X × Y → X + Y by composing the premises. This
generalizes the inference rule of transitivity of ≤.

Another way to relate X × Y to X + Y is via i2XY π2XY : X × Y → X + Y , passing through Y instead of
X. This gives us two different laws relating the same pair of objects X + Y and X × Y .

We see therefore that a law consists of a family of morphisms from F (x1, . . . , xn) to G(x1, . . . , xn), one

64 CHAPTER 4. CATEGORY THEORY

morphism for each x1, . . . , xn. We take the index set of this family to consist of the objects of some category
C. For example if each xi ranges over the objects of a category Ci then C would be

∏
i Ci. We then formalize

the terms F (x1, . . . , xn) and G(x1, . . . , xn) as functors F,G : C → D.

With these motivations in mind we now define natural transformation.

Given parallel functors F,G : C → D, a transformation τ : F → G is a function mapping each object x
of C to a morphism τx of D.

For the family π1XY : X × Y → X of projections, C is Set2, D is Set, F : Set2 → Set is X × Y and
G : Set2 → Set is X (projection onto the first coordinate of Set2). This makes π1 a transformation. In our
example of associativity of × in Set, C is Set3, D is Set, F is X ∧ (Y ∧ Z), and G is (X ∧ Y) ∧ Z, making
α× a transformation.

A transformation is called natural when for each morphism f : x→ x′ of C the following square commutes.

F (x)
F (f)- F (x′)

G(x)

τx

? G(f)- G(x′)

τx′

?

For the transformation π1, this square becomes

X × Y
f × g- X ′ × Y ′

X

π1XY

? f - X ′

π1X′Y ′

?

We establish its commutativity by observing that for each pair (x, y), applying f × g to yield (f(x), g(y))
and then projecting out f(x) has the same effect as projecting out x and applying f to the result. Hence π1
is natural.

This form of argument is called a diagram chase. We picked an element (x, y) and “chased” it around the
possible paths of the diagram to show that always led to the same element at the end.

For the transformation α×, the corresponding square is

X × (Y × Z)
f × (g × h)- X ′ × (Y ′ × Z ′)

(X × Y)× Z

α×XY Z
? (f × g)× h- (X ′ × Y ′)× Z ′.

α×X′Y ′Z′

?

Here we chase the element (x, (y, z) of X × (Y × Z) around the diagram. Over the top we pass via
(f(x), (g(y), h(z))) to arrive at ((f(x), g(y)), h(z)). Down the left we pass via ((x, y), z) to arrive again
at ((f(x), g(y)), h(z)). Hence α× is natural.

When F,G : C → D are monotone maps between ordered sets, every transformation from F to G is
automatically natural, since all diagrams in an ordered set commute.

A natural isomorphism is a natural transformation each of whose morphisms is an isomorphism of D. For
example any equational law in a poset whose two terms are expressible as functors is a natural isomorphism.

4.3. NATURAL TRANSFORMATIONS 65

A more interesting example in Set is given by associativity of × in Set: each α×XY Z is a bijection, that is,
an isomorphism in Set, making α× a natural isomorphism.

We will encounter many more examples of natural transformations when we come to adjunctions.

4.3.2 Composition of Natural Transformations

Any two natural transformations σ : F → G and τ : G→ H between three parallel functors F,G,H : C → D
compose “vertically” in the obvious way, as suggested by the following diagram.

F (x)
F (f)- F (x′)

G(x)

σx

? G(f)- G(x′)

σx′

?

H(x)

τx

? H(f)- H(x′)

τx′

?

That the outer square of this diagram commutes follows from the commutativity of the two inside squares.
This composition can be seen to be associative.

Moreover, for each functor F : C → D there is an obvious choice of identity natural transformation on F ,
defined by τx = 1Fx.

Hence the functors from C to D constitute the objects of a category, denoted DC , whose morphisms are
the natural transformations between such functors. That is, we have equipped the homset hom(C,D) with
morphisms to make it a “homcategory.”

For example the two families π1XY : X × Y → X and π2XY : X × Y → Y of projections compose vertically
with the respective families i1XY : X → X + Y and i2XY : Y → X + Y of injections to yield two distinct
natural transformations from X × Y to X + Y .

Every natural isomorphism τ : F ∼= G has an inverse τ−1 : G ∼= F obtained by inverting each of its morphisms.
The vertical composition τ−1τ : F → F can then be seen to consist solely of identity morphisms, making it
the identity natural transformation on F . Hence natural isomorphisms are isomorphisms of functors, and
indeed could have been defined as such. That we did not is because we did not then have the notion of
vertical composition.

Besides this vertical composition there is also a “horizontal” composition, which is slightly more complicated.
Let F,G : A → B and F ′, G′ : B → C be two pairs of parallel functors. Given natural transformation
τ : F → G and τ ′ : F ′ → G′, the naturality of τ ′ requires the commutativity of the square

F ′Fx
F ′τx- F ′Gx

G′Fx

τ ′Fx

? G′τx- G′Gx

τ ′Gx

?

That is, τ and τ ′ can be applied in either order, i.e. independently.

66 CHAPTER 4. CATEGORY THEORY

We then define the horizontal composition τ ′ ◦ τ of τ ′ and τ to be the diagonal of this square, τGxF
′(f) =

G′(f)τFx.

For an example of horizontal composition consider the two functors (W×X)×(Y ×Z) and (Z×Y)×(X×W)
from Set4 to Set, and for each object (W,X, Y, Z) of Set2 let δWXY Z : (W×X)×(Y×Z)→ (Z×Y)×(X×W)
be the function (morphism of Set) defined by δWXY Z((w, x), (y, z)) = ((z, y), (x,w)). It can be seen that
this defines a natural transformation δ between these two functors.

We may decompose δ horizontally as follows. Let (W ×X,Y ×Z) and (X ×W,Z×Y) be two functors from
Set4 to Set2, and define κWXY Z to be the pair of functions (cWX , cY Z), defining a natural transformation κ
between these two functors. Then it may be seen that δ = c◦κ, where cUV : U×V → V ×U is commutativity
of Cartesian product as defined above.

4.3.3 Functor Categories

We gave as algebraic motivation for natural transformations the notion of the category CD with objects all
functors F : D → C and morphisms all natural transformations τ : F → G between such functors. We call
this the functor category CD. In this section we look at some commonly encountered functor categories
where one of C or D is small.

We begin with D = 0, the empty category. Now 0 is initial in Cat, having exactly one functor FC : 0→ C
to each category C. Hence C0 has one object. A natural transformation τ : FC → FC is a function from
ob(0) = ∅ to the set of morphisms of C. Again there is only one such function, whence C0 has only one
morphism, the identity morphism on its one object. Hence C0 is isomorphic to the category 1.

The functor from 0 to C is distinct from the functor from 0 to some other category B, in that they have
distinct targets. Hence C0 is not equal to B0, and by implication not equal to 1. One might define 1 to be
C0 for a particular C, say 0, in which case we would have a single exception to this implication at that C.

Now let us consider 1, having object 1. Let F : C1 → C be the functor defined as application of its argument
to 1. It takes each functor G : 1→ C to the object G(1) of C, and each natural transformation τ : G→ G′ to
the morphism τ1 : G(1)→ G′(1) of C, preserving source, target, composition, and identities as required of a
functor. Moreover it hits every object and morphism of C. Hence it is an isomorphism and C1 is isomorphic
to C.

Let 2 denote the discrete two-object category. The functor category C2 has for its objects pairs of objects
of C, and for its morphisms pairs of morphisms of C. This describes the category C × C. We have already
been using the notation C2 as a convenient abbreviation for C × C without promising any connection with
the notion of functor category. Fortunately then, these two usages of C2 coincide.

More generally, for any discrete category D, CD is the D-th power of C, that is, the product of the constant
family (Cd)d∈ob(D) with index set the objects of D and all members Cd = C.

Such powers are easily described without reference to functor categories. We took advantage of this early on
in describing such operations as product in a category C as a functor × : C2 → C. Other operations such
as composition and pullback however were not so conveniently described. For example we held the fort by
describing composition as a partial binary operation on morphisms, with domain messily restricted by the
condition that the source of one argument had to match up with the target of the other. Functor categories
permit a tidier description of such domains. For example the domain of composition in C becomes the
functor category C3 of triangles in C, while its codomain is C2, the category of morphisms in C. Similarly
pullback in C is a functor C> → C mapping wedge-shaped diagrams in C to objects of C.

we can be more explicit about the names of the domains of such operations, allowing us to describe them
more insightfully as functors between suitable functor categories. The messiness of partiality then disappears!

Let us now move towards more general powers. We start with the basic nondiscrete category 2, the two-

4.3. NATURAL TRANSFORMATIONS 67

object chain. The functor category C2 has for its objects morphisms f : w → x of C and for its morphisms
commuting squares S of C of the form

w
f - x

y

h

? g - z

k

?

These squares S have their source and target at their top and bottom respectively, compose vertically in the
obvious way, and are identities just when their vertical sides are identities.

Given functors F : A → C, G : B → C, the comma category (F ↓ G) is the subcategory of A × C2 × B
whose morphisms (f,S, g) are such that the left and right sides of the square S in C are respectively F (f)
and G(g). (F ↓ G) amounts to the variable homset hom(F (a), G(b)) in C, with a, b ranging over A × B.
When A and B (and hence A×B) are discrete, i.e. just sets, so is (F ↓ G). In particular when A and B are
both 1 then (F ↓ G) amounts to the homset hom(F (1), G(1)), the constant homset.

When F is the identity functor 1C : C → C (so A = C) we write it as C (the homogeneous view). In
particular (C ↓ C) = C2. When A = 1, F is the name pF (1)q; we abbreviate (pF (1)q ↓ G) as (F (1) ↓ G)
when there is no ambiguity. All of the above applies equally to G. For any object x of C we refer to (C ↓ x)
(properly, (C ↓ pxq)) as the category of objects over x. (C ↓ x) is also called the slice category C/x of
objects over x. Dually (x ↓ C) is called the category of objects under x.

The objects and morphisms of C/x amount to those of C suffixed with
f→ x for all possible such f ’s.

Each object y becomes various objects y
f→ x of C/x and each morphism y

g→ y′ of C becomes various

morphisms y
g→ y′

f→ x of C/x. Note that the latter are not just morphisms y
fg→ x of C since they include

the information as to how fg decomposes into f and g, i.e. these morphisms of C/x are triangles in C
terminating in x.

The category 3 is the three-object chain 1→ 2→ 3, a triangle. The functor category C3 has for its objects

all triangles x
f→ y

g→ z in C and for its morphisms all commuting diagrams

x
f - y

g - z

x′

i

? f ′ - y′

j

? g′ - z′

k

?

whose categorical structure parallels that of the morphisms of C2.

4.3.4 Algebraic Theories

In this section we give a formal definition of “algebraic theory,” explore a few of its drier properties, then
ease up a bit while we relate the concept to the examples and to the intuitive notion of “theory,” and finally
consider some additional aspects of theories.

Definition 1 An algebraic theory T is a skeletal category with all finite products.

(Recall that a category is skeletal just when every isomorphism is an automorphism.)

In particular T must have a final object as the empty product, whence T is nonempty.

68 CHAPTER 4. CATEGORY THEORY

Example 1 (Fincardop and 1 are algebraic theories, where Fincard, for finite cardinals, denotes the full
subcategory of Set consisting of one set of each cardinality. These are the trivial and inconsistent theories
respectively. A consistent theory is any algebraic theory other than the inconsistent one.

Definition 2 A theory morphism is a functor between theories that preserves finite products. The category
of all algebraic theories and their theory morphisms is denoted Th.

Example 2 The trivial and inconsistent theories are respectively the initial and final objects of Th.

So far, so unmotivated. While 1 is obviously boring, Fincardop looks like it might be a bit more glamorous,
despite its unprepossessing nickname “trivial.”

The idea is that Fincardop consists of formal functions between tuples. Think of a formal function not as
an actual function but as a computer program for computing that function. For example the morphism f :
X3 → X2 might be the formal function f : (x0, x1, x2) 7→ (x2, x0), or it might be g : (x0, x1, x2) 7→ (x1, x1).
In LISP we would write

(DEFUN F (X0 X1 X2) (LIST X2 X0))

and

(DEFUN G (X0 X1 X2) (LIST X1 X1)).

If X were “instantiated” say by the set ω of natural numbers then such functions would correspondingly be
instantiated as functions between powers of ω, with the first example mapping (3, 99, 2) to (2, 3), (5, 11, 11)
to (11, 5), etc., and the second mapping them to (99, 99), (11, 11), etc. Each such formal function from Xm

to Xn can be seen to be defined by an actual function from n (as an ordinal, i.e. initial segment of ω) to m.
The above examples can then be seen to be defined by functions from 2 to 3: in the first example it maps 0
to 2 and 1 to 0, while in the second it maps both 0 and 1 to 1. That things got turned around here explains
the op in Fincardop.

The n formal functions from Xn to X are now easily recognized as the n projections of Xn onto X. But of
course; Xn is the n-th power of X, as we said at the beginning. To economize on subscripts, let us denote
the projections (and their images when no confusion results) by x, y, z, x′, y′, ... in that order.

Exercise 1 The unique theory morphism from the trivial theory to any consistent algebaic theory is bijective
on objects and injective on morphisms. (Hence in any algebraic theory the powers of X are either all distinct
or all identical.

So a consistent theory amounts to the trivial theory together with some additional morphisms.

The theory B of Boolean algebras provides an ideal example, in part because it is so easily defined. Simply
take B to be the category whose objects are the finite powers of the doubleton {0, 1}, and whose morphisms
are all functions between them. (So this is a countably infinite full subcategory of Set.) This category is
closed under finite products; indeed the product of i (the name we shall use in this context for the cartesian
power 2i) with j is just i+ j, with the evident projections.

The trivial theory had just one morphism from 1 to 1. B(1, 1) adds to this the two constant functions and the
twist map or Boolean negation. In B(2, 1) the two projections are now joined by 14 more binary operations.
In general B(m, 1) has 22

m

m-ary Boolean operations, and more generally still B(m,n) has (2n)2
m

n-tuples
of m-ary Boolean operations. (One way to think about subsets of n is as bit vectors of length n. Thus the
Boolean function x∧ y maps 11 to 1 and the other three bit vectors to 0, while the two projections each pick
out one of the two bits.)

What makes this category a theory in the equational sense is that the theory embodies the equations of
Boolean algebra. It does this by having different compositions being equal, which is just a thin disguise for
different expressions being equal.

4.3. NATURAL TRANSFORMATIONS 69

The examples with polynomials are somewhat different in character if we regard polynomials as syntactic
objects. But this presents no problem: just define composition to be formal substitution; the composition
of the pair of polynomials (x+ y, x− y) (a morphism from 2 to 2) with xy (a morphism from 2 to 1) is the
polynomial (x + y)(x − y). However, we can also construct this category in a more semantic way like our
Boolean algebra example: take the objects to be direct powers of Z (the ring of integers), or for that matter
of R (the ring of reals), and the morphisms to be all integer-coefficient polynomials with either integer or
real values of the variables respectively. This category is isomorphic to the syntactically defined one. Note
that we can’t take powers of just any old ring; if we take the objects to be direct powers of the ring of
integers mod 2 (so x+ y turns into x⊕ y – exclusive-or – and xy into x ∧ y) – surprise! We get instead the
theory of Boolean algebras, that is, a category isomorphic to the one above of functions between power sets,
a reminder that Boolean algebras are “the same thing” as Boolean rings.

Now consider the two functions x ∨ y and y ∨ x, morphisms of B, each mapping A2 to A. These “two”
are actually one, a fact expressed by the Boolean identity x ∨ y = y ∨ x. Similarly the composition of
(x, y∨z) : A3 → A2 with x∧y : A2 → A in B is the same function as the composition of (x∧y, x∧z) : A3 → A2

with x∨y : A2 → A, corresponding to the identity x∧ (y∨z) = (x∧y)∨ (x∧z) (conjunction distributes over
disjunction). But this fact is independent of the choice of A; it depends only on A being a Boolean algebra.

Now let us justify the term “theory.” An equational theory such as the theory of commutative rings makes
connections such as (x + y)(x − y) = x2 − y2. We have already seen that the composition of (x + y, x − y)
with xy expresses (x + y)(x − y); moreover the composition of (x2, y2) with x − y expresses x2 − y2. But
if this is the category of polynomials then these two expressions must be equal, which is to say that the
following diagram must commute.

2
(x+ y, x− y)- 2

2

(x2, y2)

? x− y - 1

xy

?

This leads us to the notion of a presentation of a theory. A presentation consists of (i) a subset of the
morphisms of the theory all having codomain 1, called its operations, with arity of each operation being
given by its domain; and (ii) a binary relation on the free category generated by those operations together
with all their products and all projections, called its axioms. The theory so presented is then the quotient of
the free category by the least congruence containing the axioms. When the set of operations and the binary
relation are both finite the theory is called finitely axiomatizable.

For the theory of commutative rings, the usual choice of operations are 0, x + y, xy, and −x. If we were
more economically minded we might pick instead 0, x − y and xy. For either choice there is a finite set of
such axioms as x− x = 0 or x− (x− y) = x.

The inconsistent theory corresponds to an equational theory whose one axiom is x = y. It may also be
characterized as the equational theory of the empty class, and also of the class containing just one algebra
which in turn contains just one element (the unique zeroth direct power of algebras drawn from the empty
class), constituting the class of all models of this theory.

An algebra is a functor A : T → Set from a theory T to Set which preserves all finite products. The functor
supplies an interpretation of X as a set A(X) and of the morphisms from m to n as n-tuples of functions
from A(X)n to A(X). Given two such algebras, the homomorphisms between them are exactly the natu-
ral transformations between them. The naturality property realizes the requirement that homomorphisms
commute with the operations of the algebras.

The notion of an algebra may be generalized to other domains by using some category other than Set. For

70 CHAPTER 4. CATEGORY THEORY

example the finite-product-preserving functors from the theory of monoids to Cat are the (strictly) monoidal
categories, which are categories equipped with an associative binary operation on objects.

4.3.5 2-categories

We just saw that the homsets of the category Cat of all small categories could be equipped with morphisms,
in this case natural transformations between functors, satisfying an interchange principle. A category with
homsets so equipped is called a 2-category , and the morphisms between its morphisms are called 2-cells.
By back formation we could call morphisms 1-cells and objects 0-cells, though this is not usually done.

The homogeneous objects-are-morphisms view of categories yields the most straightforward definition of a
2-category. A 2-category is a set (X, s1, t1, c1, s2, t2, c2) such that

(i) for each i = 1, 2, (X, si, ti, ci) is a category (presented homogeneously);

(ii) s1s2 = s1t2 = s2s1 = t2s1 = s1, t1s2 = t1t2 = s2t1 = t2t1 = t1;

(iii) s1(x) = t1(x′) implies s2(c1(x, x′)) = c1(s2(x), s2(x′)) and t2(c1(x, x′)) = c1(t2(x), t2(x′));

(iv) (Interchange) s2(x) = t2(y), s2(x′) = t2(y′), s1(x) = t1(x′) imply
c1(c2(x, y), c2(x′, y′)) = c2(c1(x, x′), c1(y, y′)).

The composition c1 is horizontal composition and c2 is vertical composition. The set of morphisms or 1-cells
is given by either of s2(X) or t2(X). Likewise the objects or 0-cells are given by s1(X) or t1(X). Just as the
morphisms are a subset of the 2-cells, so are the objects a subset not only of the 2-cells but of the morphisms;
in fact s1(X) = s1(s2(X)), etc.

The category Cat provides the basic example of a 2-category. The objects are categories, the morphisms
are functors, and the 2-cells are natural transformations between functors.

For a quite different example take the category of all rectangular matrices over say the integers, with mul-
tiplication as its vertical composition and ”juxtaposition” as its horizontal composition. The juxtaposition
M ◦ N of an m × m′ matrix M with an n × n′ matrix N is the (m + n) × (m′ + n′) matrix obtained by
positioning the two matrices, displayed as usual, with the lower right corner of M touching the upper left
corner of N , padded out with zeros in the upper right and lower left to form a rectangular matrix. The
interchange law may now be verified, and amounts to a special case of the rule for block multiplication.

An n-category is a structure (X, s1, t1, c1, . . . , sn, tn, cn) such that (X, si, ti, ci, sj , tj , cj) is a 2-category for
all 1 ≤ i < j ≤ n.

An n-functor F : (X, s1, t1, c1, . . . , sn, tn, cn)→ (X ′, s′1, t
′
1, c
′
1, . . . , s

′
n, t
′
n, c
′
n) is a function F : X → X ′ such

that for 1 ≤ i ≤ n, F : (X, si, ti, ci) → (X ′, s′i, t
′
i, c
′
i) is a functor. That is, an n-functor is just a function

between n-categories that is a functor at each level, involving no interaction between levels.

4.4 Adjunctions

An isomorphism together with its inverse constitute a pair of morphisms whose composition, in either order,
is an identity. That is, the composition of any two consecutive morphisms in

a
f - b

g - a
f - b

g - a

is an identity.

An adjunction between categories X,A is a pair η : 1X → UF , ε : FU → 1A of natural transformations

4.4. ADJUNCTIONS 71

X ===================== X

⇓ η

A

U

-

F

-

X

⇓ ε

A =====================

U

-

A

F

-

whose composition, in either order, is an identity natural transformation. The two compositions are

X ===================== X

⇓ η ⇓ ε

A =====================

U

-
F

-

A

F

-

X ===================== X

⇓ ε ⇓ η

A =====================

U

-

A

U

-
F

-

These compositions are made using the following vertical compositions:

X ===================== X

⇓ η

X A

U

-
F

-

X A

F

-

⇓ ε

A =====================

U

-
F

-

A

F

-

X ===================== X

⇓ η

A

U

-

X A

U

-
F

-

X

⇓ ε

A =====================

U

-

A

U

-
F

-

and the four constituents of these vertical compositions are made with horizontal compositions, namely Fη,
εF , ηU , and Uε.

Just as we could form a long chain gfgfgf of morphisms any consecutive two of which compose to form an
identity, so can we form a long chain of alternating natural transformations any two consecutive members
of which paste to form an identity, either 11X or 11A .

X ===================== X ===================== X

⇓ η ⇓ ε ⇓ η ⇓ ε

A =====================

U

-
F

-

A =====================

U

-
F

-

A

F

-

An isomorphism of categories can then be seen to be the special case of an adjunction where η and ε are
identity natural transformations. For to say that η : 1X → UF is an identity is to say that UF = 1X .

We call F and U respectively the left adjoint and right adjoint of the adjunction, and η and ε respectively
the unit and counit .

In a partial order with all finite nonempty joins, we may describe x ∨ y as a monotone operation satisfying
x ≤ x ∨ y, y ≤ x ∨ y, and x ∨ x ≤ x. This description may be formulated as the adjunction (∨,∆, η, ε)
having left adjoint ∨ : P 2 → P , right adjoint ∆ : P → P 2 the diagonal functor defined as ∆(x) = (x, x), unit

72 CHAPTER 4. CATEGORY THEORY

η : 1P 2 → ∆∨ the law (x, y) ≤2 (x ∨ y, x ∨ y), namely the first two inequations defining x ∨ y, and counit
ε : ∨∆→ 1P the law x ∨ x ≤ x, namely the third inequation.

Now let us verify the two pasting conditions. The first pasting, (ε◦1F)(1F ◦η), here x∨y ≤ (x∨y)∨(x∨y) ≤
x∨y, must be 1x∨y since ordered sets only have one morphism between any two objects. The same argument
applies to the other pasting, here (x, x) ≤ (x ∨ x, x ∨ x) ≤ (x, x).

The adjunction contains all the information present in our original description, since the information that
∨ is monotonic is implicit in the assumption that ∨ is a functor, and the three inequations are given by the
unit and counit.

This description is actually a definition of x ∨ y, up to isomorphism in the case of a preorder and “on the
nose” in the case of a partial order. To see this, let z and z′ be two values for x ∨ y satisfying the three
conditions, for any given x, y. Hence we have x ≤ z, y ≤ z, so by monotonicity of ∨, x ∨ y ≤ z ∨ z ≤ z,
whence z′ ≤ z. Similarly z ≤ z′, so z and z′ must be isomorphic in a preorder and identical in a partial
order.

An equivalent definition of an adjunction is a natural isomorphism ϕ between the functors hom(Fx, a)
and hom(x, Ua). These are parallel functors in that they both map X◦ × A to Set. That ϕ is a natural
isomorphism means that every morphism ϕx,a : hom(Fx, a) → hom(x, Ua) is a bijection of homsets, and
that for every morphism of X◦ ×A, that is, for every pair (h, k) : (x, a)→ (x′, a′) of morphisms h : x′ → x,
k : a→ a′, the following diagram commutes.

hom(Fx, a)
hom(Fh, k)- hom(Fx′, a′)

hom(x, Ua)

ϕxa

? hom(h, Uk)- hom(x′, Ua′)

ϕx′a′

?

Examples

1. Take X to be the category of sets and A some category of algebras, e.g. the category of all monoids and
their monoid homomorphisms. Take U : A → X to be the functor Ua which returns the underlying set of
a given algebra a. Take F : X → A to be the functor which returns the free algebra Fx generated by a
given set x. For each set x take the unit ηx : x → UFx of the adjunction to be the function associating
each generator with the corresponding element of (the underlying set of) the free algebra generated by x,
and take the counit εa : FUa → a to be the evaluation function which maps each term of the free algebra
on the underlying set of a (thinking of these as values of variables) to the result of evaluating that term at
those values.

2. Consider the set Z of integers and the set R of reals, each with their usual order, hence each a category.
The function fl : Z→ R takes the integer a to the corresponding real a. It has a left adjoint dxe taking the
real x to the ceiling of x, that is, the least integer greater or equal to x. The unit of this adjunction is the
law x ≤ fldxe, and the counit is dfl(a)e ≤ a. The natural bijection between hom(Fx, a) and hom(x, Ua)
is in this case given as exercise 1.2.4-3c of Volume I of Knuth, The Art of Computer Programming, which
asserts

dxe ≤ n if and only if x ≤ n

where dxe denotes the least integer greater or equal to x.

4.4. ADJUNCTIONS 73

4.4.1 Equivalence of three definitions of adjunction

In this section we give three definitions of adjunction and prove their equivalence. Common to these defini-
tions are a pair of categories X and A and a pair of functors F : X → A and U : A → X . As an instance we
may take X and A to be the categories of sets and monoids respectively, F the free functor turning a set Σ
into the free monoid Σ∗ on Σ, and U the forgetful functor taking a monoid to its underlying set.

Definition 3 An adjunction F a U is a natural isomorphism ϕxa : X (F (x), a)→ A(x, U(a)).

Here X (F (x), a) and A(x, U(a)) are functors X ◦ ×A → Set. Naturality of a transformation between these
functors means that for each morphism (f : x′ → x, h : a → a′) of X ◦ × A the following diagram (in Set)
commutes.

A(F (x), a) -
A(F (f), h)

A(F (x′), a′)

?

ϕxa

?

ϕx′a′

X (x, U(a)) -
X (f, U(h))

X (x′, U(a′))

Definition 4 An adjunction F a U is a coordinated isomorphism θ of comma categories (F ↓ A) and
(X ↓ U), where “coordinated” means that the isomorphism commutes with the projections from the comma
categories to X and A.

Such an isomorphism amounts to putting the following pairs of comma category morphisms in bijection.

F (x) -
F (f)

F (x′)

?

g

?

g′

a -
h

a′

θg,g′7→

x -
f

x′

?

ϕ(g)

?

ϕ(g′)

U(a) -
U(h)

U(a′)

The significance of coordination is that θ leaves f : x→ x′ and h : a→ a′ unchanged while transforming the
arrows of the objects of the comma categories (vertical in the diagrams) and replacing the F ’s above with
U ’s below.

Definition 5 An adjunction between functors F : X → A and U : A → X is a pair of natural transforma-
tions ηx : x→ U(F (x)) and εa : F (U(a))→ a satisfying the triangle identities

εF (x)F (ηx) = 1F (x) (41)

U(εa)ηU(a) = 1U(a). (42)

74 CHAPTER 4. CATEGORY THEORY

This definition presents an adjunction as a higher-dimensional isomorphism, namely as two identity 3-cells,
one between the identity 2-cell on F and the 2-cell εF (x)F (ηx) = 1F (x), the other between the identity 2-cell
on U and the 2-cell U(εa)ηU(a). In an ordinary isomorphism, one dimension down, η and ε are identity
2-cells.

Theorem 2 Definitions 1-3 are equivalent.

Proof: In fact the definitions are constructively equivalent, in the sense that every adjunction is fully
determined by the data of any one of these three definitions. We prove this by showing, for any given
adjunction, how to transform the data of definition i specifying that adjunction into the corresponding data
of definition i+ 1 (mod 3).

(i) Definition 1 → Definition 2.

Given ϕ as per Definition 1, we take the object part of the functor θ to be simply ϕ, and take the morphism
part to map each morphism of (F ↓ A) as follows.

F (x) -
F (f)

F (x′)

?

g

?

g′

a -
h

a′

θ7→

x -
f

x′

?

ϕ(g)

?

ϕ(g′)

U(a) -
U(h)

U(a′).

It is straightforward to see that this is a functor.

For this last square to be a morphism of (X ↓ U) it suffices that it commute, i.e. that U(h)ϕxa(g) =
ϕx′a′(g

′)f . This follows by diagram chases around two instances of the square in Definition 1 starting with
the element g of A(F (x), a). For the first instance we take x′ = x and f = 1x. Going round the top,
A(F (1x), h) sends g to hg thence to ϕx,a′(hg). The other way sends g to ϕxa(g) thence to U(h)ϕxa(g), so
we have U(h)ϕxa(g) = ϕxa′(hg). For the second instance we take a = a′ and h = 1a′ , and the corresponding
chase yields ϕxa′(g

′F (f)) = ϕx′a′(g
′)f . But by the commutativity of the second last square, hg = g′F (f),

and we now have U(h)ϕxa(g) = ϕxa′(hg) = ϕxa′(g
′F (f)) = ϕx′a′(g

′)f as desired.

Since ϕ is a bijection, so is θ. But while it is immediate that ϕ−1 is a bijection, the status of θ−1 as itself
an isomorphism of categories requires more work. Inspection shows it to be a functor. The argument that
it maps morphisms of (X ↓ U) to morphisms of (F ↓ A) is a straightforward dualization of the forward
argument, and we are done.

(ii) Definition 2 → Definition 3

We construct the transformations η and ε from θ according to

ηx = θ(1F (x))

εa = θ−1(1U(a)).

Here 1F(x) is in full the object (x, 1F (x), F (x)) of (F ↓ A), while 1U(a) is similarly the object (U(a), 1U(a), a)
of (X ↓ U). (Recall that objects of (F ↓ G) are triples (x, g : F (x)→ G(y), y).)

We now show that η and ε are natural and satisfy the triangle identities.

For naturality of η we have

4.4. ADJUNCTIONS 75

F (x) -
F (f)

F (x′)

?

1F (x)

?

1F (x′)

F (x) -
F (f)

F (x′)

ϕ7→

x -
f

x′

?

ηx

?

ηx′

U(F (X)) -
U(F (f))

U(F (x′))

For naturality of ε we have

F (U(a)) -
F (U(f))

F (U(a′))

?

εa

?

εa′

a -
f

a′

ϕ7→

U(a) -
U(f)

U(a′)

?

1U(a)

?

1U(a′)

U(a) -
U(f)

U(a′)

For 41 we have

F (U(a)) -
F (1U(a))

F (U(a))

?

1F (U(a))

?

εa

F (U(a)) -
εa

a

ϕ7→

U(a) -
1U(a)

U(a)

?

ηU(a)

?

1U(a)

U(F (U(a))) -
U(εa)

U(a)

Dually for 42 we have

F (x) -
F (ηx)

F (U(F (x)))

?

1F (x)

?

εF (x)

F (x) -
1F (x)

F (x)

ϕ7→

x -
ηx

U(F (x))

?

ηx

?

1U(F (x))

U(F (x)) -
U(1F (x))

U(F (x))

76 CHAPTER 4. CATEGORY THEORY

(iii) Definition 3 → Definition 1

From η and ε we define transformations ϕxa : X (F (x), a)→ A(x, U(a)) and ψxa : A(x, U(a))→ X (F (x), a)
as follows.

ϕxa(g : F (x)→ a) = U(g)ηx

ψxa(g′ : x→ U(a)) = εaF (g′)

We now show that ϕ and ψ are natural, and mutually inverse, i.e. ψ = ϕ−1, whence ϕ is a natural
isomorphism. We argue naturality as follows.

A(F (x), a) -
A(F (f), h)

A(F (x′), a′)

?

ϕxa

?

ϕx′a′

X (x, U(a)) -
X (f, U(h))

X (x′, U(a′))

Starting with g : F (x)→ a, chasing the diagram round the top takes us to hgF (f) and then U(hgF (f))ηx′ ,
which is U(h)U(g)U(F (f))ηx′ . Around the other way we pass through U(g)ηx to arrive at U(h)U(g)ηxf .

Now by naturality of η we have

x′ -
f

x

?

ηx′

?

ηx

U(F (x′)) -
U(F (f))

U(F (x))

We now show that ψxaϕxa and ϕxaψxa are identities. Expanding ψxaϕxa(g), we must show that εaF (U(g)ηx) =
g. From the naturality of η we have

F (U(F (x))) -
F (U(g))

F (U(a))

?

εF (x)

?

εa

F (x) -
g

a

4.5. MONADS 77

Hence

ψ(ϕ(g)) = εaF (U(g)ηx)
= εaF (U(g))F (ηx)
= gεF (x)F (ηx)
= g

The other inverse is argued dually.

4.4.2 Exercises

1. Show that α+ is a natural isomorphism.

2. Formulate commutativity laws for cartesian product and disjoint union as natural isomorphisms.

3. Show that the horizontal composition of two such natural transformations is a natural transformation.

4. Given parallel functors F,G,H : A→ B and F ′, G′, H ′ : B → C, prove the following interchange law for
four natural transformations σ : F → G, τ : G→ H σ′ : F ′ → G′, τ ′ : G′ → H ′.

(τ ′σ′) ◦ (τσ) = (τ ′ ◦ τ)(σ′ ◦ σ)

4.5 Monads

Let C be a category. A monad on C is a triple (T, η, µ) consisting of a functor T : C → C, a natural
transformation η : IC → T called the unit, and a natural transformation µ : T 2 → T (where T 2 denotes the
composition of T with itself) called the multiplication, making the following diagrams commute.

T 3 µ ◦ T- T 2

T 2

T ◦ µ

?
µ - T

?

µ

T
η ◦ T- T 2 �T ◦ η T

@
@
@
@

�
�

�
�

T
?

µ

==
==

==
==

==
==

==
==============

Here T ◦µ, µ◦T , η◦T , and T ◦η are all horizontal compositions. That is, (T ◦µ)x = T (µx), (µ◦T)x = µT (x),
(η ◦ T)x = ηT (x), and (T ◦ η)x = T (ηx) for all objects x of C.
Now T is a functor, but if we pretend for the moment that it is a set, then µ : T 2 → T would be a binary
operation while η : I → T would be a zeroary operation or constant. The first diagram would then express
the associativity of this operation, while the second would say that η was the identity for µ.

But although T is not a set, it is an object, namely an object of the category CC of endofunctors on C, whose
morphisms are all natural transformations between those endofunctors. Furthermore composition of these

endofunctors is an associative binary operation on CC , which we can think of as a kind of product, allowing
us to view T 2 as the product of T with itself.

This perspective makes (T, µ, η) a monoid object in the category of endofunctors on C. (For comparison an
ordinary monoid is a monoid object in the category of sets with product taken to be ordinary cartesian
product, namely a set together with an associative binary operation and an identity element.)

Examples

78 CHAPTER 4. CATEGORY THEORY

1. The identity monad on C. For any category C, (IC , 1IC , 1IC), i.e. the identity functor on C and two copies

of the identity natural transformation on that functor, is easily seen to satisfy the monad conditions.

2. The lift monad. Let T : Set→ Set be the functor X + 1 taking each set X to X + 1 defined as X ∪ {X}
(assuming as usual that sets cannot contain themselves—the important thing is for X + 1 to adjoin some
new element to X). Take η : ISet → T to be the transformation whose X-th component ηX : X → X + 1
satisfies ηX(x) = x. Define ηX : (X+1)+1→ X+1 as µX(x) = x for x ∈ X, and µX(X) = µX(X+1) = X.
Thus η is the evident embedding of X in X + 1 while µ identifies the two new elements in X + 1 + 1.

It is easily verified that η and µ are natural. The associativity square commutes because identifying three
elements can be done two at a time in any order. The left identity triangle commutes because its top edge
embeds X+1 in X+1+1 by sending X to X, which µ then identifies with X+1. The right identity triangle
commutes similarly except that X is sent to X + 1 which does not change the outcome of the identification.

3. The Kleene star monad. Let T : Set→ Set be the functor taking each set X to the set X∗ of finite strings
on X, and taking each function f : X → Y to the function T (f) : X∗ → Y ∗ which sends each word w ∈ X∗
to the result of replacing each letter x in w by the letter f(x). (Had we taken X∗ and Y ∗ to be monoids,
T (f) would have been a homomorphism, but we are here treating them as mere sets and so T (f) is merely
a function.) Let η : ISet → T be the transformation whose X-th component is ηX : X → X∗ defined as
mapping each element x ∈ X to the string whose one letter is x. And let µ : T 2 → T be the transformation
whose X-th component µX : X∗∗ → X∗ takes each string of strings in X∗∗ to their concatenation (“flatten”).

The naturality of each of η and µ is easily verified. The associativity square amounts to the assertion
that flattening a string of strings of strings over X to a string over X yields the same string whether the
flattening starts from the outside or the inside. For example ((ab)(a))((a)(bb)) flattens to abaabb via either
(ab)(a)(a)(bb) (remove the outside parentheses first) or (aba)(abb) (the inside parentheses). And the top
edges of the identity triangle amount to parenthesizing respectively the individual letters of each string in
X∗ to make it a string of X∗∗, so abb becomes (a)(b)(b), or parenthesizing the whole string, so abb becomes
(abb). In either case µ strips the parentheses out again to give back the original string.

4. The power set monad. Let ℘ : Set → Set be the covariant power set functor which maps f : X → Y
to the direct image function ℘(f) : ℘(X) → ℘(Y), namely the function mapping each subset X ′ ⊆ X to
{f(x)|x ∈ X ′}. This example is as for Example 3 with sets in place of strings, i.e. we write {a, b} instead of
ab and do not distinguish it from either {b, a} or {a, b, b}. The definitions of η and µ, and the verification of
the monad conditions, are treated entirely analogously. Note that µ is simply arbitrary (“big”) union

⋃
.

5. The term monad. Given any variety, let T : Set→ Set be the functor sending each set X to the set of all
terms on X (the elements of the free algebra F (X)), and sending each function f : X → Y to the function
T (f) : T (X) → T (Y) which, given a term t in T (X), produces the term in T (Y) obtained by substituting
f(x) for each occurrence of x in t for all x ∈ X. Taking Example 3 to be the case of this for the variety Mon
of monoids, the appropriate generalization of that example makes ηX the function that maps each x ∈ X
to the term x, and makes µX the function that flattens each term of terms to a term by performing the
evident substitutions. (If we picture T (T (X)) as a tree with a boundary separating the upper term from
the lower terms, then µ simply erases that boundary.) The generalization then extends in the obvious way
to the verification of the monad conditions.

Examples 1 and 2 are also cases of the term monad, for respectively the empty signature (where the only
terms on X are the elements of X themselves) and the signature consisting of a single constant (the variety
of pointed sets).

Whether Example 4 is a case of Example 5 is a very nice question. That we understood it as a small
twist on Example 3 suggests that it should be. All we need is a family of operations corresponding to
concatenation and identity for monoids. But if we insist that the signature of a variety contain only finitely
many operations, or less stringently that it be indexed by some set, then Example 4 cannot be understood
as arising from any variety. If however we allow a signature to be indexed by a proper class then this allows

4.5. MONADS 79

us to view the category of complete semilattices as a variety whose signature consists of a proper class of
operations

∨
Y ranging over all sets Y , with each such operation taking as argument a Y -tuple (defined as

a function from Y to L) of elements of the given complete semilattice L and returning its sup. Example 4
then arises as the case of Example 5 for the variety of complete semilattices.

6. Given an adjunction (F,U, η, ε) (the data of Definition 3 of an adjunction, with F : C → D and U : D → C),
the triple (UF, η, U ◦ ε ◦ F) is a monad on C. Example 5 is the special case of this where C = Set, D is a
variety, and F and U are the associated free and forgetful functors constituting the left and right adjoints
of an adjunction between C and D.

We now verify the monad conditions. Certainly UF is an endofunctor on C. Furthermore η : I → UF and
U ◦ ε ◦ F : UFUF → UF are natural, being built from naturals by horizontal composition, and are of the
appropriate types, respectively I → T and T 2 → T .

To verify the associativity square, note that its vertices are functors and its edges natural transformations,
composed at the upper right and lower left corners by vertical composition. The first of these composites
can be expanded as the 2-category diagram

C C C C

⇓ ε

C D

U

-
F

-

C D =====================

U

-
F

-

D

U

-
F

-

C

⇓ ε

D =====================

U

-
F

-

D =====================

F

-

D

U

-

and the second as

C C C C

⇓ ε

C D =====================

U

-
F

-

D

U

-
F

-

C D

U

-
F

-

C

⇓ ε

D =====================

F

-

D =====================

U

-

D

U

-
F

-

.

But each of these compose to the same natural transformation from UFUFUF to UF , namely

C C C C

⇓ ε ⇓ ε

D =====================

U

-
F

-

D =====================

U

-
F

-

D

U

-
F

-

Hence the two paths of the associativity square are equal by the interchange law.

80 CHAPTER 4. CATEGORY THEORY

Finally we show the two identity triangles commute by expanding µ(η ◦ T) as the 2-cell diagram

C C ====================== C

⇓ ε ⇓ η

D =====================

U

-
F

-

D

U

-
F

-

and similarly µ(T ◦ η) as

C ====================== C C

⇓ η ⇓ ε

D =====================

U

-
F

-

D

U

-
F

-

.

The two triangle identities in Definition 3 of adjunction ensure that each of these composites is the identity
natural transformation on UF = T .. (So we obtained the identity triangles from the triangle identities.)

Our six examples form a pyramid whose base consists of Examples 1-4 and whose apex is Example 6, the
most general among these examples. We now show that Example 6 is in fact the most general among all
monads.

Theorem 3 Every monad (T, η, µ) on C is isomorphic to some monad (UF, η, U ◦ ε ◦ F) where (F,U, η, ε)
is an adjunction, with C the domain of F and the codomain of U .

The burning question here is, what to take as the codomain D of F (and hence domain of U) for this
adjunction? We give two proofs, named for their respective discoverers. In both proofs the monad can be
understood as an equational theory and F can be understood as mapping objects of C to their associated free
objects (free algebras when C = Set), and U as its associated forgetful functor. The proofs are distinguished
by their choice of D, respectively the pseudovariety (just the free algebras, suitably understood) and the
variety (all the algebras, again suitably understood) associated with the equational theory. Both categories
are constructed using nothing but the monad (T, η, µ) itself.

Proof: (Kleisli) For the category D, Kleisli takes the objects to be those of C. The morphisms are taken
to be all morphisms of C of the form {f : a → T (b)}, with sD(f) = a (= sC(f)) and tD(f) = b (which is
not in general tC(f)). Given f : a→ T (b) and g : b→ T (c), the composite gf is defined as µcT (g)f , that is,

a
f→ T (b)

T (g)→ T (T (c))
µc→ T (c). The identity at a is defined as ηa.

For the object part of F and U , take F to be the identity on objects of C and U to be T . For the morphism

part, take F (a
f→ b) to be a

ηa→ T (a)
T (f)→ T (b), and take U(a

f→ b) (bearing in mind that a
f→ b in D is

a
f→ T (b) in C) to be T (a)

T (f)→ T (T (b))
µb→ T (b). As part of Exercise 1 below, UF = T .

Lastly, take the unit η of the adjunction to be that of the monad, and take the counit ε to have for its a-th
component εa the identity morphism 1T (a). As Exercise 1, complete the proof.

Proof: (Eilenberg-Moore)

We begin by specifying the category D. Given a monad (T, η, µ) on C, define a T -algebra to be a pair (a, e)
where a is an object of C called the carrier, and e : T (a)→ a is a morphism of C, called the evaluation map,
such that the following diagrams commute.

4.5. MONADS 81

T (T (a))
T (e)- T (a)

T (a)

µa

? e - a
?

e

a
ηa- T (a)

a
?

e1

-

Define a homomorphism of T -algebras to be a morphism f : a → b of C making the following diagram
commute.

T (a)
ea - a

T (b)

T (f)

? eb - b
?

f

Homomorphisms of T -algebras compose vertically in the evident way. The identity on T (a)
e→ a is 1a, the

identity on a. This completes the definition of the category D.

Now the algebras of the variety in Example 5 constitute an example of T -algebras so constructed. By
consideration of this connection the reader should now be able to construct (F,U, η, ε) (Exercise 2).

Exercises

1. Complete the Kleisli proof.

2. Complete the Eilenberg-Moore proof.

