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It is shown that the analysis of weak congruence can sometimes be simplified by means of a

similar analysis of branching congruence as an intermediate step. This point is made through a
completeness proof for an equational axiomatization of basic CCS with prefix iteration.

Introduction

A fundamental semantic equivalence in the study of concurrent systems is bisimulation equivalence
[19]. The concept of bisimulation equivalence on labelled transition systems without a notion of
invisible action is completely canonical. When invisible actions, or 7-steps, are introduced however,
a certain degree of freedom in the definition of bisimulation equivalence emerges, even without
considering divergence. The most prominent version of bisimulation is MILNER’s notion of weak
(bisimulation) congruence or observation congruence [19]. An alternative is the notion of branching
(bisimulation) congruence of VAN GLABBEEK & WELJLAND [14].

Since the inception of the branching bisimulation eleven advantages of the use of branching
congruence over other equivalences in general and weak congruence in particular have been found:

1.

Verifications in branching bisimulation semantics are sound independent of ones notion of
observable behaviour [14, 13].

. No coarser semantics (like weak bisimulation) has this property [17].
. In abstract interleaving semantics no finer notion of bisimulation is suitable [12].

. There is a reasonable operator for which branching bisimulation is a congruence and weak

bisimulation or coarser notions are not. On the other hand no examples testifying for the
opposite are known [17].

. Branching bisimulation equivalence is the only known equivalence in the linear time — branch-

ing time spectrum that supports an ‘eventually’ operator as part of a temporal logic on transi-
tion systems [16]. It even supports all the operators of CTL* and corresponds with stuttering
equivalence of Kripke structures [8].

There are practical applications in which weak bisimulation poses a problem that can be
solved by moving to branching bisimulation [16]. No applications have been found in which
the reverse holds [17].

*This work was supported by ONR under grant number N00014-92-J-1974.
'T don’t intend to publish this paper separately, as it will be integrated with FOKKINK [11] and AcETO &
INGOLFSDOTTIR [2] into ACETO, FOKKINK, VAN GLABBEEK & INGOLFSDOTTIR [1].



7. Branching congruence has a lower complexity than any other abstract semantic equivalence
used in concurrency theory [18].

8. For sequential processes, branching congruence is preserved under action refinement, whereas
weak congruence is not [15].

9. Branching congruence has a very appealing complete axiomatization [12]
10. and better term rewriting properties than other (abstract) bisimulations [16, 3, 6].

11. Finally, it has a nice characterization as back-and-forth bisimulation [7].
On the other hand there is one advantage of weak over branching congruence, namely that only
the former one can be understood as strong bisimulation congruence on an alternative transition
system, obtainable in a simple way from the original one (namely as a kind of reflexive and transitive
closure) [17].

The purpose of this paper is to add a twelfth advantage of branching bisimulation to the list
above. I claim that even when branching bisimulation would not be found interesting in its own
right, it may serve as a better tool to prove certain properties about weak bisimulation than weak
bisimulation itself.

This claim is substantiated by means of a comparison between two proofs of the completeness
of an axiomatization for weak bisimulation congruence over basic CCS with prefix iteration.

In ACETO & INGOLFSDOTTIR [2], where the axiomatization is proposed, a completeness proof in
terms of weak bisimulation is given, counting 12 pages—written out in great detail—and containing
several levels of nested case-distinctions. I have examined the proof carefully and found no way to
significantly shorten it, otherwise than by removal of details or using branching bisimulation.

FokkINK [10] also reports on an unsuccessful attempt to shorten this proof, which however
yielded a completeness proof of an axiomatization for branching bisimulation, counting less than two
pages. For the sake of fairness is should be taken into account that that proof uses a completeness
result for strong bisimulation, proven in FOKKINK [9] in four pages—also written out in detail.
However, FOKKINK [11] has recently shown how that result can be obtained in only half a page.

In this paper I show within two pages how the completeness of the axiomatization of [2] for weak
congruence follows from the completeness of the axiomatization of [10] for branching congruence.
Altogether the route via branching bisimulation is much simpler than the ‘direct” way.

I also provide a complete axiomatization for the notion of delay congruence, a version of obser-
vational equivalence proposed in MILNER [20]. This is even more an easy corollary of the result for
branching bisimulation.

2 Basic CCS with prefix iteration

Assume a set V' of variables and A of actions. Let 7 ¢ A denote a special invisible action and write
A, := AU{r}. Let z,y, ... range over V, a,b, ... over A and «, 3, ... over A,. The language BCCS*
(called MPA3(A,) in [9, 2]) is given by the BNF grammar

P=z|0|a.P|P+P|a"P

One may leave out redundant brackets, assuming that + binds weaker than «. and o*.
The action relations — between terms over BCCS* are generated by the following action rules:
& l o ! o l
x —>ax y —>ay o s ot x Ha x
Tty —a z+y —y a*r — !
Let p,q,r,s,t (possibly primed or subscripted) range over T(BCCS*), the set of closed BCCS*
expressions (not containing variables). More on prefix iteration can be found in [9, 10, 2].
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3 Bisimulations

This section recalls the definitions and congruence theorems for several kinds of bisimulation equiv-
alences. For motivation and further information see [19, 20, 17].

Definition 1 Two processes p, ¢ € T(BCCS*) are strong (bisimulation) equivalent if there exists a
symmetric binary relation R on T'(BCCS*) with pRg, such that

SREA s — 1" implies I’ 1t =5 t' As'RE.
As observed in [9], strong equivalence is a congruence for BCCS*.
Write p = ¢ for In > 0: Ipg, e, Pp i P = Po — P1 — ... — pp = @, i.e. a (possibly empty)
path of 7-steps from p to ¢. Furthermore, for a € A, write p ﬂ qgforp =5 qV(a=17Ap=q).

Thus ﬂ is the same as — for a € A, and g denotes zero or one T-steps.

Definition 2 Two processes p,¢q € T(BCCS*) are branching (bisimulation) equivalent—notation
p £y, ¢—if there exists a symmetric binary relation R on T(BCCS*) with pRg, such that

sREA s — s implies iy, Lo, t' 1 t = 13 ﬂ ty = t' AsRt; A "Rty A s'RE. (1)

i p — p' implies 3¢ : q—>q Ap' €4 ¢ and

They are branching congruent—np <
Y g g P=rod q—>q1mphes§|p p—>p Apeyq.

This definition is equivalent to the one in [15, 16, 17|, as follows immediately from the proof of
Lemma 1.1 in [16, 17]. There a relation satisfying (1) is called a semi branching bisimulation.

Definition 3 Weak (bisimulation) equivalence [19]—notation ,, —is defined as £, but without
the requirements sRt; and s'Rt;. Two processes p and ¢ are weak congruent—notation p €., ¢—if

p — p' implies 3¢1,¢2,¢' : ¢ = 1 — ¢ = ¢ Ap' €, ¢ and
g — ¢/ implies Ipy, p2,p’ 1 p=> p1 — p2 = P AP S, ¢

Delay bisimulation equivalence [20]— 4 —is defined as 3, but without the requirement sRt;.

i p—>p1mphes§|q1,q q:>q1—>q Ap' €. ¢ and

p and g are delay congruent—p£,.4q
’ q—>q implies Ipy,p' 1 p = p1 —>p AP 4.

A remarked in [16], the existence requirement of a process ¢ with t, = ¢’ and s'Rt’ is redundant
in the definitions of €, and <.
Proposition 1 (Congruence) For z € {b, w,d}, €, is an equivalence relation such that

if p&,,qthen ape,,aq ptre.qtr, r+pr+q and a’pe,.a’y.
Moreover €, is the coarsest relation with these properties contained in

Proof: Equivalence is straightforward; see [5] or [17]. However, as observed in BASTEN [5], the
transitivity proof for <., in [16] is wrong. He also shows that stating Definition 2 in terms of semi
branching bisimulations prevents the error.

That ., is a congruence for BCCS* follows easily from the definitions, using that the relation

{(*Pa*Q) |a€ A, P2,,Q}U &,

satisfies (1) (depending on z possibly modified as in Definition 3).
That ¢, is the coarsest congruence contained in ¢, is shown in [16, 17]. a

Obviously, <, is a finer congruence than ¢,,, and &,.4 sits in between.



4 Complete axiomatizations

AceTo & INGOLFSDOTTIR [2] proposed the following axiomatization for weak congruence on
BCCS* expressions.

Al r4+y = y+a

A2 (z4y)+z = 2+ (y+2) T1 a.T.T = O.T

A3 4z = =z T3 a(z+1y) = ale+7y) +ay
A0 z+0 = =z MT1 a*(z+7y) = a*(c+7y+ a.y)
MIl w.a*z+z = o'z MT2 ar.a*r = T.0%z

MI2 a*a*r = a*x FIR ™™ = T.x

Figure 1: A complete axiomatization for weak bisimulation

They also derived the following equations from these axioms:

T2 T = T2+ DT2 r(z4+y)+z = 7.(z+vy)
DMIl a*z = a*z+z MT3  a*(z+T1y) = a*(z+T1y)+ay

It is well known that A0—3 form a complete axiomatization for the sublanguage without * and 7, and
A0-3 together with T1-3 form a complete axiomatization for weak congruence on the sublanguage
without * [19]. In FokkINK [9] the axioms A0-3 and MI1-2 are shown to be complete for the
sublanguage without 7 (on which all bisimulation equivalences of the previous section coincide).

In [2] the entire axiomatization of Figure 1 is proven sound and complete for weak congruence
on BCCS*. The new axioms MT1-2 and FIR were also shown to be independent. All completeness
results mentioned here refer in the first place to closed terms. In [2], the axioms of Figure 1
were in addition shown to be w-complete, which together with completeness for closed terms yields
completeness for open terms.

FokKINK [10] established that the axioms A0-3 and MI1-2 together with

B a.(r(z+y)+z) = a(z+y)
MI6 ™y = Ttz
MI7 a.a*(r.a*(z +y)+2z) = a.a*(z+y)

form a complete axiomatization of branching congruence on BCCS*. As remarked before, this
result is much easier to obtain than the completeness result for weak congruence of [2]. Therefore
I will now significantly shorten the proof of the latter result by deriving it from the former.

Proposition 2 The axioms B and MI6-7 are derivable from the axioms of Figure 1.
Proof: Let p X ¢ denote that the equation p = ¢ is derivable from the laws A1, A2 and X.
o a.(T.(z+y)+ ) L2 a.r.(z+y) o a.(z+y).

F

IR T2
e Ty = T = Ttz

o a.a*(t.a*(z+y)+ ) Pun

a.a*(t.(a*(z+y)+o+y)+2) b2

aa*t.(a*(z+y)+z+y) pMu

a.a*t.a*(z + y) MI2
a.r.a*(z +y) o

a.a*(z +y). ]



Definition 4 The derivatives of a closed BCCS* expression p are defined recursively by
— pis a derivative of p
— if 5 is a derivative of p, and s — ¢, then so is ¢.

A process p is saturated if for each of its derivatives r,s and ¢ and o € A, we have:

o T o T o o
r—ss—t=>r—t and r—s—t=r —t.

Theorem 1 [16] If p and ¢ are saturated and weakly congruent, then they are branching congruent.

Proof: If t = {4 @) ty = t’ for a derivative ¢ of a saturated process ¢, then ¢ ﬂ t'. This also

holds with « instead of (). Thus if p and ¢ are saturated and weakly equivalent, then pRgq for a

symmetric relation R such that sRt A s — ¢/ implies 3¢/ : ¢ @) t' N S'RE. O

Proposition 3 Any BCCS* term s is provably equal to a saturated one.

Proof: A BCCS* expression p is in head normal form if p 40 Yiera;.p; (with I finite). By induction
on the structure of a process s, I prove s equal to a process that is both saturated and in head
normal form.

The case s = 0 is trivial.

Let s = p+ ¢. By induction p can be transformed into the required form p’, and similarly ¢ can
be brought in saturated head normal form ¢’. Now p’ + ¢’ is saturated and in head normal form.

Let s = a.p with a # 7. Prove p equal to a saturated process p’ = X;c1b;.p; + Xjey7.q;. By T3,
s can be proven equal to s’ = a.p’ + ¥;cja.q;. This process is in head normal form and saturated.
Namely the derivatives p’ and ¢; are saturated by assumption. So let s’ 2y ¢ r. Thena=a
and ¢ must be p’ or ¢; with j € J. In case ¢ = p’ it must be that r = ¢, with & € J. It follows that
s' 5 r. In case ¢ = g; one has p’ ——= ¢ — r so it must be that p’ — r since p' is saturated, and
hence r = ¢ for certain k € J. Again s’ - r. The case s’ — ¢ — r does not apply.

Let s = 7.p. Prove p equal to a saturated process p’ = ¥;c;.p;. By T2, s can be proven equal
to 7.p' + Yicra;.p;. Just as above, this process is saturated and in head normal form.

Let s = a*p with a # 7. Prove p equal to a saturated process p’ = X;e1b;.p; + ;e 7.q;. By MT3,
s can be proven equal to a*p’ 4+ X;cja.q; which by MI1 equals a.a*p’ + p’' + ¥;cja.¢;. Applying
MT1 gives - s = a.a*(p' + Xjeja.q;) + p' + Xjesa.q;. 1 show that this process s’ is saturated.

e All derivatives other than s’ itself and ¢ = a*(p' + X;cja.p;) are saturated by assumption.

o Let s =5 ¢ - r. There are three possibilities:

— a=aand ¢g=1t. Then r = ¢, with k € J and s’ - r.
— p' =5 ¢ = r. In that case s’ — r since p’ is saturated.
— a =a and ¢ = g; for certain j € J. In that case p’ - q; — r so it must be that p’ —— r
since p' is saturated, and hence r = g for certain k € J. Again s’ - r.
o Let s /5 ¢ =5 r. Then p’ 5 ¢ = r and since p' is saturated s’ = r.
o Let t =5 ¢ — r. There are three possibilities:
— a=uaand ¢g=t. Then r = ¢; with k € J and t — r.
— p' =5 ¢ 5 r. In that case { — r since p’ is saturated.
— a =aand ¢ = ¢; for certain j € J. In that case p’ - q; — r so it must be that p’ - r
since p' is saturated, and hence r = g, for certain k € J. Again t —= r.

o Lett —s ¢ =5 r. Then p' - ¢ = r and since p’ is saturated ¢t — r.

Let s = 7*p. Applying FIR reduces this to the case s = 7.p. a



Corollary 1 The axiom system of Figure 1 is complete for weak congruence.

Proof: Suppose s is weakly congruent to t. Prove s and ¢ equal to saturated processes s’ and ¢'.
These must be branching congruent. Hence s’ = ¢’ using the axioms for branching congruence.

5 A complete axiomatization for delay bisimulation

The technique from the previous section can easily be simplified to find a complete axiomatization
of delay bisimulation. Call a process d-saturated if for each of its derivatives r, s and ¢ we have

T o o
r—s—t{t=r—1I.

As before it follows that if two processes are d-saturated and delay congruent, they must be branch-
ing congruent.

Proposition 4 Any BCCS* term s can be proven equal to a saturated one, using axioms A1-2,
MI1, T1 and FIR only.

Proof: Exactly as before, except for the cases s = a.p and s = a*p. Note that the axiom T2 (used
in the case s = 7.p) is derivable from FIR, MI1 and T1.

Let s = a.p with a # 7. By induction I may assume that p is d-saturated. But then s is also
d-saturated (and in head normal form).

Let s = a*p with a # 7. By induction I assume that p is d-saturated and in head normal form.
Now MI1 F s = a.a™p + p, which is d-saturated and in head normal form. a

Corollary 2 The axioms A0-3, MI1-2, T1, MT2 and FIR are complete for delay congruence.
Proof: As before. The derivations used in Proposition 2 only employ the axioms listed above. O

This axiomatization is also sound, as follows from inspection of the axioms.
Using the other saturation property of Definition 4, one can easily find a complete axiomatization
for the notion of n-bisimulation [4, 16].
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