Well-behaved Flow Event Structures
for Parallel Composition and Action Refinement

Rob van Glabbeek
Computer Science Department, Stanford University
Stanford, CA 94305-9045, USA.

rvglcs.stanford.edu

Ursula Goltz
Institut fiir Software, Technische Universitdt Braunschweig
Postfach 3329, D-38106 Braunschweig, Germany.
U.Goltz@tu-bs.de

Flow event structures were introduced as a model for giving semantics to process algebras. However it
turned out that certain restrictions have to be made to make them suitable for this purpose. In this
paper, we investigate subclasses of flow event structures which are both suited for the process algebraic
composition operators, and for action refinement as a means of regarding processes on different levels of
abstraction.

First, suitable subclasses are characterised. Then two specific subclasses are proposed. The larger class
generalises the one from [CZ], which is not suitable for action refinement. The smaller one is still
sufficiently expressive for dealing with all standard process algebras and action refinement,.

Keywords Concurrency, flow event structures, parallel composition, action refinement.

Introduction

Flow event structures were introduced in [BC-a] as a model of concurrency that is par-
ticularly suited for giving semantics to languages like CCS and CSP, while faithfully
representing causality and branching time. Indeed, the interpretation of the operators of
such languages in terms of flow event structures is particularly straightforward and intu-
itive [BC-a/b]. Structurally, flow event structures closely resemble prime event structures
[NPW]. However, prime event structures are not as suitable for defining parallel composi-
tion operators with synchronisation. Flow event structures were proposed as a canonical

generalisation of prime event structures suitable for defining parallel composition (besides
all other CCS-like operators).

However, in [CZ] it turned out that the definition of parallel composition on flow event
structures, although seemingly intuitive, does not always give the desired result. Techni-
cally, the problem can be pinpointed by the failure of parallel composition to correspond
with the product in a suitable category of event structures, or — alternatively — as a
failure of compositionality: the behaviour of the parallel composition of two flow event
structures, as given by its family of configurations, is not determined by the behaviours
of its two arguments.

This problem was solved in [CZ] by defining a subclass of flow event structures, closed
under the operators of CCS, on which parallel composition is well-behaved. The subclass

consists of those flow event structures which satisfy a complicated structural property,
called A.

In [GG] we defined an operator for action refinement on flow event structures and other
causality based, event oriented models of concurrency. This operator describes a change
in the level of abstraction at which a system is represented by interpreting actions on a
higher level by more complicated processes on a lower level. On flow event structures,
this operator could be defined in a much more straightforward and intuitive way than on
competing models like stable (or bundle) event structures or Petri nets.! Action refinement
turned out to behave compositionally on the entire domain of flow event structures.

In order to interpret both parallel composition and action refinement (and the other
CCS-like operators) on flow event structures, it therefore seems appropriate to restrict
attention to the flow event structures satisfying A. However, it turns out that this class is
not closed under action refinement. Therefore, in this paper our aim is to define a different
subclass of flow event structures, closed under action refinement, parallel composition and
the other CCS-like operators, on which parallel composition still behaves well.

In [Winskel] a general parallel composition operator is proposed that is parameterised
by the choice of a so-called synchronisation algebra. Depending on the choice of this pa-
rameter, the parallel composition operators of CCS, CSP, SCCS, ACP and many other
system description languages can be obtained. Other process algebraic operators like
choice, sequential composition, restriction, renaming etc. may be expressed in terms of
action refinement. Therefore, it is sufficient to check closure under, and compositional-
ity of, Winskel’s general parallel composition operator and action refinement; the same
properties then hold for many other process algebraic operators, including the ones of
CCS.

In this paper, we consider the parallel product of Winskel underlying his parallel compo-
sition operator on the domain of unlabelled flow event structures. The various instances
of Winskel’s parallel composition operator can be expressed in terms of labelled versions

'In [DD], the model of free event structures is shown to be equally suitable as flow event structures for
defining action refinement. However, like prime event structures, they are not very suitable for defining
parallel composition with synchronisation.

of this parallel product and restriction. Accordingly we consider event refinement as the
corresponding operator underlying action refinement. In Section 2 of this paper we for-
malise when parallel product is well-behaved on a subclass of flow event structures. We
infer that parallel product is the categorical product in a suitable category of flow event
structures if and only if that operator is well-behaved on that class. Moreover, as we show
in Section 3, parallel product is compositional on any class of flow event structures on
which it is well behaved. This implies that parallel composition is compositional on the
labelled counterpart of such a class. The compositionality of the other CCS-like operators
on such a class follows from the compositionality of action refinement. It remains to find
a class of flow event structures, closed under parallel product and event refinement, on
which parallel product is well behaved.

In fact, two such subclasses are proposed in Section 4. The larger class turns out to contain
all flow event structures satisfying A. The smaller one is still sufficiently expressive for
dealing with all standard process algebras and action refinement. These classes will be
proposed in Section 4 by introducing a semantic concept of (fairly) well-behaved flow event
structures.

1 Basic notions

In this section, we introduce flow event structures and operators for event refinement and
parallel composition.

A flow event structure describes a concurrent system as a set of events, modelling action
occurrences, together with two relations: the flow relation represents “possible immediate
causes” of events; the conflict relation expresses which events mutually exclude each other.

Definition 1.1

A flow event structure is a triple £ = (F, <, #) where

— FE is a set of events,

- < C F x E is an irreflexive relation (the flow relation),

— # C FE x F is a symmetric relation (the conflict relation).

In graphical representations of flow event structures we represent < by arcs of the form

_—

Let F denote the domain of flow event structures. The components of a flow event
structure £ € FE will be denoted by Eg¢, <¢ and #¢ — a convention that will also apply
to other structures given as tuples. If clear from the context, the index £ will be omitted.
O denotes the empty flow event structure (0, 0,).

The interpretation of the conflict and the flow relation is formalised by defining which
subsets of events constitute possible runs of the represented system, and which of these
runs terminate successfully.? These subsets are called configurations (terminated config-
urations, resp.). Since in Section 4 we will introduce weaker notions of configuration, we
will call these original configurations strong.

Definition 1.2 Let £ € F.

(i) X C Eis cycle-free in € iff (< N(X x X))T (where * denotes transitive closure) is
irreflexive.
X C FE is conflict-free in € iff # N (X x X) = (.

(ii) X C E is a (strong) configuration of £ iff X is finite, cycle-free, conflict-free and
(strongly) left-closed up to conflicts: Vd,e € E :ife € X, d < e and d € X then
there exists an f € X with d#f and f < e.

A configuration X is called terminated iff Vd € E : d ¢ X = Je € X with d#e.
Conf (£) denotes the set of all configurations of £, and /() the set of all terminated
configurations of £.

2As explained in [GG], the notion of successful termination is necessary for dealing with event refine-
ment.

In [GG] we have shown that the notion of successful termination derived from the struc-
tural properties of flow event structures in the above definition is compatible with our
notions of event refinement and sequential composition.

The behaviour of a flow event structure may be expressed in terms of a general and more
abstract event oriented model of concurrent systems, in which a system is represented
merely by its set of configurations and a termination predicate.

Definition 1.3 [GG]

(i) A configuration structure is a pair C = (C, /) where C is a family of finite sets (the
configurations) and \/ C C a termination predicate, satisfying X € / A X CY €
= X =Y (i.e. terminating configurations must be maximal).

(ii) The configuration structure of € € IE is defined as C(E) := (Conf(€), /(£))-

The set E¢ of events of a configuration structure C is defined by E- := U X.

XeCe
Next we define the parallel product £ x F as in [CZ] for flow event structures £ and
F. It represents the independent execution of events of £ and F, where moreover each
pair of events of d € F and e € F' may synchronise (thereby excluding the independent
occurrence of e and f and their synchronisation with other events).

Definition 1.4 Let £, F € FE.

(i) The (partially synchronous) parallel product € x F is defined by
- ng_y_' = (Eg X {*}) U ({*} X E]:) U (Eg X E]:),
—(d,d') <exr (e,€) iff d <geord <z¢€,
—(d,d') #exr (e,€) iff d#ceord #5€ or
(d=e#*xNd #¢€)or (d =€ #xNd#e).

(ii) For any set X C Fgyr of events in & x F, we define the projections

m(X):={e€ E¢ |de' € ExU{x}:(e,€) € X} and
mo(X) :={¢' € Ex | Je € Ec U {x} : (e,¢') € X }.

In the next section we will see that this definition does not always match the informal
description of parallel product above.

Refinement of events in a flow event structure £ may now be defined as follows (cf. [GG]).
We assume a refinement function ref : Ez — E —{O} mapping events to non-empty flow
event structures, and replace each event e by a disjoint copy of ref (€). The conflict and
causality structure will just be inherited.

Definition 1.5 Let £ € IF and let ref : Eg — E — {O}.

The refinement of € by ref, ref (£), is the flow event structure defined by
~ Dref(e) -= {(e,€')|e € B¢, e’ € Emf(e)}a

—(d, d') <npe) (e,€¢) iff d <g e or (d=eAd <ppa €),

—(d,d') #np(e) (e,€) iff d#c e or (d=eANd #rp) €).

Sometimes we specify ref (e) only for certain events e. In this case we assume ref (e) = e for
all other events e. As for most applications it is sufficient to consider flow event structures
up to isomorphism, i.e. abstracting from the names of events, we will sometimes simplify
the names of events in examples.

2 Requirements for well-behaved flow event structures

In our understanding, a run of the parallel product of two event structures ought to
be composed of runs of its components. Therefore we expect that the projections of
configurations of product event structures £ x F are themselves configurations. The
following example shows that for arbitrary flow event structures this is not the case.

Example 2.1

b——c——d
Consider the flow event structures £ := # and F:= e—— f .

a
It is easy to verify that {(a,e), (¢, f)} € Conf(E x F), although 71 ({(a,e), (¢, f)}) =
{a,c} & Conf(£).

Castellani and Zhang [CZ] define a subclass of flow event structures where this problem
does not occur. It consists of those flow event structures satisfying the so-called A-axiom.

Axiom A: aftb < cANa ¢ c= Id:b#Hd < cAVef#d: (e # b= b#e ~ c).

Here e ~ ¢’ abbreviates e#te’ Ve < € Ve < e. The work of [CZ] implies that on this
class parallel product is well-behaved in the sense that the projections of configurations
of product event structures are themselves configurations, i.e. the problem illustrated in
Example 2.1 does not occur. They also show that this class is closed under all operators of
CCS as defined in [BC-a]. However, this class is not closed under our refinement operator.

Example 2.2 a # b,

|
Refining b into 21 in @ # b # d yields b2/# d. The former structure satisfies
2

c c
A, by lack of events e # b with e#d. However, the latter does not: take b := by and
e := by; then by#b, fails to hold.3

We will show that this problem can be solved by regarding a different subclass of flow
event structures, closed under event refinement and parallel product, for which parallel
product is still well-behaved. In the remainder of this section we will expand on the
requirements to be imposed on such a class. In Section 4 we will propose two classes
meeting these requirements, one of which will contain the class from [CZ], i.e. all flow
event structures satisfying A.

3When labelling event a with a, b with 7, ¢ with ¢ and d with @, the original event structure can be
denoted by the CCS-expression a|a.c.nil. Hence, excluding this event structure from consideration by
strengthening the A-axiom is not an option.

2.1 Closure requirements

We require a suitable class of flow event structure to be closed under parallel product
and event refinement. This implies that the corresponding class of labelled flow event
structures will be closed under Winskel’s parameterised parallel composition operator
and under action refinement, which are the labelled counterparts of parallel product and
event refinement. The process algebraic operators choice, sequential composition, restric-
tion and renaming can easily be expressed in terms of action refinement. Furthermore,
the parallel composition operators from CCS, CSP, SCCS, ACP and many other system
description languages can be expressed in terms of Winskel’s parallel composition, restric-
tion and renaming. In particular, all CCS operators as defined in [BC-a] can be expressed
in terms of parallel composition and action refinement. Hence a suitable class of flow
event structures will also be closed under all those operators.

2.2 Parallel product should be well-behaved

We propose to formulate the requirement of non-occurrence of the problem illustrated in
Example 2.1 on a subclass of flow event structures as follows.

Definition 2.1 Let E' C FE be a class of flow event structures.

Parallel product is said to be well-behaved on E' iff for every £, F € E' and X €
Conf (€ x F) we have m;(X) € Conf(€) and my(X) € Conf(F).

2.3 Compositionality

An operator f on a model of concurrency is said to be compositional with respect to a
certain notion of behaviour if the behaviour of an application of f is completely determined
by the behaviour of its arguments. For an n-ary operator f on flow event structures this
means that C(f(&y,...,&,)) is derivable from C(&;),...,C(Ey)-

Definition 2.2
An operator f : E" — FE is called compositional iff there exists an n-ary operation

on configuration structures fe such that C(f(&1,...,&)) = fe(C(E1),--.,C(ER))-

If f is compositional then C(&;) = C(&]) for all i = 1,...,n implies C(f(&,...,&,)) =
C(f(EL- - EL)).

We require that the process algebraic operators discussed in Section 2.1 are compositional
on our subclass of flow event structures. As all these operators are expressible in terms of

parallel composition and action refinement, which are the labelled counterparts of parallel
product and event refinement, it suffices to establish compositionality for the latter.

In [GG], compositionality for action refinement on the class of all flow event structures has
been established by showing that C(ref (£)) = ref(C(E)), where ref ; is the refinement op-
erator on configuration structures of [GG] induced by the refinements ref - (e) := C(ref (e))
for e € E¢. This result may be immediately transferred to event refinement and is inher-
ited when taking subclasses of flow event structures.

However, for parallel product compositionality turns out to fail. The anomaly of Exam-
ple 2.1 can be used to show that x is not compositional on F.

Example 2.1 (continued)

b—»—c—»—d

Let & = #‘_#' . Then C(€£) = C(&'). However C(E x F) # C(&' x F),
a

since {(a,e), (c, f)} & Conf(E'). The role of d in this example is to ensure that

V(€)= V(&)

In Section 3 we will show that well-behavedness of parallel product on a subclass of flow
event structures guarantees its compositionality.

2.4 Parallel product as a categorical product

In [CZ] a notion of morphism between flow event structures is defined, making the class
of flow event structures into a category. Following [Winskel], they would like the parallel
product X to be the categorical product in this category. For this it is, by definition,
necessary that x is well-behaved in the sense of Definition 2.1. Example 2.1 shows that
on the class of all flow event structures this is not the case. However, they prove that on
the subclass of flow event structures satisfying the A-axiom x is the categorical product.

Interestingly, the only part of their proof using the A-axiom is where they show that the
projections of configurations of product event structures £ x F are themselves configura-
tions. Hence their result can be partitioned in two parts: X is well-behaved on the class of
flow event structures satisfying A, and for any class of flow event structures on which x is
well-behaved this operator is in fact the categorical product. Thus the requirement that
on a subclass of flow event structures x is the categorical product w.r.t. the morphisms
of [CZ] is equivalent to the requirement that on this subclass x is well-behaved.

3 Compositionality

Let E’ be any class of flow event structures on which parallel product is well-behaved.
In this section we establish the compositionality of parallel product on I’ by defining a
counterpart of this operator on the model of configuration structures.

Definition 3.1 Let C and D be configuration structures.

The parallel product C x D is defined by
X - (Ec X {*}) U ({*} X ED) U (Ec X ED)
7T1(X) € C¢ and 7T2(X) € Cp

(d.d), (e,) € X = {Eﬁzl/::ef DA

X eVewp e X €Coxp Ami(X) € Ve Ama(X) € V/p.

Here m(X) :={e € Ec | 3¢ € Ep U {x}: (e,€') € X}
and mo(X) :={e' € Ep | Je € Ec U {x} : (e,€') € X}.

The operator x defined above agrees with the categorical product X defined in [Winskel]
on a category of families of configurations, which are special kinds of configuration struc-
tures without termination predicate. It is also similar to the parallel product of [PP],
defined on ewvent automata, which can be regarded as generalisations of configuration
structures without termination predicate.

The parallel product defined above does not quite qualify as the operation X required
by Definition 2.2, for it may introduce “unreachable” configurations, whereas such config-
urations never occur in configuration structures of flow event structures (as we will show
in Proposition 3.1). Semantically these unreachable configurations are unimportant; vir-
tually all semantic equivalences on configuration structures proposed in the literature
identify structures that differ only in their unreachable part. Hence, using the parallel
product of Definition 3.1 we could prove compositionality “up to” such a semantic equiv-
alence. However, as we do not want to deal with equivalence notions here, we will use a
modified version of parallel product on configuration structures which excludes unreach-
able configurations.

Definition 3.2 Let C be a configuration structure and X € Cg.

X is reachable iff there are X, ..., X, € Cc with =Xy Cc X; C---C X,, = X and
Vi <mn:|X;1— X;| =1. Let R(C¢) be the set of reachable configurations of C.
The reachable part R(C) of C is given by R(C) := (R(C¢), /. N R(C¢)).

C is connected iff all its configurations are reachable, i.e. if R(C) = C.

10

Observation 1 A configuration structure C is connected iff for every X € C¢ with X # ()
there is a g € X such that X — {g} € C.

For configuration structures C and D let C x D be defined as R(C x D). The operator
X has been defined inductively in [Costantini]. We will show that for well-behaved flow
event structures £ and F one has C(€ x F) = C(€) xr C(F), thereby establishing the
compositionality of parallel product for well-behaved flow event structures. We start by
showing that the configuration structures of flow event structures are always connected.

Proposition 3.1 Let £ € F.
Then C(€) is connected, i.e. R(C(E)) = C(E).

Proof Let& € F and) # X € Conf(€). As X is cycle-free there must be a g € X that
is maximal in X w.r.t. <. By Observation 1 it suffices to show that X — {g} € Conf(E).

Finiteness, cycle-freeness and conflict-freeness of X — {g} follow from the same properties
of X. Let d <e€ X —{g}and d € X — {g}. As g is maximal in X we have d # g.
Because X is left-closed up to conflicts 4f € X : d#f < e. As g is maximal in X we have
f#g,ie fe X —{g}. Thus X — {g} is left-closed up to conflicts. [|

Notation For configuration structures C and D we write C C D for C¢ C CpA+/, C v/p-
Observation 2 If C C D then R(C) C R(D).

Now the desired compositionality result falls apart in two directions. We start by showing
that C(€ x F) C C(E) xg C(F), the only direction in which it is used that parallel product
is well-behaved on E'.

Lemma 3.1 Let £, F € E'.
Then C(€ x F) CC(€) x C(F).

Proof We must show that Conf(£ x F) C Ceeyxe(r) and /(€ x F) C \/C(g)xc(f).
Let X € Conf(€ x F). We show that X € Cee)xc(r), according to Definition 3.1.
o As x iswell-behaved on E', m1(X) € Conf(£) = Ce(e) and mo(X) € Conf (F) = Ce(r).

e By Definition 1.4 we have X C Eexr = (Fe x {¥})U({*} x Ex)U(FE¢ x Ef). That we
even have X C (E¢(g) x {*}) U ({*} x E¢(r)) U (Eee) X E¢()), i.e. the first requirement
of Definition 3.1, now follows from the second requirement of Definition 3.1 established
above.

11

e Suppose (d,d'),(e,e’) € X and (d = e # %), but d' # €. Then (d,d') # (e, €),
contradicting the conflict-freeness of X. The other condition follows by symmetry.

Now let X € /(£ x F). Then surely X € Conf(€ x F) C C¢e)xc(r). According
to Definition 3.1 is remains to be be shown that m(X) € /¢y and m(X) € /).
Let * # d ¢ m(X). Then (d,*) ¢ X. So J(e,e') € X Wlth (x) # (e,e'). Now
e € m(X) U {x}. Hence e # d, so dffe # . Thus m(X) € /() That 7r2() € Ve
follows by symmetry. I

Corollary 3.1 Let £, F € E'.
Then C(E x F) C C(€) xx C(F).

Lemma 3.1, Obs. 2
-

Proof C(ExF) =" R(C(EXF)) R(C(E)xC(F)) L C(€) xx C(F). m

Clearly, the restriction to the reachable part is not needed for the direction of the com-
positionality result established above. For the other direction, it is only needed because
of the requirement of cycle-freeness of configurations. We now proceed by dropping this
requirement as an intermediate step.

Definition 3.3 Let £ € FE.

X C FE is a possibly cyclic configuration of £ iff X is finite, conflict-free and left-
closed up to conflicts.

Such a configuration is called terminated iff Vd € F : d ¢ X = Je € X with d#e.
Conf°(€) denotes the set of all possibly cyclic configurations of £, and 1/°(€) the
set of all terminated ones. Furthermore, let C°(€) := (Conf°(&), v/°(£)).

Lemma 3.2 Let £, F € F.
Then C(£) x C(F) C C°(€ x F).

Proof Let X € Ceie)xc(r). We show that X € Conf°(€ x F).

e X is finite, since 71 (X) and my(X) are finite.

e X is conflict-free, due to the last requirement for X € C¢()xc(F) of Definition 3.1 and
the conflict-freeness of 7 (X)) and my(X).

o Let (d,d') < (e,€') € X and (d,d’) ¢ X. Then either d < e or d' < €', say d < e. In
particular d, e # . We have e € m(X) € Conf(€). There are two possibilities for d:

— d¢gm(X). Then 3f em(X) : d#f <e. So A(f, fHeX : (d,d)#(f, f') < (e, ¢€).
— d € m(X). Then 3(d,d") € X. Hence d’ # d". We have (d,d') # (d,d") < (e, €').

Hence X is left-closed up to conflicts.

12

Now let X € v/¢(g)xc(r)- We show that X € /*(€ x F).
Let (d,d') € Egxr with (d,d’) ¢ X. Then either d # * or d' # x, say d # *. Again
there are two possibilities for d:

—d ¢ m(X). As m(X) € \/0(52 there must be an e € m(X) with d#e. Hence
(e, e') € X with (d,d') # (e, €').

— d € m(X). Then 3(d,d") € X. Hence d' # d". We have (d,d") # (d,d").

Hence X is terminating. [|

The following lemma shows that for possibly cyclic configurations of flow event structures
the requirements cycle-free and reachable are equivalent.

Lemma 3.3 Let £ € F.
Then R(C°(€)) = C(E).

Proof “D”: By definition C(£) C C°(£), so by Proposition 3.1 and Observation 2
C(€) =R(C(E)) S R(C(€)).

“C”: Let X € R(C°(E)). It suffices to show that X is cycle-free. Suppose X contains
acycle: dey,...,e1 € X (k> 1) with e; < ey < ... < ey = e1. As X is reachable
ElXo,...,Xn € Cco(g) with @ = X() C X1 C---C Xn =XandVi<n: |XZ'+1 _Xz| =1.
Let i < n be such that X;11 D {ei,...,ex} and e; ¢ X; for a certain j € {1,...,k}.
As e; < €j11 € X; € CCO(g) there must be an f € X; C X, with €j#f =< €j41- So
f,e; € Xi1, contradicting the conflict-freeness of X ;. [|

Corollary 3.2 Let £ and F be arbitrary flow event structures.
Then C(€ x F) 2 C(€) xr C(F).

def Lemma 3.2, Obs. 2

Proof C(£) xzxC(F) E R(C(E)XC(F)) C R(CO(ExTF)) ™ 33c(ExF). m

Together, Corollaries 3.1 and 3.2 say that parallel product is compositional on any class
of flow event structures on which parallel product is well-behaved.

13

4 Well-behaved flow event structures

In this section we define two subclasses of flow event structures, both satisfying the re-
quirements of Section 2. To this end we define two notions of configuration for flow event
structures, the weak and the fairly weak configurations,® that are more liberal than the
standard notion of Definition 1.2. The two subclasses of flow event structures will be the
classes on which the weak, resp. the fairly weak, notion of configuration coincides with the
standard one. The larger class, using fairly weak configurations, contains all flow event
structures satisfying A.

Definition 4.1 Let £ € F.

X C E is a [fairly] weak configuration of £ iff X is finite, cycle-free, conflict-free and
[fairly] weakly left-closed up to conflicts: Vd,e € E :ife € X, d < e and d ¢ X then
there exists an f € X with d#f [and —(e < f)]-

Such a configuration is called terminated iff Vd € E : d ¢ X = Je € X with d#e.
Conf ,,(€) [resp. Conf,(£)] denotes the set of all [fairly] weak configurations of &,
and +/,,(€) [resp. /f,,(€)] the set of all terminated [fairly] weak configurations of £.
The [fairly|] weak configuration structure of & is Cip(€) = (Conf (s (€), V1w (€))-

Observation 3 Note that every strong configuration is certainly fairly weak, and every
fairly weak configuration is certainly weak.

On the other hand, in Example 2.1 the set of events {a,c} constitutes a [fairly| weak
b——-c
configuration of £ but not a strong one. Furthermore, in G = # / the set of events

a
{a, ¢} constitutes a weak configuration but not a fairly weak one.

Definition 4.2

A flow event structure is called [fairly] well-behaved iff all its [fairly] weak configu-
rations are strong.

Note that well-behaved flow event structures are certainly fairly well-behaved. The struc-
ture G above is fairly well-behaved, but not well-behaved. The structure £ of Example 2.1
is not even well-behaved.

In the remainder of this section we will show that

e the classes of [fairly] well-behaved flow event structures are closed under event refine-
ment and parallel product,

e parallel product is well-behaved on these classes,

e flow event structures satisfying the A-axiom are fairly well-behaved.

4We will put the material on fairly weak configurations and the related subclass in square brackets.

14

The structure G on the previous page satisfies the A-axiom. Hence, flow event structures
satisfying the A-axiom are not always well-behaved.

First we establish that the classes of [fairly] well-behaved flow event structures are closed
under event refinement. To this end, we show that the appropriate projections of the
[fairly] weak configurations of refined flow event structures are themselves [fairly] weak
configurations.

Notation Let & € E and let ref : Eg — E — {O}.

For any set X C E,. () of events in ref (£), define the projections

m(X):={e[3f:(e,f)e X} and m5(X):={f](e f) € X}.

Now X can be written as X = |J {e} x m5(X).
eem(X)

Proposition 4.1 Let £ € E, let ref : B¢ — E — {O} and let X € Confp,,(ref(£)).
(i) m(X) € Confp,(€),
(ii) m5(X) € Conf y,,(ref (e)) for all e € m (X)),

(iii) 75(X) € /[y, (ref (€)) when e not maximal in m;(X) w.r.t. <.

Proof

(i) That m(X) is finite, cycle-free and conflict free follows from the corresponding
properties of X. We show that m; (X) is [fairly] weakly left-closed up to conflicts.

Let e € m(X), d € E¢ with d <¢ e and d & m(X).

We have to show that there exists an f € m(X) with f#¢d [and —(e <¢ f)]-
Since e € m1(X) there must be some (e, €e') € X.

There exists (d,d') € Enf), (d,d") X since ref (d) # O and d & 7, (X).
Furthermore (d, d') <) (e, €') since d <¢ e.

So there exists (f, f') € X with (f, f')#rese)(d,d') [and —((e, €') <pere) (f, f))]-
f#dsince f € m(X),d & m(X); hence f#ed.

[As —((e, €') <retey (f, f')) we cannot have e <¢ f and we are done.]

(ii) Let e € m (X). Obviously 75(X) C Epep(e)-
75(X) is finite, cycle-free and conflict-free since X is finite, cycle-free and conflict-
free. We show that 75(X) is [fairly] weakly left-closed up to conflicts.

Let d' € Eref(e)a d =ref(e) e e W;(X), d ¢ WS(X).

Then (e,d’) € Epfe), (e,d") <ns(e) (e,€') € X and (e, d') € X.

So there exists (f, f') € X with (f, f')#wse) (e, d') [and —((e,€) <rws(e) (f, f1))]-
As f,e € m(X) we have =(f#¢e), so f =e A f'#rpe)d.

Thus f' € 75(X) [and =(€' <ref(e) f)]-

15

(iii) Suppose e is not maximal in 7 (X).
Then there exists f € m(X) with e <¢ f, so there is an (f, f') € X
Let d' € Eyep(e) — m5(X). We have (e, d') <ns(e) (f, f') and (e,d’) ¢ X.
Since X is a [fairly| weak configuration, there ex1sts (9,9") € X with (g,9")#rep(e) (e,d).
As g,e € m(X), we have —(g#¢e). Hence g =e, ¢’ € 75(X) and ¢'#ep(e)d'. [|

Theorem 4.1

Let £ € E be [fairly] well-behaved and ref : Eg — E — {O} such that ref(e)
is [fairly] well-behaved for all e € E¢. Then ref(£) is [fairly] well-behaved, i.e.

Conf[f]w(ref(f,')) = Conf(ref (£)).

Proof Let X € Confy,(ref(€)). We have to show that X is (strongly) left-closed up
to conflicts. Let (d,d’) < (e,e') € X and (d,d’) ¢ X. There are three cases to consider.

e Suppose d < e and d ¢ m(X). We have m(X) € Conf ,,(£) = Conf(E) by Propo-
sition 4.1(i). Hence 3f € m1(X) such that d#f < e. So 3(f, f') € X. It follows that
(d,) (S, f) < (e, €).

e Suppose d < e and d € 7;(X). We have d' ¢ 73(X) € Vi ref (d)) = /(ref(d)) b
Proposition 4.1(iii). Hence 3d” € m¢(X) such that d'#d". So (d,d") € X. It follows
that (d,d")#(d,d") < (e, €').

e Suppose d = e and d' < e'. We have d' € m5(X) € Conf y,(ref (€)) = Conf(ref(e))
by Proposition 4.1(ii). Hence 3f’ € n5(X) such that d'#f" < €. So (e, f') € X. It
follows that (e, d')#(e, f') < (e, €). |

Next we establish that the classes of [fairly] well-behaved flow event structures are closed
under parallel product. We first show that the projections of the [fairly] weak configura-
tions of the product of two flow event structures are themselves [fairly] weak configura-
tions.

Proposition 4.2 Let £, F € FE and X € Conf 4, (€ x F).
Then 7, (X) € Conff,,(€) and m(X) € Conf 5, (F).

Proof We show that m (X) € Conf ,,(£); then my(X) € Conf y,,(F) follows by sym-
metry. As X is finite, cycle-free and conflict-free, so is m1(X).

Suppose d < e € m(X) and * # d ¢ 7r1(X). Then (e, e’) € X, whereas (d,*) ¢
Moreover (d,*) < (e,e’'). Thus 3A(f, f') € X : (d,*) # (f, f') [and —((e,e) < (f, f))]
Now f € m(X) U {x}, so f # d. It must be that f#=* and d# f, since (d,*) # (f, f').
[In case e < f we would have (e, e') < (f, f').] Thus m(X) is [fairly] weakly left Closed
up to conflicts. [

Example 2.1 shows that Proposition 4.2 does not hold for strong configurations.

16

Theorem 4.2 Let £, F € F be [fairly] well-behaved.
Then & x F is [fairly] well-behaved, i.e. Conf s, (€ x F) = Conf (€ x F).

Proof Let X € Confy,, (€ x F). We have to show that X is (strongly) left-closed up
to conflicts. Let (d,d') < (e,€’) € X and (d,d’) ¢ X. Then either d < e or d' < ¢,
say d < e (so d,e # *). By Proposition 4.2 and the well-behavedness of £ we have
m1(X) € Confp,,(€) = Conf(€). There are two cases to consider.

e Suppose d & 7 (X). Then 3f € m(X) with d#f < e. Thus 3(f, f') € X. We have
(d, d)#(f, f') < (e, €).

e Suppose d € m(X). Then 3(d,d") € X. Using Definition 1.4 we have (d, d")#(d, d") <
(e, €'). |

As an immediate consequence of Proposition 4.2 we obtain the result that parallel product
is well-behaved on the classes of [fairly] well-behaved flow event structures.

Theorem 4.3 Let £, F € F be [fairly] well-behaved and X € Conf (€ x F).
Then 71(X) € Conf(E) and mo(X) € Conf (F).

Observation 3

Proof Let &, F € F be [fairly] well-behaved and X € Conf(E x F) C
Conf,,(€ x F). With Proposition 4.2 and the [fairly] well-behavedness of & and F
we obtain 7 (X) € Conf y,,(£) = Conf(£) and m(X) € Confp,, (F) = Conf(F)). [|

Finally, we show that flow event structures satisfying the A-axiom are fairly well-behaved.

Theorem 4.4 Let £ € E.
If € satisfies A then & is fairly well-behaved.

Proof Let & satisfy A. Let X be a fairly weak configuration of £. We show that X is
strong. It suffices to show that X is strongly left closed up to conflicts.

Suppose b < c€ X, b¢ X.

We have to show that there exists an f € X with f#b and f < c.

As X is fairly weakly left closed up to conflicts, there is an ¢ € X with a#b and —(c < a).
In case a < ¢, we take f = a.

Otherwise, there exists a d as required by the A-axiom (a 7 csince a,c € X and —(c < a)).
If d € X we take f =d.

Otherwise, as X is fairly weakly left closed up to conflicts and d < ¢ € X, d ¢ X, there
must be an f € X with f#d and =(c < f). As b ¢ X we have f # b.

Since —(c < f), =(c#f) (c,f in configuration X), the A-axiom yields b#f < c. [|

17

5 Concluding remark

We have proposed two subclasses of flow event structures which are suitable for modelling
parallel composition, action refinement and many other operators of CCS-like languages.
These classes consist of those flow event structures on which the traditional “strong”
notion of configuration agrees with a new, “weak” or “fairly weak”, one. When restricting
attention to these classes, the notion of configuration for flow event structures could just
as well be defined to be the weak or the fairly weak one; the classes could then be defined
with the auxiliary notion of a strong configuration.

As flow event structures have been introduced precisely for their suitability in giving
semantics to CCS-like languages, and the flow event structures equipped with the strong
notion of configuration have been shown to fail for this purpose outside our classes, it can
be argued that the strong notion of configuration has no particular advantages over the
weak or fairly weak one. Instead one may wonder whether the weak or the fairly weak
notion of configuration, or variants thereof, may be useful outside our classes. We leave
this as a question for future research.

Acknowledgment

Arend Rensink challenged our original believe that the A-axiom would be preserved under
action refinement in flow event structures and helped us find Counterexample 2.2.

18

References

[BC-a] G. BoubpoL & I. CASTELLANI (1989): Permutation of transitions: an event
structure semantics for CCS and SCCS. In J.W. de Bakker, W.P. de Roever &
G. Rozenberg, editors: REX School and Workshop on Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, Noordwijkerhout, The
Netherlands, May/June 1988, LNCS 354, Springer, pp. 411-427.

[BC-b] G. BoupoL & I. CASTELLANI (1994): Flow models of distributed computations:
Three equivalent semantics for CCS. Information and Computation 114, pp. 247-314.

[CZ] 1. CASTELLANI & G.Q. ZHANG (1997): Parallel product of event structures. The-
oretical Computer Science 179, pp. 203-215.

[Costantini] R. COSTANTINI (1995): Abstraktion in ereignisbasierten Modellen verteilter
Systeme. Dissertation, Univ. Hildesheim. Verlag Dr. Kovagc.

[DD] PH. DARONDEAU & P. DEGANO (1993): Refinement of actions in event structures
and causal trees. Theoretical Computer Science 118, pp. 21-48.

[GG] R.J. vAN GLABBEEK & U. GOLTZ (2001): Refinement of actions and equivalence
notions for concurrent systems. Acta Informatica 37, pp. 229-327.

[NPW] M. NIELSEN, G.D. PLOTKIN & G. WINSKEL (1981): Petri nets, event struc-
tures and domains, part I. Theoretical Computer Science 13(1), pp. 85-108.

[PP] G.M. PINNA & A. POIGNE (1995): On the nature of events: another perspective
in concurrency. Theoretical Computer Science 138(2), pp. 425-454.

[Winskel] G. WINSKEL (1987): Ewvent structures. In W. Brauer, W. Reisig & G. Rozen-
berg, editors: Petri Nets: Applications and Relationships to Other Models of Concur-
rency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced Course, Bad
Honnef, September 1986, LNCS 255, Springer, pp. 325-392.

19

