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Abstract

This paper explores the connection between semantic
equivalences and preorders for concrete sequential pro-
cesses, represented by means of labelled transition sys-
tems, and formats of transition system specifications
using Plotkin’s structural approach. For several pre-
orders in the linear time — branching time spectrum
a format is given, as general as possible, such that
this preorder is a precongruence for all operators speci-
fiable in that format. The formats are derived using
the modal characterizations of the corresponding pre-
orders.

1. Introduction

Structural operational semantics [24] provides process
algebras and specification languages with an interpre-
tation. It generates a (labelled) transition system in
which states are the closed terms over a (single-sorted,
first-order) signature, and transitions between states
may be supplied with labels. The transition relation is
obtained from a transition system specification (TSS),
this being a set of proof rules called transition rules.
In case of a TSS with only positive premises, the
associated transition relation simply consists of the
transitions derivable from the transition rules. In the
presence of negative premises it is not always straight-
forward to associate a transition relation to a TSS.
One can for instance express that a transition holds if
it does not hold. In VAN GLABBEEK [17] the notion of
derivability of transitions from a TSS is extended to
negated transitions by incorporating a notion of nega-
tion as failure (cf. [10]): a well-supported proof features
a method to derive the negation of a transition by
demonstrating that that transition cannot be derived.
A TSS is complete [17] if for each transition there is
a well-supported proof from the TSS either for the
transition itself or for its negation. The transition re-
lation associated to a complete TSS consists of the
transitions for which there is a well-supported proof.
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An incomplete TSS arguably does not specify a tran-
sition relation in a meaningful way at all. However, it
specifies what one could call a 3-valued transition rela-
tion, in which potential transitions are either present,
absent or unknown. This approach to the meaning of
transition system specifications can be seen as a proof-
theoretic characterization of the work of VAN GELDER,
Ro0Ss & ScHLIPF [14] in logic programming.

A wide range of semantic equivalences and pre-
orders has been defined on 2-valued transition rela-
tions. These preorders are based on the branching
structure of processes (ready simulation [7], bisimula-
tion [21]), on execution sequences (partial traces, com-
pleted traces, accepting traces), or on decorated ver-
sions of execution sequences (ready pairs [22], failure
pairs [9, 11], ready traces [2, 25], failure traces [23]). In
[15], VAN GLABBEEK classified most equivalences and
preorders for concrete, sequential processes! that occur
in the literature, and motivated them by means of test-
ing scenarios, phrased in terms of ‘button pushing ex-
periments’ on generative and reactive machines. This
gave rise to modal characterizations of the preorders,
i.e. characterizations in terms of the observations that
an experimenter could make during a session with a
process. These will here be taken as the definitions of
the preorders.

In general a semantic equivalence (or preorder) in-
duced by a TSS is not a congruence (resp. precongru-
ence), i.e. the equivalence class of a term f(t1,...,t,)
need not be determined by the equivalence classes
of its arguments ty,...,¢,. Being a (pre)congruence
is an important property, for instance in order to
fit the equivalence (or preorder) into an axiomatic
framework. Syntactic formats for TSSs have been de-
veloped w.r.t. several semantic equivalences and pre-
orders, to ensure that such an equivalence or pre-
order as induced by a TSS in the corresponding for-
mat is a (pre)congruence. These formats have helped

LA process is sequential if it can do only one action at a
time; concrete refers to the absence of internal actions or internal
choice.



to avoid repetitive (pre)congruence proofs, and to ex-
plore the limits of sensible TSS definitions. A first con-
gruence format for bisimulation equivalence was put
forward by DE SIMONE [26], which was extended to
the GSOS format by BLooMm, ISTRAIL & MEYER [7]
and to the tyft/tyxt format by GROOTE & VAAN-
DRAGER [19]. (The latter format was supplied with
a well-foundedness criterion, which was subsequently
eliminated [13].) The tyft/tyxt format was extended
with negative premises [8, 18] to obtain the so-called
ntyft /ntyxt format, which works for the class of com-
plete TSSs. The ntyft/ntyxt format generalizes the
GSOS format. To mention some formats for other
equivalences and preorders, VAANDRAGER [27] ob-
served that de Simone’s format is a precongruence
format for the partial trace and the failure preorders,
BLooM [5] introduced a more general congruence for-
mat for partial trace equivalence, and FOKKINK [12]
introduced a precongruence format for the accepting
trace preorder. Finally, VAN GLABBEEK [16] intro-
duced a congruence format for ready simulation equiv-
alence, which generalizes the GSOS format.

In this paper precongruence formats are proposed
for several semantic preorders based on decorated
traces, building on results reported in [4, 16]. We in-
troduce precongruence formats for the ready trace pre-
order, the readiness preorder, the failure trace preorder
and the failure preorder. The precongruence formats
for the last two preorders coincide. Following [4, 12]
these three precongruence formats distinguish between
‘frozen’ and ‘liquid’ arguments of function symbols.
This distinction is used in posing restrictions on oc-
currences of variables in transition rules. The ready
simulation format of [16] is more liberal than the for-
mat for the ready trace preorder, which is more liberal
than the format for the readiness preorder, which is
more liberal than the format for the failure trace pre-
order, which in turn is more liberal than de Simone’s
format.

The three precongruence formats introduced in this
paper apply to incomplete TSSs as well. For this pur-
pose the definitions of the corresponding preorders are
extended to 3-valued transition relations.

The precongruence formats put forward in this pa-
per were obtained by a careful study of the modal
characterizations of the preorders in question. The out-
line of the proof underlying each of our precongruence
results is as follows (detailed proofs can be found in
[6]). First, any TSS in the ready simulation format is
transformed into an equivalent TSS—equivalent in the
sense that is proves the same transitions and negated
transitions—of a special form, in which the left-hand
sides of positive premises are single variables. Next,

any such TSS is extended with a number of transi-
tion rules with negative conclusions, in such a way
that a (negated) transition has a well-supported proof
from the original TSS if and only if it has a standard
proof from the extended TSS. In the extended TSS, the
left-hand sides of positive and negative premises can
further be reduced to single variables. It is shown for
each of the precongruence formats in this paper that
its syntactic criteria are preserved under these trans-
formations. Finally, the resulting transition rules are
captured by means of logical formulas that are within
the modal characterization of the preorder in question.
This implies the desired precongruence result.

This paper is set up as follows. Section 2 presents
the basics of structural operational semantics and de-
fines the preorders based on decorated traces w.r.t. 3-
valued transition relations. Section 3 recalls the ready
simulation format of [16] and formulates extra re-
quirements to obtain new precongruence formats for
the decorated trace preorders. Section 4 sketches the
proofs of the precongruence results, using the defini-
tions of preorders in terms of observations. Section 5
contains full abstraction properties of the various pre-
congruence formats: for each format we determine the
coarsest congruence with respect to all operators in
that format that is finer than partial or completed
trace equivalence. In Section 6, counterexamples are
given to show that all syntactic restrictions are es-
sential for the obtained precongruence results. Finally,
Section 7 presents some applications of the precongru-
ence formats to TSSs from the literature.

The reader is referred to [6] for detailed proofs and
more applications.

2. Preliminaries

V and A are two sets of variables and actions. In our
proofs (see [6]) it is used that V is infinite and at least
at large as A (i.e. |V| > |A|). Many concepts that
will appear later on are parameterized by the choice
of V and A, but as in this paper this choice is fixed, a
corresponding index is suppressed. A syntactic object
is closed if it does not contain any variables from V.

Definition 1 A signature is a collection ¥ of func-
tion symbols f ¢ V', with |X| < |V, equipped with a
function ar : ¥ — IN. The set T(X) of terms over a
signature ¥ is defined recursively by:
. VCT(S),
o f(t1,...,tar(s)) € T(X) for all functions symbols
f € X and terms ty,...,t.(5) € T(X).

A term ¢() is abbreviated as c¢. For t € T(X), var(t)
denotes the set of variables that occur in t. T(X) is



the set of closed terms over X, i.e. the terms t € T(X)
with var(t) = 0. A X-substitution o is a partial func-
tion from V to T(X). If o is a substitution and S is
any syntactic object, then o(S) denotes the object ob-
tained from S by replacing, for z in the domain of o,
every occurrence of z in S by o(z). In that case o(S)
is called a substitution instance of S. A ¥-substitution
is closed if it is a total function from V to T'(2).

Definition 2 Let ¥ be a signature. A positive X-
literal is an expression t — t' and a negative X-literal
an expression ¢ —£ with ¢,#' € T(X) and a € A. For
t,t' € T(T) the literals t —— t' and t —/+ are said
to deny each other. A transition rule over ¥ is an ex-
pression of the form g with H a set of X-literals (the
premises of the the rule) and a a ¥-literal (the con-
clusion). The left- and right-hand side (if any) of «
are called the source and the target of the rule, re-
spectively. A rule £ with H =  is also written a. A
transition system specification (TSS) over ¥ is a col-
lection of transition rules over ¥. A TSS is standard
if all its rules have positive conclusions, and positive if
moreover all premises of its rules are positive.

The concept of a positive TSS was introduced by
GROOTE & VAANDRAGER [19]; negative premises were
added by GROOTE [18]. The resulting notion consti-
tutes the first formalization of PLOTKIN’s structural
operational semantics (SOS) [24] that is sufficiently
general to cover most of its applications. TSSs with
negative conclusions are introduced here, because they
are needed as intermediate steps in our proofs for stan-
dard TSSs.

The following definition tells when a literal is prov-
able from a TSS. It generalizes the standard definition
(see e.g. [19]) by allowing the derivation of transition
rules. The derivation of a literal a corresponds to the
derivation of the transition rule £ with H = §. The
case H # () corresponds to the derivation of a under
the assumptions H.

Definition 3 Let R be a TSS over a signature ¥. An
irredundant proof of a transition rule % from R is a
well-founded, upwardly branching tree of which the
nodes are labelled by Y-literals, and some of the leaves
are marked “hypothesis”, such that:

e the root is labelled by «,
e H is the set of labels of the hypotheses, and

e if B is the label of a node ¢ which is not an hy-
pothesis and K is the set of labels of the nodes
directly above ¢, then £ is a substitution instance
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of a transition rule in R.

A proof of % from R is an irredundant proof of % from
R with H C K. If an (irredundant) proof of £ from
R exists, then £ is (irredundantly) provable from R,
notation R+ £ (resp. R by £).

The main purpose of a transition system specification
(over a signature X) is to specify a transition rela-
tion (over X). Here a transition relation over ¥ can
be defined as a set of closed positive X-literals (transi-
tions). A positive TSS specifies a transition relation in
a straightforward way as the set of all provable transi-
tions. But as pointed out by GROOTE [18], it is much
less trivial to associate a transition relation to a TSS
with negative premises; in particular there are TSSs
that appear not to specify a transition relation in a
meaningful way at all. In VAN GLABBEEK [17] eleven
answers to the questions “Which TSSs are meaning-
ful, and which transition relations do they specify?’
are reviewed. The “most general solution without un-
desirable properties” is due to VAN GELDER, ROSS &
SCHLIPF [14] in the setting of logic programming, and
has been adapted to TSSs by BoL & GROOTE [§]. In
[17] it has been reformulated in terms of completeness
w.r.t. a notion of provability of closed literals that in-
corporates a form of negation as failure.

Definition 4 Let R be a standard TSS over a signa-
ture X. A well-supported proof of a closed literal « from
R is a well-founded, upwardly branching tree of which
the nodes are labelled by closed ¥-literals, such that:

e the root is labelled by «a, and

o if B is the label of a node ¢ and K is the set of
labels of the nodes directly above ¢, then

1. either £ is a closed substitution instance of
a transition rule in R

2. or f is negative and for every set N of neg-
ative closed literals such that R I % for v a
closed literal denying 3, a literal in K denies
one in N.

a is ws-provable from R, notation R b, «, if a well-
supported proof of a from R exists.

Note that the proof-steps 1 and 2 establish the validity
of f when K is the set of literals established earlier.
Step 2 allows to infer ¢ % whenever it is manifestly
impossible to infer ¢+ —=+ #' for some term #' (because
every conceivable proof of ¢ — ¢' involves a premise
that has already been refuted). This practice is some-
times referred to as negation as failure [10].

Definition 5 A standard TSS R is complete if for any
closed literal ¢t - either R F,, t — t' for some
closed term #' or R b, t .



Now a standard TSS is meaningful, in the sense that
it specifies a transition relation, iff it is complete. The
specified transition relation is then the set of all ws-
provable transitions.

In the present paper this solution is extended by
considering all standard TSSs to be meaningful. How-
ever, following VAN GELDER, R0SS & SCHLIPF [14],
the meaning of an incomplete TSS is now not given
by a two-valued transition relation as defined above,
but by a three-valued transition relation, in which a
potential transition can be true, false or unknown. In
fact, a slight abstraction of this notion will suffice, in
which a transition relation is simply defined as a set
of closed, positive and negative, literals.

Definition 6 Let X be a signature. A (3-valued) tran-
sition relation over X is a set of closed X-literals, not
containing literals that deny each other. A transition
relation — is 2-vaelued if it satisfies

tHB)eE=s e VMeT®):t-5t)¢g—.

The transition relation associated to a standard TSS
over X is the set of closed X-literals that are ws-
provable from that TSS.

In [17] is has been shown that b, is consistent, in
the sense that no standard TSS admits well-supported
proofs of two literals that deny each other. Thus the
transition relation associated to a standard TSS is in-
deed a transition relation as defined above. Note that if
a standard TSS R is complete, its associated transition
relation is 2-valued. This means that the negative liter-
als in its associated transition relation are completely
determined by the positive ones; hence the transition
relation can be simply given by its positive part.

In the literature several preorders have been de-
fined in terms of (2-valued) transition relations, and
provided with modal characterizations. Below we em-
ploy these modal characterizations as the definitions
of these preorders, and simultaneously extend these
definitions to 3-valued transition relations.

Definition 7 Assume an action set A. The set O of

potential observations or modal formulas is defined in-

ductively by:

T € O. The trivial observation, obtained by terminat-
ing the session.

ap €0 if p € O and a € A. The observation of an
action a, followed by the observation .

a€ 0 for a € A. The observation that the process
cannot perform the action a.

Nicr i € O if g; € O for all i € I. The process admits
each of the observations ;.

Definition 8 Let R be a standard TSS over a sig-
nature Y. The satisfaction relation Er C T(X) x O,
telling which observations are possible for which pro-
cess, is inductively defined by the clauses below (in
which p,q € T(X)).

pERT
P ERap ifElq:Rl—wsp—a>q/\q|:Rg0
plErG if Rbysp -7

pPFr Niervi if p Ero;foraliel

We will use the binary conjunction 1 A @2 as an
abbreviation of A,c¢ 0y ¢, whereas T is identified
with the empty conjunction. We identify formulas that
are logically equivalent using the laws for conjunction
TAe =2 ¢and Aicr(Ajes, aij) = Apex ar where
K ={ij|i € INje J;} This is justified because
¢ =1 implies p =r ¢ & p R ¢
Definition 9 Below, several sublanguages of the set
O of observations are defined.
Or @u=T|ay (partial) trace observations
Ocrt @u=Tlay' | Ajcpt
completed trace observations
Or @u=T|ay' | A ai failure observations
Or  pu=T/lap" | Nier@iAN\jes 0T
readiness observations
Orr ¢==Tap" | Nigrai A ¢’
failure trace observations
Orr ¢u=Tap" | Nier @i AN\jes b T AY
ready trace observations

For each of these notions the N-observations of p €
T (%) are given by OR(p) := {v € On | p R ¢}.
The N-preorder induced by R is defined by p CE ¢
if OF(p) C O&(q). When clear from the context, the
superscript R will be omitted. In fact a slight reformu-
lation of this definition will be needed in this paper.

Definition 10 For N € {T,CT,F,R,FT,RT} let
O’ consist of all /f\ormulas Nicr i with ¢; € Op. Let
On(p) :={r € Ox |p = ¢}

Clearly On(p) € On(g) & O (p) € Ox(9).

Proposition 1 For N € {T,CT,F,R,FT,RT} we
have p Cy ¢ iff O (p) C O (9)-

Definition 11 Let X be a signature. A preorder C on
T(X) is a precongruence if for all f € X
Di EQZ for i = 1,...,(17‘(f)
= f(ph - 7par(f)) c f(qla .. J(Iar(f))'

This is equivalent to the requirement that for all ¢t €
T(X) and closed substitutions o,0’ : V — T(X)



o(z) C o' (z) for z € var(t) = o(t) Co'(t).

For every preorder C defined above there exists an
associated equivalence = (the kernel of Cy) given
by p=nqiff pEn gA g En p. Obviously p =y ¢ iff
On(p) = On(p) iff OF (p) = O} (p). In case a relation
is an equivalence as well as a precongruence, it is called
a congruence. Note that if Cp is a precongruence, its
kernel is a congruence. Thus by establishing precon-
gruence results for the preorders C, we also obtain
congruence results for the associated equivalences = .

3. Precongruence formats

In this section we define the formats for TSSs that
play a rdle in this paper and state the precongruence
results that we have established.

Definition 12 An ntytt rule is a transition rule in
which the right-hand sides of positive premises are
variables that are all distinct, and that do not occur in
the source. An ntytt rule is an ntyzt rule if its source
is a variable, and an ntyft rule if its source contains
exactly one function symbol and no multiple occur-
rences of variables. An ntytt rule (resp. ntyft rule) is
an nzytt rule (resp. nzyft rule) if the left-hand sides of
its premises are variables.

Definition 13 A transition rule has no lookahead if
the variables occurring in the right-hand sides of its
positive premises do not occur in the left-hand sides of
its premises. A variable occurring in a transition rule is
free if it does not occur in the source nor in the right-
hand sides of the positive premises of this rule. We say
that a transition rule is decent if it has no lookahead
and does not contain free variables.

Each combination of syntactic restrictions on transi-
tion rules induces a corresponding syntactic format for
TSSs of the same name. For instance, a TSS is in de-
cent ntyft format if it consists of decent ntyft rules. We
proceed to define further syntactic formats for TSSs.

Definition 14 A TSS is in ntyft/ntyzt format if it
contains only ntyft and ntyxt rules. A TSS is in ready
simulation format if it is in ntyft/ntyxt format and its
transition rules have no lookahead.

Definition 15 An occurrence of a variable in an ntytt
rule is propagated if the occurrence is either in the tar-
get, or in the left-hand side of a positive premise whose
right-hand side occurs in the target. An occurrence of
a variable in an ntytt rule is polled if the occurrence is
in the left-hand side of a premise that does not have a
right-hand side occurring in the target.

Consider for instance the transition rules of Example 2
in Section 6. In the second rule both occurrences of
z in the premises are propagated, i.e. the variable z
is propagated twice. In the third rule the variables x;
and x5 are polled once each. We can think of a process,
represented by a variable in a transition rule, as being
copied if the variable is propagated more than once.
The process is tested if the variable is either propagated
or polled.

Our precongruence formats operate by keeping
track of which variables represent running processes,
and which do not. For example, it is semantically
reasonable to copy a process before it starts, effec-
tively getting information about all the conjuncts in
a ¢ € O". However, copying a running process would
give information about the branching structure of the
process, which is incompatible with any form of dec-
orated trace semantics. We introduce a predicate A
as the basis for determining the A-floating variables,
which represent processes that may be running.

Definition 16 Let ¥ be a signature, and A a unary
predicate on {(f,%) | 1 <i < ar(f), f € Z}. If A({f,9),
then we say that argument i of f is liguid; otherwise it
is frozen. An occurrence of a variable z in a term ¢ €
T(X) is A-liquid if either t = x, or t = f(t1,...,tar(s))
and the occurrence of x is A-liquid in ¢; for some liquid
argument ¢ of f. A variable in an ntytt rule over X is
A-floating if either it occurs as the right-hand side of
a positive premise, or it occurs exactly once in the
source, at a A-liquid position.

Note that an occurrence of a variable z in a term
t € T(X) is A-liquid iff ¢ does not contain a subterm
f(t1, ..., tar(s)) such that the occurrence of z is in t;
for a frozen argument ¢ of f.

Definition 17 Let A be a unary predicate on argu-
ments of function symbols. A standard ntytt rule is
A-ready trace safe if

e it has no lookahead, and

e each A-floating variable is propagated at most
once, and at a A-liquid position.

The rule is A-readiness safe if
e it is A-ready trace safe, and

e cach A-floating variable is not both propagated
and polled.

The rule is A-failure trace safe if
e it is A-readiness safe, and

e each A-floating variable is polled at most once, at
a A-liquid position in a positive premise.



The second restriction on “A-ready trace safe” guar-
antees that a running process is never copied, and con-
tinued to be marked as running after it has executed.
The “A-readiness safe” restriction ensures that only
at the end of its execution a running process is tested
multiple times. The “A-failure trace safe” restriction
further limits to a positive test on a single action.

Definition 18 A standard TSS is in ready trace for-
mat if it is in ntyft/ntyxt format and its rules are A-
ready trace safe w.r.t. some A. A standard TSS is in
readiness format if it is in ntyft/ntyxt format and its
rules are A-readiness safe w.r.t. some A. A standard
TSS is in failure trace format if it is in ntyft/ntyxt for-
mat and its rules are A-failure trace safe w.r.t. some
A.

If a standard TSS R is in ready trace (resp. readi-
ness or failure trace) format, then there is a smallest
predicate Ag such that the rules in R are Ag-ready
trace (resp. Ag-readiness or Ao-failure trace) safe. In
the context of the ready trace format, for instance, Ag
can be defined as the smallest predicate A such that
for all rules of R each A-floating variable is propagated
at A-liquid positions only. Now R is in ready trace
format iff it has no lookahead and in all of its rules
each Ag-floating variable is propagated at most once.
Therefore, in the context of a given standard TSS and
a given format, positions can be called liquid and vari-
ables floating without mentioning a specific predicate
A; in such a case Ag may be assumed.

Theorem 1 If a standard TSS is in ready trace for-
mat, then the ready trace preorder that it induces is a
precongruence.

Theorem 2 If a standard TSS is in readiness format,
then the readiness preorder that it induces is a pre-
congruence.

Theorem 3 If a standard TSS is in failure trace for-
mat, then the failure trace and failure preorders that
it induces are precongruences.

See [6] for detailed proofs, or the next section for
an outline, of Theorems 1-3. Section 6 presents a
series of counterexamples showing that the syntac-
tic restrictions formulated above are essential for the
claimed precongruence results. These counterexamples
also help in motivating the definitions above.

For comparison with the literature we point out that
a standard TSS is in GSOS format [7] iff it is in nxyft
format and its transition rules have no lookahead. A
standard TSS is in de Simone’s format iff it is positive,
in nxyft format, and its rules are A-failure trace safe
with A the universal predicate (making all arguments
of function symbols liquid).

4. Proof sketch

This section outlines the proofs of Theorems 1-3. The
reader is referred to [6] for detailed proofs of the propo-
sitions in this section. The proofs use transition rules
with negative conclusions. For this reason, the ready
trace, readiness and failure trace formats need to be
extended to non-standard TSSs.

Definition 19 Let A be a unary predicate on argu-
ments of function symbols. A ntytt rule with a negative
conclusion is A-ready trace safe or A-readiness safe if
it has no lookahead. The rule is A-failure trace safe if

e it is A-readiness safe, and

e A-floating variables are polled only at A-liquid po-
sitions and only in negative premises.

Now Definition 18 applies to non-standard TSSs as
well. Note that for A-ready trace and A-readiness
safety the requirements are the same as in the stan-
dard case, for in a rule with a negative conclusion no
variable is propagated. In the definition of A-failure
trace safety, however, rules with positive and negative
conclusions are treated differently.

Theorems 1-3 deal with preorders induced by stan-
dard TSSs through the notion of well-founded prov-
ability (of Definition 4). The next proposition states
that without loss of generality we may use the classi-
cal notion of provability (of Definition 3) instead.

Proposition 2 Let R be a standard TSS in ready
simulation format. Then there is a TSS RT in decent
ntyft format such that Bt + o & R F,; o for all
closed literals «, and if R is in ready trace (resp. readi-
ness or failure trace) format then so is R*.

In general RY is not a standard TSS. It is for this rea-
son that rules with a negative conclusion have been
introduced in Definition 2, and that the precongru-
ence formats were extended to non-standard TSSs in
Definition 19.

Definition 20 Let R be a standard TSS in ready sim-
ulation format. An R-ruloid is a decent nxytt rule, ir-
redundantly provable from RT.

Proposition 3 Let R be a standard TSS in ready
trace (resp. readiness or failure trace) format. All
R-ruloids are A-ready trace (resp. A-readiness or A-
failure trace) safe for some A.

The next proposition says, for R a standard TSS in de-
cent ntyft format, that for any function symbol f there
are a number of R-ruloids with source f(z1,...,Zar(s))
that are “just right” for f. Here “just right” means



that for any (closed) literal f(t1,...,tar(s)) s or
F(t, s tarcr)) —» ' that is ws-provable from R
there is a (closed) proof using one of those rules as
the last step. Moreover, the same holds not only for
function symbols f, but for arbitrary open terms. If
for an open term t with var(t) = {z1,...,2,} we
would introduce an n-ary function symbol f; such that
fie(x1,...,2,) is just a shorthand for ¢, then there ex-
ists a collection of R-ruloids that is just right for f;.

Proposition 4 Let R be a standard TSS in ready
simulation format. Then R F,, o(t) — [respectively
R by, o(t) = t] for t a term, [t' a closed term]
and o a closed substitution, iff there are an R-ruloid
H [resp. GL] and a closed substitution o' with
t—~ t—u

Rlys o'(a) for a € H, 0'(t) = o(t) [and o' (u) = ¢'].

The following definition assigns to each term and each
observation in O a collection of mappings from vari-
ables to O. This construct will play a crucial réle in the
proof of Corollary 1. Intuitively, ' () consists of ob-
servational reformulations of the R-ruloids with source
t that validate the observation ¢ for the term o(¢), for
any closed substitution o, in terms of the observations
that can be made for the terms o(z) for = € var(t).

Definition 21 Let ¥ be a signature, and let R be a
standard TSS over ¥ in ready simulation format. Then
7 i T(E) = (0 = P(V — 0)) is defined by:

e t.(T) = {¢} with ¢(z) = T for z € V.

e ) € t5' (@) iff there is an R-ruloid tg/-> and © :

V — O is given by

AE'A
(z-4>)EH
Y() =T

P(x) = /\ cT  for z € var(t)

(z-Sy)eH
for z & var(t).

e 1) € ty'(ay) iff there are an R-ruloid ; 4 anda

—u

x € up'(p) and ¢ : V — O is given by

Ao A A extw

(z2p)eH  (z—y)EH

P(z) = x(2) A

for z € var(t) and ¥(x) = T otherwise.
o 15 (Nicr9) = {Nicr i | ¥i € tg' (i) for i € I}.

The next proposition can be proved using Proposi-
tion 4.

Proposition 5 Let X be a signature, and let R be a
standard TSS over ¥ in ready simulation format. Let
@ € 0. For any term ¢t € T(X) and closed substitution
0:V = T(X) one has

o(t) Er ¢
& ety (p) Vo € var(t) : o(z) Er ().

In order to arrive at the desired precongruence results
we need to know that if a standard TSS is in the de-
sired format N, and ¢ is a potential N-observation
of a closed term o(t), then the observations of o(x)
for x € var(t) that determine whether or not ¢ is an
N-observation of o(t) are also N-observations. This is
established in the following two propositions. In fact,
our formats have been found by investigating what was
needed to make these propositions hold.

The work is divided over two propositions. Proposi-
tion 6 deals with those variables of ¢ that are floating
in the R-ruloids with source ¢t. As the proof induc-
tively refers to terms that can be thought of as succes-
sors of t after performing a number of actions, and as
these terms may contain variables y representing suc-
cessors of the arguments of ¢ after performing several
actions, the observations employed should be the ones
from Definition 9. Proposition 7 extends this to ar-
bitrary variables. As non-floating variables represent
processes in their initial state only, that proposition
may use the richer language of observations employed
in Definition 10, which is much less cumbersome. This
enables the absence of restrictions on non-floating vari-
ables in the definitions of the formats.

Proposition 6 Let R be a standard TSS in ready
simulation format, and let A be an unary predicate on
arguments of function symbols. Let ¢t € T(X), ¢ € O,
¥ € t5'(p) and = € war(t), such that z occurs only
once in ¢, and at a A-liquid position.

e If the transition rules in Rt are A-ready trace safe
and ¢ € Ogy then ¢¥(x) € Ogr.

o If the transition rules in Rt are A-readiness safe
and ¢ € Op then ¢(x) € Og.

o If the transition rules in R+ are A-failure trace
safe and ¢ € Opr then ¢¥(z) € Opr.

o If the transition rules in Rt are A-failure trace
safe and ¢ € OF then ¢(z) € OF.

Proof: We only prove the last statement here. The
other three can be proven in a similar fashion; see [6].
Let the transition rules in Rt be A-failure trace
safe and ¢ € Or. We apply structural induction on .
Take t € T(t), ¥ € t5'(¢) and = € var(t), such that =
occurs only once in ¢, and at a A-liquid position.



— Incase o = T we have Y(z) = T € Op.

— Let ¢ = A, @. Then ¢(z) = A;c;¢i(x) where
Vi(x) € tz'(a;) for i € I. For i € I there is an

R-ruloid —- such that
t—7»
Yi(z) = /\ b A /\ cT.
(z2p)eH  (@——y)eH

By Proposition 3, H has no premises of the form
& — y. Therefore ;(z) = \;c; b; € OF.

— Let ¢ = ay' with ¢' € Op. Then there are an
R-ruloid —2— and x € uj'(¢') such that

/\ b A /\ ex(v).

(2 2p)eH  (z——y)EH

By Proposition 3, = is propagated at most once in
; H_and only at a A-liquid position. Moreover,
—U

x is not both propagated and polled in ; LH> - We
consider three cases.

* Suppose z € var(u). Then z is propagated, so it
occurs only once in u, and at a A-liquid position.
By induction x(z) € Op. Furthermore, H has
no premises of the form z 7bL> or z — y. Hence
Y(z) = x(z) € OF.

Suppose z is propagated, but does not occur in
u. Then x(z) = T. Furthermore, H contains
no premises of the form x —~ and exactly one
of the form  — y, where y occurs in u. So
Y(z) = ex(y). As y is A-floating in tiHm and
does not occur in ¢, Proposition 3 guarantees
that y occurs only once in u, and at a A-liquid
position. By induction x(y) € O, so ¥ (z) € Op.
Suppose z is not propagated. Then = & var(u)
so x(z) = T. By Proposition 3, x is polled at
most once in —&— and in a positive premise.

Hence H contains no literals of the from 7bL>,
and no more than one literal z — y. If there is
such a literal, y does not occur in u, so x(y) = T.
Hence ¢(z) 2T € Op or ¢(z) 2 cT € Op. O

Let N range over {ready trace, readiness, failure trace,
failure}, where failure format means failure trace for-
mat.

Proposition 7 Let R be astandard TSS in N format,
t e T(X), ¢ € 0,9 € ty'(p) and = € var(t). If
@ € O then 9 (z) € O%.

After Proposition 6, the proof of Proposition 7 is rather
simple; see [6]. This is sufficient to prove Theorems 1-3.
In the light of Definition 11 these theorems can be
reformulated as in the following corollary.

Corollary 1 Let R be a standard TSS in N format,
t € T(X) and 0,0’ closed substitutions. If o(z) C
o'(z) for x € var(t), then o(t) CE o' ().

Proof: By Proposition 1 it suffices to show that
OX(o(z)) C OfN(0'(2)) for all z € war(t) implies
On(a(t)) € On(o'(t)). Suppose that, for z € var(t),
ON(o(x)) C ON(d' (). Let p € On(a(t)),ie. p€ON
and o(t) =g . By Proposition 5

I € th' (p)Vz€var(t) : o(z) Er ().

By Proposition 7 Vz € var(t) : ¢(z) € Of. Thus
Vz € var(t) : ¥(z) € OfN(o(z)) C Of(o'(z)). Hence
Vz € var(t) : o'(z) Er ¥(z). So by Proposition 5
o'(t) Er . It follows that ¢ € On(o'(t)), which had
to be proved. O

5. Full abstraction

We say that an equivalence on processes is fully ab-
stract w.r.t. a syntactic format for TSSs and an equiv-
alence =5 on processes if it is the coarsest congruence
w.r.t. all operators specifiable by a TSS in that format
that is finer than =,35. The proofs of the following full
abstraction results can be found in [6].

Theorem 4 Ready trace equivalence is fully abstract
for the ready trace format and trace equivalence.
Readiness equivalence is fully abstract for the readi-
ness format and trace equivalence. Trace equivalence
is fully abstract for the failure trace format and trace
equivalence. Failure equivalence is fully abstract for
the failure trace format and completed trace equiva-
lence.

6. Counterexamples

This section presents a string of counterexamples of
complete standard TSSs in ntyft/ntyxt format, to
show that the syntactic restrictions of our precongru-
ence formats are essential. In [19] a series of counterex-
amples can be found showing that the syntactic restric-
tions of the ntyft/ntyxt format are essential as well.

6.1. Basic process algebra

The examples in this section assume basic process al-
gebra [3]. We assume a collection A of constants, called
atomic actions, representing indivisible behaviour, and
two special constants: the deadlock § does not display
any behaviour, while the empty process £ [28] termi-
nates successfully. Basic process algebra moreover in-
cludes function symbols _+_and _-_ of arity two, called
alternative composition and sequential composition, re-
spectively. Intuitively, ¢; + t2 executes either t; or to,



while 1 - t5 first executes ¢; and upon successful termi-
nation executes t5. These intuitions are made precise
by means of the standard TSS for BPA;. presented in
Table 1, where the label a ranges over the set A of
atomic actions together with a special label 4/, repre-
senting successful termination. Note that this TSS is
positive and in ready simulation format. It is not hard
to check that the TSS is in failure trace format (and
so by default in ready trace and readiness format), if
we take at least the first argument of sequential com-
position to be liquid. In particular, in the first rule for
sequential composition the floating variable y occurs
in a liquid argument of the target, and in the second
rule for sequential composition the floating variable
is polled only once and not propagated.

Table 1. TSS for BPA;.

a-¢(a#y) e Yo
.’L'Q—a>y
xr1 + T2 i)y

.’Eli>y
$1+:1:2—a>y
a
T2 — Y2

a v
Ty — Y Ty — Y1

(a# V)

a a
T1- Ty —> Y -T2 T1 -T2 — Y2

Terms t; - to are abbreviated to t;t9. Brackets are
used for disambiguation only, assuming associativity of
+ and -, and letting - bind stronger than +. In the re-
mainder of this section we assume that A = {a, b, ¢, d}.
Moreover, we assume unary function symbols f and h
and a binary function symbol g.

6.2. Lookahead

The following counterexample shows that the ready
trace format (and its more restrictive analogues) can-
not allow lookahead.

Example 1 We extend BPA;. with the following
rule, containing lookahead:

It is easy to see that bd Crr be + bd (so a fortiori
bd Cn bec+ bd for N € {R, FT, F}). The empty trace
is a completed trace of f(bd) but not of f(bc+ bd) (as
f(bc+bd) -2 6). Hence, f(bd) ZoT f(bc+bd) (and a
fortiori f(bd) Zn f(bc+bd) for N € {RT, R, FT, F}).

6.3. Multiple propagations

The following counterexample shows that the ready
trace format (and its more restrictive analogues) can-
not allow a liquid argument of the source to be prop-
agated more than once in the left-hand sides of the
positive premises.

Example 2 Let the arguments of f and g be liquid.
We extend BPAs. with the rules:
b b
T—Yy1 T Y2

F@) 2 g(y1,y2)

a
T —ry

fl@) = f(y)

c d
T —Y1 T2 —>Y2

g(z1,22) BLINY)

In the second rule, the liquid argument x of the source
is propagated in the left-hand sides of both premises.

It is easy to see that a(bc+ bd) Crr abe + abd (so a
fortiori a(bc + bd) Cn abc + abd for N € {R, FT,F}).
Note that abd is a trace of f(a(bc+ bd)) (as f(a(bc +
bd)) — f(bc + bd) N 9(c,d) N d), but not of
f(abc + abd). Hence, f(a(bc+ bd)) Zr f(abc + abd)
(and a fortiori f(a(bc+bd)) Zn f(abe + abd) for N €
{RT, R, FT,F}).

A similar example can be given to show that the ready
trace format cannot allow a liquid argument of the
source or a right-hand side of a positive premise to
occur more than once in the target. Likewise, an ex-
ample can be given to show that the ready trace for-
mat cannot allow a liquid argument of the source to be
propagated in the left-hand side of a positive premise
and at the same time to occur in the target.

6.4. Propagation at a non-liquid position

If in the example above the argument of f were defined
to be frozen, then in the first rule the right-hand side
y of the premise would occur in a non-liquid position
in the target. This shows that the ready trace format
cannot allow right-hand sides of positive premises to
occur at non-liquid positions in the target. Variants of
Example 2 show that the ready trace format cannot
allow liquid arguments of the source to be propagated
at non-liquid positions either.

Example 3 Replace the second rule in Example 2 by
the two rules

hz) Sy oy oz
f@) Sy h(@) > g(yi,90)

Taking the arguments of f en g liquid, but that of h
frozen, the resulting TSS sins against the ready trace




format only in that in the first rule above the float-
ing variable z is propagated at a non-liquid position,
namely as argument of h. Clearly the same mishap
as in Example 2 ensues. The same argument applies
when replacing the second rule in Example 2 by the
two rules

b b
r—r U T —> Y2

h(@) = g(y1,92)

The examples above show that if a floating variable
z is propagated in a term f(z), then the argument
of f should be classified as liquid. Furthermore, if x
is propagated in a term f(h(x)), then both the argu-
ment of f and that of h should be classified as liquid.
Namely, if only the argument of f would be liquid, a
rule with conclusion h(zx) N g(z, ) could have fatal
consequences, and if only the argument of h would be
liquid, a rule with conclusion f(z) LN g(z,z) could be
fatal. (It is left to the reader to fill in the details.) This
justifies the definition of A-liquid in Section 3.

f(@) = h(z)

6.5. Propagation together with polling

The following counterexample shows that the readi-
ness format cannot allow that a liquid argument of
the source is both propagated and polled. (The TSS
in this example is in a flawed congruence format for
failure equivalence from [16].)

Example 4 Let the arguments of f and h be liquid.
We extend BPAs. with the rules:

-y PN y
f@) =) fz) - )
h(z) — h(y) h(z) - §

In the second rule, the liquid argument z of the source
is both propagated and polled.

It is not hard to see that a(b + cd) + ac and
a(b + ¢) + acd are readiness and failure equivalent
(but not ready trace or failure trace equivalent).
Nevertheless, abed is a trace of f(a(b + ed) + ac)
(as fla(b+ cd) + ac) - f(b+ cd) — h(b+ cd) -
h(d) N 8), but not of f(a(b + ¢) + acd). Hence,
fla(d+ ed) + ac) and f(a(b+ ¢) + acd) are not even
trace equivalent.

It is easy to see that a(b+ ¢) + ab+ ac and ab+ ac
are failure trace and failure equivalent (but not ready
trace or readiness equivalent). Note that abc is a trace
of f(a(b+ c)+ ab+ ac) (as f(a(b+ c) + ab + ac)
flb+¢) N h(b+c) == h(e)), but not of f(ab+ ac).
Hence, f(a(b+ ¢) + ab+ ac) and f(ab + ac) are not
even trace equivalent.
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6.6. Multiple pollings

The following counterexample shows that the failure
trace format cannot allow that a liquid argument of
the source is polled more than once.

Example 5 Let the argument of f be liquid. We ex-
tend BPAs. with the rules:

b c
r—r T — Y2

flz) 55

r 5y
fl@) = f(y)

In the second rule, the liquid argument z of the source
is polled in the two positive premises.

We recall that a(b + ¢) + ab + ac and ab + ac
are failure trace and failure equivalent. Neverthe-
less, ad is a trace of f(a(b + ¢) + ab + ac) (as
fla(b+¢c) +ab+ac) = f(b+c) LN ), but not of
f(ab+ ac). Hence, f(a(b+c) + ab+ ac) and f(ab+ ac)
are not even trace equivalent.

6.7. Polling at a non-liquid position

The following variant of Example 5 shows that the fail-
ure trace format cannot allow that a liquid argument
of the source is polled at non-liquid positions.

Example 6 Let the argument of f be liquid and the
argument of h be frozen. We extend BPA;. with the
rules:
a b b c
T —y hz) —my zxz—y1 x— Yo
f@) = fl)  f@) s h(z) -2 6
In the second rule, the liquid argument = of the source

is polled at a non-liquid position. Clearly the same
mishap as in Example 5 ensues.

6.8. Polling in a negative premise

The following counterexample shows that the failure
trace format cannot allow that a liquid argument of
the source is polled in a negative premise.

Example 7 Let the argument of f be liquid. We ex-
tend BPA;. with the rules:

Ty ﬂU—b/L> A
f@ S5 f@) %5 f@) -5

In the second and third rule, the liquid argument z of
the source is polled in the negative premise.

We recall that a(b + ¢) + ab + ac and ab + ac
are failure trace and failure equivalent. Note that
a is a completed trace of f(a(b + ¢) + ab + ac)
(as f(a(b+¢c) +ab+ ac) — f(b+c) 7dL>), but not of
f(ab+ac). Hence, f(a(b+c)+ab+ac) and f(ab+ ac)
are not even completed trace equivalent.




7. Applications

This section contains some applications of our precon-
gruence formats to TSSs from the literature.

7.1. Priority

Priority [1] is a unary function symbol that assumes an
ordering on atomic actions. The term © (¢) executes the
transitions of ¢, with the restriction that a transition
t =% t' only gives rise to a transition ©(t) — O(t') if
there does not exist a transition ¢ — ¢ with a < b.
This intuition is captured by the rule for the priority
operator in Table 2, which is added to the TSS for
BPAs. in Table 1. The resulting standard TSS is in
ready simulation format.

Table 2. Transition rule for priority

r Sy x% fora<bd
O(z) — O(y)

As the floating variable y in the rule for priority
is propagated in O(y), the argument of © has to be
liquid. The floating variable z is propagated only once
(and trivially at a liquid position). Hence the TSS for
BPA;. with priority is in ready trace format.

Corollary 2 The ready trace preorder is a precongru-
ence w.r.t. BPAs. with priority.

The TSS for BPAs. with priority is not in readiness
format. Namely, in the case of a non-trivial ordering
on atomic actions, the floating variable x in the rule
for priority is both propagated and polled. In general
the readiness, failure trace and failure preorders are
not precongruences w.r.t. BPAs. with priority.

7.2. Binary Kleene star

The binary Kleene star t1*ts [20] repeatedly executes
t1 until it executes t. This operational behaviour is
captured by the rules in Table 3, which are added to
the TSS for BPAy. in Table 1. The resulting positive
TSS is in failure trace format if we take the first ar-
gument of sequential composition to be liquid and the
first argument of the binary Kleene star to be frozen.
Note that in the first rule for the binary Kleene star
the floating variable y is propagated only once, at a lig-
uid position, and not polled. Moreover in this rule the
variable z1, which is propagated twice, is non-floating.

Corollary 3 The ready trace, readiness, failure trace
and failure preorders are precongruences w.r.t. BPAs,
with the binary Kleene star.
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Table 3. Transition rules for the binary Kleene
star

a a
T — Yy T2 — Y

" a " (a#V) —/—a—
T1*Ty — Yy - (x1%22) T1*0 — Y

The second rule for the binary Kleene star does not
fit the congruence format for ready trace equivalence
from [16]. Namely, in this rule the variables z; and y in
the target are connected by the premise. Neither does
this rule fit de Simone’s format, due to the fact that
21 occurs in the left-hand side of the premise and in
the target.

7.3. Sequencing

Sequencing t1;to executes t; until it can do no further
transitions, after which it starts executing t2. Basic
process algebra with sequencing contains the atomic
actions in A, alternative composition and sequencing,
while the deadlock and the empty process are fused to
a single constant 0. The TSS for BPA} is presented
in Table 4, where a and b range over A. This stan-
dard TSS is in ready simulation format. The rules for
sequencing were taken from [5].

Table 4. TSS for BPA]

a—=>0

a
T2 — Y
1 + o i)y

.'L'1L>y
arl—f—xgi)y

z, o forac A wzi)y

b
T1;%2 — Y

a
Ty — Y

a
T1;T2 —> Y;T2

As the floating variable y in the first rule for se-
quencing is propagated in y; zo, the first argument of
sequencing has to be liquid. In the first rule for se-
quencing the floating variable z; is propagated only
once (and trivially at a liquid position), and not polled.
In the second rule for sequencing the floating variable
x1 is not propagated, while the floating variable y is
propagated only once (and trivially at a liquid posi-
tion), and not polled. Hence the TSS for BPA} is in
readiness format.

Corollary 4 The ready trace and readiness preorders
are precongruences w.r.t. BPAj.



The TSS for BPAj is not in failure trace format.
Namely, in the second rule for sequencing the floating
variable x; is polled in negative premises. The failure
preorder is not a precongruence w.r.t. BPAj. However,
the failure trace preorder does constitute a precongru-
ence w.r.t. BPA,. Hence sequencing is an example of
an operator from the literature that preserves failure
traces but that lies outside the scope of the failure
trace format.
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