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Abstract

This paper presents an abstract, mathematical formula-
tion of classical propositional logic. It proceeds layer by
layer: (1) abstract, syntax-free propositions; (2) abstract,
syntax-free contraction-weakening proofs; (3) distribution;
(4) axiomsp ∨ p.

Abstract propositions correspond to objects of the cate-
gory G(RelL) whereG is the Hyland-Tan double glueing
construction,Rel is the standard category of sets and rela-
tions, andL is a set of literals. Abstract proofs are mor-
phisms of a tight orthogonality subcategory ofG≤(RelL),
where we defineG≤ as a lax variant ofG. We prove
that the free product-sum category (contraction-weakening
logic) over L is a full subcategory ofG(RelL), and the
free distributive lattice category (contraction-weakening-
distribution logic) is a full subcategory ofG≤(RelL). We
explore general constructions for adding axioms, which are
notRel-specific or (p ∨ p)-specific.

1 Introduction

Abstract propositions. Typically logicians define a
proposition or formula as a labelled tree. Using de Morgan
duality (¬(A ∧ B) = ¬A ∨ ¬B etc.) one needs only trees
labelled by literals (variables and their duals) and constants
on leaves and∨ and∧ on internal nodes. To quotient by as-
sociativity and commutivity, one may use graphs (cographs
or P4-free graphs [CLSB81]), for example,

(p ∨ q) ∧ (p ∨ p) 7→
p

q

p

p

@
@@�
��

drawing an edge between leaves iff they meet in the parse
tree at a∧. In this paper we go a step further, and define an
abstract propositionas a set ofleavestogether with a set of
subsets, calledresolutions. For example,����

����
p

q

p

p

has the four leaves of the formula/graph depicted earlier,
and two resolutions, the maximal independent sets (maxi-
mal co-cliques) of the graph. Any syntactic proposition can
be reconstructed from its abstract leaf/resolution presenta-
tion. (The terminology ‘resolution’ here comes from the
definition of MALL proof net [HG03].)

A key advantage of this abstraction is a crisp mathemat-
ical treatment of the logical units/constants false0 and true
1. In the traditional syntactic world,0 and1 have the same
stature as literals, taking up actual ink on the page as la-
belled leaves. They are artificially dual to each other, by
fiat, and artificially act as units for syntactic∨ and∧. The
graphical representation gets closer to a nice treatment of
units: the empty graphε is a unit for the operations∨ and∧
(union and join) on graphs; however then one has degener-
acyε = 0 = 1, so one must resort once again to artificially
promoting0 and1 to actual labelled vertices, and the units
remain ad hoc.

Abstract propositions succeed in having both units
empty (no leaves), hence mathematically crisp as units for
the operations∨ and∧, without identifying them (as in the
graph caseε = 0 = 1):

��
��

1
(true)

0
(false)

The unit1 has no leaves and no resolution, and0 has no
leaves with one (empty) resolution.

Abstract proofs. Abstract propositions correspond to cer-
tain objects of the categoryG(RelL) studied in [Hug04a],
where

• G is the Hyland-Tan double glueing construction
[Tan97],

• Rel is the standard category of sets and relations, and

• L = {p, p, q, q, . . .} is a set of literals.

Thus aG(RelL) morphismA → B provides an off-the-
shelf notion of an abstract proof ofB fromA. By definition,
aG(Rell) morphism is a certain kind of binary relation be-
tween the leaves ofA and the leaves ofB. Figure 1 shows
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Figure 1. The four abstract proofs p ∧ p → p ∧ p, and dually, p ∨ p → p ∨ p. Each proof is a G(RelL)
morphism, a binary relation between leaves which satisfies the resolution condition. The top row
shows the eight morphisms in syntactic form. The bottom row shows the same morphisms between
the corresponding abstract propositions, where the target propositions are specified by their reso-
lutions (curved regions), and the source propositions by their coresolutions (rectangular regions).
Note that the resolution condition is satisfied: there is a unique edge between any output resolution
(curved region) and input coresolution (square region). The resolution condition characterises free
product-sum categories.

the four morphismsp ∧ p → p ∧ p, and dually, the four
morphismsp∨ p → p∨ p. By definition of double glueing,
a morphismR must satisfy:

(R) Resolution condition.R pulls resolutions backwards
and pushes coresolutions forwards.

More precisely,R : A → B maps resolutions ofB to res-
olutions ofA, and coresolutions ofA to coresolutions of
B, where a coresolution ofX is a resolution of its dualX.
In the special case thatA andB are abstract propositions,
this coincides with the usual resolution condition on MALL
proof nets [HG03]:

(R′) Resolution condition.R has a unique edge between
any output resolution and input coresolution.1

We prove:

Theorem.G(RelK) contains as a full subcategory the
free product-sum category generated by the setK.

Thus we obtain an abstract, syntax-free formulation of pure
contraction-weakening logic over a set of atomsK: every
morphism (abstract proof)A → B is a composite of the

1Recall from [HG03] the resolution condition on a setR of linkings on
a sequent or propositionΓ: R has a unique linking on any resolution of
Γ. In the current pure additive (i.e. product-sum) setting every linking has
just one edge,i.e., R is simply a set of edges. The main text quotes this
condition withΓ = A → B = A∨B. A resolution ofA∨B is a union
of a coresulution ofA and a resolution ofB.

units of the product/sum adjunctions, the natural transfor-
mations (inferences)

πi : A1 ∧A2 → Ai (projection)
ιi : Ai → A1 ∨A2 (injection)
δ : A → A ∧A (diagonal)
ε : A ∨A → A (codiagonal)

Adding distribution. The obvious candidates for a distri-
bution

A ∧ (B ∨ C)
�
�
�
�

@
@

@
@

�
�
�
�

B
B
B
B

(A ∧ B) ∨ (A ∧ C)

A ∧ (B ∨ C)

(A ∧ B) ∨ C

fail the resolution condition. They are notG(RelL) mor-
phisms. Condition (R) fails because the image of an output
resolution is strictly larger than an input resolution:

A

����
A C

�� � (1)

and uniqueness fails in the MALL resolution condition (R′)
since there are two edges between an output resolution and
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Figure 2. Three approaches to incorporating axioms p∨p. The diagrams above illustrate composition
schematically. (a) Define an abstract classical proof f : A → B as a G≤(RelL) morphism f : AX ∧A →
B ∨ CUT, where the (potentially infinite) universal axiomAX is the product of all axioms p ∨ p and the
universal cutis its dual CUT = ¬AX, the sum of all cuts p ∧ p. (b) Define an abstract classical proof
A → B as a G≤(RelL) morphism a ∧ A → B ∨ β, where a is any product of axioms p ∨ p and β is any
sum of cuts p ∧ p. In (a) and (b), linear distributivity is hidden at the interface layer. (c) Follow the
usual linear logic pattern and relax the Rel morphisms of G≤(RelL) to Link morphisms, where Link is
the category of sets and linkings. Composition is the usual alternating path composition ( i.e., the
‘smooth’ paths in the example above).

an input coresolution:

A C

A C
�� � (2)

(Both failures depicted above apply to both distributions.)
These failures suggest naively relaxing the resolution con-
ditions, to admit distribution:

(R≤ ) Lax resolution condition.R pulls resolutions back to
super-resolutions and pushes coresolutions forwards to
super-coresolutions.

Here a super-(co)resolution is a superset of a (co)resolution.
Thus we have relaxed (R) in the obvious way, admitting
the first failure (1) depicted above, by allowing the images
of (co)resolutions to spill beyond (co)resolutions. Similarly,
we relax (R′) in the obvious way to admit the second failure
(2) depicted above, by simply dropping uniqueness:

(R′
≤ ) Lax resolution condition.R has an edge between every

output resolution and input coresolution.

Just as (R′) coincided with (R) on abstract propositions, so
(R′

≤ ) coincides with (R≤ ).

We define thelax double glued categoryG≤(RelK) us-
ing (R≤ ) in place of (R). Surprisingly, this completely
naive relaxation of the resolution conditions, stimulated by
the distribution failures, works:

Theorem. G≤(RelK) contains as a full subcategory
the free distributive lattice category generated by the
setK.

Dos̆en and Petrić [DP04] define a distributive lattice cat-
egory as a product-sum category with a distribution, sat-
isfying certain coherence laws. Thus we obtain an ab-
stract, syntax-free formulation of contraction-weakening-
distribution logic over a set of atomsK.

Axioms. The final step to an abstract, syntax-free for-
mulation of classical propositional logic is to add axioms
1 → p ∨ p (hence by duality, also cutsp ∧ p → 0). We ex-
plore three natural but distinct ways of achieving this. The
first two constructions are quite general, and are not specific
to our Rel-based abstract proposition approach, nor to the
specific axiomsp∨ p, q∨ q, . . .. The third approach is more
ad hoc and limited, beingRel-specific and (p ∨ p)-specific,
but the style is more conventional in the literature. The three
approaches are portrayed schematically in Figure 2.

(a) Universal axiom construction.Let the (potentially in-
finite) abstract propositionAX, theuniversal axiom, be
the product of allp∨p for complementary literals inL.
Its dualCUT = ¬AX is theuniversal cut. Theuniversal
boolean categoryBu

L has the objects ofG≤(RelL) and
a morphismf : A → B is aG≤(RelL) morphism

AX ∧A

?
f

B ∨ CUT
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Compositionf ; g is defined in the obvious way, via
linear distributionl at the interface. See Figure 2(a).

(b) Local axiom construction.The local boolean category
Ba

L has objects as above, but a morphismA → B is a
G≤(RelL) morphisma ∧ A → B ∨ β for a a product
of axioms andβ a sum of cuts. Composition is again
defined in the obvious way, via linear distribution. See
Figure 2(b).

(c) Linkings.We follow the standard recipe in linear logic
and geometry of interaction [Gir87], imitating the step
from pure linearly distributive categories (two-sided
proof nets) to those with negation (one-sided nets)
[BCST96]. Thelinking boolean categoryBl

L is ob-
tained fromG≤(RelL) by extending the homsets from
Rel to the categoryLink of sets and linkings. A link-
ing X → Y is a simple graph onX + Y , with com-
position along alternating paths, like Kelly-Mac Lane
graphs [KM71] (see Figure 2(c)).

Related work. The categoryG(RelK) was studied ex-
tensively in [Hug04a], where it was shown to fully em-
bed the category of biextensional Chu spaces overK
[Bar79, Bar98]. The definition of abstract proposition goes
via a tight orthogonality [HS03] inG(RelK), related to
totality spaces [Loa94]. The observation that the MALL
resolution condition [HG03] characterises the free product-
sum category was in [Hug02]2 in a more syntactic guise
(via the deductive system in [CS01]); prior to that, Hongde
Hu had already characterised the free product-sum cate-
gory in a similar manner, usingP4-free graphs (contractible
coherence spaces) [Hu99]. In a syntactic setting, [LS05]
also observes that relaxing uniqueness in the MALL reso-
lution condition yields a classical proof net. The classical
proof nets sketched in [Gir91] are fleshed out in [Rob03].
An abstract notion of classical proof net is presented in
[Hug04b]. Categorical generalisations of boolean algebras
are presented in [FP04] and [DP04].

2 Abstract propositions

Let (X, S) be a set system,i.e., a setX and a setS of
subsets ofX. Subsetss, t ⊆ X areorthogonal, denoted
s⊥ t, if they intersect in a single point. Theorthogonal of
S is

S⊥ = {t ⊆ X : t⊥ s for all s ∈ S}

Fix a set of literalsL = {p, p, q, q, . . .}.

2Read this technical report with a pinch of salt, as the proof is far longer
than it needs to be. At the time I wrote it, I was unaware of Hu’s related
work [Hu99]; thus [Hug02] was never published. Thanks to Robin Cockett
and Robert Seely for pointing out the relationship with Hu’s work.

DEFINITION 1 An abstract proposition(X, S) is a set X
of leaves, each labelled by a literal, and a set S of subsets
of X , called resolutions, satisfying:

• Double orthogonal:S⊥⊥ = S.

Every syntactic∧∨-formulaφ over the set of literalsL (e.g.
(p∨q)∧ (p∨p)) defines an abstract formula(X, S) with X
the leaves ofφ: let (X, E) be the simple graph with an edge
xy ∈ E iff the leavesx andy meet at a∧ in the parse tree
of φ, and letS be the set of maximal stable sets of(X, E).
(A stable set of a graph is a maximal set of vertices which
contains no edge.) This representsφ modulo associativity
and commutativity of∧ and∨. See page 1 for an example.
Any abstract proposition so obtained issyntactic.

We define the following constants and operations.

• True. 1 = (∅, ∅), no leaves and no resolutions.

• False. 0 = (∅, {∅}), no leaves and the empty resolu-
tion.

• Negation/not. ¬(X, S) = (X,S⊥), whereX relabels
positive literalsp to negative literalsp, and vice versa.

• Sum/union/or.

(X, S) ∨ (Y, T ) = (X + Y, {s + t : s ∈ S, t ∈ T}).

Thus the sumA∨B takes disjoint union on leaves, and
a resolution ofA ∨B is the union of a resolution inA
and a resolution ofB.

• Product/join/and. A ∧B = ¬(¬A ∨ ¬B).

Note that¬¬A = A, A ∧ 1 = A andA ∨ 0 = A.

Abstract truth. An abstract proposition istrue if every
resolution contains a complementary pair of leaves (e.g.p
and p). Thus the constant1 defined above (depicted on
page 1) is true (since it has no resolution) but0 is not (since
it has an empty resolution). This definition of truth simply
extends a well-known characterisation of truth for syntactic
formulas: a syntactic formulaA is true iff every component
of its conjunctive normal form3 CNF(A) contains a com-
plementary pair, and resolutions ofA are in bijection with
components ofCNF(A). The abstract leaf/resolution repre-
sentation of propositions can be seen as “CNF + superpo-
sition information”, where the latter indicates which literal
occurrences in different components ofCNF(A) came from
the same occurrence inA.

3The result of exhaustively applying (co)distributionA ∨ (B ∧ C) →
(A ∨B) ∧ (A ∨ C).
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3 Abstract proofs

Abstract propositions correspond to objects of the cat-
egoryG(RelL) whereG is the Hyland-Tan double glue-
ing construction andRel is the standard category of sets
and relations:(X, S) corresponds to theG(RelL) object
(X, S⊥, S). This category fully embeds the category of
biextensional Chu spaces overL [Hug04a]. Abstract pro-
postions correspond precisely to the objects of the tight or-
thogonality subcategory, in the sense of [HS03], fors⊥ t
defined above. The definitions of0, 1,∧ and∨ above corre-
spond to the standard initial object, terminal object, product
and sum in a tight orthogonality category.

The morphisms ofG(RelL) provide a ready-made no-
tion of abstract proof. Acoresolutionof an abstract propo-
sition (X, S) is an element ofS⊥. An abstract proof
(X, S) → (Y, T ) between abstract propositions is a binary
relationR betweenX andY which respects labelling,i.e.,
xRy only if x andy are labelled with the same literal, and
satisfies:

(R) Resolution condition.R pulls resolutions backwards
and pushes coresolutions forwards.4

More precisely, the inverse image ofR is a functionT → S
and the direct image ofR is a functionS⊥ → T⊥. As
discussed in the Introduction, this coincides with the usual
resolution condition on MALL proof nets [HG03]:

PROPOSITION1 Between abstract propositions, the reso-
lution condition (R) on R : A → B coincides with:

(R′) Resolution condition.R has a unique edge between
any output resolution and input coresolution.

Proof. SupposeR satisfies (R), let b be a resolution ofB,
and letα be a coresolution ofA. Let a be the resolution of
A which is theR-image ofb. By double orthogonality,a
andα intersect at a single leafx. SinceR mapsb ontoa,
we havexRy for some leafy in b. This provides the unique
edge betweenα andb, for if xRy′ for some othery ∈ b, the
coresolutionR(α) of B would intersectb in two leaves, a
contradiction.

Conversely, supposeR satisfies (R′), and letb be resolu-
tion of B. Given a coresolutionα of A write α̂ for the leaf
of A = (X, S) which is in the unique edge ofR between
α andb. Thus theR-image ofb is a = {α̂ : α ∈ S⊥}.
Sincea intersects eachα in exactly one leaf, namelŷα, by
the double orthogonality conditiona is resolution. �

Let CWK be the full subcategory ofG(RelK) whose ob-
jects are syntactic propositions.

4For logical reaons, we have taken resolutions as the contravariant part,
so the “co” is opposite to usualG(C). In the generalG(C) case, the sets
of resolutions and coresolutions are independent, rather than the one deter-
mining the other by orthogonality, as we have with abstract propositions.

THEOREM 1 CWK is the free product-sum category gen-
erated by the set K.

Proof. By the Whitman-style theorem for product-sum
categories in [CS01], it essentially suffices to show that
CWK is soft in the sense of [Joy95]: every morphism
A ∧ B → C ∨ D factors through a projection on the left
or an injection on the right. If softness failed, there would
be edgesA–C andB–D (or A–D andB–C), breaking the
resolution condition. �

4 Distribution forces lax resolution

The Introduction discussed how the obvious candidates
for distribution fail the resolution condition. We proceed
completely naively, and relax the resolution condition on a
binary relationR in the obvious way to accomodate distri-
bution.

(R≤ ) Lax resolution condition.R pulls resolutions back to
super-resolutions and pushes coresolutions forwards to
super-coresolutions.

Here a super-(co)resolution is a superset of a (co)resolution.

(R′
≤ ) Lax resolution condition.R has an edge between every

output resolution and input coresolution.

PROPOSITION2 Between abstract propositions, the condi-
tions (R≤ ) and (R′

≤ )coincide.

Proof. Similar to the proof of Proposition 1. �

Define the lax double glued categoryG≤(RelK) using
(R≤ ) in place of (R). (It is relatively easy to see that com-
position of binary relations preserves the lax resolution con-
dition.) ThisG≤ is a general lax double glueing construc-
tion G≤(C) only when the homsets ofC are equipped with
a suitable≤ relation. In the caseC = Rel (or RelK), ≤ is
the inclusion order.

The abstract propositions0 and1 remain initial and ter-
minal in G≤(RelK), sinceG≤(RelK) remains structured
overRel.

PROPOSITION3 In the lax setting, ∧ and ∨ continue to be
product and sum on abstract propositions, i.e., in the tight
orthogonality subcategory of G≤(RelK).

Proof. Straightforward from the definition of the lax reso-
lution condition. �

Let DK be the full subcategory ofG≤(RelK) whose ob-
jects are syntactic propositions. Adistributive lattice cat-
egory is a category with products, sums and a distribution,
satisfying certain coherence conditions [DP04].
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THEOREM 2 DK is the free distributive lattice category
generated by the set K.

The proof uses two key factorisation lemmas.

LEMMA 1 (DISTRIBUTION FACTORISATION) Any DK

morphism R : A ∧ (B ∨ C) → D factorises through
distribution d, i.e., there exists R′ such that R equals

A ∧ (B ∨ C) d−→ (A ∧B) ∨ (A ∧ C) R′

−→ D.

Proof. Coresolutions ofA ∧ (B ∨ C) are in bijection with
coresolutions of(A∧B)∨(A∧C). Thus theR′ induced by
R in the obvious way (duplicating every edge from a leaf of
A) is well-defined, and factorises through distribution.�

Let mix mA,B : A ∧B → A ∨B be the composite

A ∧B → A ∧ (Z ∨B) → (A ∧ Z) ∨ (A ∧B) → A ∨B

of injection, distribution and a two projections, for some
Z. Thus the binary relation ofmA,B is simply the identity
between leaves.

LEMMA 2 (MIX -SOFTNESS FACTORISATION) Any DK

morphism R : A → B with A a pure product5 and B a
pure sum is mix-soft: unless R the identity on a single leaf,
it factorises through an injection, a projection, or mix.

Proof. If any leaf is not covered,R factorises through
an injection or an injection. Otherwise, assumingR is not
the identity on a single leaf, it factorises through mix at
whichever ofA or B contains more than one leaf. �

Proof (of Theorem 2).Coherence of distributive lattice cat-
egories with respect to a faithful functor toRel was proved
in [DP04], andRel is the underlying morphism category of
G≤(RelK). Thus we need only show that every morphism
of DK is canonical,i.e., generated from the canonical maps
defining a distributive lattice category.

GivenR : A → B, using the distrubution factorisation
lemma we may assumeA is in disjunctive normal form (a
sum of products of leaves), and sinceDK has sums, we may
further assumeA is a pure product of leaves. Dually, we
may assumeB is a sum of leaves. Apply the mix-softness
factorisation lemma. �

Note that the above proof, in terms of the two factorisation
lemmas, amounts to a Whitman-style characterisation theo-
rem for free distributive lattice categories.6 (See [CS01] for
the pure product-sum case.)

5I.e., A is a product of one or more leaves,i.e., A = (X, S) with S
comprising every singleton{x} for x ∈ X.

6Hence the generality of defining mix as a distribution composite,
rather than directly as the identity binary relation between leaves.

5 Axioms

So far, with the lax double glued categoryG≤(RelL),
we have an abstract setting for contraction-weakening-
distribution logic. The setting is canonical in the sense that
it fully embeds the free distributive lattice category. The
categoryG≤(RelL) is also equipped with a duality¬, a
contravariant full and faithful functor (a de Morgan dual-
ity). The final step to an abstract, syntax-free formulation
of classical propositional logic is to add axioms1 → p ∨ p
(hence by duality, also cutsp ∧ p → 0).

We explore three natural but distinct ways of achieving
this. Each was discussed and motivated in the Introduction,
and the idea behind composition was sketched in Figure 2.

The first two constructions are quite general, and are not
specific to ourRel-based abstract proposition approach, nor
to the specific axiomsp ∨ p, q ∨ q, . . .. The third approach
is more ad hoc and limited, beingRel-specific and (p ∨ p)-
specific, but the style is more conventional in the literature,
e.g.[KM71, Gir87, BCST96].

5.1 Universal axiom construction

Let the (potentially infinite) abstract propositionAX, the
universal axiom, be the product of allp ∨ p for comple-
mentary literals inL. Its dualCUT = ¬AX is theuniversal
cut. Theuniversal boolean categoryBu

L has the objects of
G≤(RelL) and a morphismf : A → B is a G≤(RelL)
morphism

AX ∧A

?
f

B ∨ CUT

Compositionf ; g is defined in the obvious way, via linear
distributionl at the interface:

AX ∧A

〈π1, f〉
?

AX ∧ (B ∨ CUT)

?
l

(AX ∧B) ∨ CUT

?
[g, ι2]

C ∨ CUT

On syntactic propositions, there is a morphismA → B iff
A ⇒ B = ¬A ∨ B is true. Anabstract classical proof
of A in Bu

L is a morphism1 → A. ThusA has an abstract
classical proof inBu

L iff it is true.
The universal axiom construction is quite general. Writ-

ing the product pairing〈h, k〉 : U → V ∧W of h : U → V
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andk : U → W and sum pairing[h, k] : U ∨ V → W of
h : U → W andk : V → W with explicit adjunction units,

(AX ∧A) ∧ (AX ∧A)

π1 ∧ f
?

AX ∧ (B ∨ CUT)

?

AX ∧A

δ

?
l

(AX ∧B) ∨ CUT

?
g ∨ ι2

(C ∨ CUT) ∨ (C ∨ CUT)

?
ε

C ∨ CUT

we see that we can apply the universal axiom construction
to a category equipped with

• a tensor, with a linear distribution over its dual;

• a choice of axioms to be tensored together in forming
AX (possibly an infinite tensor);

• indexed families of morphisms for contraction (typed
like ε), weakening (typed like inclusionιi), copying
(typed likeδ) and deletion (typed like projectionπj);

• sufficient coherence laws to ensure associativity of the
above composition by diagram pasting.

5.2 Local axiom construction

This construction is similar to the one above. Thelocal
boolean categoryBa

L has objects as above, but a morphism
A → B is aG≤(RelL) morphisma ∧ A → B ∨ β for a
a product of (zero or more) axiomsp ∧ p andβ a sum of
(zero or more) cutsp ∧ p. Composition is again defined in
the obvious way, via associativity and linear distribution at
the interface:

?

(b ∧ a) ∧A

assoc

b ∧ (a ∧A)

id ∧ f
?

b ∧ (B ∨ β)

?
l

(b ∧B) ∨ β

?
g ∨ id

(C ∨ γ) ∨ β

?
assoc

C ∨ (γ ∨ β)

See Figure 2(b) for a schematic supressing canonical maps.
In a manner similar to the universal axiom construction, the
local axiom construction generalises to a category equipped
with

• a tensor, with a linear distribution over its dual;

• a choice of axioms to be tensored together;

• indexed families of morphisms for contraction (typed
like ε), weakening (typed like inclusionιi), copying
(typed likeδ) and deletion (typed like projectionπj);

• sufficient coherence laws to ensure associativity of the
above composition by diagram pasting.

In contrast to the universal construction, the local construc-
tion does not require the existence of an object correspond-
ing to a possibly infinite tensor of axiomsp ∨ p.

5.3 Linkings

Although the following approach is more ad hoc, in that
it does not generalise as the two constructions above, it is a
standard idea in linear logic [Gir87], traceable as far back
as Kelly-Mac Lane graphs for closed categories [KM71].

Let Link denote the category of sets and linkings, where
a linking X → Y is a simple graph on the disjoint union
X + Y . Composition is the usual alternating path composi-
tion (see Figure 2(c)). Let the categoryLinkL be the hom-
set extension ofG≤(RelL) obtained by permitting arbitrary
linkings between leaves which respect labelling (with edges
of A → B within A or B going between dual leavesp—p).
SinceLink is compact closed under disjoint union,LinkL is
star-autonomous under∧. Let Bl

L, thelinking boolean cat-
egory, be the restriction ofLinkL to syntactic propositions
while retaining the lax MALL resolution condition (R′

≤ )
from G≤(RelK), i.e., there is an edge in every resolution
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of A ⇒ B = ¬A ∨ B. Since the ambient categoryLinkL

is star-autonomous, and objects are syntactic, by a routine
structural induction (R′

≤ ) is preserved by composition. It
is immediate from (R′

≤ ) that A ⇒ B is true iff there is a
morphismA → B. The lax MALL resolution condition is
also studied in [LS05], in a more syntactic setting.
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