Configuration Structures
(extended abstract)

R.J. van Glabbeek*

Computer Science Department
Stanford University
Stanford, CA 94305, USA

rvg@cs.stanford.edu

Abstract

Configuration structures provide a model of concur-
rency generalising the families of configurations of
event structures. They can be considered logically,
as classes of propositional models; then sub-classes
can be ariomatised by formulae of simple prescribed
forms. Several equivalence relations for event struc-
tures are generalised to configuration structures, and
also to general Petri nets. Fvery configuration struc-
ture 1s shown to be ST-bisimulation equivalent to a
prime event structure with binary conflict; this fails
for the tighter history preserving bisimulation. Finally,
Petri nets without self-loops under the collective to-
ken interpretation are shown behaviourally equivalent
to configuration structures, in the sense that there are
translations in both directions respecting history pre-
serving bisimulation. This fails for nets with self-loops.

1 Introduction

The aim of this paper is to connect several models of
concurrency, by providing translations between them
and studying which notions of behavioural equivalence
these translations preserve.

In NIELSEN, PLOTKIN & WINSKEL [16] event struc-
tures were introduced as a stepping stone between
Petri nets and Scott domains. It was established that
every safe Petri net can be unfolded into an occurrence
net; the occurrence nets are then in correspondence
with event structures; and they in turn correspond bi-

Families of
Safe Petri Nets

configurations

[

Prime event
) structures

unfol|ding

Prime algebraic
coherent domains

QOccurrence
nets

w. bin. conflict

*This work was supported by ONR under grant number
NO00014-92-J-1974.

G.D. Plotkin*

Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, UK

gdp@dcs.ed.ac.uk

jectively with prime algebraic coherent Scott domains.

In WINSKEL [22] a more general notion of event
structure was proposed, corresponding to a more gen-
eral kind of Scott domain. The event structures from
[16] are now called prime event structures with binary
conflict. The translation from event structures to do-
mains passes through a stage of families of configura-
tions of event structures. VAN GLABBEEK & (GOLTZ
[6] found it convenient to use such families as a model
of concurrency in their own right. In this context the
families were called configuration structures.

,” history
- TN
[4] preserving |

Configuration
structures

p\ Pprocess

\\ graphs)/
N

Pure Petri Nets

e

1-occurrence

Propositional
theories

The present paper generalises the cor-
respondence between safe Petri nets and
configuration structures to unsafe nets. For this pur-
pose we use a more general kind of configuration struc-
ture, the set systems. These have an attractive al-
ternative presentation as propositional theories. As
event structures are insufficiently expressive, they are
skipped as an intermediate step in the translation. In
the full version of this paper they will be generalised
to match all configuration structures. The connection
between configuration structures and Scott domains is
generalised in VAN GLABBEEK [4], where history pre-
serving process graphs are considered as an alternative
presentation of (labelled) domains.

Configuration structures A set system is given by
a set F and a collection C' of subsets of £. When a
set system is used to represent a concurrent system, we
call it a configuration structure. The elements of E are
then events and the elements of C' configurations. An
event represents an occurrence of an action the system
may perform; a configuration X represents a state of
the system, namely the state in which the events in X
have occurred. The configuration structures of [6] were
required to satisfy several requirements, due to [22],
ensuring that they could be obtained as the families of
finite configurations of event structures, namely

all configurations are finite (finitariness),

C' contains the empty configuration (rootedness),

¢ (' is closed under nonempty bounded unions (|,),

e and for any two distinct events occurring in a con-
figuration there is a subconfiguration containing
one but not the other (coincidence-freeness).

In the present paper a more expressive kind of con-
figuration structure is considered, not bound by these
requirements. Many of our results however concern
finitary rooted configuration structures. A further
generalisation of this model was previously proposed
by PINNA & PoIGNE [17]. Their event automata are
rooted finitary configuration structures together with
a transition relation between the configurations.

Our configuration structures are, up to isomor-
phism, the eztensional Chu spaces of GUPTA & PRATT
[11, 10, 20]. Tt was in their work that the idea arose
of using the full generality of such structures in mod-
elling concurrency. It should be noted however that
the computational interpretation in [11, 10, 20] differs
slightly from that in [16, 22, 6, 17].

Formulae In Section 3 we consider set systems from
the point of view of (infinitary) propositional logic: £
is now thought of as the set of propositions and C' as
the set of models. Following PRATT [20] we observe a
bijective correspondence between configuration struc-
tures and infinitary propositional theories up to logical
equivalence. We give a number of results equating the
closure of C under certain operations with its axioma-
tisation by formulae of certain simple forms.

Event structures The behaviour of event struc-
tures is traditionally described in terms of their config-
urations: the consistent and secured sets of events. In
Section 4 we relate this description with one in terms
of consistent and left-closed set of events. The later
corresponds with a logical view of event structures as
propositional theories. A somewhat different logical
view was presented in GUNAWARDENA [9]. The pre-

cise relations with ours are yet to be investigated.

In Section 4.1 we classify event structures along
three lines and discuss the characterisation of the as-
sociated classes of configuration structures.

Equivalences A model of computation should have
a notion of behaviour, and the possibility of comparing
behaviours with respect to suitable equivalence rela-
tions. To this end, in Section 2, we equip configuration
structures with functions [: E — Act labelling events
with actions, and derive associated asynchronous la-
belled transition relations. We consider various bisim-
ulation relations, adapted for concurrency, between the
resulting labelled transition graphs. Section 4.2 con-
siders several classes of event structures within this
framework. Whether previously known classes of event
structures are as general as arbitrary configuration
structures depends on the notion of equivalence used
for the comparison. Theorems 1 and 2 are notewor-
thy in this respect; they imply that the original event
structures of [16] are ST-bisimulation universal.

Petri nets In MESEGUER, MONTANARI & SASSONE
[14], arbitrary (non-safe) Petri nets are unfolded into
occurrence nets. Their unfolding generalises the one
of [16] and preserves the behaviour of nets under a
particular interpretation due to Gorrz & REISIG [§].
We call this interpretation the individual token inter-
pretation. An alternative way of understanding the
behaviour of nets is the collective token interpretation.
In the latter view there are nets which cannot be rep-
resented by an event structure, let alone by a prime
one with binary conflict, or an occurrence net.

In Section 5 we establish a connection between pure
nets and configuration structures. Pure nets are nets
without self-loops. We 1-unfold pure nets into pure 1-
occurrence nets, which generalise the occurrence nets
of [16]. These pure 1-occurrence nets are shown to cor-
respond with rooted finitary configuration structures.

Through the translation into configuration struc-
tures the equivalence notions on such structures are
inherited by pure l-occurrence nets; we generalise
them to all nets. The correspondence between pure 1-
occurrence nets and configuration structures preserves
the identity of events and configurations (configura-
tion equivalence). The 1-unfolding preserves any rea-
sonable form of history preserving bisimulation equiva-
lence [5] on nets, thus making any pure net history pre-
serving equivalent to a configuration structure. More-
over, any net is ST-bisimulation equivalent to such a
structure (and hence to a prime event structure with
binary conflict). In contrast, we find a Petri net not
history preserving equivalent (in an appropriate sense)
to any configuration structure.

In future work we would like to connect our models
with appropriate versions of higher dimensional au-
tomata [19]. One could also consider other equivalence
relations appropriate for the study of concurrency,
such as those based on notions of multiple observers
[18]. In work on event structures WINSKEL and others
have employed various notions of morphism [22]; yet
another notion occurs in the category of Chu spaces.
It seems likely to be of importance to understand the
relation with the present equivalence-based approach.

Acknowledgment We thank Vladimiro Sassone for
helpful comments.

2 The computational interpretation of
configuration structures

In order to interpret a configuration structure as a con-
current system, it is necessary to know, not only what
are the admissible states, but also how the system can
evolve from one state to the other.

Definition 1 Let (E, C) be a configuration structure.
For X,Y in C write X — Y if X CVY, Y —-Xis
finite, and YZ(X C Z CY = Z € C). The relation
— is called the step transition relation.

Here X — Y indicates that the represented system
can go from state X to state ¥ by concurrently per-
forming a number of events (namely the ones in Y —X).
The first requirement is unavoidable. The second one
represents our assumption that in a finite time only
finitely many events can happen. The last require-
ment says that a number of events can be performed
concurrently, or simultaneously, only if they can be
performed in any order. This requirement represents
our postulate that different events do not synchronise
in any way; they can happen in one step only if they
are causally independent. Hence our transition rela-
tion — and the corresponding computational inter-
pretation of configuration structures could be called
asynchronous. It should be noted that other compu-
tational interpretations of configuration structures are
possible. The one of GupTA & PrATT [11, 10, 20]
is obtained by dropping the last two requirements in
Definition 1. By labelling the events, we may observe
transitions:

Definition 2 A labelled configuration structure (over
an alphabet Act) is a triple C = (E, C,!) with (E,C)

a configuration structure and [: £ — Act.

The components of such a structure C are denoted E¢,
C¢ and ¢ respectively (a convention that also applies

to other structurengiven as tuples). The labelled tran-
sition relation X — Y, with L a finite multiset of la-
bels, holdsif X — Y and L = > {l(e)le € (Y — X)}.

Example 1 These are the labelled transition rela-
tions for D = ({d, e}, {0,{d},{e},{d,e}},{) and E =

({d,e, f},{0,{d},{e}, {d, f},{e, f}.{d, €, f}},1), both
with {(d) = a, l(e) = b and {(f) = ¢, and for a struc-

ture F.

{d } g:eag {dabeaf} {d,e,f’}
beaxa (A ft {8} {df e f}
af a{b\e} ot A fo
N W e
) N S N2

Such pictures of configuration structures are somewhat
misleading representations, as they suggest a notion of
global time, under which at any time the represented
system is in one of its states, moving from one state
to another by following the transitions. Although this
certainly constitutes a valid interpretation, we favour
a more truly concurrent view, in which all events can
be performed independently, unless the absence of cer-
tain configurations indicates otherwise. Under this in-
terpretation, the configurations can be thought of as
possible states the system can be in, from the point
of view of a possible observer. They are introduced
only to indicate (by their absence) the dependencies
between events in the represented system.

In particular, in the structure D above, the events
d and e are completely independent, and there is no
need to assume that they are performed either simul-
taneously or in a particular order. The “diagonal” in
the picture serves merely to remind us of the indepen-
dence of these events. In terms of higher dimensional
automata [19] it indicates that “the square is filled in”.

On the other hand, the absence of any “diagonals”
in E indicates two distinct linearly ordered computa-
tions. In one the event f can only happen after event
d, and e in turn has to wait for f; the other has a
causal ordering e < f < d. There is no way to view d
and e as independent; if there were, there should be a
transition ¢ 2% {d,e}.

If we do not care about the order of events d and
e in configuration structure D, we can say that the
configuration {d, e} has only one (concurrent) history.
The configuration {d, e, f} of structure E has two his-
tories. In order to count these histories formally, we
introduce a concept of (monoidal) homotopy between
the paths in the graph representations of configuration
structures.

Definition 3 A path in a configuration structure C is
a non-empty sequence of configurations XoX; --- X,
such that there is a transition X;_; — X; for 7 =
1,...,n. Homotopy is the smallest equivalence on the
paths of C such that if a path m can be obtained by
deleting a configuration from another path p (this not
being the first or the last one in p) then 7 is equivalent
to p. A configuration X is reachable if there is a path
Xy - X, with X, = X. A history of a configuration
is a homotopy class of such paths.

Let R be the operation that deletes all unreach-
able configurations from configuration structures. The
reachable part R(C) of structure C is always finitary
and coincidence-free. Under the computational inter-
pretation of Definition 1 this is the only part that mat-
ters. But, when possible, we will also take unreachable
configurations into account in connecting models of
concurrency, in order to accommodate computational
interpretations such as the one of Gupta and Pratt.

Equivalence relations In order to abstract from
certain details in the representation of concurrent sys-
tems we consider a range of equivalence relations on
configuration structures. VAN GLABBEEK & GOLTZ
[5] suggest history preserving bisimulation equivalence,
defined on event structures in terms of their configu-
rations, as the coarsest equivalence completely captur-
ing the interplay of causality and branching. The most
straightforward generalisation of this notion to general
configuration structures is the following.

Definition 4 Two rooted labelled conf. structures C
and D are configuration preserving bisimulation equiv-
alent if there is a relation B C C¢ x Cp x 2Fe*Ep gych
that (0,0, 0) € B and whenever (X,Y, f) € B then

- f is a bijection between X and Y preserving la-
belling and subconfigurations (an isomorphism),

L
L Y SYAfNX=Ff
- X S5 X' eCec=3Y,f.
€ Cc I {/\(X’,Y’,f’)EB,

L
L XS X'ANfIX=f
- Y =5 Y'eCo=3X', /.
¢ ! {/\(X’,Y’,f’)eB.

However, this equivalence makes more distinctions
than necessary to capture causality and branching: it
distinguishes structures E and F above. Therefore, in
the full version, we define history preserving bisimula-
tion equivalence to be a coarser equivalence, also gen-
eralising the relation from [5], which identifies systems
like E and F. Its definition is similar, but with histories
playing the role of configurations. Even coarser equiva-
lences are step-bisimulation (as above, but without the

isomorphisms f) and interleaving bisimulation equiva-
lence (similar, but using only single-action transitions,
in which L is a singleton). Between step and his-
tory preserving bisimulation we have ST-bisimulation
equivalence [7], based on a notion of state in which
events may have been partly executed.

Definition 5 An ST-configuration is a pair (S,7T)
of configurations with 7' — S. The elements of
S are the events that have started, whereas T' con-
tains the ones that have terminated. The transition
relation between configurations extends to one be-
tween ST-configurations by putting (S, 7T) LE (8,7
iﬂ’SéS’, T T and T — S, An ST-map be-
tween (S,7) and (U, V) is a bijection f: S — U with
f(T) = V. ST-bisimulation equivalence is now de-
fined as in Definition 4, but using ST-configurations
and transitions instead of ordinary ones, and letting
the f’s be ST-maps.

Process graphs In [4] rooted finitary configuration
structures are represented as labelled transition sys-
tems, or process graphs, by taking the configurations
as states, the empty configuration as initial state,
and the single-action transitions as transitions. In
the graph representation of structure D from Exam-
ple 1 the two a-transitions can be recognised as stem-
ming from the same event (d) because they are op-
posites in a square. This cannot be said for struc-
ture E and certainly not for F. Let ~ be the least
equivalence on single-action transitions such that if
X505y, X-5V-5Y and U # V, then
(X 5 U) ~ (V-5 Y). We say that a configu-
ration structure has recognisable events if the evident
map from equivalence classes to events is a bijection.
If this is the case, the configuration structure, up to
isomorphism, is completely determined by its graph.

3 Axiomatisation of set systems

In this section we consider set systems C = (E,C)
from a logical point of view: FE is thought of as a
collection of propositions and C' as the collection of
models. Connecting with the computational point of
view, we associate with an event the proposition that
it has happened. There is an associated theory ®¢ of
all valid sentences, those holding in all models; these
are the laws of C.

To make this precise, we choose a language: infini-
tary propositional logic with E as the set of propo-
sitional variables, and closed under negation and all
conjunctions of sets of formulae. A formula ¢ is valid
in (E,C) iff it is true in all elements of C'; ®¢ denotes
the class of formulae valid in C. Equally, given a class

® of formulae over a set E, we can define a configu-
ration structure Cg = (£, M(®)), where M(®) is the
set of models of @, those interpretations making every
formula in ® true. We say that & ariomatises Cg. In
particular ®¢ axiomatises C for any set system C.

This point of view is due to Pratt [11, 20]. He noted
a natural “conjunctive normal form.” For any two
subsets X,Y of E/, let X = Y abbreviate the “propo-
sitional sequent” A X = \/Y. Then for any (£,C),
if @ is the collection of sequents valid in (E,C) then
(E,C) = Cg. Thus any configuration structure can be
axiomatised by a set of propositional sequents.

We now consider correspondences between axioma-
tisations by classes of formulae and closure conditions
on set systems. First, there is logical interest in Scott
sequents where both antecedent and consequent are fi-
nite, and also in Tarski sequents where, further, the
consequent is a singleton [3, 21].

Proposition 1 A set system (F,C) is Scott sequent
axiomatisable iff C' is closed in the product topology
on 2F . 1t is Tarski sequent axiomatisableiff C is closed
under intersections and directed unions.

Next we consider closure conditions that arise natu-
rally when considering configuration structures. We
denote closure under non-empty intersections by ,,
under bounded non-empty intersections by ﬁ., un-
der bounded non-empty unions by U. and under di-
rected unions by UT' The results appear below. The

stable ﬁ. (any, ddc)
Ne: Us = | (finite, ddc)
D.a U. o = | (1,ddc), (any, 0)
Ny Uy, U, | = | (1,ddc), (finite, 0)
prime | [, = | (any,< 1)
Ne: Us = | (finite, < 1)
Ne: Us | = | (1,1),(any,0)
Ne: Ur, Us | = | (1,1), (finite, 0)
union Q. = | (1, any), (any,0)
Ue: Us < | (1, any), (finite, 0)
Uz < | (finite, any)

last column indicates the form of the allowed formulae
which are all implications. For example: (any, < 1)
indicates a sequent with no restriction on the an-
tecedent and whose consequent has at most one el-
ement; and (any, ddc) indicates an implication whose
antecedent can be any conjunction of propositional let-
ters, and whose consequent has the form V/ jes A Z;
where the Z; are sets of letters, and we write \/ @ for

(VO)AN{-(6AP) | §,6" € B, ¢ # &'}, the disjoint

disjunction of ®. So, for example the sixth entry states
that a configuration structure is axiomatisable by se-
quents of the form (finite, < 1) iff it is closed under
non-empty bounded intersections and directed unions;
this is —essentially— due to Larsen and Winskel [13]
as axiomatisations of the form (finite, < 1) correspond
to Scott information systems. The entries with <’s
indicate that only the implication from right to left
holds; a counterexample is provided by the collection
of all co-finite proper subsets of the natural numbers.
A minor, but useful, variation, is to restrict to rooted
configuration structures (i.e. containing §); then in the
last column one changes “any” to “non-empty,” and
“finite” to “finite and non-empty” on the left of the
implications (but not the right).

4 Event structures
Event structures were introduced by WINSKEL [22]:

Definition 6 A (general) event structure is a triple
E = (E,Con,F) where

e F is a set of events,

o Con C P;(E) is a nonempty consistency predicate
such that: Y C X € Con =Y € Con,

e and FC Con x E is the enabling relation, which
satisfies X FeAX CY eCon =Y Fe.

The idea behind the enabling relation is that an event
e can happen only if a set X of events enabling e oc-
curred previously; Con consists of the finite sets of
events that, potentially, can occur during a single run
of the system. Winskel explained the behaviour of
event structures by associating with each E a family
of configurations S(E), the possible states or runs of
the system:

Definition 7 The set S(E)! of (secured) configura-
tions of an event structure E = (E, Con,) consists of
those X C F which are

o consistent: every finite subset of Y of X isin Con,

e and secured: Ve € X. Jeg,...,e, € X. ey = € A
Vi< n.{e,...,ei—1} Fe;.

Winskel [22] gave an intrinsic characterisation of the
configuration structures of event structures. A family
of configurations C' is of the form S(E) iff C' is non-
empty and has the properties of finite-completeness,
finiteness and coincidence-freeness. Here a family of
configurations is finitely-complete iff it is closed un-
der directed unions and bounded unions (or equiva-
lently bounded finite unions); finiteness means that if

! We also write S(E) for the structure (F,S(E)).

an event occurs in a configuration, then it occurs in
a finite subconfiguration. The properties of finiteness
and closure under directed unions together say that the
infinite configurations are precisely the directed unions
of the finite ones; let us call this property UT-ﬁnz'tary.
Furthermore, the properties of non-emptiness and clo-
sure under bounded unions are equivalent to root-
edness and closure under nonempty bounded unions

(U,). It follows that a set of configurations is the S-
image of an event structure iff it is UT—ﬁnitary, rooted,

(J,-closed and coincidence-free.

Instead of using all configurations to describe the
behaviour of an event structure E, one can just as well
restrict attention to the finite ones, §;(E) (for S(E)
can be recovered from S;(E) by means of closure un-
der directed unions). The corresponding characterisa-
tion has already been mentioned in the introduction.
Note that finitariness and coincidence-freeness come
for free when considering reachable parts of configura-
tion structures.

We consider yet another interpretation of event
structures as configuration structures, namely by using
the left-closed configurations. These are the consistent
sets of events X that satisfy Ve € X. Y C X. Y Fe.

We show that the left-closed interpretation of event
structures is almost the same as the secured interpre-
tation. In order to rule out a pathological case where
this does not hold, we define the irreflexive event struc-
tures to be the ones satisfying X e = X — {e} F e.
Note that every event structure E can be transformed
into an irreflexive one with the same secured config-
urations by deleting unwanted enablings X F e with
e € X. Such a transformation preserving the left-
closed configurations £(E) is obtained by adding the
missing enablings X —{e} F e (when X F ¢). Thus un-
der both interpretations it is no essential limitation to
consider irreflexive event structures only. The follow-
ing proposition says that for such structures the left-
closed interpretation contains more information than
the secured interpretation.

Proposition 2 Let E be an irreflexive event struc-
ture. Then 8¢ (E) = R(L(E)).

Under the computational interpretation of Definition 1
any such extra information is irrelevant and £ and §
can be regarded as equivalent.

With any event structure E = (E, Con,F) we also
associate the propositional theory

o(E) = {\ X = L|X ePs(E) - Con}
Ufe= V{AY | Y Fel}

This logical view of event structures corresponds ex-
actly with the left-closed interpretation:

Proposition 3 Cg(gy = £(E) for any E.

We have no exact characterisation of the structures
of the form L(E); however, a structure is of the form
L¢(E) (the finite left-closed configurations of an event
structure) iff it is finitary, rooted and U.—closed.

4.1 Other brands of event structures

One can classify general event structures along three
dimensions: stability, having recognisable events and
degree of conflict. A further subclass of synchroni-
sation trees [15] will also be considered. Yet other
classes have been considered in the literature, for ex-
ample bundle event structures (LANGERAK [12]) and
flow event structures (BoupoL [2] and Castellani).

Definition 8 E is stable iff X Fg e, Y Fg e and
X UY U{e} € Cong imply X NY kg e.

Winskel defined the stable event structures in [22].
The causal dependencies between the events in a con-
figuration of such a structure can be given by a partial
order. The intrinsic characterisation of the configura-
tion structures of stable event structures consists of the
same requirements as above, together with closure un-
der nonempty bounded intersections (stability). Sta-
bility is equivalent to an interesting local completion
principle: if X CY € C then there is a least Y/ in C
with X CY' CY.

Say that an event structure E has recognisable
events iff the associated configuration structure S(E)
does. We do not possess a particularly pleasing de-
scription of those event structures with recognisable
events, or of their associated configuration structures.
However, we do in the case where they are stable.

Definition 9 E is prime iff for all e in E, e occurs in
an S-configuration, and there is a least X with X I e.

This is (configuration) equivalent to the original defi-
nition in [22]. Prime event structures possess a transi-
tive global causal dependency relation, where e < e’ iff
e € X where X is the least configuration containing e’.

Proposition 4 An event structure has the same con-
figurations as a prime event structure iff it has the
same configurations as a stable one with recognisable
events.

The configuration structures associated to prime event
structures can be characterised by strengthening sta-
bility to the requirement that (E, C') be prime, mean-
ing that C' is closed under non-empty intersections.
Primality is equivalent to a global completion princi-
ple: if X CY € C then there is a least Y/ in C' with
XCcYy'

The other dimension of variation is the degree of
consistency. We consider one possibility:

Definition 10 E has binary conflict if every X not in
Con has a subset not in C'on with two elements.

See [23] for a direct definition, and also for the sta-
ble case. The prime event structures with binary con-
flict are (equivalent to) the original event structures
from NIELSEN, PLOTKIN AND WINSKEL [16]. They
are characterised by the requirements for general event
structures plus primality and coherence, that for all
XY, Z in Cifeachof XUY,YUZ ZUX isin C,
then X UY UZ is too. It was noted by Arend Rensink
that this does not extend to stable event structures.

Finally we consider synchronisation trees. These
are the prime event structures with binary conflict
such that for any two consistent events e,e’ either
e < €' or ¢ < e. This is equivalent to the definition
in [15]. Their configuration structures can be charac-
terised by the extra requirement of linearity: if X and
Y are a bounded pair of configurations, then X C Y
orY C X.

Up to configuration equivalence, the classes of struc-
tures of this section are related by inclusion as indi-
cated below. For the sake of completeness, the flow
and bundle event structures are indicated as well.

general o event structures [22]

event structures [23]

with binary conflict stable [22]

binary conflict and

. . 99
recognisable events prime [22]

(synchronisation) e trees [15]
4.2 The difference between the brands of
structures up to equivalence notions

One defines labelled event structures, and their associ-
ated labelled configuration structures, in the evident
way. From here onwards we assume all structures to be
labelled. The equivalence relations from Section 2 are
inherited by (labelled) irreflexive event structures via
L. We now turn to comparing classes of event struc-
tures and configuration structures with respect to our
“test range” of equivalences. We only state our results;
the proofs will appear in the full version of this paper.

Proposition 5 Every rooted configuration structure
is interleaving bisimulation equivalent to a synchroni-
sation tree.

Since interleaving bisimulation and synchronisation
trees were introduced when considering concurrency
as interleaving, this proposition may not be surpris-
ing. More of a surprise may be that, as regards ST-
bisimulation, the prime event structures are universal.

Theorem 1 Every rooted configuration structure is
ST-bisimulation equivalent to a prime event structure.

We can reduce yet further, to binary conflict:

Theorem 2 Every (prime) event structure is history
preserving bisimulation equivalent to an event struc-
ture (resp., prime event structure) with binary conflict.

Putting these together, we see that every configura-
tion structure is ST-bisimulation equivalent to a prime
event structure with binary conflict. On the other
hand, there is a configuration structure not history-
preserving bisimulation equivalent to any event struc-
ture. In the terminology of the Section 3, it is the one
with three events a,b,c axiomatised by a A b = c.

5 Petri nets

Definition 11

A (labelled) Petri netis a tuple (S, T, F, K, Mg,!) with
S and T two disjoint sets of places and transitions,
F:(SxTUT x S) — N, the flow relation,

K :S— INU{oo}, the capacity allocation,

My S — N, the initial marking,

satisfying My(s) < K (s) for s € S.

e and [: T'— Act, the labelling function.

Petri nets are pictured by drawing the places as circles
(subscripted by ‘6 = K (s)’ if they have finite capacity)
and the transitions as boxes, containing their label.
Between s in S and ¢ in T there are F'(s,t) arcs.

When a Petri net represents a concurrent system,
a global state of such a system is given as a marking,
a function M : S — IN satisfying M(s) < K(s) for
s € S. Such a state is depicted by placing M (s) dots
(tokens) in each place s. The initial state is given by
the marking My. In order to describe the behaviour
of a net, we describe the the step transition relation
between markings.

Definition 12 Let M : S — IN be a marking of a
net. A finite multiset U : T — IN of transitions is
enabled under M if X.cqU(t) - F(s,t) < M(s) and
M'(s) = M(s) + SeerU(t) - (F(t,5) — F(s,1)) < K (s)
for all s € S. In that case U can fire under M, yielding
the marking M', written M Y m.

A chain My REN M, SEENNIRIULN M, starting from
the initial marking My is called a firing sequence. A

marking M is reachable if there is such a sequence
ending in M = M,

If a set U of transitions fires, for every transition ¢ in U
and every arc from a place s to ¢, a token moves along
that arc from s to t. These tokens are consumed by
the firing, but also new tokens are created, namely one
for every outgoing arc of ¢. These end up in the places
at the end of those arcs. If ¢ occurs several times in
U, all this happens several times (in parallel) as well.

The firing of U is only possible if there are suffi-
ciently many tokens in the preplaces of U (the ones
where the incoming arcs come from) and if by firing
U, the capacities of the postplaces (where the outgoing
arcs go to) are not exceeded. This is expressed by the
two conditions in Definition 12.

Definition 13 A net is said to be without capacities
if the range of K is {oo} and without arcweights if the
range of F'is {0,1}.

Equivalence relations on nets and the corre-
spondence with set systems There are two dif-
ferent schools of thought in interpreting the causal be-
haviour of nets, which can be described as the indi-
vidual and collective token philosophy.? The following
example illustrates their difference.

A (O a O b (o)

In this net, the transitions labelled a and b can fire
once each. After a has fired, there are two tokens in
the middle place. According to the individual token
philosophy, it makes a difference which of these to-
kens is used in firing b. If the token that was there
already is used (which must certainly be the case if b
happens before the token from a arrives), the transi-
tions a and b are causally independent. If the token
that was produced by a is used, b is causally depen-
dent on a. Thus, the net A above has two maximal
computations, that can be characterised by the partial
orders ¢ and a—b. According to the collective token
philosophy on the other hand, all that is present in the
middle place after the occurrence of a is the number
2. The preconditions for b to fire do not change, and
consequently b is always causally independent of a.
The individual token approach has been formalised
by the notion of a process, described in GorLTz &
REISIG [8]. A causality respecting bisimulation rela-
tion based on this approach was proposed by BEST,
DEeVILLERS, KIEHN & PoOMELLO [1] under the name
fully concurrent bisimulation. It can be regarded as

2The individual token interpretation of ordinary nets has
nothing to do with the concept of Petri nets with individual
tokens; there the individuality is hardwired into the syntax of
nets.

a form of history preserving bisimulation with these
processes as histories. Below we contribute a form
of history preserving bisimulation, and several related
equivalences, based on the collective token philosophy.
That both philosophies yield incomparable notions of
equivalence follows from the following example.

B (o)y+faf=(e) [v](+)

In the collective token philosophy the precondition of
b expressed by the place in the middle is redundant,
and hence A must be equivalent to B. A and B are not
fully concurrent bisimulation equivalent however, as B
lacks the computation a—b. On the other hand, A is
fully concurrent bisimulation equivalent with C below.

C:@—>a—>©—>b .
O

In fact, C is the occurrence net obtained from A by
the unfolding of MESEGUER, MONTANARI & SASSONE
[14], mentioned in the introduction. In the individual
token philosophy, both nets have the computations %
and a—b. However, A does not have a run a—b in
the collective token philosophy, and can therefore not
be equivalent to C in any causality preserving way.

One often is interested in the behaviour of nets as
far as it can be expressed in terms of transition firings.
The places etc. are then seen as just a tool in speci-
fying such behaviour. In this view, one of the most
discriminating behavioural equivalences we can think
of in the collective token framework is the following
notion of marking equivalence:

Definition 14 Two nets N and N’ are marking equiv-
alent if Ty = T+ and there exists a bijection i between
their reachable markings, such that the initial mark-
ings are related, M —Zsn M’ & i(M) LA (M),
and ZN = lN/.

Note that marking equivalence preserves all causal in-
formation present in the net representation of a con-
current system. Whether two transitions are causally
independent is a context-sensitive matter. It varies
with the markings enabling them both. In such a
marking two transitions are independent iff they can
fire in one step. This kind of information is present
in the step transition relation Y, The nets A and B
are marking equivalent. However, for many purposes
marking equivalence is too fine. It distinguishes for
instance the nets P and @ below, as well as M and N.

ty]a]
M:

Definition 15 A configuration of a net is any finite
multiset X of transitions with the property that the
function Mx : S — 7Z given by Mx(s) = My(s) +
YeerX(t) - (F(t,s) — F(s,t)) is a marking (i.e. 0 <
Mx(s) < K(s) for all s € S). The firing relation
between markings is inherited by the configurations of
anet by X - X/ & Mx g]\ﬂ(.

The (labelled) configuration structure associated to
net N is the tuple C(N) = (Ty,Cn,—n,In), in
which Cy denotes the set of configurations of N.

Note that if Mx Y5 M'then X&U isa configuration
and M’ = Mxgu. It follows that the reachable config-
urations can equivalently be defined as those multisets
of transitions X for which there is a firing sequence
Mo 25 vy L5 o M, with X = @), Us.

Note too that the configuration structure associated
to a net is not a configuration structure in the sense of
Definition 2. It is a structure in a class that enriches
set systems in two ways: first by the use of multi-
sets instead of sets, and second, by the addition of the
transition relation. Still we define:

Definition 16 Two nets N and N’ are configuration
equivalent if C(N) = C(N').

Reachable configuration equivalence is defined similarly
and is strictly coarser than (reachable) marking equiv-
alence: The nets P and Q are (reachable) configuration
equivalent. However M and N below are not. The rea-
son is that although in N all transitions have a different
identity, even though they have the same label.

Next we will determine which class of nets can be
described by means of set systems.

Definition 17 A I-occurrence net is a net in which
every configuration is a set.

This implies that any transition can fire at most once.
Were we interested only in the reachable configura-
tions we could equivalently require that in every firing
sequence My — --- =% M,, the multisets Uy, ..., U,
are sets and disjoint.

In general the firing relation —n of a net N is
not determined by the set of configurations of N. The
nets S and T have a very different behaviour: in S the
actions @ and b can be done in parallel, whereas in T

t to
N: (O af=Oe] >

S: ° ° T: ° °
dla] [ble dla] Te) Jb]e
O O O O

there is mutual exclusion. Yet their configurations are
the same: S corresponds to the configuration structure
D of Example 1; T corresponds to a similar structure,
but without the diagonal ab. Therefore it is not a
good idea to equate a l-occurrence net N with the
configuration structure (Ty, Cn,In).

Definition 18 A net N is pure if there is no s in Sy
and ¢ in Ty with Fy(s,t) > 0 and Fn(t,s) > 0, i.e. if
it is without self-loops.

Proposition 6 In a pure net N we have X —y Y
ifftVZ(X CZCY =ZecCpy)forall X,Y in Cy.

It follows that for pure nets the transition relation is
completely determined by the associated set of con-
figurations. Thus for every pure l-occurrence net N,
C(N) is a set system.

As a consequence, all equivalence notions that are
available for configuration structures are available for
pure l-occurrence nets as well. Two such nets are z-
equivalent iff the associated configuration structures
are. One also has these equivalences for comparing
such nets with configuration or event structures.

Moreover, the equivalence notions of Section 2 gen-
eralise verbatim to configuration structures enriched
with an explicit step transition relation, and hence ap-
ply to arbitrary l-occurrence nets.

Now we can ask whether any l-occurrence net,
possibly with self-loops, is equivalent to a pure 1-
occurrence net, or configuration structure. The net T
is history preserving bisimulation equivalent to a pure
l-occurrence net. This does not hold in general:

Proposition 7 The 1-occurrence net above is not his-
tory preserving bisimulation equivalent to a configu-
ration structure. However, every l-occurrence net is
ST-bisimulation equivalent to such a structure.

Below we show that the restriction to 1-occurrence
nets is not very crucial; every net can be “unfolded”
into a 1-occurrence net without changing its behaviour
in any essential way. However, the unfolding cannot be
configuration equivalent to the original, as the identity
of transitions cannot be preserved.

Definition 19 Let N = (S, T, F, K, My,!) be a Petri
net. Its I-unfolding N' = (S', T, F', K', M{,l') into a
l-occurrence net is given by (fors € S, t € T, u € T")

o 1" =T x N and I'((t,n)) = 1(¢),

o S'=SU (T x {*}),

o F'(s,(t,n)) = F(s,t) and F'((t,n),s) = F(t,s),

o F'(u,(u, %)) = F'((u,*),u) = F(u.’, u, %)) = 0

o K'(s) = K(s) and K((u,*)) = oo,
o M{(s) = My(s) and M{((u,*)) = 1.

Thus, every transition is replaced by countably many
copies, each of which is connected with its environ-
ment (though the flow relation) in exactly the same
way as the original. Furthermore, for every such copy
u an extra place (u,) is created, containing one ini-
tial token, and having no incoming arcs and only one
outgoing arc, going to u. This place guarantees that u
can fire only once. In any reachable marking of the un-
folded net, one can see exactly which transitions have
fired, namely those transitions u for which the place
(u,*) is empty. Hence every such marking has only
one configuration.

Proposition 8 Two nets are configuration equivalent
iff their unfoldings are. Moreover, for each of our
equivalences x, two l-occurrence nets are z-equivalent
iff their unfoldings are.

Proposition 8 shows we can define all our equivalences
on general nets.

Definition 20 Two nets are said to be z-equivalent
iff their unfoldings are.

Proposition 8 guarantees that this definition is consis-
tent with the one we had already for 1-occurrence nets.
Under this definition a net is configuration preserving
bisimulation equivalent with its unfolding, although
there is no bijective relation between the configura-
tions. This is because a (trivial) element of choice is
introduced by the construction.

Proposition 9 Every net is configuration preserving
as well as fully concurrent bisimulation equivalent with
its unfolding.

This tells us that the notion of unfolding preserves the
behaviour of nets under both the collective and the
individual token interpretation.

It is possible however to give a slightly different
interpretation of nets, namely by excluding transi-
tions from firing concurrently with themselves.® This
amounts to simplifying Definition 12 by requiring U
to be a set rather than a multiset. Under this inter-
pretation our unfolding could introduce concurrency
that was not present before. However, for this pur-
pose Definition 19 can be adapted by removing the
initial tokens from the places ((t,n),#) for ¢t € T and
n > 0 (but leaving the token in ((¢,0), #)), and adding
an arc from transition (¢,n) to place ((¢,n + 1), %) for
every t € T' and n € IN. If both Definition 12 and 19
are adapted as indicated above, Propositions 8 and 9
hold again.

Note that the construction in Definition 19 does not
introduce self-loops. Thus unfoldings of pure nets re-
main pure.

Corollary 1 For every Petri net there exists an ST-
bisimulation equivalent configuration structure. For
every pure net there exists a configuration preserving
bisimulation equivalent configuration structure. And
for every pure l-occurrence net N, C(N) is a configu-
ration structure.

The configuration structure associated to a Petri net is
always finitary and rooted. The following shows that
Corollary 1 has an an inverse: every such configuration
structure can be obtained as the image of a pure 1-
occurrence net.

Theorem 3 For every finitary rooted configuration
structure there exists a pure l-occurrence net without
capacities or arcweights with the same configurations.

Proof: As transitions of the net we take the events
of the configuration structure. For every transition we
add one place without incoming arcs, and with its only
outgoing arc going to that transition. These places
make sure that every transition fires only once. Let
® be an axiomatisation of the configuration structure
consisting of propositional sequents only. For every
sequent X = Y with X finite, we introduce a place
in the net. This place has outgoing arcs to each of
the transitions in X, and incoming arcs from each of
the places in Y. Let n be the cardinality of X. As
the configuration structure is rooted, n # 0. We finish
the construction by putting n — 1 initial tokens in the
created place.

3This distinction is independent of the individual-collective
token dichotomy, thus yielding four computational interpreta-
tions of nets.

The place belonging to sequent X = Y does not
place any restrictions on the firing of the first n — 1
transitions in X. However, the last one can only fire
after an extra token arrives in the place. This can
happen only if one of the transitions in Y fires first.
The firing of more transitions in ¥ has no adverse ef-
fects, as each of the transitions in X can fire only once.
Thus this place places the same restriction on the oc-
currence of events as the corresponding sequent. It
follows that the constructed net has exactly the same
reachable configurations as the original configuration
structure. It even has the same unreachable ones. O

As a corollary we obtain that every pure net is
configuration preserving bisimulation equivalent to a
net without capacities or arcweights. Every pure 1-
occurrence net is even configuration equivalent to a
net without capacities or arcweights.

References

[1] E. BesT, R. DEVILLERS, A. KiEaN & L. POMELLO
(1991): Concurrent bisimulations in Petri nets. Acta
Informatica 28, pp. 231-264.

[2] G. BoupoL (1990): Flow event structures and flow
nets. In I. Guessarian, editor: Semantics of Systems
of Concurrent Processes, Proceedings LITP Spring
School on Theoretical Computer Science, La Roche
Posay, France, LNCS 469, Springer-Verlag, pp. 62-95.

[3] D.M. GaBBAY (1981): Semantic Investigations in
Heyting’s Intuitionistic Logic, Synthese Library 148.
D. Reidel.

[4] R.J. vAN GLABBEEK (1995): History preserving pro-
cess graphs. Report, Stanford University, Available at
ftp://boole.stanford.edu/pub/DVI/history.dvi.gz.

[5] R.J. vaN GLABBEEK & U. Gorrz (1989): FEquiv-
alence notions for concurrent systems and refine-
ment of actions. In A. Kreczmar & G. Mirkowska,
editors: Proceedings 14" Symposium on Mathe-
matical Foundations of Computer Science, Porabka-
Kozubnik, Poland 1989, LNCS 379, Springer-Verlag,
pp. 237-248.

[6] R.J. vaN GLABBEEK & U. GoLTz (1990): Refine-
ment of actions in causality based models. In J.W.
de Bakker, W.P. de Roever & G. Rozenberg, editors:
Proceedings REX Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalism, Correct-
ness, Mook, The Netherlands, May/June 1989, LNCS
430, Springer-Verlag, pp. 267-300.

[7] R.J. vaN GLABBEEK & F.W. VAANDRAGER (1987):
Petri net models for algebraic theories of concurrency.
In J.W. de Bakker, A.J. Nijman & P.C. Treleaven, edi-
tors: Proceedings PARLE conference, Eindhoven, Vol.
II (Parallel Languages), LNCS 259, Springer-Verlag,
Pp. 224-242.

[8] U. Gorrz & W. REISIG (1983): The non-sequential
behaviour of Petri nets. Information and Computation
57, pp. 125-147.

[9] J. GUNAWARDENA (1992): Causal automata. Theo-
retical Computer Science 101, pp. 265-288.

[10] V. GupTaA (1994): Chu Spaces: A Model of Concur-
rency. PhD thesis, Stanford University. Available at
ftp://boole.stanford.edu/pub/gupthes.ps.gz.

[11] V. GupTA & V.R. PRATT (1993): Gates accept con-
current behavior. In Proc. 34th Ann. IEEE Symp. on
Foundations of Comp. Sci., pp. 62-71.

[12] R. LANGERAK (1992): Transformations and Seman-
tics for LOTOS. PhD thesis, Department of Com-

puter Science, University of Twente.

[13] K.G. LARSEN & G. WINSKEL (1991): Using infor-
mation systems to solve recursive domain equations.
Information and Computation 91(2), pp. 232-258.

[14] J. MESEGUER, U. MONTANARI & V. SASSONE (1992):
On the semantics of Petri nets. In W.R. Cleaveland,
editor: Proceedings CONCUR 92, Stony Brook, NY,
USA, LNCS 630, Springer-Verlag, pp. 286-301.

[15] R. MILNER (1980): A Calculus of Communicating
Systems, LNCS 92. Springer-Verlag.

[16] M. NIELSEN, G.D. PLOTKIN & G. WINSKEL (1981):
Petri nets, event structures and domains, part I. The-
oretical Computer Science 13(1), pp. 85-108.

[17] G.M. PinNA & A. PoIGNE (1995): On the nature of
events: another perspective in concurrency. Theoreti-
cal Computer Science 138(2), pp. 425-454.

[18] G.D. PLOTKIN & V.R. PRATT (1988): Teams can see
pomsets. Manuscript available at
ftp://boole.stanford.edu/pub/DVI/pp2.dvi.gz.

[19] V.R. PrRATT (1991): Modeling concurrency with ge-
ometry. In Proc. 18th Ann. ACM Symposium on Prin-
ciples of Programming Languages, pp. 311-322.

[20] V.R. PRATT (1994): Chu spaces: complementarity
and uncertainty in rational mechanics. Tech. report,
TEMPUS Summer School, Budapest. Available at
ftp://boole.stanford.edu/pub/DVI/bud.dvi.gz.

[21] D.S. ScoTT (1974): Completeness and aziomatizabil-
ity in many-valued logic. In L. Henkin et al., editors:
Proc. Tarski Symposium, AMS, pp. 411-435.

[22] G. WINSKEL (1987): Event structures. In W. Brauer,
W. Reisig & G. Rozenberg, editors: Petri Nets: Appli-
cations and Relationships to Other Models of Concur-
rency, Advances in Petri Nets 1986, Part II; Proceed-
ings of an Advanced Course, Bad Honnef, September
1986, LNCS 255, Springer-Verlag, pp. 325-392.

[23] G. WINSKEL (1989): An introduction to event struc-
tures. In J.W. de Bakker, W.P. de Roever & G. Rozen-
berg, editors: REX School/Workshop on Linear Time,
Branching Time and Partial Order in Logics and Mod-
els for Concurrency, Noordwijkerhout, The Nether-
lands, May/June 1988, LNCS 354, Springer-Verlag,
pp- 364-397.

