
The Meaning of Negative Premises

in Transition System Specifications II∗

R.J. van Glabbeek
Computer Science Department, Stanford University

Stanford, CA 94305-9045, USA.
rvg@cs.stanford.edu

This paper reviews several methods to associate transition relations to transition system spec-
ifications with negative premises in Plotkin’s structural operational style. Besides a formal
comparison on generality and relative consistency, the methods are also evaluated on their taste
in determining which specifications are meaningful and which are not. Additionally, this paper
contributes a proof theoretic characterisation of the well-founded semantics for logic programs.

1 Transition system specifications & Introduction

In this paper V and A are two sets of variables and actions. Many concepts that will appear are
parameterised by the choice of V and A, but as in this paper this choice is fixed, a corresponding
index is suppressed.

Definition 1 (Signatures). A function declaration is a pair (f, n) of a function symbol f 6∈ V and
an arity n ∈ IN. A function declaration (c, 0) is also called a constant declaration. A signature is a
set of function declarations. The set TT(Σ) of terms over a signature Σ is defined recursively by:

• V ⊆ TT(Σ),

• if (f, n) ∈ Σ and t1, . . . , tn ∈ TT(Σ) then f(t1, . . . , tn) ∈ TT(Σ).

A term c() is often abbreviated as c. A Σ-substitution σ is a partial function from V to TT(Σ).
If σ is a substitution and S any syntactic object (built from terms), then S[σ] denotes the object
obtained from S by replacing, for x in the domain of σ, every occurrence of x in S by σ(x). In that
case S[σ] is called a substitution instance of S. S is said to be closed if it contains no variables.
The set of closed terms is denoted T(Σ).

Definition 2 (Transition system specifications). Let Σ be a signature. A positive Σ-literal is an
expression t

a−→ t′ and a negative Σ-literal an expression t 6a−→ or t 6a−→ t′ with t, t′ ∈ TT(Σ) and
a ∈ A. For t, t′ ∈ TT(Σ) the literals t a−→ t′ and t 6a−→, as well as t a−→ t′ and t 6a−→ t′, are said to
deny each other. A transition rule over Σ is an expression of the form H

α with H a set of Σ-literals
(the premises or antecedents of the the rule) and α a Σ-literal (the conclusion). A rule H

α with
H = ∅ is also written α. An action rule is a transition rule with a positive conclusion. A transition
system specification (TSS) is a pair (Σ, R) with Σ a signature and R a set of action rules over Σ.
∗This a mild revision of Stanford report STAN-CS-TN-95-16, with added emphasis on 3-valued interpretations. An

extended abstract appeared in F. Meyer auf der Heide & B. Monien, editors: Automata, Languages and Programming,
Proc. 23th International Colloquium, ICALP ’96, Paderborn, Germany, LNCS 1099, Springer, 1996, pp. 502–513.
This work was supported by ONR under grant number N00014-92-J-1974. The revision was written while the author
was employed at the National ICT Australia, and at INRIA, Sophia Antipolis, France.

1

A TSS is standard if its rules have no premises of the form t 6a−→ t′, and positive if all premises of
its rules are positive.

The first systematic study of transition system specifications with negative premises appears in
Bloom, Istrail & Meyer [2]. The concept of a (positive) TSS presented above was introduced
in Groote & Vaandrager [10]; the negative premises t 6a−→ were added in Groote [9]. The
notion generalises the GSOS rule systems of [2] and constitutes the first formalisation of Plotkin’s
Structural Operational Semantics (SOS) [11] that is sufficiently general to cover most of its appli-
cations. The premises t 6a−→ t′ are added here, mainly for technical reasons.

The following definition tells when a transition is provable from a TSS. It generalises the
standard definition (see e.g. [10]) by (also) allowing the derivation of transition rules. The derivation
of a transition t

a−→ t′ corresponds to the derivation of the transition rule H

t
a−→t′

with H = ∅. The

case H 6= ∅ corresponds to the derivation of t a−→ t′ under the assumptions H.

Definition 3 (Proof). Let P = (Σ, R) be a TSS. A proof of a transition rule H
α from P is a

well-founded, upwardly branching tree of which the nodes are labelled by Σ-literals, such that:
• the root is labelled by α, and
• if β is the label of a node q and K is the set of labels of the nodes directly above q, then

– either K = ∅ and β ∈ H,
– or K

β is a substitution instance of a rule from R.

If a proof of H
α from P exists, then H

α is provable from P , notation P ` H
α .

A closed negative literal α is refutable if P ` β for a literal β denying α.

Definition 4 (Transition relation). Let Σ be a signature. A transition relation over Σ is a relation
T ⊆ T(Σ) × A × T(Σ). Elements (t, a, t′) of a transition relation are written as t a−→ t′. Thus a
transition relation over Σ can be regarded as a set of closed positive Σ-literals (transitions).

A closed literal α holds in a transition relation T , notation T |= α, if α is positive and α ∈ T or
α = (t 6a−→ t′) and (t a−→ t′) 6∈ T or α = (t 6a−→) and (t a−→ t′) ∈ T for no t′ ∈ T(Σ). Write T |= H,
for H a set of closed literals, if T |= α for all α ∈ H. Write T |= p, for p a closed proof, if T |= α
for all literals α that appear as node-labels in p.

The main purpose of a TSS (Σ, R) is to specify a transition relation over Σ. A positive TSS specifies
a transition relation in a straightforward way as the set of all provable transitions. But as pointed
out in Groote [9], it is much less trivial to associate a transition relation to a TSS with negative
premises. Several solutions are proposed in [9] and Bol & Groote [3]. Here I will present these
solutions from a somewhat different point of view, and also review a few others.

P1
c 6a−→
c

b−→ c

c 6 b−→
c

a−→ c

The TSS P1 can be regarded as an example of a TSS that does not specify a well-defined transition
relation (under any plausible definition of ‘specify’).1 So unless a systematic way can be found to
associate a meaning to TSSs like P1, one has to accept that some TSSs are meaningless. Hence
there are two questions to answer:

Which TSSs are meaningful, (1)
and which transition relations do they specify? (2)

1All my examples Pi consider TSSs (Σ, R) in which Σ consists of the single constant c only.

2

In this paper I present 11 possible answers to these questions, each consisting of a class of TSSs
and a mapping from this class to transition relations. Two such solutions are consistent if they
agree which transition relation to attach to a TSS in the intersection of their domains. Solution
S′ extends S if the class of meaningful TSSs according to S′ extends that of S and the two are
consistent, i.e. seen as partial functions S is included in S′. I will compare the 11 solutions on
consistency and extension, and evaluate them on their taste in determining which specifications are
meaningful and which are not.

A transition relation can be seen as a function T : T(Σ)×A×T(Σ)→ {present, absent}, telling
which potential transitions are present in T and which are absent. A 3-valued transition relation
T : T(Σ)×A×T(Σ)→ {present,undetermined, absent} extends this concept by leaving the value of
certain transitions undetermined. Although there turns out to be no satisfactory way to associate
a (2-valued) transition relation to every TSS, I present two satisfactory methods to associate a 3-
valued transition relation to every TSS. One of these is the well-founded semantics of Van Gelder,

Ross & Schlipf [6]; the other may be new. I contribute proof theoretic characterisations of these
3-valued solutions. The most general completely acceptable answer to (1) when insisting on 2-valued
transition relations, is, in my opinion: the TSSs whose well-founded semantics is 2-valued.

Logic programming

The problems analysed in [9] in associating transition relations to TSSs with negative premises
had been encountered long before in logic programming, and most of the solutions reviewed in
the present paper stem from logic programming as well. However, the proof theoretic approach to
Solutions 7 and I, as well as Solutions 6, 8, 9 and II and some comparative observations, are, as far
as I know, new here.

The connection with logic programming may be best understood by introducing proposition
system specifications (PSSs). These are obtained by replacing the set A of actions by a set of
predicate declarations (p, n) with p 6∈ V a predicate symbol (different from any function symbol)
and n ∈ IN. A literal is then an expression p(t1, . . . , tn) or ¬p(t1, . . . , tn) with ti ∈ TT(Σ). A PSS is
now defined in terms of literals in a same way as a TSS. A proposition is a closed positive literal,
and a proposition relation or closed theory a set of propositions. The problem of associating a
proposition relation to a PSS is of a similar nature as associating a transition relation to a TSS,
and in fact all concepts and results mentioned in this paper apply equally well to both situations.

If I would not consider TSSs involving literals of the form t 6a−→, a TSS would be a special case
of a PSS, namely the case where all predicates are binary, and it would make sense to present the
paper in terms of PSSs. The main reason for not doing so is to do justice to the rôle of literals
t 6a−→ in denying literals of the form t

a−→ t′. However, every TSS can be encoded as a PSS and
vice versa, in such a way that all concepts of this paper are preserved under the translations.

In order to encode a PSS as a special kind of TSS, first of all an n-ary predicate p can be
expressed in terms of an n-ary function fp and the unary predicate holds, namely by defining
holds(fp(t1, ..., tn)) as p(t1, ..., tn). Next, if p is a unary predicate then p(t) can be encoded as the
transition t

p−→ 0, with 0 a constant introduced specially for this purpose (cf. Verhoef [14]).
A TSS can be encoded as a PSS by considering a−→ to be a binary predicate for any a ∈ A, or,

as in Bol & Groote [3], −→ as a single ternary predicate with a ∈ A interpreted as a term. A
negative literal t 6a−→ t′ denotes ¬(t a−→ t′) and t 6a−→ can be seen as an abbreviation of the (infinite)
conjunction of t 6a−→ t′ for t′ ∈ TT(Σ). These translations preserve all concepts of this paper. In
order to avoid the infinite conjunction, Bol & Groote introduce the unary version of a−→ (or actually
the binary version of −→) as a separate predicate, linked to the binary (ternary) version by the

3

rule
x

a−→ y

x
a−→

, implicitly present in every TSS. As shown in anomaly A.3 in [3] this translation does

not preserve Solution 2 (least model). However, it does preserve the other concepts.
A logic program is just a PSS obeying some finiteness conditions. Hence everything I say about

TSSs applies to logic programming too. Consequently, this paper can in part be regarded as an
overview of a topic within logic programming, but avoiding the logic programming jargon. However,
I do not touch issues that are relevant in logic programming, but not manifestly so for transition
system specifications. For these, and many more references, see Apt & Bol [1].

2 Model theoretic solutions

2.1 2-Valued solutions

Solution 1 (Positive). A first and rather conservative answer to (1) and (2) is to take the class of
positive TSSs as the meaningful ones, and associate with each positive TSS the transition relation
consisting of the provable transitions.

Before proposing more general solutions, I will first recall two criteria from Bloom, Istrail &

Meyer [2] and Bol & Groote [3] that can be imposed on solutions.

Definition 5 (Supported model) [2, 3]. A transition relation T agrees with a TSS P if:

T |= t
a−→ t′ ⇔ there is a closed substitution instance H

t
a−→t′

of a rule of P with T |= H.

T is a model of P if “⇐” holds; T is supported by P if “⇒” holds.

The first and most indisputable criterion imposed on a transition relation T specified by a TSS P is
that it is a model of P . This is called being sound for P in [2]. This criterion says that the rules of
P , interpreted as implications in first-order or conditional logic, should evaluate to true statements
about T . The second criterion, of being supported, says that T does not contain any transitions for
which it has no plausible justification to contain them. In [2] being supported is called witnessing.
Note that the universal transition relation on T(Σ) is a model of any TSS. It is however rarely the
intended one, and the criterion of being supported is a good tool to rule it out. Next I check that
Solution 1 satisfies both criteria.

Proposition 1 Let P be a positive TSS and T the set of transitions provable from P . Then T is
a supported model of P . Moreover T is the least model of P .

Proof: That T is a supported model of P is an immediate consequence of the definition of prov-
ability. Furthermore, let T ′ be any model of P , then by induction on the length of proofs it follows
that T ⊆ T ′. 2

Starting from Proposition 1 there are at least three ways to generalise Solution 1 to TSSs with
negative premises. One can generalise either the concept of a proof, or the least model property,
or the least supported model property of positive TSSs. Starting with the last two possibilities,
observe that in general no least model and no least supported model exists. A counterexample is
given by the TSS P1 (given earlier), which has two minimal models, {c a−→ c} and {c b−→ c}, both
of which are supported.

Solution 2 (Least). A TSS is meaningful iff it has a least model (this being its specified transition relation).

4

Solution 3 (Least supported). A TSS is meaningful iff it has a least supported model.

These two solutions turn out to have incomparable domains, in the sense that neither one extends
the other. The TSS P2 below has {c a−→ c} as its least model, but has no supported models. On
the other hand P3 has two minimal models, namely {c b−→ c} and {c a−→ c}, of which only the
latter one is supported. This is its least supported model.

P2
c 6a−→
c

a−→ c
P3

c 6 b−→
c

a−→ c

Obviously Solution 1 is extended by both solutions above. However, Solutions 2 and 3 turn out to
be inconsistent with each other. P4 has both a least model and a least supported model, but they
are not the same.

P4
c 6a−→
c

a−→ c

c
b−→ c

c
a−→ c

c
b−→ c

c
b−→ c

P5
c

a−→ c

c
a−→ c

Solution 2 is not very productive, because it fails to assign a meaning to the perfectly reasonable
TSS P3. Moreover, it can be criticised for yielding unsupported transition relations, as in the case
of P2. However, in P4 the least model {c a−→ c} appears to be a better choice than the least
supported model {c a−→ c, c

b−→ c}, as the ‘support’ for transition c
b−→ c is not overwhelming.

Thus, to my taste, Solution 3 is somewhat unnatural.
In Bloom, Istrail & Meyer [2] the following solution is applied.

Solution 4 (Unique supported). A TSS is meaningful iff it has a unique supported model.

The positive TSS P5 above has two supported models, ∅ and {c a−→ c}, and hence shows that
Solution 4 does not extend Solution 1.

Although for the kind of TSSs considered in [2] (the GSOS rule systems) this solution coincides
with all acceptable solutions mentioned in this paper, in general it suffers from the same drawback
as Solution 3. The least supported model of P4 is even the unique supported model of this TSS.
My conclusion is that the criterion of being supported is too weak to be of any use in this context.

This conclusion was also reached by Fages [5] in the setting of logic programming, who proposes
to strengthen this criterion. Being supported can be rephrased as saying that a transition may only
be present if there is a nonempty proof of its presence, starting from transitions that are also
present. However, these premises in the proof may include the transition under derivation, thereby
allowing for loops, as in the case of P4. Now the idea behind a well-supported model is that the
absence of a transition may be assumed a priori, as long as this assumption is consistent, but the
presence of a transition needs to be proven without assuming the presence of (other) transitions.
Thus a transition may only be present if it admits a valid proof, starting from negative literals only.

Definition 6 (Well-supported).2 A transition relation T is well-supported by a TSS P if:

T |= t
a−→ t′ ⇔

there is a closed proof p, with T |= p, of a
transition rule N

t
a−→t′

without positive premises.

Note that “⇐” is trivial, and a well-supported transition relation is surely supported.
2 The original version of this paper, which appeared as Stanford report STAN-CS-TN-95-16, contained an incorrect

definition of well-supportedness (but leading to the same notion of a well-supported model). As observed by Jan
Rutten, Proposition 3 in that version, stating that well-supported transition relations are supported, was false. With
the new Definition 6 this proposition becomes trivial and is therefore omitted. The mistake had no other bad
consequences.

5

My concept of well-supportedness can easily be seen to coincide with the one of Fages [5]. It is
closely related to the earlier concept of stability, developed by Gelfond & Lifschitz [7] in logic
programming, and adapted for TSSs by Bol & Groote [3].

Definition 7 (Stable transition relation). A transition relation T is stable for a TSS P if:

T |= t
a−→ t′ ⇔ there is a set N of closed negative literals with P ` N

t
a−→t′

and T |= N .

Proposition 2 T is stable for P iff it is a well-supported model of P .

Proof: “if”: “⇒” follows immediately from the well-support of T , and “⇐” follows from the
soundness of T by a trivial induction on the length of proofs.

“only if”: Suppose there is a closed substitution instance H

t
a−→t′

of a rule of P with T |= H.

Assuming that T is stable, for any ti
ai−→ t′i ∈ H there must be a closed transition rule Ni

ti
ai−→t′i

without positive premises with P ` Ni

ti
ai−→t′i

and T |= Ni. Let N be the union of all those Ni’s and

the negative literals in H. Then, by combination of proof-fragments, N

t
a−→t′

is a closed transition

rule without positive premises with P ` N

t
a−→t′

and T |= N . Hence T |= t
a−→ t′.

That T is well-supported now follows by a trivial induction on the length of proofs, taking into
account that a proof of a closed transition rule can easily be turned into a closed proof. 2

In [3] stability was defined in terms of an operator Strip on TSSs without variables. If P is
such a TSS and T a transition relation, Strip(P, T) is obtained from P by removing from P all
rules with negative premises that do not hold in T , and removing from the remaining rules the
negative premises that do hold (Definition 4.1 in [3]). This yields a positive TSS, whose associated
transition relation is denoted −→Strip(P,T). Now T is said to be stable for P if T =−→Strip(P,T).
This definition is extended to TSSs P with variables by identifying such a TSS with the TSS of all
closed substitution instances of rules in P .

Proposition 3 The concept of stability of Definition 7 coincides with that from [3].

Proof: Let P ′ be a TSS and P be the TSS consisting of all closed substitution instances of rules
in P . Note that T is stable for P in the sense of Definition 7 iff it is for P ′.

The construction of Strip entails that Strip(P, T) ` t a−→ t′ iff P ` N

t
a−→t′

for a set of closed
negative literals N with T |= N . It follows immediately that both definitions are equivalent. 2

The following two solutions are adaptations of Solutions 3 and 4, were the requirement of being
supported has been replaced by that of being well-supported. The second is taken from [3].

Solution 5 (Stable). A TSS is meaningful iff it has a least stable transition relation.

Solution 5 (Stable). A TSS is meaningful iff it has a unique stable transition relation.

The particular numbering of these two solutions is justified by the following.

Proposition 4 Let T1 be a model of a TSS P and T2 be well-supported by P . If T1 ⊆ T2 then
T1 = T2. It follows (from the special case that T1 and T2 are both stable) that a TSS has a least
stable transition relation iff it has a unique stable transition relation.

6

Proof: As T1 ⊆ T2 one has
T1 |= t

a−→ t′ ⇒ T2 |= t
a−→ t′

from which it follows that

T2 |= t 6a−→ t′ ⇒ T1 |= t 6a−→ t′ and T2 |= t 6a−→ ⇒ T1 |= t 6a−→ . (3)

Now suppose T2 |= t
a−→ t′. Then there is a closed transition rule N

t
a−→t′

without positive premises

with P ` N

t
a−→t′

and T2 |= N . By (3) one has T1 |= N and hence T1 |= t
a−→ t′. 2

Solution 5 improves Solutions 3 and 4 by rejecting the TSS P4 as meaningless. It also improves
Solution 2 by rejecting the TSS P2 (whose least model was not supported). Surprisingly however,
Solution 5 not only differs from the earlier solutions by being more fastidious; it also provides
meaning to perfectly acceptable TSSs that were left meaningless by Solutions 2, 3 and 4.

P6
c 6a−→
c

b−→ c

c
a−→ c

c
a−→ c

An example is the TSS P6. There is clearly no satisfying way to obtain c
a−→ c. Hence c 6a−→

and consequently c
b−→ c. {c b−→ c} is indeed the unique stable transition relation of this TSS.

However, P6 has two minimal models, both of which are supported, namely {c b−→ c} and {c a−→ c}.

Proposition 5 Solution 5 (stable) is consistent with Solution 2 (least) and 3 (least supported).

Proof: If a TSS has both a (least) well-supported model and a least [supported] model, the two
must be equal by Proposition 4. 2

As the set of transitions provable from a positive TSS is by definition well-supported, Solution 5
(stable) extends Solution 1 (positive). Hence the relations between the solutions seen so far are as
indicated in Figure 1 below. An arrow indicates an extension. The relation ^ indicates consistency
and incomparable domains (neither one extends the other). There are no more extension and con-
sistency relations than indicated in the figure (taking into account that positive^unique supported
follows from the information displayed). All counterexamples appear earlier in this section.

positive (1)
�
�
�
�
�
�
��	

@
@
@
@
@
@
@@R

?
unique stable (5)

least stable (5)

unique supported (4)

?
least supported (3)least model (2) ^

^

^

Figure 1: Relations between Solutions 1–5

It is interesting to see how the various solutions deal with circular rules, such as c
a−→c

c
a−→c , and rules

like c 6a−→
c
a−→c

. The support-based solutions (3 and 4) may use a circular rule to obtain a transition
that would be unsupported otherwise (Example P4). This is my main argument to reject these

7

solutions. In addition they may (or may not) reject TSSs as meaningless because of the presence
of such a rule (Example P6). On the other hand, Solutions 2 and 5 politely ignore these rules. To
my taste, there are two acceptable attitudes towards circular rules: to ignore them completely (as
done by Solutions 1, 2 and 5), or to reject any TSS with such a rule for being ambiguous, unless
there is independent evidence for a transition c

a−→ c. A strong argument in favour of the first
approach is the existence of useful rules of which only certain substitution instances are circular
(cf. [3]). A solution that caters to the second option will be proposed in Section 3.

Solution 2 can treat a rule c 6a−→
c
a−→c

as equivalent to c a−→ c (namely if there are no other closed
terms than c, cf. P2), which gives rise to unsupported transition relations. Solutions 3, 4 and 5
do not go so far, but use such a rule to choose between two otherwise equally attractive transition
relations. This is illustrated by the TSS P7, which determines the transition relation {c a−→ c}
according to each of the solutions 2, 3, 4 and 5.

P7
c 6a−→
c

b−→ c

c 6 b−→
c

a−→ c

c 6a−→
c

a−→ c
P8 c

a−→ c
c 6a−→
c

a−→ c

Ignoring rules like
c 6a−→
c
a−→c is unacceptable, as this would yield unsound transition relations (non-

models). But it could be argued that any TSS with such a rule should be rejected as meaningless,
unless there is independent evidence for a transition c

a−→ t, as in P8. This would rule out P7.
Solutions that cater to this taste will be proposed in Section 3.

2.2 3-Valued solutions

3-valued interpretations of logical programs are considered, among others, in Van Gelder, Ross

& Schlipf [6] and Przymusinski [13]. The same can be done for TSSs. The meaning of a TSS is
then not given by a transition relation, i.e. a partition of T(Σ)×A×T(Σ) into the the transitions
that hold and those that don’t, but a partition of T(Σ) × A × T(Σ) into three sets: true, false
and unknown. Such a 3-valued interpretation can be given as a set of closed binary Σ-literals, not
containing literals that deny each other. Here a literal is binary if it has the form t

a−→ t′ or t 6a−→ t′.

Definition 8 (3-Valued transition relation). Let Σ be a signature. A 3-valued transition relation
over Σ is a set T of closed binary Σ-literals, not containing literals that deny each other.

A closed literal α holds in T , notation T |= α, if α is binary and α ∈ T or α = (t 6a−→) and
(t 6a−→ t′) ∈ T for all t′ ∈ T(Σ). Write T |= H, for H a set of closed literals, if T |= α for all α ∈ H.

Write CT for the positive literals in T , the transitions that certainly hold, and PT for {t a−→ t′ |
(t 6a−→ t′) 6∈ T}, the transitions that possibly hold. Using this convention, a 3-valued transition
relation T can alternatively be presented as a pair /

\CT, PT\/ of transition relations as in Definition 4,
satisfying CT ⊆ PT . A 3-valued transition relation /

\CT, PT\/ is said to be 2-valued if CT = PT .

In Przymusinski [13], of the concept of a stable transition relation (or well-supported model) is
generalised to 3-valued interpretations.

Definition 9 (3-Valued stability). A 3-valued transition relation T is stable for a TSS P if:

T |= t
a−→ t′ ⇔ there is a set N of closed negative literals with P ` N

t
a−→t′

and T |= N ,

and T |= t 6a−→ t′ ⇔
for each set N of closed negative literals satisfying P ` N

t
a−→t′

,
one has T |= α for a literal α denying a literal in N .

8

By Definitions 4 and 8, for positive literals α one has T |= α ⇔ CT |= α whereas for negative
literals α one has T |= α⇔ PT |= α. Hence Definition 9 can be reformulated as follows:

Proposition 6 A 3-valued transition relation /
\CT, PT\/ is stable for a TSS P iff:

CT |= t
a−→ t′ ⇔ there is a set N of closed negative literals with P ` N

t
a−→t′

and PT |= N ,

and PT |= t
a−→ t′ ⇔ there is a set N of closed negative literals with P ` N

t
a−→t′

and CT |= N .

Note that for a negative literal α, CT |= α means that α possibly holds (no denying literal certainly
holds), whereas PT |= α means that α certainly holds (no denying literal possibly holds). With this
in mind, Proposition 6 explains Definition 9 as a valid generalisation of Definition 7. The definition
in [13] can be shown to amount to the same concept. A stable transition relation as in Definition 7
can be regarded as a stable 3-valued transition relation /

\CT, PT\/ with CT = PT .
On 3-valued transition relations the inclusion relation ⊆ is called the information ordering;

T ⊆ T ′ holds when in T ′ the truth or falsity of more transitions is known. This is the case iff
CT ⊆ CT ′ and PT ⊇ PT ′. Przymusinski [13] showed that every logic program admits a 3-valued
stable transition relation, and the same can be said for TSSs. There is even a least one w.r.t.
the information ordering. He also showed that the least 3-valued stable model coincides with the
well-founded semantics of an arbitrary TSS (logical program) proposed earlier by Van Gelder,

Ross & Schlipf [6]. See Section 4 for a variant of the approach of [6].
Assuming that A = {a, b}, the TSS P1 has three 3-valued stable transition relations, namely

{c a−→ c, c 6 b−→ c}, {c b−→ c, c 6a−→ c} and ∅. The first two are 2-valued. For reasons of symmetry
the latter, which is also the least, is most suited as the intended meaning of this TSS. This is its
well-founded semantics. Hence the following solution.

3-Valued Solution I (Well-founded semantics) Any TSS is meaningful. Its meaning is its
information-least 3-valued stable transition relation.

The existence of this relation will be demonstrated in the next section. The example P1 shows that
there need not be a least 3-valued stable transition relation w.r.t. the truth ordering, defined by
requiring CT ⊆ CT ′ and PT ⊆ PT ′. 3-Valued Solution I is not numbered with the other solutions,
as it does not provides 2-valued transition relations. However, 2-valued transition relations can
be obtained by restricting attention to those TSSs for which the least 3-valued stable transition
relation /

\CT, PT\/ satisfies CT = PT . Alternatively, just the component CT (or just PT) of the
least 3-valued stable transition relation /

\CT, PT\/ could be taken to be the meaning of a TSS. These
possibilities will be explored in the next section. Finally I propose another 3-valued answer to (1)
and (2), based on a generalisation of the notion of a supported model.

Definition 10 (3-Valued supported model). A 3-valued transition relation T is a supported model
of a TSS P if:

T |= t
a−→ t′ ⇔ there is a closed substitution instance H

t
a−→t′

of a rule of P with T |= H,

and T |= t 6a−→ t′ ⇔
for each closed substitution instance H

t
a−→t′

of a rule of P ,
one has T |= α for a literal α denying a literal in H.

A supported model as in Definition 5 can be regarded as a 3-valued supported model that happens
to be 2-valued. In the next section I will show that every TSS admits an information-least 3-valued
supported model.

3-Valued Solution II (Least 3-valued supported model). Any TSS is meaningful. Its meaning is
its information-least 3-valued supported model.

9

Solutions I and II agree on the treatment of P1, P2, P3, P7 and P8. Assuming that A = {a, b},
the transition relation associated to P1 and P7 is ∅, meaning that both potential transitions are
undetermined. The meaning of P2 is c 6 b−→ c, i.e. the a-transition is undetermined. The meaning
of P3 and P8 is {c 6 b−→ c, c

a−→ c}; here both potential transitions are determined. According to
Solution I the meaning of P5 is {c 6a−→ c, c 6 b−→ c} whereas Solution 2 yields {c 6 b−→ c}, leaving
the a-transition undetermined. Likewise, Solution II associates the empty transition relation to P4,
leaving both transitions undetermined, whereas Solution I yields {c 6 b−→ c}.

3 Proof theoretic solutions

In this section I will propose solutions based on a generalisation of the concept of a proof. Note
that in a proof two kinds of steps are allowed, itemised with “–” in Definition 3. The first step just
allows hypotheses to enter, in case one wants to prove a transition rule. This step can not be used
when merely proving transitions. The essence of the notion is the second step. This step reflects the
postulate that the desired transition relation must be a model of the given TSS. As a consequence
those and only those transitions are provable that appear in any model. When generalising the
notion of a proof to derive negative literals it makes sense to import more postulates about the
desired transition relation. Note that, by Definitions 5 and 7, a (2-valued) model T of a TSS P is
supported iff

T |= t 6a−→ t′ ⇐
for each closed substitution instance H

t
a−→t′

of a rule of P ,
one has T |= α for a literal α denying a literal in H.

and well-supported (or stable) iff

T |= t 6a−→ t′ ⇐
for each set N of closed negative literals satisfying P ` N

t
a−→t′

,
one has T |= α for a literal α denying a literal in N .

Therefore I propose the following two concepts of provability.

Definition 11 (Supported proof). A supported proof of a closed literal α from a TSS P = (Σ, R)
is a well-founded, upwardly branching tree of which the nodes are labelled by Σ-literals, such that:
• the root is labelled by α, and
• if β is the label of a node q and K is the set of labels of the nodes directly above q, then

– β is positive and K
β is a substitution instance of a rule from R,

– or β is negative and for each closed substitution instance of a rule of P whose conclusion
denies β, a literal in K denies one of its premises.

α is s-provable, notation P `s α, if a supported proof of α from P exists.
A literal is s-refutable if a denying literal is s-provable.

Definition 12 (Well-supported proof). A well-supported proof of a closed literal α from a TSS
P = (Σ, R) is a well-founded, upwardly branching tree of which the nodes are labelled by Σ-literals,
such that:
• the root is labelled by α, and
• if β is the label of a node q and K is the set of labels of the nodes directly above q, then

– β is positive and K
β is a substitution instance of a rule from R,

– or β is negative and for every set N of negative closed literals such that P ` N
γ for γ a

closed literal denying β, a literal in K denies one in N .

10

α is ws-provable, notation P `ws α, if a well-supported proof of α from P exists.
A literal is ws-refutable if a denying literal is ws-provable.

Note that these proof-steps establish the validity of β when K is the set of literals established
earlier. The last step from Definition 12 allows one to infer t 6a−→ t′ whenever it is manifestly
impossible to infer t a−→ t′ (because every conceivable proof of t a−→ t′ involves a premise that
has already been refuted), or t 6a−→ whenever for any term t′ it is manifestly impossible to infer
t

a−→ t′. This practice is sometimes referred to as negation as failure [4]. Definition 11 allows such
an inference only if the impossibility to derive t a−→ t′ can be detected by examining all possible
proofs that consist of one step only. This corresponds with the notion of negation as finite failure
of Clark [4]. The extension of these notions (especially `ws) from closed to open literals α, or to
transition rules H

α , is somewhat problematic, and not needed in this paper. The following may shed
more light on `s and `ws. From here onwards, statements hold with or without the text enclosed
in square brackets. Also, a proof as in Definition 3 will be referred to as a positive proof.

Proposition 7 Let P be a TSS. Then P `s t 6
a−→ [t′] iff every closed substitution instance H

t
a−→t′

of
a rule of P has an s-refutable premise. Moreover P `ws t 6

a−→ [t′] iff every set N of closed negative
literals with P ` N

t
a−→t′

contains an ws-refutable literal.

Proof: Fairly trivial. 2

Proposition 8 For P a TSS and α a closed literal one has P ` α ⇒ P `s α ⇒ P `ws α.

Proof: The first statement is trivial. The second will be established with induction on the structure
of a `s-proof of α. Let K

α be the last step in such a proof. As P `s K by means of strict subproofs,
it follows by induction that P `ws K. Here I write P `x K for K a set of literals if P `x β for all
β ∈ K. If α is positive, P `ws α follows immediately from the definitions of s- and ws-provability.
Thus suppose α is negative. Let {αi}i∈I be the set of negative literals in K, and let Ki

αi
for i ∈ I be

the collection of last proof-steps in `ws-proofs of the αi. Let L =
⋃
i∈I Ki ∪ (K − {αi}i∈I). Then

clearly P `ws L, so it suffices to show that for every set N of negative closed literals such that
P ` N

γ for γ a literal denying α, a literal in L denies one in N .
Consider a `-proof p of N

γ with N a set of negative literals and γ denies α. By the definition of
`s, p contains a literal δ that denies a literal β in K. This literal is the label of a node right above
the root. In case δ occurs in N , β is positive and therefore occurs in L. In case δ 6∈ N , β must be
negative and hence be αi for certain i ∈ I. Because Ki

αi
is a valid step in a `ws-proof and P ` N

δ
with δ denying αi, a literal in N must deny one in Ki ⊆ L. 2

Proposition 9 Let a quasi-proof be defined as in Definition 3, but without the requirement of
well-foundedness. If in a TSS P any quasi-proof is well-founded, then P `s α⇔ P `ws α.

Proof: Suppose P `ws α. Let K
α be the last step in a `ws-proof of α. Applying induction on such

proofs, I may assume P `s K. In case α is positive the desired result P `s α follows immediately,
so suppose it is not. Let β be a literal that denies α and let H

β be a closed substitution instance
of a rule of P . This instance constitutes a positive one-step proof p of H

β from P . I have to
show that H contains an s-refutable literal. Suppose by contradiction that is does not. Then, by
Proposition 7, for every positive literal γ ∈ H there must a closed substitution instance Hγ

γ of a
rule of P , without s-refutable premises. Adding these rules to p yields a larger proof p′ of a rule
H′

β with H ′ =
⋃
{γ∈H|γ positive}Hγ ∪ {γ ∈ H | γ negative}. Iterating this procedure by applying

11

the same reasoning to H ′ etc. yields a quasi-proof of a statement N
β with N a set of s-irrefutable

closed negative literals. By assumption this quasi-proof must be a proof. By the ws-provability of
α it follows that N must contain a literal that is denied by a literal from K, and hence s-refutable.
This yields a contradiction. 2

Definition 13 (Consistency, soundness and completeness). For P a TSS and α a closed literal,
write P |=s α [resp. P |=3s α] if T |= α for any [3-valued] supported model T of P and P |=ws α
[resp. P |=3ws α] if T |= α for any [3-valued] well-supported model T of P . A notion `x is called

• consistent if there is no TSS deriving two literals that deny each other.

• sound w.r.t. |=x if for any TSS P and closed literal α, P `x α⇒ P |=x α.

• complete w.r.t. |=x if for any TSS P and closed literal α, P `x α⇐ P |=x α.

Proposition 10 `ws is consistent.

Proof: Let’s say that two proofs p and q deny each other if their roots are labelled with literals
that deny each other. By induction on their structure I establish that no two proofs from the same
TSS P deny each other. So let p and q be two `ws-proofs from P and assume that no two proper
subproofs deny each other. By contradiction suppose the roots of p and q are labelled with t a−→ t′

and t 6a−→ (or t 6a−→ t′) respectively. Note that the bottom part of p is a positive proof of a rule
N

t
a−→t′

, where N contains only negative literals. Let K be the set of literals labelling nodes directly
above the root of q. Then from the last step of q it follows that N (and thus p) contains a negative
literal that denies one in K, thus yielding proper subproofs of p and q that deny each other. 2

As P ` α ⇒ P `s α ⇒ P `ws α, if follows that also `s and ` are consistent.

Proposition 11 `ws is sound w.r.t. |=ws and |=3ws. Likewise `s is sound w.r.t. |=s and |=3s.

Proof: Let P be a TSS and T a [3-valued] well-supported model of P . With a straightforward
induction on the structure of proofs if follows that P `ws α⇒ T |= α. The other part goes likewise.

Lemma 1 If P is a TSS and t 6a−→ a closed literal, then P `x t 6
a−→ iff P `x t 6

a−→ t′ for any term
t′ ∈ T(Σ).

Proof: This follows immediately from the observation that a closed literal γ denies t 6a−→ iff it
denies t 6a−→ t′ for some t′ ∈ T(Σ). 2

The following theorem implies that any TSS has a least 3-valued [well-]supported model w.r.t. the
information ordering. This justifies 3-valued Solutions I and II mentioned earlier. Moreover, it
provides a proof theoretic characterisation of these solutions.

Theorem 1 For any TSS P , the set of closed binary literals [w]s-provable from P constitutes a
3-valued [well-]supported model of P . It is even the least one w.r.t. the information ordering.

Proof: By Proposition 10 the set T of closed binary literals [w]s-provable from P constitutes a
3-valued transition relation. Using Lemma 1, it is straightforward to check that T satisfies the
required equations. It follows from the soundness of `[w]s w.r.t. |=3[w]s (Proposition 11) that T is
included in any other 3-valued [well-]supported model of P . 2

12

Corollary 1 `ws is complete w.r.t. |=3ws. Likewise `s is complete w.r.t. |=3s.

Proof: If P |=3[w]s α then by definition α certainly holds in all [well]-supported models of P .
Thus α certainly holds in the least such model w.r.t. the information ordering, which is the one of
Theorem 1. This implies P `[w]s α. 2

However, `s and `ws are not complete w.r.t. |=[w]s. A trivial counterexample concerns TSSs like
P2 that have no [well-]supported models. P2 |=[w]s α for any α, which by Proposition 10 is not
the case for `[w]s. A more interesting counterexample concerns the TSS P7, which has only one
[well-]supported model, namely {c a−→ c}. In spite of this, P7 6`[w]s c

a−→ c and P7 6`[w]s c 6
b−→.

As argued in the previous section, when insisting on 2-valued solutions there is a point in
excluding P7 from the meaningful TSSs, since there is insufficient evidence for the transition c a−→ c.
Here the incompleteness of `[w]s w.r.t. |=[w]s comes as a blessing rather than a shortcoming.

The 3-valued solutions I and II are two satisfactory methods to associate a 3-valued transition
relation to any TSS. I have given both model theoretic and proof theoretic characterisations of
these solutions. In the remainder of this section I continue the search for 2-valued solutions. In this
context, in line with question (1), I will call a TSS meaningless if it has no satisfactory 2-valued
interpretation.

3.1 Solutions based on completeness

I will now introduce the concept of a complete TSS: one in which any transition is either provable
or refutable. Just as in the theory of logic there is a distinction between the completeness of a logic
(e.g. first-order) and the completeness of a particular theory (e.g. arithmetic), here the completeness
of a TSS is something different from the completeness of a proof-method `x. Let x be s or ws.

Definition 14 (Completeness of a TSS). A TSS P is x-complete if for any transition t
a−→ t′

either P `x t
a−→ t′ or P `x t 6

a−→ t′. By ‘complete’ I will mean ‘ws-complete’.

Note that a TSS is [w]s-complete iff its least (and only) 3-valued [well-]supported model is 2-valued.

Solution 6 (Complete with support). A TSS is meaningful iff it is s-complete. The associated
transition relation consists of the s-provable transitions.

Solution 7 (Complete). A TSS is meaningful iff it is (ws-)complete. The associated transition
relation consists of the ws-provable transitions.

In Bol & Groote [3] a method called reduction for associating a transition relation with a TSS
was proposed, inspired by the well-founded models of Van Gelder, Ross & Schlipf [6] in logic
programming. In Section 4 I show that this solution coincides with Solution 7. Solution 7 can
therefore be regarded as a proof theoretical characterisation of the ideas from [6, 3]. Solution 6
may be new.

The TSS P6 is complete, but not complete with support. P3 is even complete with support.
The following proposition says that a standard TSS (i.e. without premises t 6a−→ t′) is complete if
every closed negative standard literal can be proved or refuted.

Proposition 12 A standard TSS P is complete iff for any closed literal t 6a−→ either P `ws t
a−→ t′

for some closed term t′ or P `ws t 6
a−→.

13

Proof: “only if”: Immediately by Lemma 1.
“if”: Suppose P 6`ws t

a−→ t′. In that case any set N = {ti 6
ai−→| i ∈ I} such that P ` N

t
a−→t′

must

contain a literal tN 6aN−→ with P 6`ws tN 6aN−→. By assumption, for such a literal there is a t′N with
P `ws tN

aN−→ t′N . It follows from Definition 12, taking K to be the set of all transitions tN
aN−→ t′N

(one for each possible choice of N), that P `ws t 6
a−→ t′. 2

As literals t 6a−→ t′ do not appear in the premises of rules in a standard TSS, their occurrence in a
well-supported proof-tree can be limited to the root. Thus Proposition 12 says that the concept of
a complete TSS can be introduced without considering such literals at all. The reason that these
were introduced nevertheless, is that Proposition 12 does not apply to completeness with support.
A counterexample is given by the TSS Q.

Q t
a−→ t1

t
a−→ t2

t
a−→ t2

R t
a−→ t1

t
a−→ t2

t
b−→ t2

Q 6`s t
a−→ t2 and Q 6`s t 6

a−→ t2, thus this TSS is incomplete with support. However, for any
closed literal u 6a−→, either Q `s u

a−→ u′ for some term u′ or Q `s u 6
a−→. Moreover, even for

the derivation of standard literals, nonstandard literals may be essential in supported proofs. The
validity of R `s t 6

b−→ for instance, can only be established by a proof tree containing t 6a−→ t2.

Proposition 13 The set of [w]s-provable transitions of a [w]s-complete TSS P is a model of P .

Proof: Let P be an x-complete TSS and T the set of x-provable transitions. Suppose H

t
a−→t′

is a
closed substitution instance of a rule in P , and T |= H. By Definition 4 (of T |= H) P `x β for
each positive premise β in H, and P `x γ for no transition γ denying a negative premise in H.
Thus, by completeness and Lemma 1, P `x β for any β in H. Hence P `x t

a−→ t′. 2

Proposition 14 The set of [w]s-provable transitions of any TSS is well-supported.

Proof: Let P be a TSS and T the set of x-provable transitions. Suppose T |= t
a−→ t′, i.e.

P `x t
a−→ t′ with t and t′ closed terms. Take a [well-]supported proof of this transition from P ,

and delete all branches above a node labelled with a negative literal. This yields a positive proof p
of a rule N

t
a−→t′

with N a set of closed negative literals. For any literal α in p one has P `x α. If α
is positive, this immediately gives α ∈ T . If α is negative, then, by the consistency of `x, P `x β
for no closed literal β denying α. This implies T |= α, and hence T |= p. 2

Proposition 15 Solution 6 [7] is strictly extended by Solution 4 [5].

Proof: Suppose P is [w]s-complete. By Propositions 13 and 14 the [w]s-provable transitions con-
stitute a [well-]supported model of P , and by Proposition 11 this is the only such model. Strictness
follows from the TSS P7, which has a unique [well-]supported model, but is left meaningless by
Solutions 6 and 7. 2

3.2 Advantages of the proof theoretic solutions

Now I will turn to the advantages of the proof theoretic solutions over the model theoretic ones. At
the end of Section 2 I discussed the rôle of rules like c 6a−→

c
a−→c

and c
a−→c

c
a−→c

and suggested that any TSS
containing the former rule should be rejected as meaningless, unless there is independent evidence
for a transition c a−→ t. As shown by counterexample P7 all model theoretic solutions fail this test.
The next proposition shows that the proof theoretic solutions behave better in this respect.

14

Proposition 16 Let P, P ′ be TSSs that only differ in a rule c 6a−→
c
a−→c

that is in P but not in P ′. Then
P is [w]s-complete only if P ′ is [w]s-complete and proves the same literals as P , including c a−→ t
for some term t.

Proof: Suppose P is complete. It cannot be that P `[w]s c 6
a−→, since in that case one could derive

P `[w]s c
a−→ c, contradicting Proposition 10 (consistency). Thus the label c 6a−→ does not appear

in any proof of a literal from P . It follows that any literal provable from P is already provable from
P ′. By Lemma 1, since P 6`[w]s c 6

a−→, P `[w]s c
a−→ t for some term t. 2

I also recommended two acceptable attitudes towards rule like c
a−→c

c
a−→c

. Below I show that Solution 7
ignores such rules completely (which is one option), whereas Solution 6 rejects a TSS with such a
rule, unless there is independent evidence for a transition c

a−→ c (the other option).

Proposition 17 Let P, P ′ be TSSs that only differ in a rule c
a−→c

c
a−→c

that is in P but not in P ′. Then
P is ws-complete iff P ′ is ws-complete. If P is ws-complete it proves the same literals as P ′.

Proof: Any application of c
a−→c

c
a−→c

can be eliminated from a positive or well-supported proof. 2

Proposition 18 Let P, P ′ be TSSs that only differ in a rule c
a−→c

c
a−→c

that is in P but not in P ′. Then

P is s-complete only if P ′ is s-complete and proves the same literals as P , including c a−→ c.

Proof: Suppose P is complete. It is easy to eliminate applications of the rule c
a−→c

c
a−→c

from any
supported proof, so any literal provable from P is also provable from P ′. Hence P ′ is complete.
Due to the rule c

a−→c
c
a−→c

it is impossible to prove c 6a−→ c from P . Thus P `s c
a−→ c. 2

3.3 Solutions based on soundness

The remainder of this section is devoted to 2-valued generalisations of the proof theoretic solutions.
The first idea is to define the transition relation associated to a TSS P just as in Solutions 6 and 7,
that is as the set of [w]s-provable transitions, but without requiring that P is [w]s-complete. This
amounts to taking as the meaning of P the component CT of its least [well-]supported model
/
\CT, PT\/. In general this may yield unsound transition relations (non-models), which is not ac-
ceptable. This happens in the case of P1, P2, P4 and P7. Thus the following restriction is needed.

Solution 8 (Sound with support). A TSS is meaningful if the set of s-provable transitions (this
being the associated transition relation) constitutes a model.

Solution 8b A TSS is meaningful if the set of ws-provable transitions constitutes a model.

Note that by Proposition 14 the transition relation determined by such a TSS is even stable.

Proposition 19 Solution 8b coincides with Solution 7.

Proof: It follows immediately from Proposition 13 that a complete TSS is also meaningful in the
sense of Solution 8b. Now let P be a TSS that is meaningful in the sense of Solution 8b and T the
set of ws-provable transitions. Suppose P 6`ws t

a−→ t′ for certain t, t′ ∈ T(Σ). Then T 6|= t
a−→ t′.

By the soundness of T every set N of closed negative literals such that P ` N

t
a−→t′

must contain a
literal δ with T 6|= δ. The latter means P `ws ε for a transition ε denying δ. Collecting all such ε’s
(one for every choice of N) in a set K yields a well-supported proof of t 6a−→ t′. 2

15

Proposition 20 Solution 8 is extended by Solutions 3 (least supported) and 8b (= 7, complete),
and extends Solutions 1 (positive) and 6 (complete with support).

Proof: By Proposition 14 a TSS that is sound with support determines a transition relation that
is a supported model. By Proposition 11 (the soundness of `s w.r.t. |=s), this transition relation is
included in any supported model. Therefore it constitutes the least.

By definition, the transition relation T1 determined by a TSS P that is sound with support
is a model of P . The set T2 of transitions that are ws-provable from P is well-supported, by
Proposition 14. By Proposition 8 T1 ⊆ T2 and Proposition 4 yields T1 = T2. If follows that T2 is
model too.

If a TSS P is positive, then P `s t
a−→ t′ iff P ` t a−→ t′. By Proposition 1 the (s-)provable

transitions form a model.
The last statement follows immediately from Proposition 13. 2

3.4 Solutions based on irrefutability

A second (and last) idea is to define the transition relation T associated to a TSS P as the set of
x-irrefutable transitions, i.e. T = {t a−→ t′ | P 6`x t 6

a−→ t′}, in which x is s or ws. This amounts to
taking as the meaning of P the component PT of its least [well-]supported model /\CT, PT\/. This
is consistent with Solutions 6 and 7, as for x-complete TSSs one has P `x t

a−→ t′ ⇔ P 6`x t 6
a−→ t′.

Proposition 21 The set of x-irrefutable transitions of any TSS constitutes a model.

Proof: Let P be a TSS and H

t
a−→t′

be a closed substitution instance of a rule of P . Let T be the
set of x-irrefutable transitions and suppose T 6|= t

a−→ t′, i.e. P `x t 6
a−→ t′. I have to prove that

T 6|= H. In case x = s it follows from Proposition 7 that H contains an x-refutable literal. I
establish the same in case x = ws.

Suppose that P 6`ws u 6
b−→ u′ for each positive premise α = (u b−→ u′) in H. Then for each such

α there is a set Nα of ws-irrefutable negative closed literals with P ` Nα
α . Let N be obtained from

H by replacing α by Nα for each positive α in H. Then N contains negative literals only. Since
P `ws t 6

a−→ t′ and P ` N

t
a−→t′

, N must contain a ws-refutable literal. This literal must be in H,
which had to be established.

In case the x-refutable literal in H is positive, say u b−→ u′, one has P `x u 6
a−→ u′, which implies

T 6|= u
b−→ u′. In case it is negative, say v 6 c−→, one has ∃v′ ∈ T(Σ) : P `x v

c−→ v′, which by the
consistency of `x implies ∃v′ : P 6`x v 6

c−→ v′, which implies ∃v′ : T |= v
c−→ v′ and thus T 6|= v 6 c−→.

In case of a literal v 6 c−→ v′ just leave out the existential quantifications. 2

For the moment I restrict attention to solutions yielding well-supported transition relations.

Solution 9a A TSS is meaningful if the set of s-irrefutable transitions (this being the associated
transition relation) is well-supported.

Solution 9b A TSS is meaningful if the set of ws-irrefutable transitions is well-supported.

Note that by Proposition 21 the transition relation determined by such a TSS is even stable.

Proposition 22 Solution 9a coincides with Solution 6 and 9b with 7.

16

Proof: It follows immediately from Proposition 14 that the set of x-irrefutable transitions of an
x-complete TSS is well-supported. Now let P be a TSS whose set T of x-irrefutable transitions is
well-supported. Suppose P 6`x t 6

a−→ t′ for certain t, t′ ∈ T(Σ). Then T |= t
a−→ t′. By the stability

of T there is a set N of closed negative literals such that P ` N

t
a−→t′

and T |= N . The latter means
T 6|= v

c−→ v′ for any literal v 6 c−→ v′ in N , which means P `x v 6
c−→ v′. By Definition 4 and

Lemma 1 the same holds for literals v 6 c−→ in N . Therefore P `x t
a−→ t′. 2

3.5 Attaching a 2-valued meaning to all transition system specifications

In this section I will associate a 2-valued transition relation to arbitrary TSSs. As illustrated by P1

and P2, such a transition relation can not always be a supported model. I will insist on soundness
(being a model), and thus have to give up support. Hence among the model theoretic solutions
only Solution 2 (least model) can provide inspiration.

Let me first decide what to do with P1. Since the associated transition relation should be a
model, it must contain either c a−→ c or c b−→ c. For reasons of symmetry I cannot choose between
these transitions, so the only way out is to include both. There is no reason to include any more
transitions. Hence the transition relation associated to P1 should be {c a−→ c, c

b−→ c}.
The simplest model theoretic solution I thought of that gives this result is to define T1 as the

union of all minimal models of a TSS. In many cases this will be the desired transition relation,
but it can happen that T1 is not a model. In that case T2 is defined as the union of all minimal
models containing T1, and iterating this procedure until it stabilises gives the associated transition
relation.

However, in general this solution yields more transitions then I would like to see. The transition
relation associated to P3 for instance would be {c a−→ c, c

b−→ c}, whereas {c a−→ c} appears to
be sufficient. The same would hold after addition of a second premise c 6a−→ to the only rule in P3.
In case there are other closed terms besides c the associated transition relation will be even larger.
Therefore I will not pursue this idea further, and turn to the proof theoretic solutions instead. The
reason for preferring transition c

a−→ c over c b−→ c in P3 is not that c a−→ c is provable—after
addition of the premise c 6a−→ it is not—but that c b−→ c is refutable. Therefore I consider:

Solution 9 (Irrefutable). Any TSS is meaningful. The associated transition relation consists of
the ws-irrefutable transitions.

In the case of P1 this yields the desired result {c a−→ c, c
b−→ c} and likewise P2, P3 and P4 yield

{c a−→ c}. The transition relation of P7 is the same as the one of P1. This indicates that Solution 9
is inconsistent with Solutions 2–5. I don’t consider this to be a problem, as the model theoretic
allocation of a transition relation to P7 was not very convincing.

A variant of Solution 9 is to associate to a TSS the set of its s-irrefutable transitions. This
solution is inconsistent with Solution 1 (positive) as the transition relation of P5 would consist of
c

a−→ c. Note that this transition relation is supported. In order to rule out this anomaly one
would have to restrict the meaningful TSSs to the ones for which the associated transition relation
is well-supported, which yields Solution 9a, that has been shown to coincide with Solution 6.

Another variant is to stick to the ws-irrefutable transitions, but require those to form a sup-
ported model. Note that adding rules x

a−→y
x
a−→y

for a ∈ A to an arbitrary TSS does not change the
associated transition relation according to Solution 9, but makes this relation supported. Thus
requiring the associated transition relation to be supported is not much of a restriction. Moreover,

17

as rules like the one above should not make the difference between meaningful and meaningless
TSSs, this requirement is not recommended.

4 Reduction

In this section I show that the method of reduction of Bol & Groote [3] coincides with Solution 7.
In [3] the operations True, Pos and Redκ for κ an ordinal are defined on TSSs without variables.

The operator True deletes all rules with negative premises and thus yields a positive TSS. The
operator Pos deletes all negative premises from rules, and hence also yields a positive TSS. Finally
the operator Redκ deletes all rules that
• contain a positive premise that for some λ < κ is not provable from Pos(Redλ(P)) or

• contain a negative premise that for some λ < κ is refutable from True(Redλ(P))
and in the remaining rules deletes all premises that are
• positive and for some λ < κ provable from True(Redλ(P)) or

• negative and for some λ < κ not refutable from Pos(Redλ(P)).
The idea is that the positive TSSs True(Redκ(P)) only prove transitions that surely hold, whereas
the positive TSSs Pos(Redκ(P)) prove all transitions that possibly hold. Thus “not provable (or
refutable, see Definition 3) from Pos(Redλ(P))” means “not provable (resp. refutable) at all”. Now
a TSS without variables is said to be positive after reduction if for certain ordinal κ, Redκ(P) is
a positive TSS. In that case True(Redκ(P)) = Redκ(P) = Pos(Redκ(P)) and Redκ+1 is a TSS
in which no rule has premises. The transition relation associated to such a TSS consists of the
transitions provable from Redκ(P), which are the rules of Redκ+1(P). The case of TSSs with
variables reduces to the case without variables by taking the set of all closed substitution instances
of the rules in such a TSS.

Lemma 2 Let P be a TSS without variables.
1. For any closed positive literal α: P `ws α ⇒ ∃κ : True(Redκ(P)) ` α, and
2. for any closed negative literal α: P `ws α ⇒ ∃κ : Pos(Redκ(P)) does not refute α.

Proof: With induction on the structure of proofs. Suppose P `ws α by means of a proof p and
the statements are established of β’s obtainable by subproofs. Let H be the set of labels directly
above the root of p. For any literal β ∈ H, one has P `ws β by means of a subproof of p. Thus, for
β positive ∃λ : True(Redλ(P)) ` β and for β negative ∃λ : Pos(Redλ(P)) does not refute β. Let
κ be a strict upper bound of all those λ’s.

Now there are two cases. If α is positive, there is a rule H
α in P . By construction, all premises of

this rule are deleted in the reduction process, and ∅α is a rule inRedκ(P). Hence True(Redκ(P)) ` α.
Now suppose α is negative and Pos(Redκ(P)) refutes α. This means that Pos(Redκ(P)) ` γ

for γ a literal denying α, which implies that Redκ(P) ` N
γ for N a set of negative closed literals.

Since p is a well-supported proof, a literal β ∈ H denies a literal δ in N . β must be positive, so
∃λ < κ : True(Redλ(P)) ` β, and δ is refutable from True(Redλ(P)). It follows that at least one
of the rules needed in the proof of N

γ has been deleted in Redκ(P), contradicting Redκ(P) ` N
γ .

Hence Pos(Redκ(P)) does not refute α. 2

Proposition 23 Let P be a TSS without variables and α a closed literal. Then

Redκ(P) `ws α ⇒ P `ws α.

18

Proof: By transfinite induction on κ. Suppose the statement has been established for all ordinals
λ < κ. By definition True(P) ` t a−→ t′ ⇒ P `ws t

a−→ t′ and if β is negative and for all γ denying
β one has Pos(P) 6` γ then P `ws β. Substituting Redλ(P) for P yields

(i) If β is positive and for some λ < κ provable from True(Redλ(P)) then P `ws β, and

(ii) if β is negative and for some λ < κ not refutable from Pos(Redλ(P)) then P `ws β.

Apply a (nested) induction on the structure of a well-supported proof p of α from Redκ(P). Let
K be the set of labels directly above the root of p. By induction P `ws β for any β ∈ K. In case
α is positive, K

α must be a rule in Redκ(P). Hence for a certain set H of premises K∪H
α must be a

rule in P . The premises in H are deleted in the definition of Redκ, and thus, by (i) and (ii), are
ws-provable from P . It follows that P `ws α.

Now let α be negative. Suppose P ` N
γ with γ a literal denying α and N a set of closed negative

literals. I have to show that P `ws β for a literal β denying a literal δ in N . There are two cases.

• Suppose N contains a literal δ that for some λ < κ is refutable from True(Redλ(P)).
This means that True(Redλ(P)) ` β with β denying δ. Obviously Redλ(P) ` β, hence
Redλ(P) `ws β and by induction P `ws β.

• Suppose N contains no such literal. By induction on the structure of proofs I establish that
P ` N

ε ⇒ Redλ(P) ` N
ε for any transition ε and λ ≤ κ. Namely, suppose q is a proof of

N
ε from P . Then for any ζ 6= ε appearing in q one has P ` N

ζ by means of a smaller proof,
and hence Redλ(P) ` N

ζ for any λ ≤ κ, which implies Pos(Redλ(P)) ` ζ. It follows that q
employs no rule that is deleted in the construction of Redµ(P) for µ ≤ κ. Thus, by cutting
the branches in q that sprout from deleted premises in Redµ(P), a proof q′ from Redµ(P)
is obtained of a rule N ′

ε with N ′ ⊆ N . Therefore Redµ(P) ` N
ε , as claimed. In particular

Redκ(P) ` N
γ . By the definition of a well-supported proof (p), a literal β in K denies one in

N . As remarked already, P `ws β. 2

Theorem 2 A TSS is positive after reduction iff it is complete. In that case the associated tran-
sition relation is the set of ws-provable transitions.

Proof: Without limitation of generality I can restrict attention to TSSs P without variables.
Suppose P is positive after reduction. In that case there is an ordinal κ such that the rules

of Redκ(P) have no premises. Thus for any transition t 6a−→ t′ either Redκ(P) `ws t
a−→ t′ or

Redκ(P) `ws t 6
a−→ t′. By Proposition 23 the same holds for P , which therefore must be complete.

As `ws is sound one has Redκ(P) ` t a−→ t′ ⇔ P `ws t
a−→ t′.

Now suppose P is complete. For each closed literal α with P `ws α, there is an ordinal κ given
by Lemma 2. Let µ be a strict upper bound of those κ’s. I will show that Redµ(P) is positive.
Let H

α be a rule in P and β ∈ H a negative premises. In case P 6`ws β, by completeness or
Proposition 12 I have P `ws γ for a (positive) literal γ denying β, i.e. β is ws-refutable from P .
By Lemma 2.1 β is refutable from True(Redκ(P)) for some κ < µ. Hence H

β does not occur in
Redµ(P). In case P `ws β, Lemma 2.2 implies that β will be deleted from H in Redµ(P). 2

It is possible to simplify the definition of Redκ by deleting only (rules with) negative premises.
I.e. Redκ deletes all rules that contain a negative premise that for some λ < κ is refutable from
True(Redλ(P)), and in the remaining rules deletes all negative premises that for some λ < κ are
not refutable from Pos(Redλ(P)). For this version of Red Lemma 2, Proposition 23 and Theorem 2
remain true, with only slightly adapted proofs. Thus this simplified method of reduction gives the
same meaning to TSSs as the original one.

19

5 Solutions based on stratification

Here I review two methods to assign meaning to transition system specifications based on the
technique of (local) stratification, as proposed in the setting of logic programming by Przymusinski

[12]. This technique was tailored for TSSs by Groote [9].

Definition 15 (Stratification). A function S : (T(Σ) × A × T(Σ)) → λ, where λ is an ordinal,
is called a stratification of a TSS P = (Σ, R) if for every rule H

α ∈ R and every substitution
σ : V → T(Σ) it holds that

for all positive literals β ∈ H : S(σ(β)) ≤ S(σ(α)) and
for all transitions β denying a negative literal in H : S(σ(β)) < S(σ(α)).

A stratification is strict if also for all positive literals β ∈ H : S(σ(β)) < S(σ(α)).
A TSS with a (strict) stratification is said to be (strictly) stratified.

In a stratified TSS no transition depends negatively on itself. A transition relation is associated
to such a TSS one stratum Sκ = {α | S(α) = κ} at a time. A transition in S0 is present iff it is
provable in the sense of Definition 3, and as soon as one knows the about validity of all transitions
α with S(α) < κ for an ordinal κ, one knows the validity of all negative premises that could occur
in a proof of a transition in stratum κ, which determines the validity of those transitions.

Definition 16 Let P be a TSS with a stratification S with range λ. The transition relations Tκ
with κ < λ are defined by transfinite recursion through

Tκ = {α | S(α) = κ ∧ P ` H
α for a set of closed literals H with

⋃
µ<κ

Tµ |= H}.

The transition relation TP,S associated with P (and based on S) is
⋃
µ<λ Tµ.

Note that each transition in such a set H or denying a literal in H is in a lower stratum than α.
Hence

⋃
µ<κ Tµ |= H iff TP,S |= H. In Bol & Groote [3] Tκ is defined by Tκ = {α | Pκ ` α}

where Pκ is the set of all rules Hκ

α obtained from closed substitution instances H
α of rules from P

with S(α) = κ and
⋃
µ<κ Tµ |= H −Hκ. Here Hκ = {β ∈ H | β positive ∧ S(β) = κ}.

Proposition 24 Definition 16 agrees with the definition in [3].

Proof: Suppose α ∈ Tκ according to Definition 16. Let p be a closed proof of Hα where H is a set of
literals with

⋃
µ<κ Tµ |= H. Let p′ be obtained from p by deleting all branches above nodes labelled

with a transition β with S(β) < κ. Then p′ is a proof from P of a rule H′

α with
⋃
µ<κ Tµ |= H ′. All

rules used in p′ are also rules in Pκ, except that there the premises from H ′ are deleted. It follows
that Pκ ` α. The other direction is straightforward. 2

The definition in [3] can in turn be seen to coincide with the original one in Groote [9].

Proposition 25 If P is a TSS with stratification S and α a closed literal, then P `wsα iff TP,S |= α.

Proof: Define S(α) for α negative to be the least strict upper bound of {S(β) | β denies α}. Under
this definition the two conditions in Definition 15 can be combined into

for all literals β ∈ H : S(σ(β)) ≤ S(σ(α)).

20

For α, β closed write α < β if either S(α) < S(β) or S(α) = S(β) with α negative and β positive.
“if”: With induction on <. Suppose TP,S |= α and the statement has been obtained for literals

β with β < α. If α is positive then α ∈ TS(α) and there is a set H of closed literals with P ` H
α and⋃

µ<S(α) Tµ |= H, which implies TP,S |= H. As β < α for each β ∈ H, P `ws H and thus P `ws α.
In case α is negative, then for each transition γ that denies α one has TP,S 6|= γ, i.e. γ 6∈ TS(γ).
Hence, each set H of closed literals with P ` H

γ contains a literal δ with
⋃
µ<S(γ) Tµ 6|= δ. This

implies the existence of a literal β denying δ such that
⋃
µ<S(γ) Tµ |= β. This holds in particular

for sets H only containing negative literals, and in such a case β < δ < γ < α and TP,S |= β, so
P `ws β. This for every choice of γ and a negative H. Definition 12 yields P `ws α.

“only if”: Suppose P `ws α with α negative. Then for any transition β denying α Proposition 10
gives P 6`ws β, and by “if” TP,S 6|= β. By Definition 4 this implies TP,S |= α. Similarly suppose
P `ws t

a−→ t′. Then P 6`ws t 6
a−→ t′, so by “if” TP,S 6|= t 6a−→ t′. By definition this implies

TP,S |= t
a−→ t′. This proof benefits highly from the consideration of literals of the form t 6a−→ t′. 2

Proposition 26 Let P be a TSS with two stratifications S and S′. Then TP,S = TP,S′ .

Proof: This is Lemma 2.5.4 in [9]. Here it is an immediate corollary of Proposition 25. 2

The last proposition says that for a stratified TSS the choice of the stratification in the construction
of the transition relation is immaterial. This enables the following solution to (1) and (2).

Solution 10 (Stratified) [12, 9]. A TSS is meaningful iff it is stratified. The associated transition
relation is given in Definition 16.

Proposition 27 Solution 10 strictly extends Solution 1 and is strictly extended by Solution 7.

Proof: If P is positive take S(α) = 0 for all α. This is a stratification and TP,S = T0 = {α | P ` α}.
The second statement is an immediate consequence of Proposition 25, using that for any transition
t

a−→ t′ either T |= t
a−→ t′ or T |= t 6a−→ t′.

Strictness follows from P3 and P6, which are stratified but not positive, and P8, which is complete
but not stratified. 2

Solution 11 (Strictly stratified) [9]. A TSS is meaningful iff it is strictly stratified. The associated
transition relation is as in Definition 16, but with ‘P ` H

α ’ replaced by ‘Hα is a closed substitution
instance of a rule of P ’.

Proposition 28 Solution 11 is strictly extended by Solutions 10 and 6 (complete with support).

Proof: Note that TP,S in Definition 16 would not change if P ` H
α were replaced by ‘Hα is provable

by means of a proof in which for all transitions β labelling a non-leaf one has S(β) = S(α) = κ’.
This follows from the first four sentences in the proof of Proposition 24. In the special case that S
is stratified, this modified definition agrees with the one proposed in Solution 11, which establishes
the consistency of Solutions 10 and 11.

Just like in Proposition 25 one can prove that if P is a TSS with a strict stratification S and α
is a closed literal, then P `s α⇔ TP,S |= α. This implies that Solution 6 extends Solution 11.

Strictness follows from P5 and P6, which are stratified but not strictly so, and P8, which is
complete with support but not strictly stratified. 2

21

6 Compositionality

In concurrency theory it is common practice to group together representations of concurrent systems
in equivalence classes. This is done when these representations are thought to represent the same
system, or at least systems whose essential properties are the same. As system representations
often closed terms over some signature are considered. The equivalence relation employed is then
formulated in terms of the transition relation between closed terms obtained from a given TSS
over that signature. All equivalence relations employed in concurrency have the properties that
systems for which the reachable parts of the transition relation are isomorphic are equivalent, and
that a system without outgoing transitions (a deadlock) cannot be equivalent to a system with an
outgoing a-transition.

In order to allow modular reasoning it is important to use an equivalence relation that is a
congruence. This means that the meaning (the associated equivalence class) of a closed term
f(t1, ..., tn) is completely determined by the meaning of the subterms t1, ..., tn. The most popular
equivalence relation is bisimulation equivalence. In Bol & Groote [3] it was established that
for complete TSSs whose rules satisfy a syntactic criterion (the well-founded ntyft/ntyxt format,
developed earlier in [10, 9]), bisimulation equivalence is guaranteed to be a congruence, and so are
many other equivalence relations. Moreover, a counterexample was given against the extension of
this result to TSSs that are meaningful according to Solution 5 (stable). Of course the example
concerned an incomplete TSS in well-founded ntyft/ntyxt format with a unique stable transition
relation for which bisimulation is not a congruence. This TSS also has a unique supported model,
and thus shows that the congruence theorem does not generalise to Solution 4 either. Here I show
that also Solution 9—or any other proof theoretic solution giving a 2-valued meaning to all TSSs
for that matter—does not lend itself to such a generalisation, indicating that Solution 7 (complete)
is the most general one for which this nice result holds. My counterexample concerns the following
TSS S over a signature with constants c, d and e and a unary function f .

S c
a−→ f(c)

x
a−→ y 6a−→

f(x) a−→ c
d

a−→ e

This TSS is surely in the well-founded ntyft/ntyxt format. It has a unique 3-valued stable transition
relation, given by /

\CT, PT\/ =

/
\{c a−→ f(c), d a−→ e, f(d) a−→ c}, {c a−→ f(c), d a−→ e, f(d) a−→ c, f(c) a−→ c}\/.

Thus the transitions c a−→ f(c), d a−→ e and f(d) a−→ c are ws-provable, and with the exception
of f(c) a−→ c, all other transitions are ws-refutable. Note, by the way, that for this TSS there
is no difference between s-provability and ws-provability, or between s- and ws-refutability. This
can be verified directly, or through Proposition 9. As the 3-valued relation above is not 2-valued,
the TSS is incomplete (has no meaning according to Solution 7). It also has no meaning under
Solution 5 (stable). The 3-valued transition relation constitutes the most acceptable interpretation
of S. If one insists on 2-valued relations, the proof theoretic approach offers only one choice, namely
whether or not to include the transition f(c) a−→ c. Each of these possibilities yields a transition
relation for which no equivalence relation used in concurrency theory is a congruence. Solution 9
(irrefutable) includes the transition f(c) a−→ c. Now c and f(c) are equivalent (the reachable part
of the transition relation from each of them is an a-loop), but f(c) and f(f(c)) are inequivalent
(f(f(c)) deadlocks). Taking only the provable transitions (instead of the irrefutable ones) would
exclude the transition f(c) a−→ c. In that case c and d are equivalent, but f(c) and f(d) are not.

22

7 Conclusion

I presented 11 answers to the questions of which transition system specifications are meaningful
and which (2-valued) transition relations they specify. The relations between these 11 solutions
are indicated in Figure 2. There S1

- S2 indicates that solution S2 extends S1, as defined in

positive (1)
�
�
�
�
�
�
���

A
A
A
A
A
A
AAU

A
A
A
A
A
A
AAU

stratified (10)

?
complete (7)

?
stable (5)

strictly stratified (11)
��

���
���

����
����

@
@
@@R

complete with support (6)
�
���

����

?
unique supported (4)

?
least supported (3)

sound with support (8)
���

�����
least model (2)

B
B
B
B
B
B
B
B
B
B
B
BN #

#
��

��#
#

HH
HHH

HHj
irrefutable (9)

Figure 2: Relations between Solutions 1–11

Section 1, and S1#S2 indicates that S1 and S2 are inconsistent. By the definition of extension
and consistency, S1

- S2
- S3 implies S1

- S3 (transitivity) and S1 # S2
- S3 implies S1#S3

(conflict heredity). All extensions are strict and there are no more extensions or inconsistencies than
indicated in the figure (or derivable by transitivity and conflict heredity). The arrows in Figure 2
have been established in Propositions 1, 27, 28, 15 and 20 and in the third sentence of Section 3.4,
whereas the remaining consistency results follow from Proposition 5. Strictness, the absence of
further extensions and the inconsistencies follow from the information collected in Table 1, which
indicates which of the TSSs P1–P8 given in this paper are meaningful according to each of the
solutions. A ‘−’ indicates that the TSS is meaningless, a ‘+’ that it has the same meaning as given
by Solution 9, and a ‘∗’ that it has a meaning different from the one given by Solution 9.

Solution P1 P2 P3 P4 P5 P6 P7 P8

1 positive − − − − + − − −
2 least − + − + + − ∗ +
3 least supported − − + ∗ + − ∗ +
4 unique supported − − + ∗ − − ∗ +
5 stable − − + − + + ∗ +
6 complete with support − − + − − − − +
7 complete − − + − + + − +
8 sound with support − − + − + − − +
9 irrefutable + + + + + + + +

10 stratified − − + − + + − −
11 strictly stratified − − + − − − − −

Table 1: Counterexamples

23

I also presented two methods to associate a 3-valued transition relation to any TSSs. Solution I
(the well founded semantics) extends Solution 7. As it associates a transition relation that is not
2-valued to any incomplete TSS, it must be inconsistent with Solutions 2, 4, 5 and 9. Solution II
(the least 3-valued supported model) extends Solution 6 and is inconsistent with Solution 1 (because
in giving meaning to P5 it leaves the transition c

a−→ c undetermined).

Evaluation of the solutions

Solution 10 (stratified) stems from Przymusinski [12] and is perhaps the best known solution in
logic programming. A variant that only allows TSSs with a unique supported model is Solution 11
(strictly stratified), proposed by Groote [9].

Solution 1 is the classical interpretation of TSSs without negative premises, and Solutions 2
(least model) and 3 (least supported model) are two straightforward generalisations. Solution 4
(unique supported model) stems from Bloom, Istrail & Meyer [2], where it was used to ascer-
tain that TSSs in their so-called GSOS format are meaningful (such TSSs have unique supported
models). My counterexample P4 shows that Solution 4 yields contraintuitive results and is therefore
not suited to base such a conclusion on. Fortunately, TSSs in the GSOS format are even strictly
stratified, which is one of the most restrictive criteria for meaningful TSSs considered. Solution 3
can be rejected on the same grounds as Solution 4 and Solution 2 is not very useful because it
leaves most TSSs with negative premises meaningless (cf. P3).

Solution 5 (unique stable transition relation) stems from Gelfond & Lifschitz [7] and is
generally considered to be the most general acceptable solution available. Counterexample P7

however suggests that this solution may yield debatable results, although to a lesser extent than
Solutions 3 and 4.

Solution 7 (positive after reduction, complete) is essentially due to Van Gelder, Ross &

Schlipf [6]. It is the most general solution without undesirable properties. In Bol & Groote

[3], where this solution has been adapted to TSSs, an example in the area of concurrency is given
(the modelling of a priority operator in basic process algebra with abstraction, Example 2.4 in [3])
that can be handled with Solution 7 (Theorem 6.6 in [3]), but not with Solution 10 (Example 3.17
in [3]). This example can neither be handled by Solution 8. For let Pθ be the instance of BPAδετ

with priorities given by Act = {a, b}, a < b and Ξ = ∅, then Pθ `s τ
a−→ τ , so because of R9.3

one cannot obtain Pθ `s a 6
b−→ τ or Pθ `s a 6

b−→, and thus neither Pθ `s θ(a) a−→ θ(ε); hence the
s-provable transitions fail to constitute a model of R5.1. This shows that the full generality of
Solution 7 can be useful in applications.

My presentation of Solution 7 differs so much from the original one [6, 3] that I gave it a new
name. It is based on a concept of provability incorporating the notion of negation as failure of
Clark [4]. Theorem 2 establishes the correspondence between my version and the one from [6, 3],
whereas Theorem 1 establishes the correspondence with the work of Przymusinski [13]. I think
that my proof theoretic characterisation of Solution 7, and to some extent also the one of Solution 5,
can be useful in applications, among others because it allows induction on proofs. The following
proposition on transition equivalence of TSSs for instance follows immediately from the definitions
given here, whereas it would be nontrivial when starting from the original definitions. As a matter
of fact, I needed this proposition in another paper [8], and the search for it inspired me to write
this one.

24

Proposition 29 Let P and P ′ be TSSs over the same signature, such that P ` N
α ⇔ P ′ ` N

α for
any closed action rule N

α with only negative premises. Then

• A 2- or 3-valued transition relation T is stable for P iff it is stable for P ′.

• Hence P is meaningful according to Solution 5 iff P ′ is, and in that case they determine the
same transition relation.

• P `ws β ⇔ P ′ `ws β for any closed literal β.

• Hence P is meaningful according to Solution 7 iff P ′ is, and in that case they determine the
same transition relation.

• According to Solution 9 P and P ′ are meaningful and determine the same transition relation.

• P and P ′ determine the same 3-valued transition relation according Solution I.

Solutions 6 (complete with support), 8 (sound with support), and 9 (irrefutable) may be new.
The first two are based on a notion of provability that is somewhat simpler to apply, and only
incorporates the notion of negation as finite failure [4]. Moreover, Solution 6 only yields unique
supported models, like Solutions 11 and 4. These solutions cater to the taste that circular rules,
such as c

a−→c
c
a−→c

, should render a TSS meaningless, unless there is independent evidence for a transition
c

a−→ c.
Solution 9 appears to be the best way to associate a 2-valued transition relation to arbitrary

TSSs. However, it has the disadvantage that it sometimes yields unstable transition relations,
and even unsupported models. A good example from concurrency theory of an incomplete TSS
is Basic Process Algebra with a priority operator, unguarded recursion and renaming, as defined
in Groote [9]. This TSS has no supported models. Solution 9 does give a meaning to this TSS,
but it appears rather arbitrary and not very useful. In particularly, recursively defined processes
do no longer satisfy their defining equation, which makes algebraic reasoning virtually impossible.
Also the absence of a congruence theorem as demonstrated in Section 6 is a bad property of this
Solution. Hence, Solution 7 (complete) remains the most general completely acceptable answer to
(1) and (2).

In case 3-valued solutions are allowed, Solution 7 generalises to all transition system specifica-
tions in the shape of the well-founded semantics (Solution I), and likewise Solution 6 generalises to
the least 3-valued supported model (Solution II). It can be argued that giving a 3-valued meaning
to problematic transition system specifications is preferable to giving no meaning at all, making
these solutions, and Solution I in particular, the preferred interpretation of TSSs.

Specifying transition relations

This paper dealt with the problem of associating a transition relation to a given TSS. A related
problem is to find a good TSS to specify a given transition relation. Here “good” could be something
like “finite” or “in ntyft/ntyxt format”. Without such a restriction the transition relation itself can
be used as TSS, regarding every transition as a rule without premises. The problem can be further
parametrised by specifying the desired transition relation up to a given notion of equivalence only.
In this light the solutions of Figure 2 can be compared also on their expressiveness, i.e. are there
transition relations that can be specified by a good TSS that is meaningful according to solution S,
but not by one that fits in solution S′? This issue is left for future research.

25

Acknowledgements This paper benefited greatly from the insightful comments of Roland Bol.
Also my thanks to the audience of the PAM seminar for useful feedback, and to the ICALP and
JLAP referees for careful proofreading. Finally, Jan Rutten is gratefully acknowledged for spotting
a mistake in a previous version of this paper (see Footnote 2).

References

[1] K.R. Apt & R. Bol (1994): Logic programming and negation: A survey. Journal of Logic
Programming 19–20, pp. 9–71.

[2] B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced. Journal of the
ACM 42(1), pp. 232–268.

[3] R.N. Bol & J.F. Groote (1996): The meaning of negative premises in transition system
specifications. Journal of the ACM 43(5), pp. 863–914.

[4] K.L. Clark (1978): Negation as failure. In H. Gallaire & J. Minker, editors: Logic and
Databases, Plenum Press, New York, pp. 293–322.

[5] F. Fages (1991): A new fixpoint semantics for general logic programs compared with the
well-founded and the stable model semantics. New Generation Computing 9(4), pp. 425-443.

[6] A. van Gelder, K. Ross & J.S. Schlipf (1991): The well-founded semantics for general
logic programs. Journal of the ACM 38(3), pp. 620–650.

[7] M. Gelfond & V. Lifschitz (1988): The stable model semantics for logic programming.
In R. Kowalski & K. Bowen, editors: Proceedings 5th International Conference on Logic Pro-
gramming, MIT Press, Cambridge, Massachusetts, pp. 1070–1080.

[8] W.J. Fokkink & R.J. van Glabbeek (1996): Ntyft/ntyxt rules reduce to ntree rules.
Information and Computation 126(1), pp. 1–10.

[9] J.F. Groote (1993): Transition system specifications with negative premises. Theoretical
Computer Science 118(2), pp. 263–299.

[10] J.F. Groote & F.W. Vaandrager (1992): Structured operational semantics and bisimu-
lation as a congruence. Information and Computation 100(2), pp. 202–260.

[11] G.D. Plotkin (1981): A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University.

[12] T.C. Przymusinski (1988): On the declarative semantics of deductive databases and logic
programs. In Jack Minker, editor: Foundations of Deductive Databases and Logic Program-
ming, Morgan Kaufmann Publishers, Inc., Los Altos, California, pp. 193–216.

[13] T.C. Przymusinski (1990): The well-founded semantics coincides with the three-valued stable
semantics. Fundamenta Informaticae XIII(4), pp. 445–463.

[14] C. Verhoef (1995): A congruence theorem for structured operational semantics with predi-
cates and negative premises. Nordic Journal of Computing 2(2), pp. 274–302.

26

