Petri Nets, Configuration Structures
and Higher Dimensional Automata*

R.J. van Glabbeek**

Computer Science Department, Stanford University
Stanford, CA 94305-9045, USA.
http://theory.stanford.edu/"rvg/
rvgQcs.stanford.edu

In this talk, translations between several models of concurrent systems are re-
viewed c.q. proposed. The models considered capture causality, branching time,
and their interplay, and these features are preserved by the translations. To the
extent that the models are intertranslatable, this yields support for the point
of view that they are all different representations of the same phenomena. The
translations can then be applied to reformulate any issue that arises in the con-
text of one model into one expressed in another model, which might be more
suitable for analysing that issue. To the extent that the models are not inter-
translatable, my investigations are aimed at classifying them w.r.t. their expres-
siveness in modelling phenomena in concurrency. The results are summarised in
the figure at the end of this paper.

Starting point is the work of NIELSEN, PLOTKIN & WINSKEL [17], in which
safe Petri nets are translated, through the intermediate stages of occurrence
nets, prime event structures with a binary conflict relation, and their families of
configurations, into a class of Scott domains.

Safe
Petri Nets

Prime event - . .
Occurrence Families of Prime algebraic
structures . .
. . configurations coherent domains
w. bin. conflict

1 From nets to configurations

In VAN GLABBEEK & PLOTKIN [10] extensions of the translations above to
unsafe Petri nets have been studied. For this purpose two different schools of
thought in interpreting the causal behaviour of nets needed to be distinguished,
which we called the individual and collective token philosophy. Their difference is
illustrated by the following net. According to the individual token philosophy, A

A: @—> a —>®—> b <—@
has an execution in which the action b causally depends on a, whereas according
to the collective token philosophy, a and b are always causally independent.

* To appear in Proceedings CONCUR. ’99.
** This work was supported by ONR under grant number N00014-92-J-1974.

In MESEGUER, MONTANARI & SASSONE [15], the unfolding from [17], trans-
lating safe nets into the subclass of occurrence nets, is extended to arbitrary
nets, while preserving the individual token interpretation. It follows that under
this interpretation prime event structures are expressive enough to represent all
processes expressible by Petri nets.

Under the collective token interpretation there turn out to be nets whose
causal behaviour cannot be faithfully represented by a prime event structure.
Representative examples are the two nets below, modelling what I often call

n n
n n

disjunctive causality and resolvable conflict, respectively.

In WINSKEL [25] a more general notion of event structure is proposed, ex-
tending the prime event structures with a binary conflict relation from [17],
along with matching generalisations of the families of configurations and Scott
domains. These event structures capture disjunctive causality, but not resolvable
conflict.

The families of configurations of Winskel’s event structures were introduced
merely to facilitate the construction of the Scott domains associated to these
event structures. In VAN GLABBEEK & GOLTZ [9] we found it convenient to
use such families as a model of concurrency in its own right. In this context
the families were called configuration structures. A configuration structure can
be given by a set of events, modelling occurrences of actions the represented
system may perform, possibly a labelling function, associating actions to events,
and a collection of sets of events, the configurations, modelling the states of the
represented system, and satisfying a number of closure conditions. A configu-
ration represents the state in which the events it contains have occurred. The
closure conditions ensure that each configuration structure can be regarded as
the family of configurations of an event structure.

In [10] we proposed to drop the closure conditions, thereby obtaining a more
general model of concurrency, capturing both disjunctive causality and resolvable
conflict. The resulting configuration structures are, up to isomorphism, the ezxten-
sional Chu spaces of GUPTA & PRATT [13], but equipped with a slightly differ-
ent computational interpretation. Through suitable translations we showed that
these configuration structures are equally expressive as general Petri nets with-
out self-loops. Such nets are called pure. To this end we defined a 1-occurrence net
to be a Petri net in which each transition can fire at most once, and we showed
how any (pure) Petri net can be converted into a (pure) 1-occurrence net, using
a construction we called 1-unfolding. We argued that this conversion preserves

essential features of the represented system like causality and branching time. It
may convert a finite net into an infinite one, however. The translations between
pure 1l-occurrence nets and configuration structures take the transitions of the
net to be the events of the configuration structure and vice versa; this way a con-
figuration structure can be fully recovered from its Petri net representation. Our
translations also extend the correspondence between flow nets and flow event
structures proposed in BOUDOL [3].

ST-configuration structures are a further generalisation of configuration
structures in which the configurations may contain certain events ‘partially’ (in
case they are currently being executed). They are (a mild generalisation of)
what are called local event structures in HOOGERS, KLEIIN & THIAGARAJAN
[14]. In forthcoming work, Gordon Plotkin and I extend the translations be-
tween pure nets and configuration structures to translations between arbitrary
Petri nets and ST-configuration structures, thus showing that also these models
are equally expressive. The same was done, using a different construction, for
general Petri nets without autoconcurrency in [14]. We also propose a matching
generalisation of the model of event structures.

2 Scott domains versus process graphs

In [17] a “curious mismatch” is observed between the domains that result from
translating nets or event structures, and the ones originally studied by ScoTTt
[22]. Although mathematically of the same nature, a domain that arises through
the translations of [17] represents a single concurrent system, namely the same
one represented by the Petri net or event structure it originated from. In domain
theory, on the other hand, processes show up at best as the elements of a domain.
Thus the use of domains to represent concurrent systems is novel in [17].

In most models of concurrency, attention is restricted to discrete processes,
i.e. processes that can perform only finitely many actions in a finite time. Petri
nets are commonly interpreted to represent discrete processes—this comes with
the common definitions of the firing rule. On prime event structures the axiom of
finite causes restricts attention to the structures representing discrete systems,
and in Winskel’s general event structures discreteness is obtained by the way the
notion of a configuration of an event structure is defined. A Scott domain is a
partially ordered set, satisfying certain conditions. The finite elements in such a
domain are the ones that dominate only finitely many other elements. A discrete
Scott domain (resulting from translating a discrete event structure) has the prop-
erty that its infinitary part is redundant, in the sense that it can be recovered in
full from its finitary part (the partial suborder of its finite elements). The fini-
tary part of a domain can, without loss of information, be trivially represented,
and is often displayed, as an unlabelled rooted graph. Therefore I argue that
the correspondence between event structures and domains proposed in [17], and
generalised to all event structures in [25], can equivalently, or maybe better, be
regarded as a correspondence between event structures and a class of unlabelled
transition systems or process graphs. As remarked in [7], this correspondence can

trivially be extended to labelled event structures and transitions systems; the lat-
ter are easier to label than domains. It follows immediately that process graphs,
or labelled transition systems, are at least as capable of expressing causality as
labelled event structures.

The computational interpretation of domains, inherited from that of event
structures, naturally applies to the process graphs corresponding with those
domains. These graphs capture causality through confluence of squares of tran-
sitions. This computational interpretation can be extended to process graphs
that do not correspond to event structures or Scott domains. It can be seen
as an enrichment of the classical interpretation of process graphs. Just like any
process graph can be unfolded into a tree, while preserving its interleaving inter-
pretation, I propose a causality respecting unfolding of arbitrary process graphs
into so-called history preserving ones, which preserves transition squares. His-
tory preserving process graphs generalise the Scott domains originating from the
general event structures of [25]. They can also model phenomena like resolvable
conflict that are not expressible by these event structures.

Several brands of transition systems enriched with some auxiliary structure
to capture causality have been proposed as models of concurrency, cf. the asyn-
chronous transition systems of SHIELDS [23] and BEDNARCZYK [2], the behaviour
structures of RABINOVICH & TRAKHTENBROT [21], the concurrent transition
systems of STARK [24] and DROSTE, [5] and the transition systems with indepen-
dence of NIELSEN & WINSKEL [26]. In each of these cases the added structure
does not fundamentally increase their expressiveness: after a suitable behaviour-
preserving unfolding, the causalities expressed by this added structure are com-
pletely determined by the underlying transition system, which always forms a
history preserving process graph.

Event automata, studied by PINNA & POIGNE [19], fit between configura-
tion structures and ST-configuration structures. Through appropriate transla-
tions these can be shown to be equally expressive as the so-called configuration-
deterministic process graphs. Graphs which are not configuration deterministic
do not correspond to nets or event-oriented models. Interestingly, translating
back and forth between event automata and process graphs may repeatedly in-
crease the number of events of the event automaton representation of the system
in question, namely by spitting events into subevents that occur in disconnected
parts of the system representation. Hence these translations cannot be expressed
as reflexions or coreflexions in a suitable categorical framework.

3 Higher dimensional automata

The concurrent interpretation of process graphs allows one to think of squares
and cubes as being “filled in”. PRATT [20] proposes a geometric model of concur-
rency, refining this approach by not necessarily filling in all squares and cubes,
but explicitly filling in only those that one wants to represent concurrency. Al-
ternative formalisations of this idea appear in VAN GLABBEEK [8], GOUBAULT
& JENSEN [11] and CATTANI & SASSONE [4]. Although the resulting model of

higher dimensional automata is more complicated than that of plain automata
or process graphs, it is more expressive as well. The Petri net below, for in-

stance, is expressible by a higher dimensional automaton in the form of a cube,
as displayed above, of which all 6 sides are filled in (representing the 6 possible
concurrent firings of two transitions, either before or after the third one fires),
but the interior is not. The causal behaviour of this system cannot be repre-
sented by a process graph, and hence neither by an event automaton, nor by a
pure Petri net. Process graphs and the mentioned transition systems with ex-
tra structure to capture causality can be regarded as one- and two-dimensional
automata, respectively.

A representation of higher dimensional automata in which the names of both
events and actions are incorporated, is given by labelled step transition systems
(LSTSs), see also BADOUEL [1]. These naturally unfold into (alternative rep-
resentations of) ST-configuration structures. Petri nets translate to LSTSs by
taking their marking graphs; LSTSs translate to higher dimensional automata
as in [8] by forgetting event names (but remembering their labels).

EHRENFEUCHT & ROZENBERG [6] characterised which process graphs can be
obtained as the marking graphs of a safe nets. Likewise, MUKUND [16] charac-
terised which LSTSs can be obtained as the step marking graphs of general Petri
nets. Both papers also yield translations back from (step) transition systems to
nets, but only for systems in the characterised class. More general translations
from LSTSs to nets can be obtained through unfolding.

Labelled Higher
step transition dimensional

1tunfolding systems
(HDA) N process
Safe nets graphs

Petri nets

unfol| ding unfol| ding unfol| ding
Occurrence s .IJ Prime [17] I‘L ,IJ Families I‘L ,|~| Prime alg.
Event str. [25] Scott domains
Pure 1-occ. nets
Conf. str. [10] Non-repetitive
i Event aut. [1 h;
ey Generalised | | [Tvent au [19] ¢y LPTOCESS Eraphs
1-occurrence nets| | event structures ST-conf. str. Higher dim.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

E. BADOUEL (1996): Splitting of actions, higher-dimensional automata, and net
synthesis. Technical Report RR-3490, Inria, France.

M. BEDNARCZYK (1987): Categories of asynchronous systems. PhD thesis, Com-
puter Science, University of Sussex, Brighton.

G. BouDpoL (1990): Flow event structures and flow nets. In I. Guessarian, editor:
Semantics of Systems of Concurrent Processes, Proceedings LITP Spring School
on Theoretical Computer Science, La Roche Posay, France, LNCS 469, Springer,
pp. 62-95.

. G.L. CATTANI & V. SASSONE (1996): Higher dimensional transition systems. In

Proceedings 11** Annual IEEE Symposium on Logic in Computer Science (LICS
96), New Brunswick, USA, IEEE Computer Society Press, pp. 55-62.

M. DROSTE (1992): Concurrent automata and domains. International Journal of
Foundations of Computer Science 3(4), pp. 389-418.

A. EHRENFEUCHT & G. ROZENBERG (1990): Partial 2-structures. Acta Informatica
27(4), pp. 315-368.

R.J. VAN GLABBEEK (1988): An operational non-interleaved process graph seman-
tics of CCSP (abstract). In E.-R. Olderog, U. Goltz & R.J. van Glabbeek, edi-
tors: Combining compositionality and concurrency, summary of a GMD-workshop,
Koénigswinter, March 1988, Arbeitspapiere der GMD 320, pp. 18-19.

R.J. VAN GLABBEEK (1991): Bisimulations for higher dimensional automata.
Email message, July 7, ’91. Available at http://theory.stanford.edu/ rvg/hda.
R.J. vAN GLABBEEK & U. Govrz (1990): Refinement of actions in causality based
models. In J.W. de Bakker, W.P. de Roever & G. Rozenberg, editors: Proceedings
REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formal-
ism, Correctness, Mook, The Netherlands, May/June 1989, LNCS 430, Springer,
pp- 267-300.

R.J. VAN GLABBEEK & G.D. PLOTKIN (1995): Configuration structures (eztended
abstract). In D. Kozen, editor: Proceedings 10t Annual IEEE Symposium on Logic
in Computer Science (LICS 95), San Diego, USA, IEEE Computer Society Press,
pp. 199-209.

E. GouBauLt & T. JENSEN (1992): Homology of higher dimensional automata.
In W.R. Cleaveland, editor: Proceedings CONCUR 92, Stony Brook, NY, USA,
LNCS 630, Springer, pp. 254-268.

J. GUNAWARDENA (1992): Causal autornata. Theoretical Computer Science 101,
pp. 265-288.

V. GuprTA & V.R. PRATT (1993): Gates accept concurrent behavior. In Proc.
34th Ann. IEEE Symp. on Foundations of Comp. Sci., pp. 62-71. More material
on Chu spaces can be found at http://boole.stanford.edu/chuguide.html.
P.W. HOOGERS, H.C.M. KLEUN & P.S. THIAGARAJAN (1993): Local event struc-
tures and Petri nets. In E. Best, editor: Proceedings CONCUR 93, Hildesheim,
Germany, LNCS 715, Springer, pp. 462-476.

J. MESEGUER, U. MONTANARI & V. SASSONE (1992): On the semantics of Petri
nets. In W.R.. Cleaveland, editor: Proceedings CONCUR. 92, Stony Brook, NY,
USA, LNCS 630, Springer, pp. 286-301.

M. MUKUND (1992): Petri nets and step transition systems. International Journal
of Foundations of Computer Science 3(4), pp. 443-478.

M. NIELSEN, G.D. PLOTKIN & G. WINSKEL (1981): Petri nets, event structures
and domains, part I. Theoretical Computer Science 13(1), pp. 85-108.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. NIELSEN, G. ROZENBERG & P.S. THIAGARAJAN (1992): Elementary transition
systems. Theoretical Computer Science 96, pp. 3-33.

G.M. PINNA & A. POIGNE (1995): On the nature of events: another perspective
in concurrency. Theoretical Computer Science 138(2), pp. 425-454.

V.R. PRATT (1991): Modeling concurrency with geometry. In Proc. 18th Ann.
ACM Symposium on Principles of Programming Languages, pp. 311-322.

A. RABINOVICH & B.A. TRAKHTENBROT (1988): Behavior structures and nets.
Fundamenta Informaticae 11(4), pp. 357-404.

D. ScotT (1970): Outline of a mathematical theory of computation. In Proceedings
of the 4" Annual Princeton Conference on Information Sciences and Systems, pp.
169-176.

M.W. SHIELDS (1985): Concurrent machines. The Computer Journal 28(5), pp.
449-465.

E.W. STARK (1989): Concurrent transition systems. Theoretical Computer Science
64, pp. 221-269.

G. WINSKEL (1987): Event structures. In W. Brauer, W. Reisig & G. Rozenberg,
editors: Petri Nets: Applications and Relationships to Other Models of Concur-
rency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced Course,
Bad Honnef, September 1986, LNCS 255, Springer, pp. 325-392.

G. WINSKEL & M. NIELSEN (1995): Models for concurrency. In S. Abramsky,
D.M. Gabbay & T.S.E. Maibaum, editors: Handbook of Logic in Computer Science,
volume 4: Semantic Modelling, chapter 1. Oxford University Press.

