Full Abstraction in Structural

Operational Semantics
(extended abstract)

Rob van Glabbeek*

Computer Science Department, Stanford University
Stanford, CA 94305, USA
rvg@cs.stanford.edu

Abstract

This paper explores the connection between semantic equivalences for
concrete sequential processes, represented by means of transition systems,
and formats of transition system specifications using Plotkin’s structural
approach. For several equivalences in the linear time — branching time
spectrum a format is given, as general as possible, such that this equiva-
lence is a congruence for all operators specifiable in that format. And for
several formats it is determined what is the coarsest congruence with re-
spect to all operators in this format that is finer than partial or completed
trace equivalence.

1 Preorders and equivalences on labelled
transition systems

Definition 1 A labelled transition system (LTS)is a pair (IP,—) with P a
set (of processes) and —C P x A x IP for A a set (of actions).

Notation: Write p — g for (p,a,q) E— and p — for g€ P : p -5 ¢.

The elements of P represent the processes we are interested in, and p - ¢
means that process p can evolve into process ¢ while performing the action a.
By an action any activity is understood that is considered as a conceptual entity
on a chosen level of abstraction. Different activities that are indistinguishable
on the chosen level of abstraction are interpreted as occurrences of the same
action a € A. Actions may be instantaneous or durational and are not required
to terminate, but in a finite time only finitely many actions can be carried out
(i.e. only discrete systems are considered).

Below several semantic preorders and equivalences will be defined on pro-
cesses represented by means of labelled transition systems. These preorders
can be defined in terms of the observations that an experimentator could make
during a session with a process.

*This work was supported by ONR under grant number N0O0014-92-J-1974.

Definition 2 The set Q4 of potential observations over an action set A is
defined inductively by:

T € O4. The trivial observation, obtained by terminating the session.

ap €0y if o € Oy and @ € A. The observation of an action a, followed by
the observation .

Xe 04 for X C A. The investigated system cannot perform further actions
from the set X.

X €0y for X C A. The investigated system can now perform any action from
the set X.

/\ieI w; €04 if p; € Oy for all ¢ € I. The systems admits each of the obser-
vations ;.
- € 04 if ¢ € O4. (It can be observed that) ¢ cannot be observed.

Definition 3 Let (IP,—) be a LTS, labelled over A. The function O4 : P —
P(0.4) of observations of a process is inductively defined by the clauses below.

T € 04(p)

ap €E0A(p)if p- gAp €04(q)

X €0a(p) if p-7> foracX

X €0a(p) if p—= foracX

Nicr pi € Oa(p) if ;i € Oa(p) foralli € [
- €0a(p) if ¢ € Oa(p)

As the structure of the set A of actions will play no réle of significance in this
paper, the corresponding index will from here on be omitted. Below several
sublanguages of observations are defined.

Or ¢u=T|ay the (partial) trace observations
Ocr ¢==T |ay | A the completed trace observations
Op ¢==T|ap|X the failure observations
Op ¢u=T]|ap | XAY the readiness observations
Opr ¢ =T ay | X A the failure trace observations
Opr ¢ =T | ay | XA Y| X Ay the ready trace observations
Os @u=Tap| Ny i the simulation observations
Ops ¢ =T |ap|X | Nicr #i the failure simulation observations
Ops ¢ =T |ap| X | X | Nier vi the ready simulation observations
Op @u=Tlay | Nierwi | ¢ the bistmulation observations
Ons ¢ =T |av | /\iEI i | ¢ (¥ € Opg for some m < n) the n-nested

stmulation observations

For each of these notions N, On(p) is defined to be O(p) NP(On).

Definition 4 Two processes p,q € IP are N-equivalent, denoted p =5 ¢, if

On(p) = On(q).
p is N-prequivalent to ¢, denoted p Cy ¢, if On(p) € On(g).

bisimulation equivalence

2-nested simulation equivalence

ready simulation equivalence

ready trace equivalence

readiness equivalence failure trace equivalence

simulation eguivalence

failure equivalence

completed trace equivalenc

trace equivalence

Figure 1: The linear time — branching time spectrum

On the left these equivalences are ordered w.r.t. inclusion. In VAN GLABBEEK
[5] the observations above and the corresponding equivalences are motivated by
means of testing scenarios, phrased in terms of ‘button pushing experiments’ on
generative and reactive machines. There it is also observed that restricted to
the domain of finitely branching, concrete, sequential processes, most semantic
equivalences found in the literature ‘that can be defined uniformly in terms of
action relations’ coincide with one of the equivalences defined above. The same
can be said for preorders. Here concrete refers to the absence of internal actions
(r-moves) or internal choice. In order to facilitate the connections with other
work it is worth remarking that on the mentioned domain readiness equivalence
coincides with acceptance-refusal equivalence, failure equivalence coincides with
Hennessy and De Nicola’s (must) testing equivalence, failure trace equivalence
coincides with Phillips refusal (testing), and ready trace equivalence coincides
with barbed equivalence and with exhibited behaviour equivalence. In order to
clarify a few more relations, the following relational characterizations of certain
equivalences may be helpful.

Definition 5 Let (IP,—) be an LTS. A ready simulation is a relation R C
IP x IP satisfying

~pRgAp =P = 3¢ :q—— ¢ APRY

~pRgAp T = g

Theorem 1 p Cgg q iff p Cps g iff there is a ready simulation R with pRyg.

Proof: “p Crs ¢ = p Crs q” is trivial. For “p Cpg g = there is a ready
simulation R with pRg” it suffices to establish that Cpg is a ready simulation.

— Suppose Ops(p) € Ors(q) and p —= p’. 1 have to show that 3¢’ € P
with ¢ % ¢/ and Ops(p') C Ops(q¢’). Let Q be {¢ € P | ¢ -
¢' A Jpg € Ops(p') — Ors(4')}. Then a Ayeq g € Ors(p) € Ors(q),
so there must be a ¢/ € IP with ¢ =% ¢’ and ¢’ € Q.

— Let O(p) C O(q) and p #+. Then {a} € Ors(p) C Ors(g) and hence
g .

Finally T have to prove that for R a ready simulation one has pRq = (¢ €
Ors(p) = ¢ € Ogrs(q)). I will do so with induction on ¢.

— Suppose pRq and ap € Ogs(p). Then there is a p’ € P with p —%5 p/ and
¢ € Ors(p'). As R is a ready simulation, there must be a ¢’ € IP with
¢ — ¢' and p’ Rq’. So by induction ¢ € Ors(¢'), and hence ap € Ors(q).

The cases that ¢ is T,)~(, X or A;c; pi are straightforward. ad

Definition 6 Let (IP,—) be an LTS. A simulation is a relation R CIP x IP
satisfying

~pRgAp—=p = 3¢ ¢ APRY
A bistmulation is a symmetric simulation.

Theorem 2 p Cg q iff there is a simulation R with pRgq.
p Cp q iff p =p q iff there is a bisimulation R with pRyq.

2 Structural Operational Semantics

In this paper V and A are two disjoint countably infinite sets of variables and
names. Many concepts that will appear are parameterized by the choice of
V and N, but as in this paper this choice is fixed, a corresponding index is
suppressed.

Definition 7 (Signatures). A function declaration is a pair (f, n) of a function
symbol f € N and an arity n € IN. A function declaration (c,0) is also called
a constant declaration. A signature is a set of function declarations. The set
T(X) of terms over a signature X is defined inductively by:

e VCT(Y),
o if (f,n) €X and t1,...,t, € T(X) then f(t1,...,1,) € T(X).

A term c¢() is often abbreviated as ¢. For t € T(X), V(t) denotes the set of
variables that occur in t. T'(X) is the set of closed terms over X, i.e. the terms
t € T(X) with V(¢) = 0. A X-substitution o is a partial function from V to
T(X). If o is a substitution and S any syntactic object, then S[o] denotes the
object obtained from S by replacing, for in the domain of o, every occurrence
of z in S by o(z). In that case S[o] is called a substitution instance of S.

Definition 8 (Transition system specifications). Let ¥ be a signature. A
e . . . a / . . .
positive X-literal is an expression t — t' and a negative X-literal an expression
t 4 with ¢t € T(X) and a € N. For ¢,t' € T(X) the literals ¢ 25 ¢ and
t 7GL> are said to deny each other. A transition formula over X is an expression
of the form % with H aset of X-literals (the antecedents of the the rule) and a a

Y-literal (the conclusion). A formula % with H = § is also written «. A literal
or transition formula is closed if it contains no variables. An action rule is a
transition formula with a positive conclusion. A transition system specification
(TSS) is a pair (X, R) with ¥ a signature and R a set of action rules over X.
A TSS is positive if all literals in the antecedents of its rules are positive.

The concept of a TSS was introduced in GROOTE & VAANDRAGER [7]; the
negative premisses were added in GROOTE [6]. The notion constitutes the first
formalization of PLOTKIN’s Structural Operational Semantics (SOS) [8] that is
sufficiently general to cover most, if not all, of its applications.

Definition 9 (Proof). Let P = (X, R) be a TSS. A proof of a transition
formula % from P is a well-founded, upwardly branching tree of which the
nodes are labelled by Y-literals, such that:

e the root is labelled by «, and

e if 3 is the label of a node ¢ and K is the set of labels of the nodes directly
above ¢, then

— either K =0 and 8 € H,

— or % is a substitution instance of a rule from R,

If a proof of % from P exists, then % is provable from P, notation P F %

Definition 10 (Transition relation). Let ¥ be a signature. A transition re-
lation over X is a relation —C T(X) x N x T(X). Elements (¢,a,t’) of a

transition relation are written as t —s ¢/. Thus a transition relation over X can
be regarded as a set of closed positive X-literals (transitions). A closed literal

a holds in a transition relation 7', notation T' |= «, if @ € T or a = (t /=) and

(t 25 t')eT fornot' € T(X). Write T' |= H, for H a set of closed literals, if
TEaforall e H.

A positive TSS specifies a transition relation in a straightforward way as the
set of all derivable transitions. But as pointed out in GROOTE [6], it is much
less trivial to associate a transition relation to a TSS with negative premisses.
Several solutions are proposed in [6] and [3]. The most general of those is
through the notion of stability. It is not difficult to show that the concept of
stability defined below is the same as that of Bol and Groote.

Definition 11 (Stable transition relation). Let P = (X, R) be a TSS and let
— be a transition relation over ¥.. — is stable for P if:

he—s o there is a closed transition formula % without
positive antecedents with P % and T = H.

According to BoL & GROOTE [3] the transition relation associated to a TSS
is its unique stable transition relation if it exists. They argue that there is no
satisfying way to accociate a tranition relation to a TSS that has no or multiple
stable transition relations.

3 Formats and congruence theorems

Definition 12 (ntyft/ntyzt-format). An action rule - flt over a signature X
— 1

is in ntyft-format if t has the form f(xq,...,2,) for certain (f,n) € ¥ and

z1,..,zp € V, and all its positive antecedents have the form ¢ — y with
y €V —V(t) and all y different. It is in ntzft-format if t has the form ¢ € V
and all its positive antecedents have the form ¢t = y with z # y € V and
all y different. A TSS is in ntyft/ntyzt-format if all its rules are in ntyft or
ntyrt-format.

Definition 13 The bound variables of an action rule fltl over a signature X

are inductively defined as the ones that occur in ¢ or in the target s’ of a positive

antecedent (s LN s') € H where s contains bound variables only. The rule is
pure if all variables that occur in it are bound, and a TSS is pure if it consists
of pure rules only. A rule has no lookahead if all bound variables in the source
of its antecedents also occur in the source of its conclusion. Connectedness is
the smallest equivalence relation between the bound variables that appear in a

rule such that z and y are connected if there is an antecedent z —s .

Definition 14 A TSS is in bistmulation format if it is positive after reduction
—as defined in [3]—and in ntyft/ntyzt-format. A TSS is in nested simulation
format or tyft/tyzt-format if it is positive and in ntyft/ntyzt-format. A TSS is

in ready simulation format if it is in bisimulation format and its rules have no
lookahead. A TSS is in ready trace format if it is in ready simulation format
and no two occurrences of variables in the target of a rule are connected in that
rule. A TSS is in failure format if it is positive, in ready simulation format,
and all occurrences of variables in the antecedents of a rule are different.

Definition 15 (nzyft-format). An action rule ; fltl over a signature X is in
nzyft-format if it is in ntyft-format and its positive antecedents have the form

¢ — y with 2,y € V. A TSS is in nzyft-format if all its rules are in nzyft-
format.

Theorem 3 Every TSS in bisimulation format can be converted into an equiv-
alent TSS in pure nzyft-format. Moreover the conversion preserves the formats
of Definition 14.

The proof of this theorem will appear in the full version of this paper. The-
orem 3 has independently been found by WILLEM JAN FOKKINK [4]. Using
Theorem 3, the following theorem follows easily from the slightly less general
results published in [3, 7, 2, 9], except for the congruence theorem for ready
trace semantics, which is new. In BLooM [1] a format for readiness congruence
is presented, as well as evidence that the ready trace format can be further
generalized.

Theorem 4 (Congruence). Bisimulation equivalence is a congruence for any
TSS in bisimulation format. Similarly, n-nested simulation equivalence (for
any n € IN) is a congruence for any TSS in nested simulation format, ready
simulation equivalence is a congruence for any TSS in ready simulation simula-
tion format, ready trace equivalence is a congruence for any TSS in ready trace
format and failure equivalence as well as trace equivalence are congruences for
any TSS in failure format.

4 Full abstraction

Definition 16 An equivalence is said to be fully abstract with respect to a set
of operators L and another equivalence ~,; if it is the coarsest congruence
with respect to the operators in L that is finer that ~,s. An equivalence on
labelled transition systems is fully abstract with respect to a TSS-format and
an equivalence ~ 4 if it is the coarsest congruence with respect to all operators
specifiable by a TSS in that format that is finer that ~ ;.

The following theorem, stated a bit differently, has in a slightly less general
form been proven in [3, 7, 2, 9], except for the case of ready trace semantics.
A proof will appear in the full version of this paper.

Theorem 5 Bisimulation equivalence is fully abstract w.r.t. the bisimulation
format and trace equivalence. 2-nested simulation equivalence is fully abstract
for the n-nested simulation format and completed trace equivalence. Simu-
lation equivalence (=1-nested simulation equivalence) is fully abstract for the
n-nested simulation format and trace equivalence. Ready simulation equiv-
alence is fully abstract for the ready simulation simulation format and trace

equivalence, as well as for the positive ready simulation format and completed
trace equivalence. Ready trace equivalence is fully abstract for the ready trace
format and trace equivalence. And failure equivalence is fully abstract for the
failure format and completed trace equivalence.

References

(1]

2]

B. Bloom. Ready, set, go: Structural operational semantics for linear-time
process algebras. Technical Report TR 93-1372, Department of Computer
Science, Cornell University, Ithaca, New York, August 1993.

B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced: Pre-
liminary report. In Conference Record of the 15" ACM Symposium on
Principles of Programming Languages, San Diego, California, pages 229-
239, 1988. Full version available as Technical Report 90-1150, Department
of Computer Science, Cornell University, Ithaca, New York, August 1990.
Accepted to appear in Journal of the ACM.

R.N. Bol and J.F. Groote. The meaning of negative premises in transition
system specifications (extended abstract). In J. Leach Albert, B. Monien,
and M. Rodriguez, editors, Proceedings 18" ICALP, Madrid, volume 510
of LNCS, pages 481-494. Springer-Verlag, 1991. Full version appeared as
Report CS-R9054, CWI, Amsterdam, 1990.

W.J. Fokkink. The tyft/tyxt format reduces to tree rules, 1993. To appear
as CWI Report, Amsterdam.

R.J. van Glabbeek. The linear time — branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, vol-
ume 458 of LNCS, pages 278-297. Springer-Verlag, 1990.

J.F. Groote. Transition system specifications with negative premises. Re-
port CS-R8950, CWI, Amsterdam, 1989. An extended abstract appeared
in J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Ams-
terdam, LNCS 458, pages 332-341. Springer-Verlag, 1990.

J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100(2):202—

260, October 1992.

G.D. Plotkin. A structural approach to operational semantics. Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoret-
tcal Computer Science, 37:245-267, 1985.

