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Proofs are traditionally syntactic, inductively generated objects. This paper
reformulates first-order logic (predicate calculus) with proofs which are graph-
theoretic rather than syntactic. It defines a combinatorial proof of a formula ϕ
as a lax fibration over a graph associated withϕ. The main theorem is soundness
and completeness: a formula is a valid if and only if it has a combinatorial proof.

1 Introduction

Proofs are traditionally syntactic, inductively generated objects. For example, Fig. 1 shows a syntac-
tic proof of ∃x(px⇒∀ypy). This paper reformulates first-order logic (predicate calculus) [Fre79]
with proofs which are graph-theoretic rather than syntactic. It defines a combinatorial proof of a
formula ϕ as a lax graph fibration f : K→ G(ϕ) over a graph G(ϕ) associated with ϕ, where K is
a partially coloured graph. For example, if ϕ = ∃x(px⇒∀ypy) then G(ϕ) is

x
px

y
py

and a combinatorial proof f : K→ G(ϕ) of ϕ is

x
px

y
py

The upper graph is K (two coloured vertices and three uncoloured vertices), the lower graph
is G(ϕ), and the dotted lines define f. Additional combinatorial proofs are depicted in Fig. 2. The
combinatorial proof f : K→ G(ϕ) above can be condensed by leaving G(ϕ) implicit and drawing
K over the formula ϕ:

∃x(px⇒∀ypy)

The reader may contrast this with the syntactic proof of the same formula in Fig. 1. The four
combinatorial proofs of Fig. 2 are rendered in condensed form in Fig. 3.

Themain theoremof this paper is soundness and completeness: a formula is valid if and only if it
has a combinatorial proof (Theorem6.4). The propositional fragment was presented in [Hug06a].

*I conducted this research as a Visiting Scholar at Stanford then Berkeley. Many thanks to my hosts, Vaughan Pratt
(Stanford Computer Science), Sol Feferman (Mathematics) and Wes Holliday (Berkeley Logic Group). I am extremely
grateful for very helpful feedback from Willem Heijltjes, Lutz Straßburger, Grisha Mints, Sam Buss, Martin Hyland, Marc
Bagnol and Nil Demirçubuk. In memoriam Sol and Grisha.
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py ⊢ py
weaken

py ⊢ py, ∀ypy
implies

⊢ py,py⇒∀ypy
there exists

⊢ py, ∃x(px⇒∀ypy)
for all

⊢ ∀ypy, ∃x(px⇒∀ypy)
weaken

py ⊢ ∀ypy, ∃x(px⇒∀ypy)
implies

⊢ py⇒∀ypy, ∃x(px⇒∀ypy)
there exists

⊢ ∃x(px⇒∀ypy), ∃x(px⇒∀ypy)
contract

⊢ ∃x(px⇒∀ypy)

Figure 1. A syntactic proof of ∃x(px⇒∀ypy), in Gentzen’s sequent calculus LK [Gen35].

x px y py pfy

(∀xpx) ⇒ ∀y (py∧pfy)

qab qba x
y
qxy

qab ∨ qba ⇒ ∃x ∃yqxy

x
pfx

px y pffy py

(
∀x(pfx⇒px)

)
⇒ ∀y(pffy⇒py)

x
pa py

px

∃x(pa∨py⇒ px)

Figure 2. Four combinatorial proofs, each shown above the formula proved. Here x and
y are variables, f is a unary function symbol, a and b are constants (nullary function
symbols), p is a unary predicate symbol, and q is a binary predicate symbol.



(∀xpx) ⇒ ∀y(py∧pfy) qab ∨ qba ⇒ ∃x ∃yqxy

(
∀x(pfx⇒px)

)
⇒ ∀y(pffy⇒ py) ∃x(pa∨ py⇒ px)

Figure 3. Condensed forms of the four combinatorial proofs in Fig. 2.

2 Notation and terminology

First-order logic. We mostly follow the notation and terminology of [Joh87] for first-order logic
without equality [Fre79]. Terms and atoms (atomic formulas) are generated inductively from
variables x, y, z, . . . by: if γ is an n-ary function (resp. predicate) symbol and t1, . . . , tn are terms
then γt1 . . . tn is a term (resp. atom). For technical convenience we assume every predicate symbol
p is assigned a dual predicate symbol p with p 6=p and p=p, and extend duality to atoms with
pt1 . . . tn = pt1 . . . tn. Formulas are generated from atoms by binary ∧ and ∨ and quantifiers
∀x and ∃x per variable x. Define ¬ and ⇒ as abbreviations: ¬(α) = α on atoms α, ¬(ϕ∧ θ) =

(¬ϕ) ∨ (¬ϕ), ¬(ϕ∨θ) = (¬ϕ) ∧ (¬θ), ¬∀xϕ = ∃x¬ϕ, ¬∃xϕ = ∀x¬ϕ, and ϕ⇒ θ = (¬ϕ) ∨ θ. A
formula is rectified if all bound variables are distinct from one another and from all free variables,
e.g. (px∨∃yqy)∧∃zrz but not (px∨∃xqx)∧∃xrx. We assume all formulas are rectified (losing no
generality since every unrectified formula has a logically equivalent rectified form).

Graphs. An edge on a set V is a two-element subset of V . A graph (V ,E) is a finite set V of
vertices and a set E of edges on V . Write VG and EG for the vertex and edge sets of a graph
G, and vw for {v,w}. The complement of (V ,E) is the graph (V ,Ec) with vw ∈ Ec if and only if
vw /∈ E. A graph G is (partially) coloured it carries a partial equivalence relation ∼ on VG such
that v ∼ w only if vw /∈ EG; each equivalence class is a colour. A graph is labelled in a set L if
each vertex has an element of L associated with it, its label. A vertex renaming of (V ,E) along
a bijection (ˆ) : V → V ′ is the graph (V ′, { v̂ ŵ : vw ∈ E }), with colouring or labelling inherited
(i.e., v̂ ∼ ŵ if v ∼ w, and the label of v̂ that of v). Following standard graph theory, we identify
graphs modulo vertex renaming. Let G=(V ,E) and G′=(V ′,E′) be graphs. A homomorphism

h : G→G′ is a function h : V→V ′ such that if vw∈E then h(v)h(w)∈E′ . Without loss of generality,
assume V ∩ V ′ = ∅ (by renaming vertices if needed). The union G+G′ is (V ∪ V ′,E ∪ E′ ) and join

G×G′ is (V ∪ V ′,E ∪ E′ ∪ { vv′ : v ∈ V , v′ ∈ V ′ }); any colourings or labellings are inherited. G is
disconnected if G = G1 + G2 for graphs Gi, else connected, and coconnected if its complement
is connected. The subgraph of (V ,E) induced by W ⊆ V is (W,E↾W) for E↾W the restriction of E
to edges on W. A graph is G-free if G is not an induced subgraph. A cograph is a P4-free graph,
where P4 = = ({ v1,v2,v3,v4 }, { v1v2,v2v3,v3v4 }). In (V ,E) the neighbourhoodN(v) of v∈V
is {w : vw ∈ E }, a module is a setM⊆V such that N(v)\M = N(w)\M for all v,w ∈M, andM
is strong if every module M′ satisfies M′∩M = ∅, M′⊆M or M′ ⊇M. A directed graph (V ,E)
is a set V of vertices and a set E ⊆ V×V of directed edges. A directed graph homomorphism

h : (V ,E)→ (V ′,E′) is a function h : V→V ′ such that 〈v,w〉 ∈ E implies 〈h(v),h(w)〉 ∈ E′.

3 Fographs (first-order cographs)

A cograph is logical if every vertex is labelled by a variable or atom, and it has at least one atom-
labelled vertex. Write •λ for a λ-labelled vertex.

Definition 3.1. The graph G(ϕ) of a formula ϕ is the logical cograph defined inductively by:
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G(α) = •α for every atom α

G(ϕ∨θ ) = G(ϕ) + G(θ)

G(ϕ∧θ ) = G(ϕ)× G(θ)

G(∀xϕ ) = •x + G(ϕ)

G(∃xϕ ) = •x × G(ϕ)

For example, ∃x(px∨∀ypy) and ∃x∀y(py∨ px) have the same graph D:

D = G
(
∃x(px∨∀ypy)

)

= G
(
∃x∀y(py∨ px)

)
=

x px

y py

Vertices of G(ϕ) correspond to occurrences of atoms and quantifiers in ϕ: each occurence of an
atom α in ϕ becomes an α-labelled vertex, and each occurrence of a quantifier ∀x or ∃x becomes
an x-labelled vertex. A literal is an atom-labelled vertex and a binder is a variable-labelled vertex.
Thus D has two literals, •px and •py, and two binders, •x and •y (obtained from ∃x and ∀y).

A module is proper if it has two or more vertices. The scope of a binder b is the smallest proper
strongmodule strictly containing b (i.e., containing b and at least one other vertex).1,2 For example,
in D, the scope of •y is { •y, •px, •py }, and the scope of •x is { •x, •y, •px, •py }, illustrated below
by shading.

scope
of •y

=

x px

y py

scope
of •x

=

x px

y py

A binder is universal if its scope contains no edge, otherwise existential. In D, for example, •y is
universal and •x is existential (corresponding to ∀y and ∃x in the formula(s) generating D). An
x-binder is a binder with variable x, which is legal if its scope contains at least one literal and no
other x-binder.

Definition 3.2. A fograph or first-order cograph is a logical cograph whose binders are legal.

For example, D above is a fograph, but x y •p is not (since neither binder scope contains a
literal), nor is x x •px (since each x-binder is in the other’s scope).

Lemma 3.3. The graph G(ϕ) of every formula ϕ is a fograph.3

Proof. By structural induction on ϕ. The base case with ϕ an atom is immediate. For the induction
step, note that all four operations defined in Def. 3.1 preserve the property of being a fograph, since
all formulas are rectified.4

An x-literal is one whose atom contains the variable x. An x-binder binds every x-literal in its
scope. In D above, for example, •x binds •px and •y binds •py. An x-binder is rectified if it is
the only x-binder and its scope contains every x-literal. A fograph is rectified if its binders are
rectified. For example, D is rectified but x px x qx is not (since it has two x-binders),
nor is x px qx (since •x does not bind •qx). To rectify an unrectified x-binder b in a
fograph G is to change its label to a variable x′ which is fresh (not in any label of G) and sub-
stitute x′ for x in the label of every literal bound by b. A rectified form is any result of rectifying
binders until reaching a rectified form. For example, px x qx x rxx has the rectified form

1Since, by definition, every logical cograph has a literal, the requisite strong module in the scope definition exists.
2To discern scope it is helpful to draw the modular decomposition tree [Gal67], i.e., cotree [CLS81]. See Lemma10.60.
3In §10 we will observe that G is a surjection onto fographs (Lemma10.1).
4Naively applying G to an unrectified formula such as (∀xpx)∨ (∀x(qx∨rx)) yields •x •px •x •qx •rx with all

three literals bound ambiguously by both binders. Whence our assumption that every formula is in rectified form.
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Figure 4. A skew bifibration (left), its binding fibration (centre), and its skeleton (right).

px y qy z rzz . This is analogous to the unrectified formula (px∨∃xqx)∨∃xrxx having
the rectified form (px∨∃yqy)∨∃zrzz.5

The binding graph G of a fograph G is the directed graph (VG, { 〈b,l〉 : b binds l } ). For exam-
ple, the binding graph of D above is

D =

x px

y py

4 Skew bifibrations

A directed graph homomorphism f : (V ,E) → (V ′,E′) is a fibration [Gro60, Gra66] if for all v ∈ V
and 〈w,f(v)〉 ∈ E′ there exists a unique w̃ ∈ V with 〈w̃,v〉 ∈ E and f(w̃) = w. This definition is
illustrated below-left.

∃!w̃

w

v

f(v)

∃!w̃

w

v

f(v)

v

f(v)
f(w̃)

∃w̃

w

Similarly, an undirected graph homomorphism f : (V ,E)→ (V ′,E′) is a fibration if for all v∈V and
wf(v)∈E′ there exists a unique w̃∈V with w̃v∈E and f(w̃) =w. This definition is illustrated above-
centre.6 An undirected graph homomorphism f : (V ,E) → (V ′,E′) is a skew fibration [Hug06a]
if for all v ∈ V and wf(v) ∈ E′ there exists w̃ ∈ V with w̃v ∈ E and f(w̃)w /∈ E′. This definition is
illustrated above-right. Since f(w̃)=w implies f(w̃)w /∈ E′, skew fibrations generalize fibrations.

A graph homomorphism f : K→ G between fographs preserves labels if for every vertex v∈VK

the label of v in K equals the label of f(v) in G, and preserves existentials if for every existential
binder b in K the vertex f(b) is an existential binder in G.

Definition 4.1. A skew bifibration f : K→G between fographs is a label- and existential-preserving
graph homomorphism such that

• f : K→ G is a skew fibration

• f : K→ G is a fibration.

We refer to f : K→ G as the binding fibration. For example, a skew bifibration is shown in Fig. 4,
with its binding fibration. The skeleton of a skew bifibration is the result of dropping labels from its

5In §10 we will observe that G is a surjection onto rectified fographs (Lemma10.1).
6An undirected graph fibration is a special case of a topological fibration [Whi78], by viewing every edge as a copy of

the unit interval.
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Figure 5. A fonetN (left) with unique dualizer {x 7→z,y 7→fz} and its leap graphLN (right).

source. Fig. 4 shows an example. We identify a skew bifibration with its skeleton. No information is
lost since the source labels can be lifted from the target (because skew bifibrations preserve labels,
by definition).

5 Fonets (first-order nets)

Definition 5.1. A coloured fograph is linked if

• every colour, called a link, comprises two literals, and

• every literal is in a link.

Fig. 5 shows a linked fograph N with two links, { px, pz } and { qy, qfz }.
Let K be a linked fograph. Without loss of generality, assume K is rectified (by rectifying binders

as needed). A dualizer for K is a function δ assigning to each existential binder variable x a term
such that, for every link {•α1, •α2 }, the atoms α1δ and α2δ are dual, where αδ denotes the result
of substituting δ(x) for x throughout α (simultaneously for each x). For example, {x 7→z,y 7→fz} is a
dualizer7 for N (Fig. 5) since px{x 7→z,y 7→fz} = pz is dual to pz, and qy{x 7→z,y 7→fz} = qfz is dual
to qfz; this is the unique dualizer for N.

A dependency {•x, •y} of K is an existential binder •x and a universal binder •y such that every
dualizer for K assigns to x a term containing y.8 For example, {•y, •z } is a dependency ofN (Fig. 5)
since the unique dualizer {x 7→z,y 7→fz} assigns fz to y. A leap is a dependency or link. The leap

graph LK is the graph (VK,LK) where LK comprises all leaps of K. See Fig. 5 for an example.
A graph (V ,E) is a matching if V is non-empty and for all v∈ V there is a unique v′∈ V with

vv′∈E. A setW induces a bimatching in a linked fograph K ifW induces matchings in K and LK.

Definition 5.2. A fonet or first-order net is a linked fograph which has a dualizer but no induced
bimatching.

See Fig. 5 for an example of a fonet N.

6 Combinatorial proofs

Definition 6.1. A combinatorial proof of a fographG is a skew bifibration f : N→ G from a fonet
N. A combinatorial proof of a formula ϕ is a combinatorial proof of its graph G(ϕ).

For examples, see §1.

Theorem 6.2 (Soundness). A formula is valid if it has a combinatorial proof.

Proof. Section10.

Theorem 6.3 (Completeness). Every valid formula has a combinatorial proof.

Proof. Section11.

7In the context of a function we write a 7→b for the ordered pair 〈a,b〉.
8In §14 we show that all dependencies can be constructed in polynomial time, despite quantification over every dualizer.
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Figure 6. A standard combinatorial proof (left) and a homogeneous combinatorial proof
(right) of Peirce’s law

(
(p⇒q)⇒p

)
⇒p =

(
(p∨q)∧p

)
∨p.

(
(

p

p∨

q

q)∧

p

p
)
∨

p

p (
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p∧

p

p)∨ (

p

p∧
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p) (

p
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p

p)∧ (
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q∨

q
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p

p∨

p

p)∧ (

p

p∨

p

p)

Figure 7. Four propositions ϕ (top row), their fographs G(ϕ) (middle row), and their
dualizing graphs D(ϕ). Each vertex in G(ϕ) and D(ϕ) is aligned vertically with the
corresponding atom occurence in ϕ. Dualities are shown dashed and curved.

Combining the two theorems above, we obtain the main theorem of this paper:

Theorem 6.4 (Soundness & Completeness). A formula of first-order logic is valid if and only if it
has a combinatorial proof.

7 Propositional combinatorial proofs without labels

A proposition is a formula with no quantifiers or terms, e.g.
(
(p∨q)∧p

)
∨p. This section provides an

alternative representation of fographs and combinatorial proofs in the propositional case, without
labels (variables and atoms). An illustrative example is shown in Fig. 6. The left side shows a
standard combinatorial proof (Def. 6.1) of Peirce’s law

(
(p⇒q)⇒p

)
⇒p =

(
(p∨q)∧p

)
∨p. The right

side shows the label-free form, called a homogeneous combinatorial proof, defined below. The source
colouring and target labels (p, p and q) have disappeared, and both are replaced by duality edges,
shown dashed and curved. The adjective homogeneous reflects the common type of the source and
target (both cographs with additional duality edges), in contrast to a standard combinatorial proof
skeleton which is heterogeneous (the source is coloured, while the target is labelled).

7.1 Dualizing graphs

A graph is triangle-free if it is C3-free, where C3 = = ({ v1,v2,v3 }, { v1v2,v2v3,v3v1 }).

Definition 7.1. A dualizing graph is a non-empty cograph D equipped with a second set ⊥D of
undirected edges on VD, called dualities, such that (VD,⊥D) is a triangle-free cograph.

Four examples of dualizing graphs are shown in the bottom row of Fig. 7.

Definition 7.2. The dualizing graph D(ϕ) of a proposition ϕ is the dualizing graph D with
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• VD = { occurrences of predicate symbols in ϕ },

• vw ∈ ED ies f and only if v 6=w and the smallest subformula of ϕ containing both v and w is
a conjunction (i.e., of the form θ∧ψ)

• vw ∈ ⊥D if and only if v and w have dual predicate symbols (e.g., p and p).

For example, for each propositionϕ in the top row of Fig. 7, the bottom row shows the correspond-
ing dualizing graph D(ϕ). For comparison, the fograph G(ϕ) is shown in the middle row.

Lemma 7.3. D(ϕ) is a well-defined dualizing graph for every proposition ϕ.9

Proof. LetD = D(ϕ). We must show (VD,ED) and (VD,⊥D) are P4-free, and (VD,⊥D) is C3-free.
Suppose ({ v1,v2,v3,v4 }, { v1v2,v2v3,v3v4 }) is an induced subgraph of (VG,ED). Since v1v2 ∈ED

there exist subformulasϕ1 andϕ2 ofϕ containing v1 and v2, respectively, withϕ1∧ϕ2 a subformula
ofϕ. Necessarily v3 is inϕ1, otherwise (sinceϕ is a syntactic tree) v1v3∈ED (a contradiction), and
similarly v4 is in ϕ2, otherwise v2v4 ∈ ED (a contradiction). But then v1v4 ∈ ED, a contradiction.

Suppose ({ v1,v2,v3,v4 }, { v1v2,v2v3,v3v4 }) is an induced subgraph of (VG,⊥D), where vi is an
occurrence of the nullary predicate symbol pi. By definition of ⊥D, we have p1 = p2, p2 = p3 and
p3 = p4. Thus p3 = p1, hence p4 = p1, so v1v4 ∈ ⊥D, a contradiction.

Suppose ({ v1,v2,v3 }, { v1v2,v2v3,v3v1 }) is an induced subgraph of (VG,⊥D), where vi is an
occurrence of the nullary predicate symbol pi. By definition of ⊥D, we have p1 = p2, p2 = p3 and
p3 = p1. Thus p3 = p2 = p1 = p1, contradicting p3 = p1.

7.2 Dualizing nets

A set W ⊆ VD induces a bimatching in a dualizing graph D if W induces matchings in both
(VD,ED) and (VD,⊥D).

Definition 7.4. A dualizing net N is a dualizing graph with no induced bimatching, such that
(VN,⊥N) is a matching.

For example, is a dualizing net, while and are not. The third dualizing
graph in the bottom row of Fig 7 is a dualizing net, while the other three in the bottom row are
not.

7.3 Propositional homogeneous combinatorial proofs

A skew fibration f : C→ D of dualizing graphs is a skew fibration f : (VC,EC) → (VD,ED) such
that f : (VC,⊥C) → (VD,⊥D) is a homomorphism.

Definition 7.5. A homogeneous combinatorial proof of a dualizing graph D is a skew fibration
f : N→ D from a dualizing net N. A homogeneous combinatorial proof of a proposition ϕ is a
homogeneous combinatorial proof of its dualizing graph D(ϕ).

For example, a homogeneous combinatorial proof of Peirce’s law
(
(p⇒q)⇒p

)
⇒p =

(
(p∨q)∧p

)
∨p

is shown on the right of Fig 6.

7.4 Propositional homogeneous soundness and completeness

Theorem 7.6 (Propositional homogeneous soundness and completeness). A proposition is valid if
and only if it has a homogeneous combinatorial proof.

Proof. A corollary of Theorem6.4, detailed in § 12.1.
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x
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y
py

Figure 8. A combinatorial proof f : N→ G of the monadic formula ∃x(px⇒∀ypy) (left),
copied from the Introduction, and its homogeneous combinatorial proof f′ : N′ → G′

(right). The directed edges of N′ and G′ are those of the binding graphs N and G, the
dashed edge ofN′ captures the colour ofN, and the dashed edge ofG′ captures the duality
between the two predicate symbols p and p in G.

∀x
(
(px∧px)∨∃ypy

)
x

px

px

y
py

Figure 9. A monadic formula ϕ, its fograph G(ϕ), and its mograph M(ϕ), respectively.

8 Monadic combinatorial proofs without labels

A formula is monadic if its predicate symbols are unary and it has no function symbols, e.g.,
∃x(px ⇒ ∀ypy). This section extends homogeneous combinatorial proofs to the monadic case.
Fig. 8 shows an illustrative example: on the left is the combinatorial proof of ∃x(px⇒∀ypy)
(copied from the Introduction), and on the right is the corresponding homogeneous combinatorial
proof, to be defined below.

For technical convenience throughout this section we assume every monadic formula is closed,
i.e., has no free variables. This loses no generality because a formulaϕwith free variables x1, . . . , xn
is valid if and only if its closure ∀x1 . . . ∀xnϕ is valid.

Given a directed edge e = 〈v,w〉, v is the source of e, w is the target of e, and v and w are in e.

Definition 8.1. A pre-monadic graph or pre-mograph is a dualizing graph M equipped with a
non-empty set BM of directed edges on VM, called bindings, such that if a vertex v is the target of
a binding then v is in no other binding.10

An example of a pre-mograph is shown on the right of Fig. 9, with two dualities (dashed and curved)
and three bindings (directed and curved). A vertex in a pre-mographM is a literal if it is the target
of a binding, otherwise a binder. If 〈b, l〉 ∈ BM we say that b binds l.11 The scope of a binder b in
M is the smallest proper strong module of (VM,EM) strictly containing b (i.e., containing b and
at least one other vertex).

Definition 8.2. A mographM is a pre-mograph such that no binder is in a duality, every binder
has non-empty scope, and 〈b, l〉 ∈ BM only if l is in the scope of b.

For example, the pre-mograph on the right of Fig. 9 is a mograph.

9We will observe in §13 that D is a surjection from propositions onto dualizing graphs (Lemma13.2).
10In other words, if 〈w,v〉 ∈BM, then (1) 〈v,u〉 /∈ BM for all vertices u, and (2) 〈w′,v〉 ∈BM impliesw′ = w.
11Note that, by the condition in the definition of pre-mograph, necessarily b is a binder.
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Definition 8.3. The mograph M(ϕ) of a closed monadic formula ϕ is the mograph defined by:

• VM = { occurrences of atoms and quantifiers in ϕ },

• vw ∈ EM if and only if v 6=w and either

– the smallest subformula containing both v andw is a conjunction (i.e., of the formϕ∧θ)

– v is an existential quantifier and w is in its scope,

• vw∈⊥M if and only if v and w are atoms with dual predicate symbols (e.g., px and py), and

• 〈v,w〉 ∈ BM if and only if v is a quantifier, w is an atom, and v binds w.

For example, in Figure 9, the closed rectified monadic formula ϕ = ∀x
(
(px∧px)∨∃ypy

)
on the

left has the mograph M(ϕ) on the right.

Lemma 8.4. M(ϕ) is a well-defined mograph for every closed monadic formula ϕ.12

Proof. Let M = M(ϕ). Since every atom-occurrence in ϕ has a single variable, each literal is the
target of at most one binding inM, and since no atom-occurrence binds another atom-occurrence,
M satisfies the condition on bindings in the definition of pre-mograph (Def. 8.1). By reasoning as
in the proof of Lemma7.3, (VM,⊥M) is P4-free and C3-free. By definition of M, no binder is in a
duality. It remains to show that (VM,EM) is a cograph, every binder has non-empty scope, and
〈b, l〉 ∈ BM only if l is in the scope of b. We proceed by induction on the structure of ϕ.

Base case: ϕ = px for some p and x, soM is a single vertex, hence a mograph.
Induction case: ϕ = ϕ1 ∗ϕ2 for ∗ ∈ {∧,∨ }. By induction hypothesisMi = M(ϕi) is a mograph

(i = 1, 2). By definition of EM, we have (VM,EM) = (VM1
,EM1

) × (VM2
,EM2

) or (VM,EM) =

(VM1
,EM1

) + (VM2
,EM2

), thus (VM,EM) is a cograph since each (VMi
,EMi

) is a cograph. The
scope of a binder b inM is at least the scope of b in theMi containing b, thus the scope of b inM
is non-empty and contains every literal bound by b, sinceMi is a mograph.

Induction case: ϕ = ∇xϕ′ for ∇ ∈ { ∀,∃ }. By induction hypothesis,M′ = M(ϕ′) is a mograph.
By definition of EM we have (VM,EM) = b+M′ or (VM,EM) = b×M′ for a vertex b (the initial
occurrence of ∇x in ϕ), thus (VM,EM) is a cograph since (VM′ ,EM′) is a cograph. The scope of
b inM comprises every literal, and is therefore non-empty and contains every literal bound by b.
The scope of any other binder b′ inM is equal the scope of b′ inM′, so is non-empty and contains
every literal bound by b′, sinceM′ is a mograph.

8.1 Monets

A mograph is linked if every literal is in a unique duality. An example of a linked mograph is shown
in Fig. 10 (left).

Definition 8.5. LetM be a linked mograph. Its binder equivalence≃M is the equivalence relation
on binders generated by b1 ≃M b2 if there exist literals l1 and l2 with 〈b1, l1〉, 〈b2, l2〉 ∈ BM and
l1l2 ∈ ⊥M.

Thus b1 ≃M b2 if and only if there exists a binding/duality pattern of the form

. . .

b1 b2

Let M be a linked mograph. A binder in M is universal if its scope contains no edge, otherwise
existential. A conflict inM is a pair {b, c } of distinct universal binders b and c such that b ≃K c.

Definition 8.6. A mograph is consistent if it has no conflict.

A dependency ofM is a pair {b, c } of binders with b ≃K c, b existential, and c universal. A leap is
a duality or dependency.

12We will observe in §13 that M is a surjection from closed monadic formulas onto mographs (Lemma13.3).
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Figure 10. A monet N (left) and its leap graph LN (right).

Definition 8.7. The leap graph LM of a linked mographM is (VM,LM) for LM the set of leaps
ofM.

An example of a leap graph is shown in Fig. 10 (right). A set of vertices W ⊆ VM induces a

bimatching in a linked mographM ifW induces matchings in both (VM,EM) and LM.

Definition 8.8. A monet (monadic net) is a consistent linked mograph with no induced bimatch-
ing.

An example of a monet is shown in Fig. 10.

8.2 Monadic homogeneous combinatorial proofs

A function f : VN → VM between mographs preserves existentials if for every existential binder b
in N the vertex f(b) is an existential binder inM.

Definition 8.9. A skew bifibration f : N → M between mographs is an existential-preserving
skew fibration

• f : (VN,EM) → (VN,EM) such that

• f : (VN,⊥M) → (VN,⊥M) is a homomorphism and

• f : (VN,BM) → (VN,BM) is a fibration.

An example of a skew bifibration between mographs is shown on the right of Fig. 8.

Definition 8.10. A homogeneous combinatorial proof of a mograph M is a skew bifibration
f : N→M from a monetN. A homogeneous combinatorial proof of a closed monadic formula ϕ
is a homogeneous combinatorial proof of its mograph M(ϕ).

A homogenous combinatorial proof of ∃x(px⇒∀ypy) is shown in Fig 8 (right).

8.3 Monadic homogeneous soundness and completeness

Theorem 8.11 (Monadic homogeneous soundness and completeness). A closed monadic formula
is valid if and only if it has a homogeneous combinatorial proof.

Proof. A corollary of Theorem6.4, detailed in § 12.2.

9 Modal combinatorial proofs

Amodal formula is generated from themodal operators 2 (necessity) and 3 (possibility) instead
of quantifiers and has nullary predicate symbols, e.g. 3(p⇒2p). Every modal formula abbreviates
a standard first-order one [Min92, §3.3]: replace every 2 by ∀x, 3 by ∃x, and predicate symbol p
by px. For example, 3(p⇒2p) abbreviates ∃x(px⇒∀x px), or ∃x(px⇒∀ypy) in rectified form.

Definition 9.1. A modal combinatorial proof of a modal formula µ is a standard combinatorial
proof (Definition6.1) of the first-order formula abbreviated by µ.

For example, a modal combinatorial proof of 3(p⇒2p) is shown below-left, in condensed form.

11



3(p⇒2p) ∃x(px⇒∀ypy)

It abbreviates the first-order combinatorial proof above-right (copied from the Introduction).

Theorem 9.2 (S5 Modal Soundness & Completeness). A modal formula is valid in S5 modal logic

if and only if it has a modal combinatorial proof.

Proof. By Theorem3.2 of [Min92, p. 42], a modal formula is valid in S5 if and only if the first-order
formula it abbreviates is valid in first-order logic. Thus the result follows from Theorem6.4.

9.1 Modal combinatorial proofs without labels

A modal formula µ is closed if every predicate symbol occurrence is bound by a modal operator,
e.g. 3(p⇒2p) but not p⇒2p.

Definition 9.3. The mograph M (µ) of a closed modal formula µ is the mographM defined by

• VM = { occurrences of predicate symbols and modal operators in µ },

• vw ∈ EM if and only if v 6=w and either

– the smallest subformula containing both v andw is a conjunction (i.e., of the formϕ∧θ)

– v is a 3 and w is in its scope,

• vw ∈ ⊥M if and only if v and w are dual predicate symbols, and

• 〈v,w〉 ∈ BM if and only if v is a modal operator, w is a predicate symbol, and v binds w.

For example,
M (3(p⇒2p)) =

Definition 9.4. A homogeneous combinatorial proof of a closed modal formula µ is a homoge-
neous combinatorial proof of its mograph M (µ).

Theorem 9.5 (Modal homogeneous soundness and completeness). A closed modal formula is valid
in S5 modal logic if and only if it has a homogeneous combinatorial proof.

Proof. Since M (µ) = M(µ′) for µ′ the first-order formula encoded by µ, the result is a corollary of
Theorem9.2.

10 Proof of the Soundness Theorem

In this section we prove the Soundness Theorem, Theorem 6.2.

Lemma 10.1. The function G (Def. 3.1) is a surjection from rectified formulas onto rectified fo-
graphs. Two rectified formulas have the same graph if and only if they are equal modulo

ϕ∧θ = θ∧ϕ ϕ ∧ (θ∧ψ) = (ϕ∧θ) ∧ψ ∃x∃yϕ = ∃y∃xϕ ϕ ∧ ∃xθ = ∃x(ϕ∧θ)

ϕ∨θ = θ∨ϕ ϕ ∨ (θ∨ψ) = (ϕ∨θ) ∨ψ ∀x∀yϕ = ∀y∀xϕ ϕ ∨ ∀xθ = ∀x(ϕ∨θ)

Proof. A routine induction.

Let G be a rectified fograph. Using the above Lemma, choose a formula ϕ such that G(ϕ)=G.
DefineG as valid ifϕ is valid. This is well-defined with respect to choice ofϕ since every equality in
Lemma10.1 is a logical equivalence. Define a coloured fograph as valid if its underlying uncoloured
fograph is valid.

Write |= χ to assert that a formula or fograph χ is valid, and ϕ{x 7→t} for the result of substituting
a term t for all occurrences of the variable x in a formula ϕ, but only if no variable in t is a bound
variable of ϕ [TS96, §1.1.2].
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Lemma 10.2. Let ϕ, θ and ψ be formulas.

1. |= ϕ∧θ if and only if (|= ϕ and |= θ).

2. |= ϕ∨θ if (|= ϕ or |= θ).

3. |= (ϕ∨θ)∧ψ implies |= (ϕ∧ψ) ∨ (θ∧ψ).

4. |= ∀xϕ if and only if |= ϕ.

5. |= ϕ{x 7→t} implies |= ∃xϕ.

6. |= ϕ ∨ θ{x 7→t} implies |= ϕ ∨ ∃xθ.

7. |= (ϕ∨θ)∧ψ implies |= ϕ∨ (θ∧ψ).

Proof. 1–6 are standard inferences and properties of validity in first-order classical logic. See
[TS96] and [Joh87], for example. Property 7 follows from 1 and 3.

10.1 Soundness of fonets

In this section we prove that fonets are sound, i.e., every fonet is valid (Lemma 10.23 below).
Let G be a fograph. A set P ⊆ VG is well-founded if P contains a binder only if P contains a

literal.

Definition 10.3. A portion of a rectified fograph G is a set P ⊆ VG such that P and VG \P are
well-founded, and P is closed under adjacency and binding: if vw ∈ EG or 〈v,w〉 ∈ E

G
, then v ∈ P

if and only if w ∈ P.

A variable x in a fograph G is bound if G contains an x-binder, and free if G contains an x-literal
but no x-binder. Two fographs are independent if any variable in both is free in both.

10.1.1 Fusion

Definition 10.4. Let G and G′ be independent rectified fographs with respective portions P and
P′. The fusion of G and G′ at P and P′ is the unionG+G′ together with edges between every vertex
in P and every vertex in P′.

For example, if G = x px py• , G′ = •q •q •z , P = {py• } and P′ = { •q, •q }, then the fusion
of G and G′ at P and P′ is x px py q q •z . Colourings are inherited during fusion, since
they are inherited during graph union +. For example, if K = x px py , K′ = q q •z ,
P = {py } and P′ = { q, q }, then the fusion of K and K′ at P and P′ is x px py q q •z .

The subgraph of a graph (V ,E) induced by W ⊆V is (W,E↾W) for E↾W the restriction of E to
edges onW.

Lemma 10.5. Every fusion of valid rectified fographs is valid.

Proof. Let F be the fusion of valid rectified fographs G and G′ at portions P and P′. We consider
four cases.

1. P or P′ is empty. Without loss generality, we may assume both are empty, since with one
portion empty the fusion operation no longer depends on the other. Thus F = G + G′ for
rectified fographs G and G′, so by Lemma10.1 there exist formulas ϕ and ϕ′ with G(ϕ)=G

and G(ϕ′)=G′. Since G and G′ are independent, G(ϕ∨ϕ′) = F. Since |= G and |= G′ we
have |= ϕ and |= ϕ′, hence |= ϕ∨ϕ′ by Lemma10.2.2. Thus |= F.

2. P=VG and P′ = VG′ . Thus F = G × G′. As in the previous case we have valid formulas
ϕ and ϕ′ with G(ϕ)=G and G(ϕ′)=G′. Thus |= F since |= ϕ∧ϕ′ by Lemma10.2.1 and
F = G(ϕ∧ϕ′).
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3. P=VG or P′=VG′ , and the previous two cases do not hold. Without loss of generality assume
P′=VG′ , so ∅ 6=P 6=VG. Let P

∗=VG\P 6=∅. Thus F = G[P∗] + (G[P] × G′). By Lemma10.1
there exist formulas ϕ∗, ϕ and ϕ′ with G(ϕ∗)=G[P∗], G(ϕ)=G[P] and G(ϕ′)=G′. Since
|= G′ we have |= ϕ′, and since |= G and G(ϕ∗∨ϕ) = G, we have |= ϕ∗∨ϕ. Thus |= (ϕ∗∨ϕ)∧ϕ′

by Lemma10.2.1, so |= ϕ∗∨(ϕ∧ϕ′) by Lemma10.2.7, hence |= F since F = G(ϕ∗∨(ϕ∧ϕ′)).

4. Otherwise ∅ 6=P 6=VG and ∅ 6=P′ 6=VG′ . Let P∗=VG \ P 6=∅ and P′∗=VG′ \ P′ 6=∅. Thus the
rectified fograph F is G[P∗] + G′[P′∗] + (G[P] × G′[P′]). By Lemma10.1 there exist formulas
ϕ∗, ϕ′∗, ϕ and ϕ′ with G(ϕ∗)=G[P∗], G(ϕ′∗)=G′[P′∗], G(ϕ)=G[P], and G(ϕ′)=G′[P′].
Since |= G and G(ϕ∗∨ϕ) = G we have |= ϕ∗∨ϕ, and since |= G′ and G(ϕ′∗∨ϕ′) = G′ we
have |= ϕ′∗∨ϕ′. Thus |= (ϕ∗∨ϕ′∗)∨ (ϕ∧ϕ′), hence |= F since F = G((ϕ∗∨ϕ′∗)∨ (ϕ∧ϕ′)).

Lemma 10.6. Every fusion of two rectified fonets is a rectified fonet.

Proof. Let F be a fusion of rectified fonets K and K′. Since each portion is closed under adjacency,
F is a union of cographs, hence is a cograph. Every binder scope contains a literal, by inheritance
from K and K′. Since K and K′ are rectified, and no links traverse between the two in F, every union
of dualizers for K and K′ is a dualizer for F, and vice versa. Thus the set of dependencies of F is the
union of those of K and K′, so anyW⊆VF inducing a bimatching in F would induce a bimatching
in K or K′.

10.1.2 Universal quantification

Definition 10.7. Let G be a rectified fograph with no x-binder. The universal quantification of
G by x is •x+G.

Lemma 10.8. Every universal quantification of a valid rectified fograph is valid.

Proof. Let G = •x + H be the universal quantification of a valid rectified fograph H by x. By
Lemma10.1 there exists a formula ϕ such that G(ϕ)=H, and |= ϕ since |= G. Thus G(∀xϕ) = G,
hence |= G since |= ∀xϕ if and only if |= ϕ, by Lemma10.2.4.

If K is a coloured rectified fograph, in the universal quantification •x + K we assume that the
colouring of K is inherited, while •x remains uncoloured.

Lemma 10.9. Every universal quantification of a rectified fonet is a rectified fonet.

Proof. Let K′ be the universal quantification •x+K. Dualizers for K are dualizers for K′, and vice
versa, since if x occurs in K, it has merely transitioned from free to bound. The leap graph of K′ is
that of K together with additional dependencies involving •x. Since •x is in no edge, anyW⊆VK′

inducing a bimatching in K′ would induce a bimatching in K.

10.1.3 Existential quantification

Definition 10.10. LetG be a rectified fograph without the variable x, let P be a non-empty portion
of G, and let ω be a set of occurrences of a term t in labels of literals in P, such that t contains no
bound variable of G. The existential quantification of G by x atω in P is •x+G{t 7→ω x} together
with an edge between •x and each vertex in P, where G{t 7→ω x} is the result of substituting x for
every occurrence of t in ω.

For example, if G = •pfgy •pfgy , P = { •pfgy } and ω is the occurrence of the term gy in •pfgy,
the existential quantification of G by x at ω is x pfx •pfgy , while if ω is empty the existential
quantification becomes x pfgy •pfgy . If P = { •pfgy, •pfgy } and ω comprises both occur-
rences of the term fgy in P, then the existential quantification is x px px

Lemma 10.11. Every existential quantification of a valid rectified fograph is valid.

Proof. Let H be the existential quantification of a valid rectified fograph G by x at a set ω of
occurrences of the term t in the non-empty portion P. Thus H = •x+G{t 7→ω x} plus edges from
•x to every vertex in P. We consider two cases.
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1. Suppose P=VG. Thus H = •x × G{t 7→ω x} = •x × G(ϕ) = G(∃xϕ). By Lemma10.1
there exists a formula ϕ such that G(ϕ) = G{t 7→ω x}. Since x does not occur in G we
have G(ϕ{x 7→t}) = G, and |= ϕ{x 7→t} since |= G. By Lemma10.2.5 we have |= ∃xϕ since
|= ϕ{x 7→t}, thus |= H.

2. Otherwise ∅ 6=P 6=VG. Let P
∗=VG\P 6=∅. Since P is a portion, it is well-founded and closed un-

der adjacency and binding, G{t 7→ω x} = G{t 7→ω x}[P
∗] +G{t 7→ω x}[P] with G{t 7→ω x}[P∗]

and G{t 7→ω x}[P] both rectified fographs, and G{t 7→ω x}[P∗] = G[P∗] since ω does not in-
tersect P∗. Thus G{t 7→ω x} = G[P∗] +G{t 7→ω x}[P]. By Lemma10.1 there exist formulas θ∗

and θ with G(θ∗) = G[P∗] and G(θ) = G{t 7→ω x}[P]. Thus

H = G[P∗] + •x×G{t 7→ω x}[P] = G(θ∗) + G(∃xθ) = G(θ∗∨∃xθ)

Since G(θ) = G{t 7→ω x}[P] and x does not occur in G we have G(θ{x 7→t}) = G[P]. Thus

G = G[P∗] +G[P] = G(θ∗) + G(θ{x 7→t}) = G(θ∗∨θ{x 7→t})

Since |= G we have |= θ∗∨ϕ{x 7→t}, so by Lemma10.2.6 we have |= θ∗∨∃xθ, hence |= H.

When quantifying a coloured rectified fograph existentially, the colouring is inherited, while the
added binder remains uncoloured. For example, if K = pfgy pfgy , P = { pfgy } andω is the oc-
currence of the term y in pfgy, the existential quantification ofK by x atω in P is x pfgx pfgy .
In the remainder of this section (§10.1.3) we prove that every existential quantification of a rectified
fonet is a rectified fonet (Lemma10.14).

Let K be a linked rectified fograph. An existential (resp. universal) variable of K is one labelling
an existential (resp. universal) binder in K. An output of a function is any element of its image.
A stem of a dualizer δ for K is a variable in an output of δ but not in K. For example, if K =

x px y py •z and z1 and z2 are variables, the dualizer {x 7→z1,y 7→z1} has one stem z1,
{x 7→fz1z2,y 7→fz1z2} has two stems z1 and z2, {x 7→fz1z,y 7→fz1z} has one stem z1, and {x 7→z,y 7→z} has
no stem. A dualizer δ generalizes a dualizer δ′ if δ yields δ′ by substituting terms for stems: there
exists a function σ from the stems of δ to terms such that δ′(x) = δ(x)σ for every existential variable
x of K, where eσ denotes the result of substituting σ(z1) for z1 in e, simultaneously for each stem z1
of δ. For example, if K = x px y py •z and z1 is a variable, the dualizer δ= {x 7→z1,y 7→z1}
generalizes δ′= {x 7→fza,y 7→fza} via {z1 7→fza} since δ′(x) = δ(y) = z1{z1 7→fza} = fza. A dualizer δ
is most general if it generalizes every other dualizer. For example, {x 7→z1,y 7→z1} is a most general
dualizer for x px y py •z but {x 7→z,y 7→z} is not. A linked rectified cograph is dualizable
if it has a dualizer.

Lemma 10.12. Every dualizable linked rectified fograph has a most general dualizer.

Proof. Let K be the dualizable linked rectified fograph. Every dualizer for K is, by definition, a
unifier for the unification problem ≈K (binary relation on terms) [TS96, §7.2] defined by ti ≈K t

′
i

for each link { •pt1 . . . tn, •pt ′1 . . . t
′
n } and 1 6 i 6 n, solved for the existential variables. Let δ be a

most general unifier of≈K [TS96, §7.2]. By renaming variables as needed, we may assume that no
output of δ contains an existential variable. Define δ′ as the restriction of δ to existential variables.
Since δ is a most general unifier, δ′ is a most general dualizer.

Let K be a linked rectified fograph with dualizer δ. A pair {•x, •y}, with •x an existential binder
and •y a universal binder, is a dependency of δ if δ(x) contains y.

Lemma 10.13. Let K be a linked rectified fograph with a most general dualizer δ. A pair {•x, •y} is
a dependency of K if and only if {•x, •y} is a dependency of δ.

Proof. Since δ is most general, for any dualizer δ′ every dependency of δ is a dependency of δ′. By
definition, {•x, •y} is a dependency of K if and only if it is a dependency of every dualizer for K.
Thus {•x, •y} is a dependency of K if and only if it is a dependency of δ.

A variable in a rectified fonet is existential (resp. universal) if it is the label of an existential (resp.
universal) binder.

Lemma 10.14. Every existential quantification of a rectified fonet is a rectified fonet.
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Proof. Let K′ be the existential quantification of K by x atω in P, whereω is a set of occurrences of
the term t. Since P is closed under adjacency, K′ is a cograph and every binder scope in K′ contains
a literal.

For any dualizer δ for K, the function δ′ = δ′ ∪ {x 7→t} is a dualizer for K′, since the links of K′ are
those of K but for some occurrences of t becoming x. The dependencies of δ in K are the same as
those of δ′ in K′, since t contains no binder variable of K. Every dependency of K′ is a dependency
of K: a dependency of K′ is a dependency of every dualizer of K′, hence a dependency of δ′ for every
dualizer δ for K, thus a dependency of K.

Conversely, given a most general dualizer γ for K′ we construct a dualizer γ̂ for K. Let δ be a
most general dualizer for K. Since γ is most general for K′, there exists a function σ from the stems
of γ to terms such that t = δ′(x) = γ(x)σ. Let σ̃ be the restriction of σ to stems appearing in γ(x).
Define γ̃ by γ̃(y) = γ(y)σ̃, for every existential variable of K′. Thus, in particular, γ̃(x) = t. The
function γ̃ is a dualizer for K′ (since it is γ with terms substituted for stems), and has the same
dependencies as γ because γ(x)σ̃ = t so σ̃(z) is a sub-term of t for every stem z of γ in γ(x), and
t contains no bound variable of K, hence no bound variable of K′. Define γ̂ as the restriction of γ̃
to the existential variables of K. (Thus γ̃ = γ̂ ∪ {x 7→t}.) The function γ̂ is a dualizer for K since
for every link { •pt1 . . . tn, •pu1 . . .un } in K we have tiγ̂=uiγ̂, because for the corresponding link
{ •pt ′1 . . . t

′
n, •pu

′
1 . . .u

′
n } in K′ we have t ′iγ̃ = u′

iγ̃ with ti = t ′i{x 7→t} and ui = u′
i{x 7→t}, and by

construction γ̃(x) = t. The dualizer γ̂ is a restriction of γ̃, which has the same dependencies as γ,

thus δ̂ has the same dependencies as γ. Since γ is most general for K′, its dependencies are those
of K′, hence every dependency of K′ is a dependency of K.

Since the dependencies of K and K′ coincide, the leap graphs LK and LK′ are identical but for
an extra vertex •x in the latter which is not in any leap. Thus induced bimatchings of K and K′

coincide, so K′ is a fonet because K is a fonet.

10.1.4 Soundness of fonets

An axiom is a coloured rectified fograph comprising two dual literals of the same colour, for exam-
ple, pxfy pxfy .

Lemma 10.15. Every coloured rectified fograph constructed from axioms by fusion and quantifica-
tion is a rectified fonet.

Proof. Every axiom is a rectified fonet, and fusion and quantification preserve the property of being
a rectified fonet, by Lemmas 10.6, 10.9, and 10.14.

A fonet is universal if it has a binder in no edge (necessarily a universal binder).

Lemma 10.16. Every universal rectified fonet is a universal quantification of a rectified fonet.

Proof. Let N be a universal rectified fonet, with (universal) binder •x in no edge. The result N− of
deleting •x from N is a fonet, since N− inherits all dualizers from N (because x goes from being
universal to being free) and ifW induces a bimatching in N− thenW induces a bimatching in N.
Since N− is an induced subgraph of a rectified fograph, N− is rectified. Since N = •x + N−, the
rectified fonet N is the universal quantification of the rectified fonet N− by x.

Lemma 10.17. Every fonet with no edge and no binder is a union λ1+. . .+λn of axioms λi (n>1).

Proof. Since N has no edges, it has no existential binders, hence the empty dualizer. Thus every
link inN has literals with dual atoms, so the subgraph ofN induced by each link is an axiom. Since
N has no edges, it is the union of these axioms.

Lemma 10.18. Let N be a rectified fonet with underlying uncoloured fograph G = K1 + (H1 ×
H2) + K2 for each Hi a fograph and each Kj empty or a fograph. Suppose no leap of N is between
VK1

∪ VH1
and VH2

∪ VK2
. Then N is a fusion of rectified fonets.

Proof. SinceN is a fograph and no leap goes between VK1
∪VH1

and VH2
∪VK2

, the graphs K1+H1

and H2 + K2 are well-defined fonets. Thus N is a fusion of rectified fonets. K1 + H1 and H2 + K2

at VH1
and VH2

.
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Lemma 10.19. LetN be a rectified fonet with underlying uncoloured fographG= K1+(•x×H)+K2

for H a fograph and each Ki empty or a fograph. Suppose no leap of N is between VK1
∪ { •x } and

VH ∪ VK2
. Then the binder •x is in no leap of N.

Proof. In this proof leap supposition refers to the supposition on leaps in the Lemma statement.
Suppose for a contradiction that { •x, •y } is a leap, hence dependency, of N. By the leap suppo-
sition, the universal binder •y is in K1. Let δ be a most general dualizer for N, which exists by
Lemma10.12. Since { •x, •y } is a dependency, the term δ(•x) contains y, by Lemma10.13. There
must be a link { v,w } such that the atom label of the literal v contains x, otherwise δ(•x) = z for
a stem variable z not occurring in N, so δ(•) would not contain y. Since N is rectified, the literal
v must be in the scope of •x, thus v is in H. The atom label of w cannot contain y, since w would
then be in K1 (because N is rectified so w must be in the scope of •y, which is in K1), and { v,w }

would be a link (hence leap) between H and K1, contradicting the leap supposition. Thus, for δ(x)
to be a term containing y, there must be a link { v,w } with the label of v containing x and the label
of w containing an existential variable x′ such that the term δ(x′) contains y. Therefore N has a
leap { •x′, •y }. Since v is in H and { v,w } is a link, hence a leap, by the leap supposition w must be
in H or K2. Because N is rectified, the literal w must be in the scope of the existential binder •x′,
so •x′ is in H or K2. Since •y is in K1, the leap { •x′, •y } is between K1 and H or K2, contradicting
the leap supposition.

Lemma 10.20. LetN be a rectified fonet with underlying uncoloured fographG= K1+(•x×H)+K2

for H a fograph and each Ki empty or a fograph. Suppose no leap of N is between VK1
∪ { •x } and

VH ∪ VK2
. Then N is an existential quantification of a rectified fonet by x.

Proof. By Lemma10.19 the existential binder •x is in no leap ofN. Let δ be a most general dualizer
for N and let t = δ(x). Define N′ as the result of deleting •x from N and substituting t for x in the
atom label of every literal. Since N is a rectified fograph and •x is in no leap of N, N′ is a rectified
fograph. Thus N is an existential quantification of N′ by x at ω in the portion VGm+1

for ω the set
of occurrences of t in N′ which replaced occurrences of x in N during the construction of N.

The mate of a literal l in a linked fograph is the other literal in the unique link containing l.

Lemma 10.21. Every non-universal rectified fonet with at least one edge is a fusion of rectified
fonets or an existential quantification of a rectified fonet.

Proof. LetN be a non-universal fonet with an edge, and letG be its underlying uncoloured fograph.
Since G is a (labelled) cograph, it has the formG = (G1×G2)+(G3×G4)+. . .+(Gn−1×Gn)+L for
fographs Gi and L, where L has no binder or edge, and n>1 since N (hence G) has an edge. LetΩ
be the graph whose vertices are the Gi with GiGj∈E(Ω) if and only ifN has an edge or leap {v,w}
with v∈V(Gi) and w∈V(Gj). A 1-factor is a set of pairwise disjoint edges whose union contains
all vertices. Since N is a fonet, Z = {G1G2,G3G4, . . . ,Gn−1Gn} is the only 1-factor of Ω. For if Z′

is another 1-factor, then Z′\Z determines a set of leaps in N whose union induces a bimatching in
N: for each GiGj ∈ Z′\Z pick a leap {v,w} with v ∈ V(Gi) andw ∈ V(Gj). SinceΩ has a unique 1-
factor, someGmGm+1 ∈ Z is a bridge [Kot59, LP86], i.e., (VΩ,EΩ\GmGm+1) = X+Y withGm∈VX

and Gm+1∈VY . Without loss of generality assume Gi ∈VX for i6m and Gj ∈VY for i>m+ 1. Let
LX (resp. LY) be the restriction of L to literals with mate in a vertex of X (resp. Y), thus L=LX+LY
since L contains only literals and no binders. Define K1 = LX+(G1×G2)+ . . .+(Gm−2×Gm−1)

and K2 = LY+(Gm+2×Gm+3)+ . . .+(Gn−2×Gn). Thus G = K1 + (Gm ×Gm+1) + K2.
Since L comprises literals only, each of K1 and K2 is either empty or a fograph. If Gm and Gm+1

both contain a literal, they are fographs, so we can appeal to Lemma10.18 with H1 = Gm and
H2 = Gm+1 to conclude that N is a fusion of rectified fonets. Otherwise one of Gm or Gm+1, say
Gm, has no literal, thus Gm = •x. Then Gm+1 must contain a literal, since G hence Gm×Gm+1 is
a fograph, therefore Gm+1 is a fograph. Applying Lemma10.20 with H=Gm+1, we conclude that
N is an existential quantification of a rectified fonet.

Lemma 10.22. Every rectified fonet can be constructed from axioms by fusion and quantification.

Proof. Let N be a rectified fonet. We proceed by induction on the number of binders and edges
in N. In the base case with no edge or binder, by Lemma10.17, N is a union of axioms, hence a
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fusion of axioms since union is a special case of fusion (with empty portions). If N is universal,
apply Lemma10.16 then appeal to induction with one less binder. Thus we may assume N is non-
universal with a binder or edge. Had N no edge, it would have no binder (since every existential
binder must be in an edge, and a universal binder would make N universal), thus N has at least
one edge. Apply Lemma10.21 then appeal to induction with fewer edges.

Lemma 10.23 (Fonet soundness). Every fonet is valid.

Proof. By Lemma10.22 every fonet can be constructed from axioms by fusion and quantification.
Since every axiom is valid, and fusion and quantification preserve validity by Lemmas 10.5, 10.8,
and 10.11, every fonet is valid.

10.2 Soundness of skew bifibrations

Throughout this section we no longer assume implicitly that every formula is rectified.
An intrusion is a formula of the form ϕ∨∀xθ, (∀xθ)∨ϕ, ϕ∧∃xθ, or (∃xθ)∧ϕ, for any variable

x and formulas ϕ and θ. A formula is extruded if no subformula is an intrusion. For any variable x,
an x-quantifier is a quantifier of the form ∀x or ∃x. A formula is unambiguous if no x-quantifier
is in the scope of another x-quantifier, for every variable x. A formula is clear if it is extruded and
unambiguous.

Definition 10.24. The graph G(ϕ) of a clear formula ϕ is the logical cograph defined inductively
by:

G(α) = •α for every atom α

G(ϕ∨θ ) = G(ϕ) +G(θ)

G(ϕ∧θ ) = G(ϕ)×G(θ)

G(∀xϕ ) = •x +G(ϕ)

G(∃xϕ ) = •x ×G(ϕ)

Note that G coincides with G (Def. 3.1) on extruded rectified formulas.

Lemma 10.25. The functionG is a surjection from clear formulas onto fographs. Two clear formulas
have the same graph if and only if they are equal modulo

ϕ∧θ = θ∧ϕ ϕ ∧ (θ∧ψ) = (ϕ∧θ) ∧ψ ∃x∃yϕ = ∃y∃xϕ

ϕ∨θ = θ∨ϕ ϕ ∨ (θ∨ψ) = (ϕ∨θ) ∨ψ ∀x∀yϕ = ∀y∀xϕ

Proof. A routine induction, akin to the proof of Lemma10.1.

Let G be a fograph. Using the above Lemma, choose a clear formula ϕ such that G(ϕ)=G. Define
G as valid if ϕ is valid. This is well-defined with respect to choice of ϕ since every equality in
Lemma10.25 is a logical equivalence.

Fographs G and H are ∧-compatible if G×H is a well-defined fograph and G×H = G+H, and

∨-compatible if G+H is a well-defined fograph and G+H = G+H. Thus ∨- and ∧-compatibility
ensure that no new bindings are created during graph union and join. For any variable x, a fograph
G is x-compatible if G does not contain an x-binder •x.

Definition 10.26. Let G and H be fographs. Define the fograph connectives ∧, ∨, ∀ and ∃ by:

• if G and H are ∧-compatible, define G∧H = G×H

• if G and H are ∨-compatible, define G∨H = G+H

• for any variable x, if G is x-compatible, define ∀xG = •x+ G

• for any variable x, if G is x-compatible, define ∃xG = •x×G.

Lemma 10.27. The fograph connectives ∧, ∨, ∀ and ∃ are well-defined on fographs. In other words,
given fographs as input(s), each connective produces a fograph as output.
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Proof. By the compatibility constraints, no x-binder of G∧H, G∨H, ∀xG, or ∃xG can be in the
scope of another x-binder.

Lemma 10.28. The following equalities hold for clear formulas:

G(ϕ∨θ ) = G(ϕ) ∨ G(θ)

G(ϕ∧θ ) = G(ϕ) ∧ G(θ)

G(∀xϕ ) = ∀x G(ϕ)

G(∃xϕ ) = ∃x G(ϕ)

Proof. Since ϕ∨θ and ϕ∧θ are clear, G(ϕ) and G(θ) are ∧- and ∨-compatible, thus G(ϕ) ∨ G(θ)
and G(ϕ) ∧ G(θ) are well-defined. Because ∀xϕ and ∃xϕ are clear, no x-quantifier occurs in ϕ,
so G(ϕ) contains no binder •x, thus ∀x(G(ϕ)) and ∃x(G(ϕ)) are well-defined.

Lemma 10.29. A labelled graph is a fograph if and only if it can be constructed from literals by the
fograph connectives ∧, ∨, ∀ and ∃.

Proof. Let G be a fograph. By Lemma10.25 there exists a clear formula ϕ such that G(ϕ)=G. By
Lemma10.28 the × and + operations in the inductive translation G of ϕ are well-defined ∧, ∨,
∀ and ∃ operations on fographs. Thus G can be constructed from literals by fograph connectives.
Conversely, any labelled graph constructed from literals is a fograph, by repeated application of
Lemma 10.27, starting from the fact that any literal vertex is a fograph.

A map is a label-preserving graph homomorphism between fographs.

Definition 10.30. Extend the fograph connectives to maps f : G→ H and f′ : G′ → H′ as follows:

• if G∧G′ and H∧H′ are well-defined, define f∧f′ : G∧G′ → H∧H′ as f ∪ f′

• if G∨G′ and H∨H′ are well-defined, define f∨f′ : G∨G′ → H∨H′ as f ∪ f′

• if ∀xG and if ∀xH are well-defined, define ∀xf : ∀xG→ ∀xH as f ∪ { •x 7→ •x }

• if ∃xG and if ∃xH are well-defined, define ∃xf : ∃xG→ ∃xH as f ∪ { •x 7→ •x }.

Lemma 10.31. The fograph connectives are well-defined on skew bifibrations: if f and f′ are skew
bifibrations, then, when defined, each of the maps f∧ f′, f∨f′, ∀xf and ∃xf is a skew bifibration,
where x is any variable.

Proof. Due to the compatibility constraint in the definitions of the fograph connectives, the skew
fibration condition is preserved and the directed graph homomorphisms between binding graphs
are fibrations. In the ∧ and ∃ connectives, additional requisite skew liftings are created across the
corresponding graph join.

Lemma 10.32. Skew bifibrations between fographs compose: if f : G→ H and f′ : H→ K are skew
bifibrations between fographs, their composition f;f′ : G→ K is a skew bifibration.

Proof. Skew fibrations between cographs compose [Hug06b, Cor. 3.5], and directed graph fibra-
tions compose [Gro60]. Existential preservation is transitive.

Definition 10.33. If G is a fograph and G ∨ G is well-defined, define pure contraction CG as
the canonical map G ∨ G → G. If G and H are fographs and G ∨ H is well-defined, define pure
weakening WH

G as the canonical map G→ G ∨H.

Lemma 10.34. Every pure contraction and pure weakening is a skew bifibration.

Proof. Immediate from the definitions of pure contraction and pure weakening.

Definition 10.35. A contraction is any map generated from a pure contraction by fograph con-
nectives, and a weakening is any map generated from a pure weakening by fograph connectives.

Lemma 10.36. Every contraction and weakening is a skew bifibration.

Proof. Pure contraction and pure weakening are skew bifibrations by Lemma10.34, and fograph
connectives are well-defined on skew bifibrations by Lemma10.31.
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Definition 10.37. A structural map is any map constructed from isomorphisms, contractions,
and weakenings by composition.

Lemma 10.38. Every structural map is a skew bifibration.

Proof. Every isomorphism is a skew bifibration, and every contraction and weakening is a skew
bifibration by Lemma10.36. Skew bifibrations compose by Lemma10.32.

Lemma 10.39. Structural maps are sound: if G is a valid fograph and f : G→ H is a structural map,
then H is valid.

Proof. Isomorphisms, pure contraction, pure weakening, composition and fograph connectives are
sound.

10.2.1 The image of a skew bifibration is a fograph

We recall the modular decomposition [Gal67] of a cograph, called its cotree [CLS81].
A directed graph (N,≺) is acyclic if the transitive closure of ≺ (viewed as a binary relation on

N) is irreflexive. A forest is an acyclic directed graph (N,≺) such that for every n ∈N there exists
at most one m ∈N with 〈n,m〉 ∈ ≺ . We refer to the vertices of a forest as nodes. Write m≺n or
n≻m for 〈n,m〉 ∈ ≺ , and say thatm is a child of n and n is the parent ofm. A leaf (resp. root)
is a node with no child (resp. parent). A tree is a forest with a unique root. A +× tree is a tree in
which a node is labelled + or × if and only if it is not a leaf. Each node labelled + or × is a +×
node. An isomorphism ι : (N,≺) → (N′,≺′ ) of +× trees is a bijection ι : N → N′ such that m≺n
if and only if ι(m)≺′ι(n) and ι(n) is a + (resp. ×) node if and only if n is a + (resp. ×) node. We
identify +× trees up to isomorphism.

Given +× trees T1, . . . , Tn for n > 1 define +T1 . . . Tn (resp. ×T1 . . . Tn) as the disjoint union of
the Ti together with a + (resp. ×) root node r and an edge to r from the root of each Ti (16i6n).
Write • for the +× tree with a unique node. For example, the +× tree +(×••)•

(
×••(+••)

)
is

below-left and +(×••)(+•)
(
×•(×•(+••))

)
is below-right.

+

× ×

+

+

× + ×

×

+

Definition 10.40. The cograph G(T) of a +× tree T is the cograph defined inductively by

G(•) = • G(+T1 . . . Tn) = G(T1)+ . . .+G(Tn) G(×T1 . . . Tn) = G(T1)× . . .×G(Tn)

For example, the cograph of the +× tree above-left is shown above-center; this cograph is also the
cograph of the +× tree above-right.

Lemma 10.41. The leaves of a +× tree T are in bijection with the vertices of its cograph G(T).

Proof. Induction on the number of vertices inG, pattern-matching the three cases in Def. 10.40.

A +× node repeats if it has a parent with the same label, and is unary if it has a unique child. A
+× tree alternates if it has no repeating +× node and branches if it has no unary +× node.

Definition 10.42. A cotree is a branching and alternating +× tree.

For example, the +× tree above-left is a cotree, while the +× tree above-right is not (since it has
a repeating × node and a unary and repeating + node). We recall the following definition from
[CLS81].

Definition 10.43. The cotree T(G) of a cograph G is the cotree defined inductively by
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T(•) = •
T(G1 + . . .+Gn) = +T(G1) . . .T(Gn) if Gi is connected for 16 i6n>2

T(G1 × . . .×Gn) = ×T(G1) . . .T(Gn) if Gi is coconnected for 16 i6n>2.

The following Lemma articulates a standard property of cotrees. Recall from §2 that a module in
a graph is proper if it has two or more vertices. A module M of a cograph G is connected (resp.
coconnected) if the induced subgraph G[M] is connected (resp. coconnected).

Lemma 10.44. The nodes of the cotree T(G) of a cograph G correspond to the strong modules of G,
and the × (resp. +) nodes correspond to proper connected (resp. coconnected) strong modules.

Proof. Induction on the number of vertices in G [CLS81].

The following Lemma is also a standard cotree property.

Lemma 10.45. The function T(−) is a bijection from cographs to cotrees.

Proof. Induction on the number of vertices in the cograph [CLS81].

Lemma 10.46. The cotree T(G) of a cograph G is the unique branching and alternating +× tree T
such that G(T) = G.

Proof. A routine induction on the number of vertices in G.

Lemma 10.47. The vertices of a cograph G are in bijection with the leaves of its cotree T(G).

Proof. Lemmas 10.41 and 10.46.

Let n be a node in a tree T = (N,≺). Define the absorption T ↑n of n in T as the result of deleting
n (and incident edges) from T and, if n has a parent n̂, adding an edge from each child of n to n̂.
Thus NT↑n = NT \ {n} and m≺T↑nm

′ if and only if m ≺T m
′ or m ≺T n ≺T m

′.

Definition 10.48. Given a +× tree T define its cotree |T | as the cotree obtained by iteratively and
exhaustively absorbing unary +× nodes and repeating +× nodes in T .

For example, if T is the+× tree above-right of Def. 10.40 then its cotree |T | is above-left of Def. 10.40.

Lemma 10.49. G(T) = G(|T |) for every +× tree T .

Proof. By induction on the number of nodes in T , pattern-matching the three cases in Def. 10.40,
combined with the associativity and commutativity of the graph union+ and join× operations.

Recall that G[U] is the subgraph of a graph G induced by a set of vertices U. Define the +× tree
T [U] induced by a non-empty set of leaves U in a +× tree T by deleting from T every leaf not in
U, and then iteratively and exhaustively deleting any resulting childless +× nodes. For example, if
T is the cotree below-left and U comprises the left-most four leaves of T , then the +× tree T [U] is
below-center, and the cotree |T [U]| is below-right.

+

× ×

+

+

× ×

+

×

Lemma 10.50. If U is a non-empty set of leaves in a cotree T , then G(T [U]) = G(T)[U].

Proof. Induction on the number of nodes in T .

Lemma 10.51. If U is a non-empty set of vertices in a cograph G, then G(|T(G)[U]|) = G[U].

Proof. By Lemma10.49, G(|T(G)[U]|) = G(T(G)[U]), which is G(T(G))[U] by Lemma10.50, hence
G[U] by Lemma10.46.
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Lemma 10.52. If U is a non-empty set of vertices in a cograph G, then T(G[U]) = |T(G)[U]|.

Proof. By Lemma10.46 it suffices to show that G(|T(G)[U]|) = G[U], which is Lemma10.51.

Write NT for the set of nodes of a tree T , ≺T for its set of directed edges, <T for the transitive
closure of ≺T , and 6T for the reflexive closure of <T (a partial order on NT ). Define m>T n as
n<T m, and say that m is above n or n is below m; define m>T n as n6T m, and say that m is
at or above n or n is at or below m. Define the meet m⊙n of nodes m and n in a tree T as the
6T -least node o withm6T o and n6T o.

Lemma 10.53. Let G be a cograph and v,w ∈ VG. Then vw ∈ EG if and only if v⊙w in the cotree
T(G) is a × node and vw /∈ EG if and only if v⊙w is a + node or v=w.

Proof. This follows directly from Lemma10.44.

Write v⊗w (resp. v⊕w) for v⊙w if it is a × (resp. +) node. For a cograph G write ≺G , <G , and
6G for ≺T(G) , <T(G) , and 6T(G) , respectively.

Lemma 10.54. IfG is a cographwith vw, vu∈EG,wu /∈ EG,w 6=u, then v<G v⊗w>Gw⊕u>Gw,u.

Proof. By Lemma10.53 v⊙w is a × node and w⊙u is a + node. Since v⊗w>Gw<Gw⊕u and
T(G) is a tree, either v⊗w<Gw⊕u or v⊗w>Gw⊕u. If v⊗w<Gw⊕u then v⊙u is a + node,
contradicting vu ∈ EG (by Lemma10.53), so v⊗w>Gw⊕u.

Lemma 10.55. If G is a cograph with vw, vu /∈ EG and wu∈EG then v<G v⊕w>Gw⊗u>Gw,u.

Proof. Necessarily w 6=u since wu ∈ EG, hence v 6=w and v 6=u. Thus we can apply Lemma10.54
to the complement of G.

Lemma 10.56. If f : G→ H is a skew fibration between cographs and v ≺G v⊕w >G w for v,w∈VG

with f(v) 6=f(w), then f(v) <H f(v)⊕ f(w) >H f(w).

Proof. Since f(v) 6=f(w) the meet f(v) ⊙ f(w) in T(H) is a + or × node. If the former, then
we have f(v) <H f(v)⊕ f(w) >H f(w) as desired. Otherwise f(v) <H f(v)⊗ f(w) >H f(w). By
Lemma10.53 vw /∈ EG since v ≺G v⊕w >G w, and f(v)f(w) ∈ EH since f(v) <H f(v)⊗ f(w) >H f(w).
Because f is a skew fibration and f(v)f(w) ∈ EH, there existsu∈VG with vu∈EG and f(w)f(u) /∈ EH.
Since f is a graph homomorphism, f(v)f(u) ∈ EH and wu /∈ EG, and w 6=u (otherwise vw ∈ EG
since vu∈EG, contradicting vw /∈ EG). Since wv,wu /∈ EG and vu∈EG, by Lemma10.55 we have
w<Gw⊕ v>G v⊗u>G v, hence v<G v⊗u<G v⊕w, contradicting v≺G v⊕w.

The following Lemma refines f(v)<H f(v)⊕ f(w) in the above Lemma to f(v)≺H f(v)⊕ f(w).

Lemma 10.57. If f : G→ H is a skew fibration between cographs and v ≺G v⊕w >G w for v,w∈VG

with f(v) 6=f(w), then f(v) ≺H f(v)⊕ f(w) >H f(w).

Proof. By Lemma10.56 we have f(v) <H f(v)⊕ f(w) >H f(w). Suppose not f(v)≺H f(v)⊕ f(w).
Then f(v) <H f(v)⊗u ≺H f(v)⊕ f(w) >H f(w) for some u ∈ VH. Since f(v) <H f(v) ⊗ u >H u

we have f(v)u ∈ EH by Lemma10.53. Because f is a skew fibration and f(v)u ∈ EH, there exists
ũ ∈ VG with vũ∈ EG and f(u)f(ũ) /∈ EH. Necessarily ũw∈ EG, otherwise Lemma10.55 applied to
vw, ũw /∈ EG and vũ ∈ EG yields w<Gw⊕ v>G v⊗ ũ >G v so v <G v⊗ ũ <G w⊕ v contradicting
v ≺G v⊕w.

Lemma 10.58. If f : G→ H is a skew fibration of cographs andm ≺H m⊗n ≻H n, then f(v)6Hm

for some v ∈ VG if and only if f(w)6H n for some w ∈ VG.

Proof. Assume m 6=n, otherwise the result is immediate. Suppose f(v)6Hm for v ∈ VG. Choose
u∈VH with u6H n. Thus f(v) 6H m ≺H m⊗n ≻H n >H u . Sincem⊗n = f(v)⊗u is a × node,
we have f(v)u ∈ EH by Lemma10.53. Because f is a skew fibration and f(v)u ∈ EH, there exists
û ∈ VG with vû ∈ EG and f(û)u /∈ EH. Since vû ∈ EG and f is a graph homomorphism, we have
f(v)f(û)∈ EG. If u=f(û) then since n >H u we have f(û)6Hn as desired. Otherwise u 6=f(û), so
applying Lemma 10.54 to f(v)u, f(v)f(û) ∈ EH, uf(û) /∈ EH, u 6=f(û) yields f(v) <H f(v)⊗u >H

u⊕ f(û) >H u, f(û). Thus since f(v)⊗u =m⊗n is the parent of n, both f(v)⊗u ≻H n >H u and
f(v)⊗u >H w⊕ f(û) >H u, so because T(H) is a tree, we have n >H w ⊕ f(û), hence f(û) 6H

n.
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Given a function f : V →W write f(V) for { f(v) : v ∈ V } ⊆W.

Definition 10.59. Let f : G→ H be a graph homomorphism between cographs. Define the image

Imf as the subgraph H[f(VG)] of H induced by f(VG).

Define v�T w if v andw are leaves and v̂ >T w for the parent v̂ of v. Recall that a cograph is logical
if every vertex is a binder or literal (i.e., is labelled by a variable or atom), and at least one vertex
is a literal. Write SG(b) for the scope of a binder b in a logical cograph G. The following Lemma
shows that the scope of b is the set of leaves below the parent of b in the cotree T(G).

Lemma 10.60. For any vertex v and binder b in a logical cographG, v∈SG(b) if and only if b�T(G)v.

Proof. By definition the scope of b is the smallest proper strong module containing b, which cor-
responds to the parent of b in the cotree T(G) by Lemma10.44.

Lemma 10.61. For any +× tree T and non-root +× node n in T , if v �T w then v �T↑n w.

Proof. Immediate from the definition of T ↑n.

Lemma 10.62. For any +× tree T , if v �T w then v �|T | w.

Proof. Iterate Lemma10.61 for every absorption step in the construction of |T | in Def. 10.48.

Lemma 10.63. For any +× tree T and non-empty set U of leaves in T , if v �T w and v,w ∈U then
v �T [U] w.

Proof. The edge relation ≺T [U] is a subset of ≺T .

Lemma 10.64. LetH logical cograph which is an induced subgraph of a logical cographG. For every
vertex v and binder b in H, if v ∈ SG(b) then v ∈ SH(b).

Proof. Let v ∈ SG(b). By Lemma10.60, b�T(G)v. By Lemma10.63, b�T(G)[VH]v. By Lemma10.62,
b �|T(G)[VH]| v. By Lemma10.52, |T(G)[VH]| = T(G[VH]), and T(G[VH]) = T(H), thus b �T(H) v.
Therefore v ∈ SH(b) by Lemma10.60.

A fograph map f : G→ H preserves universals if every universal binder b in G maps to a universal
binder f(b) in H.

Lemma 10.65. Every skew fibration between fographs preserves universals.

Proof. By Lemma10.44, a binder is universal if and only if its parent in the cotree is a + node.
Thus the result follows from Lemma10.57.

A fograph map preserves binders if every universal (resp. existential) binder b in G maps to a
universal (resp. existential) binder f(b) in H.

Lemma 10.66. Every skew bifibration between fographs preserves binders.

Proof. Skew bifibrations preserve existentials by definition, and universals by Lemma10.65.

Lemma 10.67. For every skew bifibration f : G→ H of fographs, the image Imf is a logical cograph.

Proof. Every vertex of Imf is inherited from H, and is therefore a binder or literal. Since Imf is
an induced subgraph of a cograph H, it is a cograph. Because G is a logical cograph, it contains a
literal l, thus Imf contains the literal f(l) (a literal since f preserves labels).

Lemma 10.68. For every skew bifibration f : G → H between fographs and universal binder b in
Imf, the scope SH(b) contains a literal in Imf.

Proof. Choose b̃ in G with f(b̃) = b. By Lemma10.66, b̃ is universal. Since G is a fograph there
exists a literal l ∈ SG(b̃). Thus b̃ ≺G b̃⊕ l >G l by Lemma10.60, and since f(b̃) 6=f(l) by label
preservation, by Lemma10.57 we have b ≺H b⊕f(l) >H f(l), hence f(l) ∈ SH(b), by Lemma10.60.
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Lemma 10.69. For every skew bifibration f : G → H between fographs and universal binder b in
Imf, the scope SImf(b) contains a literal.

Proof. By Lemma10.68, the scope SH(b) contains a literal f(l). Since Imf is an induced subgaph
of H, by Lemma10.64 we have f(l) ∈ SImf(b).

Lemma 10.70. For every skew bifibration f : G → H between fographs and existential binder b in
Imf, the scope SH(b) contains a literal in Imf.

Proof. Since H is a fograph there exists a literal k in H in the scope of b. Thus b ≺H b⊗k >H k by
Lemma10.60. Therefore b ≺H b⊗k ≻H n >H k for some child n of b⊗k. Since b is in Imf there
exists b̃ ∈ VG with f(b̃)=b, so we may apply Lemma10.58 withm=b and v= b̃ to obtain w ∈ VG

with f(w)6H n. If w is a literal, then the literal f(w) is in SH(b), and the Lemma holds.
Otherwise w is a binder, hence f(w) is a binder. We proceed by induction on the number of

vertices in the scope SH(b). Since f(w) 6H n >H k for f(w) a binder and k a literal, n must be a
+ or × node, and since + and × alternate in a cotree, n is a + node because its parent b⊗k is a ×
node. Let n′ be the parent of f(w). Thus b ≺H b⊗k ≻H n >H n

′ ≻H f(w). If n
′ is a + node, then

f(w) is universal so by Lemma10.69 the scope of f(w) contains a literal in Imf, i.e., a literal f(l) for
some literal l in G. Therefore b ≺H b⊗k ≻H n >H n

′ ≻H f(l), so f(l) is also in SH(b). Otherwise
n′ is a × node, so f(w) is existential. Since SH(f(w)) is strictly contained in SH(b), by induction
there exists a literal l in G such that f(l) is in SH(f(w)), thus the literal f(l) is in SH(b).

Lemma 10.71. For every skew bifibration f : G → H between fographs and binder b in Imf, the
scope SH(b) contains a literal in Imf.

Proof. If b is universal (resp. existential) apply Lemma10.68 (resp. 10.70).

Lemma 10.72. For every skew bifibration f : G → H between fographs and existential binder b in
Imf, the scope SImf(b) contains a literal.

Proof. By Lemma10.70 there exists a literal l with f(l) in SH(b). Since Imf is an induced subgraph
of H, we have f(l) in SImf(b) by Lemma10.64.

Definition 10.73. A logical cograph G is fair if binders b and b′ have the same variable only if
bb′ /∈ EG.

Note that every rectified fograph is fair.

Lemma 10.74. For every skew bifibration f : G → H between fographs with H fair, Imf is a fair
fograph.

Proof. By Lemma10.67 Imf is a logical cograph, and Imf is fair since if bb′ ∈ EImf for binders b
and b′ with the same variable, then bb′ ∈ EH since Imf is an induced subgraph, contradicting the
fairness of H. It remains to show that (1) for every binder b in Imf the scope SImf(b) contains a
literal, and (2) for every variable x and every x-binder b in Imf, the scope SImf(b) contains no other
x-binder.

(1) If b is universal (resp. existential), then by Lemma10.69 (resp. 10.72), the scope SImf(b)
contains a literal.

(2) Suppose b′ were another x-binder with b′ ∈ SImf(b), i.e., b ≺Imf b ⊙ b′ >Imf b
′. If b is

universal, then b⊙ b′=b⊕ b′, so b ≺H b⊕ b′ >H b
′, whence b′ ∈ SH(b), contradicting the fact

that H is a fograph. Otherwise, b is existential, and b⊙b′=b⊗b′, so bb′ ∈ EImf. Since Imf is an
induced subgraph of H, we have bb′ ∈ EH, contradicting the fairness of H.

The following example illustrates why fairness ofH is required to ensure no x-binder is in the scope
of another in Lemma10.74. LetG =G((∃xpx)∨(∃xpx)) = x px x px, letH =G(q∨∃xpx) =
•q x px, and let f be the unique label-preserving graph homomorphismG→ H, which is a skew
bifibration between fographs. Then f∧ f : G∧G → H∧H is a skew bifibration between fographs,
but its image Imf is (x px)∧(x px), which is not well-defined fograph since each •x is in the
scope of the other.
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10.2.2 Marking and pruning

Let G be a cograph and let U⊆VG. A node n in the cotree T(G) is overU if n>G u for some vertex
u ∈ U. Define the support U∗ ⊆ NT(G) as the set of nodes over U, and say that U is balanced for
G if, for every × node n in T(G) and child m of n, we have m ∈U∗ if n ∈U∗.

Lemma 10.75. If f : G→ H is a skew fibration between cographs then f(VG)⊆VH is balanced for
H.

Proof. A corollary of Lemma10.58.

Let G be a cograph and let U⊆VG. A +× node n in U∗ is literal-supported if there exists a literal
l ∈U with n>G l. We say that U is binding-closed if for every literal l ∈U and binder b in G, if b
binds l then b ∈U.

Definition 10.76. Let G be a fograph. A set U⊆VG is a marking for G if it is balanced, every +×
node of U∗ is literal-supported, and U is binding-closed.

Lemma 10.77. If f : G→ H is a skew bifibration between fographs then f(VG) is a marking for H.

Proof. Let U = f(VG). By Lemma10.58, U is balanced, by Lemma10.71, every node n in U∗ is

literal-supported, and U is binding-closed since f : G→ H is a directed graph fibration.

Let n be the child of a + node m in a +× tree T . The node n is critical to m if n is the only child
ofm which is at or above a literal. If n is an x-binder for some variable x, then n is vacuous if it is
the unique node in the subtree rooted at m whose label contains x.13

Definition 10.78. A node n in a +× tree T is pareable if:

1. n has a parentm, a + node,

2. n is not critical tom, and

3. if n is a binder (necessarily universal) then it is vacuous.

To pare a pareable node n in a +× tree T is to delete the subtree rooted at n.

Definition 10.79. A pruning is any result of iteratively paring zero or more + nodes.

Lemma 10.80. Let G be a fograph with marking U, and let T be a +× tree such that G(T) = G.
There exists a pruning T ′ of T with G(T ′) = G[U].

Proof. A routine induction on the number of nodes in T .

10.2.3 Decomposition of skew bifibrations

Definition 10.81. If G is a connected fograph without the variable x, define slackening Sx
G as the

canonical inclusion map G→ ∀xG.

Lemma 10.82. Every slackening is a structural map.

Proof. WeakenG toG∨∀xG, which is ∀x(G∨G), then contract under ∀x to ∀xG. (Note thatG∨G
is well-defined because G is connected.)

Definition 10.83. A WS-map is any map constructed from isomorphisms, weakenings and slack-
enings by composition and fograph connectives.

Lemma 10.84. Every WS-map is a structural map.

Proof. Iterate Lemma10.82.

Lemma 10.85. Let G be a fograph, let T be a +× tree such that G(T) = G, let T ′ be the result of
paring a pareable node in T , and let G′ = G(T ′). There exists a WS-map G′ → G.

13Thus in the cograph G(T), the universal binder n binds no literal.
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Proof. If the paring is of a vacuous binder (condition 3 in Def. 10.78), then we obtain a slackening
in the context of a fograph connective, otherwise (condition 2 in Def. 10.78) we obtain a weakening
in the context of a fograph connective.

Lemma 10.86. Let G be a fograph, let T be a +× tree such that G(T) = G, let T ′ be a pruning of T ,
and let G′ = G(T ′). There exists a WS-map G′ → G.

Proof. Apply Lemma10.85 to each paring in the pruning.

Lemma 10.87. Let f : G→ H be a skew bifibration withH fair. The inclusion Imf→ H is a WS-map.

Proof. By Lemma10.74, Imf is a fograph. LetU= f(VG), thus Imf is the induced subgraphH[U]. By
Lemma10.77, U is a marking. Let T be the cotree T(H). By Lemma10.77, there exists a pruning
T ′ of T with G(T ′) = H[U] = Imf. By Lemma10.86, there exists a WS-map G(T ′) → G(T), i.e.,
Imf→ H.

Let f : G → H be a skew fibration and let K be a connected component of H. The multiplicity

of K is the number of connected components of f−1(K), and the weight of K is one more than its
multiplicity. The weight of f is the sum of the weights of the connected components of H. A skew
bifibration is shallow if the multiplicity of every connected component of H is at most one.

Lemma 10.88. Every skew bifibration into a fair fograph is a structural map.

Proof. By induction on the weight of the skew bifibration f : G → H and its multiplicity. By
Lemma10.87 (and the fact that every WS-map is a structural map by Lemma10.84) we may as-
sume f is a surjection, and by pre-composing with contractions we may assume f is shallow. If
H = •x+H′ then G = •x+G′ since f is a shallow surjection, hence f = ∀xf′, and by induction f′ is
a structural map. Otherwise if H = H1 +H2 then H = H1∨H2 (since H is not of the form •x+H′).
Since f is a shallow surjection, G = G1 ∨G2, so f = f1 ∨ f2 for fi : Gi → Hi. By induction each
fi is a structural map, hence f is structural. Otherwise H is connected. If H has no edge then f is
an isomorphism from a literal to a literal, hence is a structural map. Thus we may assume H has
an edge. If H = •x× H′ then G = •x× G′ since f is a shallow surjection, hence f = ∃xf′, and by
induction f′ is a structural map. Otherwise H = H1 ×H2 for fographs Hi, with Hi not of the form
•x×H ′

i. Thus H = G1 ∧G2, hence G = G1 ∧G2 with f(VGi
) ⊆ VHi

. Therefore f = f1 ∨ f2 for skew
bifibrations fi : Gi → Hi, and by induction each fi is a structural map, so f is a structural map.

Lemma 10.89 (Soundness of skew bifibrations). If G is a valid fograph and f : G → H is a skew
bifibration with H fair, then H is valid.

Proof. By Lemma10.88, f is a structural map, which is sound by Lemma10.39.

10.3 Proof of the Soundness Theorem

Proof of Soundness Theorem (Theorem 6.2). Let f :N→ G(ϕ) be a combinatorial proof of a formula
ϕ. By Lemma10.23 N is valid, thus by Lemma10.89 G(ϕ) is valid (applicable since G(ϕ) is
rectified, hence fair), therefore ϕ is valid.

11 Proof of the Completeness Theorem

In this section we prove the Completeness Theorem, Theorem 6.3.
We shall employ variants F1 and F2 of the syntactic proof system GS1 [TS96, §3.5.2] for first-

order logic, which is a reformulation of Gentzen’s LK [Gen35]. The system F2 allows us to factorize
a proof of any valid formula ϕ into two phases, logical then structural. The logical phase yields a
fonet N, and the structural phase provides a skew bifibration N → G(ϕ), hence a combinatorial
proof of ϕ. This completeness strategy generalizes that of the propositional case in [Hug06b].

Throughout this sectionwe no longer assume formulas are implicitly in rectified form. A sequent

is a finite multiset of formulas, i.e., a finite sequence of formulas modulo reordering [TS96, §1.1.4].
We write comma for disjoint union on sequents, and identify a singleton sequent with its formula.
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Let Γ = ϕ1,. . .,ϕn be a sequent, and without loss of generality assume ϕ1, . . . ,ϕn are ordered
according to some fixed linear order on the set of all formulas. Define the formula Φ(Γ) of Γ as
Γ,ϕ. Define Γ as valid if its formula is valid. Recall (from §10) that ϕ{x 7→t} denotes the result of
substituting a term t for all occurrences of the variable x in ϕ, but only if no variable in t becomes
bound [TS96, §1.1.2]. The inference rules of F1, from which F1 proofs are generated, are as
follows, in which Γ and ∆ are arbitrary sequents, ϕ and θ are arbitrary formulas, and α is any
atom.

α,α

Γ,ϕ,θ
∨

Γ,ϕ∨θ

Γ
w

Γ,ϕ

Γ,ϕ,ϕ
c

Γ,ϕ

Γ,ϕ θ,∆
∧

Γ,ϕ∧θ,∆

Γ,ϕ{x 7→t}
∃

Γ,∃xϕ

Γ,ϕ
∀

Γ,∀xϕ
(x not free in Γ)

We refer to the rule c as sequent-weakening and w as sequent-contraction. Each sequent above a
rule is a hypothesis of the rule, and the sequent below a rule is the conclusion of the rule.

Lemma 11.1 (F1 soundness & completeness). A sequent is valid if and only if it has an F1 proof.

Proof. System F1 is equivalent to GS1, which is sound and complete [TS96, §3.5.2]. It differs only
in the choice of ∧ and ∨ rules, which are equivalent in the presence of c and w.

A context [TS96, §1.1.3] is the variant of a formula with the symbol  as a generator in addition
to all atoms, but with the restriction that  occurs exactly once in a context. Given a context χ we
write χ[ϕ] for the result of substituting ϕ for  in χ. For example χ = ∃x( ∨∀ypy) is a context,
and χ[px] = ∃x(px∨∀ypy). A formula ϕ is connected if it is not of the form ∀xϕ′ or ϕ1∨ϕ2 (thus
a rectified formula ϕ is connected if and only if its graph G(ϕ) is connected). Define system F2 by:

α,α

Γ,ϕ,θ
∨

Γ,ϕ∨θ

Γ,χ[ϕi]
Wi

Γ,χ[ϕ1∨ϕ2]

Γ,χ[ϕ∨ϕ]
C

Γ,χ[ϕ]
(ϕ connected)

Γ,ϕ θ,∆
∧

Γ,ϕ∧θ,∆

Γ,ϕ{x 7→t}
∃

Γ,∃xϕ

Γ,ϕ
∀

Γ,∀xϕ
(x not free in Γ)

11.1 Soundness and completeness of F2

In this sectionwe prove that F2 is sound and complete. The completeness of F2 is a key step towards
showing that combinatorial proofs are complete in §11. The size #Π of a proof Π is the number of
occurrences of rules in Π.

Lemma 11.2. Every F1 proof Π of Γ,∀xϕ can be transformed into an F1 proof Π′ of Γ,∀xϕ such
that #Π′ 6 #Π and the last rule of Π′ takes one of the following two forms:

Γ,ϕ
∀

Γ,∀xϕ

Γ
w

Γ,∀xϕ

Proof. By induction on #Π, transposing ∀ rules down through non-∀ rules. The only non-trivial
case is when Π ends with a c rule, so Π has the form
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····
Π1

Γ,∀xϕ,∀xϕ
c

Γ,∀xϕ

for Π1 the F1 proof of Γ,∀xϕ,∀xϕ obtained by deleting the last rule from Π. Since Π1 has one less
rule than Π we can apply induction to obtain either Π∀ ending in a ∀ rule or Πw ending in a w rule:

····
Π∀

Γ,∀xϕ,ϕ
∀

Γ,∀xϕ,∀xϕ
c

Γ,∀xϕ

····
Πw

Γ,∀xϕ
w

Γ,∀xϕ,∀xϕ
c

Γ,∀xϕ

In the latter case we take Π′ to be Πw. In the former case, we once again apply induction, and
obtain one of the following two proofs:

····
Π∀∀

Γ,ϕ,ϕ
∀

Γ,∀xϕ,ϕ
∀

Γ,∀xϕ,∀xϕ
c

Γ,∀xϕ

····
Π∀w

Γ,ϕ
w

Γ,∀xϕ,ϕ
∀

Γ,∀xϕ,∀xϕ
c

Γ,∀xϕ

Define Π′, respectively, as:

····
Π∀∀

Γ,ϕ,ϕ
c

Γ,ϕ
∀

Γ,∀xϕ

····
Π∀w

Γ,ϕ
∀

Γ,∀xϕ

Lemma 11.3. Every F1 proof Π of Γ,ϕ∨θ can be transformed into an F1 proof Π′ of Γ,ϕ∨θ such
that #Π′ 6 #Π and the last rule of Π′ takes one of the following two forms:

Γ,ϕ,θ
∨

Γ,ϕ∨θ

Γ
w

Γ,ϕ∨θ

Proof. Reason as in the proof of Lemma11.2, but with a ∨-rule instead of a ∀-rule.

A c rule
Γ,χ[ϕ∨ϕ]

Γ,χ[ϕ]
c is connected if the formula ϕ is connected.

Lemma 11.4. Every F1 proof Π of a sequent Γ can be transformed into an F1 proof Π′ of Γ in
which every c rule is connected.

Proof. By induction on #Π. In the base case #Π = 1, the proof Π is just an axiom α,α, so we take
Π′ = Π. Otherwise, if the last rule ρ of Π is not a c rule, or is a connected c rule, we appeal to
induction with the result Π1 of deleting ρ from Π to obtain Π ′

1, then append ρ to Π ′
1 to construct

Π′. The key case is when ρ is a non-connected c rule. Thus ρ takes one of the following two forms:

Γ,∀xϕ,∀xϕ
c

Γ,∀xϕ

Γ,ϕ∨θ,ϕ∨θ
c

Γ,ϕ∨θ

In the former case we apply Lemma11.2 to Π to obtain Π0 ending with a ∀ or w rule, and in the
latter case we apply Lemma11.3 to Π to obtain Π0 ending with a ∨ or w rule, and #Π0 6 #Π.
We can now apply our earlier induction step to Π0 since its last rule is a ∀, ∨ or w rule (not a c

rule).
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Define F2w as the extension of F2 with the w rule of F1.

Lemma 11.5. Every F1 proof Π of a sequent Γ can be transformed into an F2w proof Π′ of Γ .

Proof. Apply Lemma11.4 to Π to obtain an F1 proof Π0 in which every c rule is connected. Con-
struct Π′ from Π0 by replacing every c rule of the form below-left in Π by the pair of rules below-
right.

Γ,ϕ,ϕ
c

Γ,ϕ

Γ,ϕ,ϕ
∨

Γ,ϕ∨ϕ
C

Γ,ϕ

The C rule is well-defined since every c rule in Π0 is connected. (Note that this instance of a C rule
is the special case with trivial context χ =  .)

Lemma 11.6. Every F2w proof Π of a sequent Γ can be transformed into an F2w proof Π′ of Γ in
which every w rule is below every non-w rule.

Proof. We exhaustively transpose every w rule ρ of Π down through any immediately-following
non-w rule ρ′. For example, here are the two cases where ρ′ is a ∧ rule,

Γ,θ
w

Γ,ϕ,θ ψ,∆
∧

Γ,ϕ,θ∧ψ,∆

→

Γ,θ ψ,∆
∧

Γ,θ∧ψ,∆
w

Γ,ϕ,θ∧ψ,∆

Γ,θ
w

Γ,θ,ϕ ψ,∆
∧

Γ,θ,ϕ∧ψ,∆

→
Γ,θ

w+

Γ,θ,ϕ∧ψ,∆

where w+ denotes a sequence of n + 1 instances of the w rule and n is the number of formulas
occurring in ∆. All other transpositions are similar.

Lemma 11.7. Every F2w proof Π of a formula ϕ can be transformed into an F2 proof Π′ of ϕ.

Proof. By Lemma11.6 we obtain from Π an F2w proof Π′ of ϕ in which every w rule is below every
non-w rule. This proof has zero w rules, since if the last rule were a w rule then ϕ would be a
sequent with at least two formulas, rather than a single formula ϕ. Thus Π′ is a F2 proof.

Lemma 11.8. Every F1 proof Π of a formula ϕ can be transformed into an F2 proof Π′ of ϕ.

Proof. By Lemma11.5 we obtain an F2w proof of ϕ, whence an F2 proof by Lemma11.7.

Lemma 11.9 (F2 soundness & completeness). A formula is valid if and only if it has an F2 proof.

Proof. F2 is sound since every rule is sound: the conclusion is valid whenever the hypothesis/hypotheses
is/are valid. Completeness of F2 follows from the completeness of F1, by Lemma11.8.

Note that F2 is complete for formulas, but not for sequents in general. For example, p∨p has an
F2 proof, but p∨p,q does not; however (p∨p)∨q does.14

11.2 Preliminaries to the proof of the Completeness Theorem

Recall from §10.2 that a formula is extruded if no subformula is an intrusion, where an intrusion is
a formula of the form ϕ∨∀xθ, (∀xθ)∨ϕ, ϕ∧∃xθ, or (∃xθ)∧ϕ, for any variable x and formulas
ϕ and θ. Define a formula ϕ as extrudable if no variable occurs both free and bound in ϕ. The
extruded form of an extrudable formula is the extruded formula which results from exhaustively
applying the following extrusion subformula rewrites:

ϕ ∧ ∃xθ → ∃x(ϕ∧θ) (∃xθ) ∧ϕ → ∃x(θ∧ϕ)

ϕ ∨ ∀xθ → ∀x(ϕ∨θ) (∀xθ) ∨ϕ → ∀x(θ∨ϕ)

14See [Hug10] for an analysis of sequent calculi which are complete for formulas but not for sequents.
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Note that these rewrites are not applicable if x occurs free in ϕ, due to the unintended capture of x
by the quantifier in the output of the rewrite; hence our restriction of these rewrites to extrudable
formulas.

Recall from §10.2 that a formula is unambiguous if no x-quantifier is in the scope of another
x-quantifier, for every variable x. Define a formula as pristine if it is extrudable and its extruded
form is unambiguous. The graph G(ϕ) of a pristine formula ϕ is the graph G(ϕ′) of its extruded
form ϕ′, as defined in Def. 10.24. Define a sequent Γ = ϕ1,. . .,ϕn as pristine if its formulaΦ(Γ) =
ϕ1∨(ϕ2∨. . . (ϕn−1∨ϕn) . . .) is pristine, and define the graph of a pristine sequent Γ as the graph
G(Φ(Γ)) of its (pristine) formula.

Lemma 11.10. If the conclusion sequent below a W or C rule is pristine, the hypothesis sequent
above the rule is pristine.

Proof. Going upwards from the pristine conclusion Γ,χ[ϕ] to the hypothesis Γ,χ[ϕ∨ϕ], the C rule
replaces a connected subformula ϕ by ϕ∨ϕ. Since the free and bound variables of ϕ∨ϕ are those
of ϕ, the hypothesis Γ,χ[ϕ∨ϕ] is extrudable. Since ϕ is connected, the extruded form ϕ′ of ϕ
cannot be a ∀ or ∨ formula, thus the extruded form of ϕ∨ϕ is ϕ′ ∨ϕ′, so the extruded form of
Γ,χ[ϕ∨ϕ] is unambiguous, and Γ,χ[ϕ∨ϕ] is pristine.

Going upwards from the pristine conclusion Γ,χ[ϕ∨ θ] to the hypothesis Γ,χ[ϕ], the W rule
replaces a subformula ϕ∨ θ by ϕ. Since this amounts to the deletion of the subformula θ, the
sequent Γ,χ[ϕ] is pristine: every variable that occurs free and bound in Γ,χ[ϕ] also occurs free and
bound in Γ,χ[ϕ∨θ], and any ambiguity in the extruded form of Γ,χ[ϕ] would yield an ambiguity
in the extruded form of Γ,χ[ϕ∨θ].

The rules W and C of F2 are structural, and the remaining rules are logical.

Definition 11.11. A proof of F2 is phased if every logical rule is above every structural rule.

Lemma 11.12. Every F2 proof of a formula ϕ can be transformed into a phased proof of ϕ.

Proof. A routine induction on the size of the proof, by exhaustively commuting structural rules
downwards through logical rules.

A proof is logical if every rule is logical. The heart of a phased F2 proof is the formula(-occurrence)
which is the hypothesis of the first structural rule, the logical phase is the logical subproof ending
at the heart, and the rules below the heart constitute the structural phase.

A sequent is rectified if all bound variables are distinct from one another and from all free
variables. (Thus a sequent Γ is rectified if and only if its formula Φ(Γ) is rectified.)

Lemma 11.13. Every F2 proof Π of a logical proof of a sequent Γ with rectified form Γ ′ can be
transformed into a logical proof Π′ of Γ ′, such that #Π′ = #Π and every sequent in Π′ is rectified.

Proof. By induction on #Π. The base case with Π just an axiom α,α is immediate. For the induction
step, let σ be the sequence of renamings of occurrences of bound variables in Γ which yields the
rectified form Γ ′. Since the last rule ρ of Π is not a C rule, applying σ to each hypothesis sequent Γi
above ρ yields a rectified sequent Γ ′i . Apply the induction hypothesis to the subproofs above each
Γi.

Define the graph G(Γ) of a rectified sequent Γ = ϕ1,. . .,ϕn as the rectified fograph G(Φ(Γ)) =

G(ϕ1∨ (ϕ2∨ . . . (ϕn−1∨ϕn) . . .)).

Lemma 11.14. Each non-axiom logical rule of F2 with rectified hypothesis sequent(s) Γi and recti-
fied conclusion sequent Γ determines a fograph operation or identity which constructs a rectified
fograph G(Γ) from the rectified fograph(s) G(Γi).

Proof. The ∧ rule determines the fusion (Def. 10.4) of G(Γ,ϕ) and G(θ,∆) to produceG(Γ,ϕ∧θ,∆).
The ∨ rule acts as the identity on G(Γ,ϕ,θ) = G(Γ,ϕ∨θ), The ∀ rule applies universal quantification
(Def. 10.7) to G(Γ,ϕ) to form G(Γ,∀xϕ) = ∀xG(Γ). The ∃ rule applies existential quantification
(Def. 10.10) to Γ,ϕ{x 7→t} to form G(Γ,∀xϕ) = ∀xG(Γ),

30



Lemma 11.15. Every logical F2 proof of a rectified formula ϕ determines a fonet with underlying
fograph G(ϕ).

Proof. Each axiom rule determines a fonet axiom (as defined in §10.1). By Lemma11.14 every rule
determines a fograph operation, which by Lemma10.15 construct a fonet from the fonet axioms.

Lemma 11.16. Every structural rule whose hypothesis sequent Γ and conclusion sequent ∆ are pris-
tine determines a structural map G(Γ) → G(∆).

Proof. A C rule determines a contraction fograph map and a W determines a weakening fograph
map (Def. 10.35).

11.3 Proof of the Completeness Theorem

Proof of Completeness Theorem, Theorem 6.3. Let ϕ be a valid rectified formula. We will construct
a combinatorial proof f : N→ G(ϕ).

By Lemma11.9 there exists an F2 proofΠ of ϕ. By Lemma11.12 we may assume Π is a phased.
Let ΠL be the logical phase of Π, culminating in the heart µ of Π. By Lemma11.13 there exists a
logical proof Π ′

L of a rectified form µ′ of µ. By Lemma11.2, Π ′
L determines a fonet N′ whose

underlying rectified fograph is G(µ′).
The structural phase ΠS of Π is a sequence of C and W rules beginning with µ and ending with

ϕ. Sinceϕ is rectified, it is pristine. Thus by iterating Lemma11.10 upwards fromϕ, every formula
occurring in ΠS is pristine. By Lemma11.16 we obtain a sequence of contraction and weakening
maps, one per rule of ΠS, whose composite is a structural map f : G(µ) → G(ϕ), since structural
maps are (by definition) closed under composition. By Lemma10.38 f is a skew bifibration. Since
ϕ is rectified, G(ϕ) = G(ϕ), and since µ′ is a rectified form of µ, the underlying fograph of the
fonet N′ is a rectified form of G(µ). Thus applying the colouring of N′ to G(µ) yields a fonet N, so
f is a skew bifibration N→ G(ϕ).

12 Homogeneous soundness and completeness proofs

12.1 Propositional homogeneous soundness and completeness proof

In this section we prove the propositional homogeneous soundness and completeness theorem,
Theorem7.6. We begin by observing that the function D from propositions to dualizing graphs
(Def. 7.2) factorizes through propositional fographs. A fograph is propositional if every predicate
symbol is nullary. For example, the middle row of Fig. 7 (p. 7) shows four propositional fographs.

Definition 12.1. The dualizing graph D(G) of a propositional fograph is the dualizing graph D
with VD = VG, ED = EG, and vw ∈ ⊥D if and only if v and w have dual predicate symbols.15

For example, for each propositional fograph G in the middle row of Fig. 7 (p. 7), the corresponding
dualizing graph D(G) is shown below G.

Lemma 12.2. D(G) is a well-defined dualizing graph for every propositional fograph G.

Proof. Let D = D(G). Since VD = VG, ED = EG and G is a fograph, D is a cograph. By reasoning
as in the proof of Lemma7.3, (VG,⊥D) is P4- and C3-free.

Lemma 12.3. The function D from propositions to dualizing graphs (Def. 7.2) factorizes through
propositional fographs: D(ϕ) = D(G(ϕ)) for every proposition ϕ.

Proof. A routine induction on the structure of ϕ.

Lemma 12.4 (Propositional homogeneous soundness). A proposition is valid if it has a homogeneous
combinatorial proof.

15In §13 we will show that D is a surjection from propositional fographs onto dualizing graphs (Lemma13.1).
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Proof. Suppose f : N→ D(ϕ) = D is a homogeneous combinatorial proof of the proposition ϕ. By
Lemma12.3,D= D(G(ϕ)). DefineN′ as the cograph (VN,EN)with a link { v,w } for each vw ∈ ⊥N

and the label of a vertex v inN′ defined as the label of f(v) in G(ϕ), where f(v)∈VD can be viewed
as a vertex of G(ϕ) since VD = VG(ϕ) es by definition of D. SinceN is a dualizing net,N′ is a fonet:
(a) the predicate symbols on the atoms of every link are dual, since f : (VN,⊥N) → (VD,⊥D) is an
undirected graph homomorphism, (b) N′ trivially has a dualizer, the empty assignment, since it is
propositional, with no existential variables, and (c) N′ has no induced bimatching, since the leap
graphs LN′ and LN are equal and N has no induced bimatching. We claim that f : N′ → G(ϕ) is a
skew bifibration. Since f : N→D is a skew fibration, (VN′ ,EN′) = (VN,EN), and (VG(ϕ),EG(ϕ)) =

(VD,ED), we know f : N′ → G(ϕ) is a skew fibration. Because the label of v in N′ is that of f(v)
in G(ϕ), f : N′ → G(ϕ) preserves labels. Since there are no binders, existentials are preserved

trivially and f : N′ → G(ϕ) is trivially a directed graph fibration. Thus f : N′ → G(ϕ) is a skew
bifibration, hence a combinatorial proof (since N′ is a fonet). By Theorem6.2, ϕ is valid.

Lemma 12.5 (Propositional homogeneous completeness). Every valid proposition has a homoge-
neous combinatorial proof.

Proof. Let ϕ be a valid proposition. By Theorem6.3 there exists a (standard) combinatorial proof
f : N → G(ϕ). Let N′ be the dualizing graph obtained from N by replacing each link (colour)
{ v,w } by a duality vw∈⊥N′ . Since, by definition of a linked fograph, every literal is in exactly one
link, (VN′ ,⊥N′) is a matching, and since N is a propositional fonet,N′ has no induced bimatching;
thus N′ is a dualizing net. Let D = D(ϕ). By Lemma12.3, D(ϕ) = D(G(ϕ)), thus (VD,ED) =

(VG(ϕ),EG(ϕ)). We claim that f :N′ →D is a homogeneous combinatorial proof, i.e., (1) f :N′ →D

is a skew fibration and (2) f : (VN′ ,⊥N′) → (VD,⊥D) is a graph homomorphism. By definition, (1)
holds if f : (VN′ ,EN′) → (VD,ED) is a skew fibration, which is true because f is a skew bifibration,
(VN′ ,EN′) = (VN,EN), and (VD,ED) = (VG(ϕ),EG(ϕ)). For (2), suppose vw ∈ ⊥N′ . Since N is
a fonet, it has a dualizer, so the labels of v and w are dual, say, p and p, respectively. Because f
preserves labels, f(v) and f(w) are labelled p and p, thus f(v)f(w) ∈ ⊥D, and (2) holds.

Proof of Theorem7.6 (Propositional homogeneous soundness and completeness). Lemmas 12.4 and
12.5. �

12.2 Monadic homogeneous soundness and completeness proof

In this section we prove the monadic homogeneous soundness and completeness theorem, The-
orem8.11. The proof of completeness is similar to that of the propositional case, Lemma12.5:
transform a standard first-order combinatorial proof of a monadic formula into a homogeneous
combinatorial proof. The proof of soundness is more subtle. In the propositional case, Lemma12.4,
we transformed a homogeneous combinatorial proof directly into a standard one, with the same
vertices in both source and target. The monadic case involves quotienting indistinguishable vertices
in the source net.

12.2.1 Factorization through closed monadic fographs

A fograph is closed if it contains no free variables, and monadic if its predicate symbols are unary
and it has no function symbols.

Definition 12.6. The mograph M(G) of a closed monadic fograph G is the mographM with

• VM = VG,

• EM = EG,

• vw ∈ ⊥M if and only if v and w are literals whose predicate symbols are dual, and

• 〈v,w〉 ∈ BM if and only if v binds w.

For example, the closed monadic fograph G in the centre of Fig. 9 (p. 9)has the mograph M(G) to
its right.

32



Lemma 12.7. M(G) is a well-defined mograph for every closed monadic fograph G.

Proof. The underlying cograph (VM,EM) is inherited directly fromG. By reasoning as in the proof
of Lemma7.3, (VG,⊥D) is P4- and C3-free. It remains to show (a) every target of a binding in BM

is in no other binding, (b) no binder is in a duality, (c) the scope of every binder b is non-empty,
and (d) 〈b, l〉 ∈ BM only if l is in the scope of b.

(a) Since G is monadic, every literal label contains exactly one variable, hence is bound by at

most one binder in G. By definition of G, no literal binds any other vertex, thus every literal target
of a binding is in no other binding.

(b) Dualities are defined as pairs of literals in G, which become literals inM since G is closed.
(Every literal in G is bound by a binder in G, so becomes a literal inM.)

(d) By definition of fograph binding, l is bound by a binder b only if l is in the scope of b.

Lemma 12.8. The function M from closed monadic formulas to mographs (Def. 8.3) factorizes
through closed monadic fographs: M(ϕ) = M(G(ϕ)) for every closed monadic formula ϕ.

Proof. A routine induction on the structure of ϕ.

12.2.2 Collapsing indistinguishable vacuous universal binders

Given an equivalence relation ∼ on a set V write [v]∼ for the ∼-equivalence class {w ∈ V : w ∼ v }

and V/∼ for the set of ∼-equivalence classes { [v]∼ : v ∈ V }. For a set E of edges on V define E/∼ as
the set { [v]∼[w]∼ : v,w ∈ E } of edges on V/∼. Given a mographM and an equivalence relation ∼

on VM define the quotient mographM/∼ by VM/∼ = VM/∼, EM/∼ = EM/∼, ⊥M/∼ = ⊥M/∼, and
BM/∼ = BM/∼.

A binder in a mograph is vacuous if it binds no literal. Let f : N → M be a skew bifibration
of mographs. Vacuous universal binders b, c in N are indistinguishable if their images and neigh-
bourhoods are equal, i.e., f(b) = f(c) and N(b) = N(c). Define ≍ as the equivalence relation on
VN generated by indistinguishability, and the collapse f≍ : N/≍ → M as the canonical function
on the quotient, i.e., f≍([b]≍) = f(v), a well-defined function since b ≍ c implies f(b)=f(c).

Lemma 12.9. LetM be a mograph and N a monet. If f : N →M is a homogeneous combinatorial
proof then its collapse f≍ : N/≍ → H is a homogeneous combinatorial proof.

Proof. N/≍ is a monet because if W ⊆ VN/≍ induces a bimatching in N/≍ then it induces a
bimatching in N: since indistinguishable vertices are vacuous binders, they cannot be in both
a leap and an edge of EN/≍, so cannot occur in W. f≍ : (VN/≍,EN/≍) → (VM,EM) is a
skew fibration because f : (VN,EN) → (VM,EM) is a skew fibration and indistinguishable ver-
tices have the same image and neighbourhood. f≍ : (VN/≍,⊥N/≍) → (VM,⊥M) is a homomor-
phism because f : (VN,EN) → (VM,⊥M) is a homomorphism and no binder is in a duality edge.
f≍ : (VN/≍,BN/≍)→ (VM,BM) is a fibration because f : (VN,EN) → (VM,EM) is a fibration and
indistinguishable binders are vacuous, hence are absent from bindings.

12.2.3 Monadic fonets without dualizers

Monets were defined (§8.1) without need for dualizers, in terms of the binder equivalence relation
≃M . In this section we take an analogous approach with monadic fonets (§5).

Let rmf abbreviate rectified monadic fograph. Two atoms are pre-dual if their predicate symbols
are dual (e.g. px and py), and two literals are pre-dual if their atom labels are pre-dual.

Definition 12.10. Let K be a linked rmf whose links are pre-dual. Variable equivalence ≃K is the
equivalence relation on binders generated by x ≃K y for each link { •px, •py } in K.

In the above definition p is any predicate symbol (necessarily unary, since K is monadic).
A conflict in K is a pair { x,y } of distinct non-existential variables x and y such that x ≃K y.

Definition 12.11. A linked rmf is consistent if its links are pre-dual and it has no conflict.

Lemma 12.12. A linked rmf has a dualizer if and only if it is consistent.
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Proof. Let K be the linked rmf.
Suppose K has a dualizer. By Lemma10.12 K has a most general dualizer δ. Thus for every

link { px, qy } we have (px)δ dual to (qy)δ. (Recall that αδ denotes the result of substituting
δ(x) for x throughout α, simultaneously for each x.) Therefore q = p so { px, qy } is pre-dual.
For a contradiction, suppose { z1, z2 } were a conflict in K, i.e., z1≃K z2 for non-existential variables
z1 6=z2. Since z1 ≃K z2 we have variables x1, . . . , xn for n>1 with x1 = z1, xn = z2, and for 16i<n
there exists a link { •pixi, •pixi+1 } for some predicate symbol pi. Since δ is a dualizer we have
(pixi)δ dual to (pixi+1)δ, so xiδ = xi+1δ. Thus x1δ = xnδ so z1δ = z2δ. Since z1 and z2 are
non-existential, we have z1δ = z1 and z2δ = z2, hence z1 = z2, contradicting z1 6=z2.

Conversely, suppose K is consistent. Let e1, . . . , en be the equivalence classes of ≃K. Define yi
as the unique non-existential variable in ei, if it exists (necessarily unique since K is consistent),
and otherwise define yi as a fresh variable, where fresh means not in K and distinct from yj for
16 j<i. Given an existential variable x, define δ(x) = yi if ei is the equivalence class containing
xi.

We must show that for every link { px, qy } in K we have (px)δ dual to (py)δ. Since K is
consistent, its links are pre-dual, hence q = p. Thus it remains to show that xδ = yδ. Since x and
y are in the same link, they are in the same equivalence class ei (for some i). We consider three
cases.

1. Both x and y are existential. Since x and y are in ei, we have δ(x) = δ(y) = yi.

2. Both x and y are non-existential. Therefore xδ = x and yδ = y, so we require x=y. This
holds because x 6=y would imply that { x,y } is a conflict, contradicting the consistency of K.

3. Exactly one of x and y is existential, say x. Since y is non-existential, yδ = y, and y is the
unique yi non-existential variable in ei. Since x is also in ei, we have δ(x) = yi.

Lemma 12.13. Let •x and •y be binders in a consistent linked rmf K, with •x existential and •y
universal. The pair { •x, •y } is a dependency of K if and only if x ≃K y.

Proof. By Lemma10.13, the dependencies of K are those of a most general dualizer δ, so it suffices
to show that x ≃K y if and only if δ(x) = y. Since every predicate symbol in K is unary, ≃K is the
transitive closure of the unification problem≈K (see the proof of Lemma10.12). Thus the dualizer
δ defined in the proof of Lemma12.12 is most general, and by construction x ≃K y if and only if
δ(x) = y.

Note that the above lemmas simplify the definition of (standard, non-homogeneous) monadic com-
binatorial proof f : K→ G:

• Instead of checking for the existence of a dualizer for (the rectified form of) K, we merely
check that K is consistent, via the variable relation ≃K, using Lemma12.12.

• Instead of building the leap graphLK with dependencies via a dualizer, we read dependencies
directly from ≃K, using Lemma12.13.

12.2.4 The linked mograph of a linked closed monadic fograph

Definition 12.14. The linked mograph Λ(K) of a linked closed monadic fograph K is the linked
mographM with

• VM = VK,

• EM = EK,

• vw ∈ ⊥M if and only if { v,w } is a link

• 〈v,w〉 ∈ BM if and only if v binds w.

Lemma 12.15. Λ(K) is a well-defined linked mograph for every linked closed monadic fograph K.
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Proof. Let λ1, . . . , λn be the links ofK for λi = { li, ki }. Choose distinct predicate symbols p1, . . . ,pn,
and define K′ by replacing the predicate symbols in the labels of li and ki by pi and pi, respectively.
By construction, Λ(K′) = Λ(K), and since two literals in K′ are pre-dual in K′ if and only if they
constitute a link, we have Λ(K′) = M(K′). Thus Λ(K) = M(K′) which is a well-defined mograph by
Lemma12.7. Since the pi are distinct, every literal of K

′ is in a unique duality, so K′ is linked.

Lemma 12.16. A linked closed monadic fograph K is a fonet if and only if its linked mograph Λ(K)
is a monet.

Proof. Without loss of generality we may assume K is rectified. By Lemma12.12, K has a dualizer if
and only if it is consistent in the sense of Def. 12.11, and consistency of K coincides with consistency
of Λ(K) (Def. 8.6). By Lemma12.13 the dependencies of K are those pairs { x,y } of variables with
x existential, y universal and x ≃K y, which, by definition of Λ, correspond to pairs {bx,by } of
binders in Λ(K) with bx and by the unique binders corresponding to the variables x and y, and
bx ≃Λ(K) by. Thus the leap graphs of K and Λ(K) are the same, so K has an induced bimatching
if and only if Λ(K) has an induced bimatching.

12.2.5 Proof of monadic homogeneous combinatorial soundness

Recall that, by definition of M, VM(G) = VG for every closed monadic fograph G.

Lemma 12.17. Let G be a closed monadic fograph. A vertex is a literal in G if and only if it is a
literal in the mograph M(G).

Proof. Immediate from the definition of the binding set BM(G) (Def. 12.6) and that, by definition,
a vertex is a literal in a mograph if and only if it is the target of a binding.

Lemma 12.18. Let G be a closed monadic fograph. A binder is universal in G if and only if it is
universal in the mograph M(G).

Proof. By definition (VG,EG) = (VM(G),EM(G)), and in both cases, a binder is universal if and only
if its scope contains no edge.

Define the type typG(v) ∈ { ∗, ∀, ∃ } of a vertex v in a mograph or fograph G as ∗ if v is a literal, ∀ if
v is a universal binder, and ∃ if v is an existential binder.

Lemma 12.19. For every closed monadic fograph G, typG(v) = typM(G)(v) for every vertex v.

Proof. Lemmas 12.17 and 12.18.

Lemma 12.20. Every mograph skew bifibration f : N → M preserves vertex type, i.e., typN(v) =

typM(f(v)) for every vertex v in N.

Proof. A vertex is a literal if and only if it is the target of a binding, and since f : (VN,BN) →
(VM,BM) is a fibration, a vertex v in VN is the target of a binding if and only if f(v) is the target
of a binding. Thus f maps literals to literals and binders to binders. By definition (Def. 8.9) a skew
bifibration maps existential binders to existential binders, so it remains to show that universal
binders map to universal binders. This follows from the proof of Lemma10.65, which applies in
the homogeneous setting because it does not depend on labels.

Lemma 12.21 (Monadic homogeneous soundness). A closed monadic formula is valid if it has a
homogeneous combinatorial proof.

Proof. Suppose f : N → M(ϕ) = M is a homogeneous combinatorial proof of the proposition ϕ.
Without loss of generality, we may assume f is collapsed, by Lemma12.9. DefineN′ as the coloured
labelled cograph with VN′ = VN, EN′ = EN, a colour { v,w } for each vw ∈ ⊥N, and the label of v
in N′ defined as the label of f(v) in G(ϕ), where f(v) ∈ VM(ϕ) can be viewed as a vertex in VG(ϕ)

since M(ϕ) = M(G(ϕ)) by Lemma12.3 and, by definition of M (Def. 12.6), VM(G) = VG for any
closed monadic fograph G.

We claim that N′ is a well-defined fograph (Def. 3.2, p. 4). By Lemma12.19, typM(ϕ) = typG(ϕ)

so by Lemma12.20, typN′ = typN (since the label of v in N′ is that of f(v) in G(ϕ)). Thus N′ has a
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literal since N has one (because it is a mograph), so N′ is a logical cograph. We must show, for all
variables x, that every x-binder b is legal, i.e., the scope of b contains (a) at least one literal and
(b) no other x-binder. For (a), the scope SG(b) of b in a fograph or mograph G depends only on
the underlying cograph (VG,EG), thus SN′(b) = SN(b). Thus SN′(b) has a literal because SN(b)

does (since N is a mograph). For a contradiction to (b), Suppose c 6=b were an x-binder in SN′(b).

Let T ′ be the cotree T(N′) and let b̂ be the parent of b in T ′. If b is existential, then bc∈EN′ (since,

by Lemma10.60, all distinct vertices in the scope of an existential binder are in an edge, since b̂
is a × node in T ′), contradicting f(b) = f(c) (which holds because, without loss of generality, ϕ is
rectified, so there is a unique x-binder in G(ϕ)). Otherwise b is universal. Since c ∈ SN′(b), by

Lemma10.60 we have b�T ′ c, i.e., b≺T ′ b̂>T ′ c, with b̂ a +-node, since b is universal. Because f is
collapsed and f(b) = f(c), we cannot have b̂≻T ′ c (otherwise b and c would be indistinguishable,

contradicting f being collapsed), thus b ≺T ′ b̂ ≻T ′ c⊗ v for some vertex v. Since cv ∈ EN′ and f
is a graph homomorphism we have f(c)f(v) ∈ EG(ϕ), so f(b)f(v) ∈ EG(ϕ) (because f(b) = f(c)).
Since f is a skew fibration, there existsw∈VN′ such thatwb ∈ EN′ and f(w)f(v) /∈ EG(ϕ). Because

wb ∈ EN′ , the meet b⊙w is a ×-node, i.e., b⊙w = b⊗w, and since the parent b̂ of b is a +-node,
we must have b⊗w>T ′ b̂, hence w>T ′ b⊗w>T ′ v. Therefore wv ∈ EN′ , so f(w)f(v) ∈ EG(ϕ) a
contradiction. Thus we have proved thatN′ is a well-defined fograph. Since every literal label inN′

comes from G(ϕ), N′ is monadic, and since f is a directed graph fibration (VN,BN) → (VM,BM),
N′ is closed.

By construction,N′ = Λ(N) (Def. 12.14), so by Lemma12.16, N′ is a fonet. Since f : N→M is
a skew bifibration of mographs, f : N′ → G(ϕ) is a skew bifibration of fographs, hence a (standard)
combinatorial proof, so ϕ is valid by Theorem6.2.

The crux of the soundness proof above is to transform a collapsed monadic homogeneous combina-
torial proof into a standard combinatorial proof. The following example shows why collapse occurs
before this transformation. A monadic homogeneous combinatorial proof of the closed monadic
formula ∀x∃y(py∨py) is shown below-left.

x py y py

Its collapse, also a monadic homogeneous combinatorial proof (by Lemma12.9), is shown above-
centre. Above-right is the standard combinatorial proof constructed from the collapse in the sound-
ness proof above. Observe that, were we to attempt to construct a standard combinatorial proof
from the uncollapsed form, it would have two source vertices above •x in the target, each implic-
itly labelled x (implicit since we are drawing the skeleton), so the source would have a (universal)
x-binder in the scope of another x-binder and therefore fail to be a well-defined fograph.

Lemma 12.22 (Monadic homogeneous completeness). Every valid closed monadic formula has a
homogeneous combinatorial proof.

Proof. Let ϕ be a valid closed monadic formula. By Theorem6.3 there exists a (standard) com-
binatorial proof f : N → G(ϕ). Let N′ be the linked mograph obtained from N with VN′ = VN,
EN′ = EN, vw∈⊥N′ if and only if and { v,w } is a link (colour) in N, and BN′ = E

N
(i.e., vw ∈ BN′

if and only if v bindsw in N). Since, by definition of a linked fograph, every literal is in exactly one
link, every literal ofN′ is in a unique duality, no binder of N′ is in a duality, and N′ has no induced
bimatching because N is a fonet; thus N′ is a monet. LetM = M(G(ϕ)) = M(ϕ).

We claim that f : N′ →M is a homogeneous combinatorial proof, i.e., (1) f preserves existential
binders, (2) f : N′ →M is a skew fibration, (3) f : (VN′ ,⊥N′) → (VM,⊥M) is an undirected graph
homomorphism, and (4) f : (VN′ ,BN′)→ (VM,BM) is a directed graph fibration. (1) holds because
f : N → G(ϕ) preserves existential binders, and by construction the existential binders of N′ and
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N coincide, as do those of G(ϕ) and M. By definition (2) holds if f : (VN′ ,EN′) → (VM,EM)

is a skew fibration, which is true because f is a skew bifibration, (VN′ ,EN′) = (VN,EN), and
(VM,EM) = (VG(ϕ),EG(ϕ)). For (3), suppose vw∈⊥N′ . SinceN is a fonet, it has a dualizer, so the
labels of v and w are dual, say, p and p, respectively. Because f preserves labels, f(v) and f(w) are
labelled p and p, thus f(v)f(w) ∈ ⊥M, and (3) holds. (4) holds because f : N → G(ϕ) is a skew

bifibration, thus f : N → G(ϕ) is a directed graph fibration, and by construction (VN′ ,BN′) = N

and (VM,BG(ϕ)) = G(ϕ).

Proof of Theorem8.11 (Monadic homogeneous soundness and completeness).

Lemmas 12.21 and 12.22.

13 Homogeneous surjections

We observed in §10 thatG is a surjection from rectified formulas to rectified fographs (Lemma10.1),
and that G is a surjection from clear formulas onto fographs (Lemma10.25). In this section we
exhibit similar surjections onto duality graphs and mographs.

Lemma 13.1. D is a surjection from propositional fographs onto dualizing graphs.

Proof. LetD be a dualizing graph. We construct a fograph G such that D(G) = D. Define VG = VD

and EG = ED, with a nullary predicate symbol label on each vertex defined as follows. Since
(VD,⊥D) is P4-free and C3-free, it is a disjoint union of complete bipartite graphs16 K1, . . . ,Kn.
Choose distinct nullary predicate symbols p1, . . . ,pn such that pi 6=pj (16 i, j6n). If Ki has no
edges, it has a single vertex vi; assign pi as the label of vi. Otherwise, Ki = K

′
i ×K

′′
i for Ki without

edges. Assign the label pi to every vertex in K
′
i and the label pi to every vertex in K

′′
i . The graphG is

a non-empty cographwith vertices labelled by nullary predicate symbols, henceG is a propositional
fograph. By construction, D(G) = D.

Lemma 13.2. The function D from propositions to dualizing graphs (Def. 7.2) is a surjection.

Proof. By Lemma10.1 G is a surjection from (rectified) formulas onto fographs. The restriction of
G to propositions is a surjection onto propositional fographs. SinceD = D◦G by Lemma12.3, and
D Lemma13.1, D is a surjection.

Lemma 13.3. M is a surjection from closed monadic fographs onto mographs.

Proof. LetM be a mograph. We will construct a closed monadic fographGwithM(G) =M. Define
VG = VM and EG = EM, and define the predicate symbol in the label of each vertex of VG exactly
as in the proof of Lemma13.1, only this time we shall make each such predicate symbol p unary
rather than nullary by adding a variable after p. For each binder b inM, choose a distinct variable
xb, set the label of b to xb, and for every literal l with 〈b, l〉 ∈ BM, add the variable xb to the
label of l as the argument of the predicate symbol already assigned to l. Since every binder inM
has non-empty scope, every binder in G has non-empty scope. By construction every literal label
is a unary predicate symbol followed by a variable, so G is monadic. Because every variable xb is
distinct for each binder b, no literal in G can be bound by two binders in G. Thus G is a rectified
monadic fograph. Since, by definition of a literal in a mograph, every literal inM is the target of a
binding in BM, every literal in G is bound, so G is closed. By construction, M(G) =M.

Lemma 13.4. The function M from closed monadic formulas to mographs graphs (Def. 8.3) is a
surjection.

Proof. By Lemma10.1 G is a surjection from (rectified) formulas onto fographs. The restriction of
G to closed monadic formulas is a surjection onto closed monadic fographs. Since M = M ◦ G by
Lemma12.8, and M is a surjection by Lemma13.3, M is a surjection.

16Recall that a complete bipartite graph is one of the form G×H for edgeless graphs G and H.
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14 Polynomial-time verification

In this section we show that a combinatorial proof can be verified in polynomial time. Thus com-
binatorial proofs constitute a formal proof system [CR79].

The size of a graph G is the sum of the number of vertices in G and the number of edges in G.

Lemma 14.1. The dependencies of a linked rectified fograph K can be constructed in time polyno-
mial in the size of K.

Proof. Let x1, . . . , xn be the existential variables in K. The primary unification algorithm of [MM76]
provides in linear time an assignment {x1 7→u1, . . . , xn 7→un} with xi not in uj for i6j, such that the
most general unifier σ is {x1 7→t1, . . . , xn 7→tn} for ti = ui{xi+1 7→ui+1} . . . {xn 7→un} (the sequential
composition of n− i one-variable substitutions applied to ui). Let {yi1, . . . ,yimi

} be the set of
variables occurring in ui, and define u′

i as fiyi1 . . .yimi
for a freshmi-ary function symbol fi. The

assignment σ ′ = {x1 7→t ′1, . . . , xn 7→t ′n} for t
′
i = u

′
i{xi+1 7→u′

i+1} . . . {xn 7→u′
n} has the same dependen-

cies as σ but can be constructed in polynomial time since each xj appears at most once in each
u′
i.

The above proof is essentially the first part of the proof of Theorem 3 in [Hug18].

Lemma 14.2. The correctness of fonet can be verified in time polynomial in its size.

Proof. Let N be a fonet of size n. By Lemma14.1 we can construct all dependencies of N in
polynomial time, hence the leap graph LN in polynomial time. By Lemma10.22 every fonet is
constructible from axioms by fusion and quantification. Since there can be at most n fusions
and/or quantifications, it suffices to show that each step in the inductive decomposition of a fonet
in the proof of Lemma10.22 can be performed in polynomial time. In the first case the proof of
Lemma10.22, N has no edges (which can be determined in polynomial time), and to confirm that
N is a union of axioms takes polynomial time. In the second case, N is universal, and the universal
binder can be found and deleted in polynomial time, by inspecting each vertex of N in succession.

In the final case, N is not universal and has at least one edge, and we seek to decompose
N as a fusion or existential quantification via Lemma10.21. Henceforth we follow the proof of
Lemma10.21 closely. The graphΩ in the proof of Lemma10.21 can be constructed in polynomial
time from the cotree, which can built in polynomial time [CLS81]. The bridge GmGm+1 can be
located in polynomial time (by iterating through the edges ofΩ), and K1 and K2 can be determined
in polynomial time by traversing edges. The underlying fograph G ofN is K1+(Gm×Gm+1)+K2.
Depending on whether both Gm and Gm+1 both contain literals, the proof of Lemma10.21 now
provides either N as a fusion of K1 + Gm and Gm+1 + K2, and we recurse with each half of the
fusion, or N = •x+N′, and we delete the existential binder •x and recurse with N′.

Define the size of a combinatorial proof f : N→ G as the sum of the size of N and the size of G.

Theorem 14.3. The correctness of a combinatorial proof can be verified in time polynomial in its

size.

Proof. Let f : N → G be a combinatorial proof. By Lemma14.2 the fonet N can be verified in
polynomial time. Verifying that f is a skew bifibration is polynomial time because the skew fibration
and directed graph fibration conditions apply to pairs of vertices, one in N and one in G, seeking
the existence of a vertex inN, which can be found be iterating through each vertex ofN in turn.

15 Cut combinatorial proofs

Just as sequent calculus proofs may include cuts [Gen35], combinatorial proofs can be extended
with cuts. An n-cut combinatorial proof of a formula ϕ as a combinatorial proof of a formula
ϕ∨ (θ1∧¬θ1)∨ . . .∨ (θn∧¬θn) for arbitrary formulas θ1, . . . , θn. Each formula θi∧¬θi is a cut. A
cut combinatorial proof is an n-cut combinatorial proof for some n>0; if n = 0 the combinatorial
proof is cut-free.

Theorem 15.1. A formula is valid if and only if it has a cut combinatorial proof.
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Proof. Since ϕ ∨ (θ1 ∧¬θ1) ∨ . . . ∨ (θn ∧¬θn) is valid if and only if ϕ is valid, the result follows
from Theorem6.4.

16 Conclusion and related work

This paper reformulated classical first-order logic with combinatorial rather than syntactic proofs
(§3–§6), extending the propositional case of [Hug06a] to quantifiers. The proofs of soundness
(§10) and completeness (§11) were significantly more intricate than those of the propositional case
[Hug06a, §5].17 In the propositional, monadic and S5-modal special cases, labels can be removed
from a combinatorial proof, and colouring from the source, for a homogeneous form (§7–§9).

Propositional combinatorial proofs are related to sequent calculus [Gen35] in [Hug06b] and
[Car10], and to other syntactic systems (including resolution and analytic tableaux) in [Str17] and
[AS18]. Skew fibrations are decomposed as propositional structural maps (composites of contrac-
tion and weakening maps) in [Hug06b] and [Str07]. Combinatorial proofs may provide an avenue
to tackle Hilbert’s 24th problem [TW02, Thi03, Hug06b, Str19].

Combinatorial proofs for non-classical logics are being actively pursued. For example, combi-
natorial proofs for propositional intuitionistic logic are presented in [HHS19a]. A potential topic of
future research would be first-order intuitionistic combinatorial proofs. Cut elimination procedures
for propositional cut combinatorial proofs are presented in [Hug06b] and [Str17]. Natural open
questions include the extension of propositional intuitionistic combinatorial proofs to first-order,
and cut elimination procedures for first-order combinatorial proofs (classical and intuitionistic).

Links between literals in fonets, which become dual only after applying a dualizer/unifier, are
akin to the first-order connections or matings employed in automated theorem proving [Bib81,
And81]. Bibel in [Bib81, p. 4] proposed link as an alternative name for a connection, and we have
adapted that terminology in the present paper. Since a combinatorial proof can be verified in poly-
nomial time (§14), combinatorial proofs constitute a formal proof system [CR79], in contrast to
the connection and mating methods. The roots of first-order connections/matings with unification
can be found in Prawitz [Pra70] and [Qui55]. Unification in the context of first-order logic can
be traced back even further, to Robinson’s resolution [Rob65] and Herbrand’s theorem [Her30].
Propositional links between dual literals can be found in predecessors to the first-order connec-
tions/matrix method [Dav71, Bib74, And76], and sets of such propositional links form a category
[LS05]. The pairing of propositional dual occurrences can be found in the study of other forms
of syntax, such as closed categories [KM71] (see also [EK66]), contraction-free predicate calculus
[KW84] and linear logic [Gir87].

A precursor to a fonet, called a unification net, was presented in [Hug18], building on proof
nets for first-order multiplicative linear logic [Gir87, Gir91]. Unification nets are also available for
first-order additive linear logic [HHS19b]. Propositional fonets correspond to the nicely coloured

cographs of [Hug06a], which in turn correspond to the alternate elementary acyclic R&B cographs of
[Ret03]. For background on cographs (complement-reducible graphs) see [Ler81, Sum73, CLS81].
That cographs are exactly the P4-free graphs is proved in [Sum73].

Abstract representations of first-order quantifiers with explicit witnesses are in [Hei10] (ex-
tending expansion trees [Mil84]) and [McK10a] (for classical logic) and [HHS19b] (for additive
linear logic). Composition of witnesses is analysed in [Mim11] and [ACHW18].

Proof nets [Gir87] were extended to propositional classical logic in [Gir91] (developed in detail
in [Rob03]). The paper [McK13] fixes issues of redundancy due to contraction and weakening
nodes and relates classical propositional proof nets to propositional combinatorial proofs [Hug06a,
Hug06b].

Peirce [Pei33, vol. 4:2] provides an early graphical representation of propositional formulas.

A Fograph examples

Figs. 11–12 show a progression of instructive examples of formula graphs.

17This may relate to the fact that first-order logic is undecidable, while propositional logic is decidable.
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(E1) ∀x px x px

+

x px

x px

(E2) ∃x px x px

×

x px

x px

(E3) ∀x ∃ypxy

x

y

pxy

+

x
×

y pxy x

y

pxy

(E4) ∃x ∀ypxy

x

y

pxy

×

x
+

y pxy x

y

pxy

(E5)
∀x ∀ypxy

∀y∀x pxy x

y

pxy

+

x y pxy x

y

pxy

(E6)
∃x ∃ypxy

∃y∃x pxy x

y

pxy

×

x y pxy x

y

pxy

Figure 11. Examples E1–6. Each syntactic formula ϕ is followed by its graph G = G(ϕ),

cotree T(G), and binding graph G. Examples E5 and E6 show two syntactic formulas with
the same combinatorial formulas.



(E7)
∀x (px ∧ qx)

∀x (qx ∧ px) x

px

qx

+

x
×

px qx x

px

qx

(E8)
∃x (px ∨ qx)

∃x (qx ∨ px) x

px

qx

×

x
+

px qx x

px

qx

(E9)

∃x (px ∧ q )

∃x (q ∧ px )

(∃x px ) ∧ q

q ∧ (∃x px )

x

px

q

×

x px q
x

px

q

(E10)
(∃x px) ∨ (∃y qy)

(∃y qy) ∨ (∃x px)

x

y

px

qy

+

×

x px

×

y qy

x

y

px

qy

(E11)
(∀x px) ∧ (∀y qy)

(∀y qy) ∧ (∀x px)

x

y

px

qy

×

+

x px

+

y qy

x

y

px

qy

(E12)

∃x
(
px ∨ (∀yqy)

)

∃x
(
(∀yqy) ∨ px

)

∃x
(
∀y (px ∨ qy)

)

∃x
(
∀y (qy ∨ px)

)

x

y

px

qy

×

x
+

y px qy

x

y

px

qy

Figure 12. Examples E7–12. Each syntactic formulaϕ is followed by its graphG = G(ϕ),

cotree T(G), and binding graph G. Each example shows multiple syntactic formulas with
the same combinatorial formula.
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